Ocultar todos as secções
desta candidatura Hide all sections for this application |
|
Referência do projeto
|
PTDC/EEI-TEL/2674/2012 (Lacrado a 29-03-2012 às 17:33) |
1. Identificação do projeto
|
|
Domínio
Científico
|
|
Ciências Exatas e da Engenharia | |
Área
científica principal
|
|
Engenharia Eletrotécnica e Engenharia Informática - Telecomunicações | |
Área
científica Secundária
|
|
(Vazio) (Void) |
|
Acrónimo
|
|
COOC | |
Título
do projeto (em português)
|
|
COOC - Osciladores caóticos para comunicações Ópticas | |
Título
do projeto (em inglês)
|
|
COOC - Chaotic oscillators for optical communications | |
Financiamento
solicitado
|
|
192.202,00€ | |
Palavra-chave 1 |
Keyword 1 |
Comunicações Ópticas | Optical communications |
Palavra-chave 2 |
Keyword 2 |
Osciladores caóticos | Chaotic oscillators |
Palavra-chave 3 |
Keyword 3 |
Díodos de efeito de túnel ressonante | Resonant tunnelling diodes |
Palavra-chave 4 |
Keyword 4 |
Díodos laser | Laser diodes |
Data
de início do projeto
|
Duração
do projeto em meses
|
01-01-2013 | 24 |
2. Instituições envolvidas
|
|
|
3. Componente Científica
|
|
3.1. Sumário
|
3.1.a Em português
|
Os sistemas caóticos produzem sinais que são altamente
sensíveis às condições iniciais dos parâmetros
do sistema, irregulares (com a aparência do ruído), aperiódicos,
não correlacionados, e de banda larga, o que torna difícil
prevê-los. Uma vez que estas são as propriedades de sinal exigidas pelos sistemas de comunicação, vários sistemas de comunicação baseados em sinais caóticos têm sido propostos para comunicções de banda larga por forma a aumentar a robustez dos canais de comunicação a perturbações e interferências características nos sistemas de frequência de banda estreita e a outros distúrbios inevitável. A geração de sinais de banda larga a nível físico oferece possibilidades extras ao nível da privacidade que podem reforçar (através de criptografia de hardware robusta), a segurança dos sistemas atuais baseados em software e dos futuros sistemas de criptografia quântica. As fontes caóticas permitem implementar esteganografia ao nível da camada física dos sistemas melhorando a segurança de técnicas de criptografia. Além disso, os sinais caóticos dão a possibilidade de transmitir sinais com níveis de potência abaixo do ruído de fundo médio, o que pode ser muito útil em aplicações onde a potência de transmissão ou a densidade espectral de potência na banda disponível é limitada como é o caso das comunicações de rádio não licenciadas, adicionando maior segurança à transmissão de informação. Em sistemas de comunicação baseados em sinais caóticos a mensagem criptografada é codificado e incorporada na transportadora caótica produzida pelo emissor. Os sinais caóticos semelhantes a ruído são usados para ocultar a mensagem, conduzindo a um reforço da ocultação da mensagem, de tal maneira que torna mais difícil o processo de extracção indevida da mensagem. Os sistemas de comunicação com sinais caóticos baseiam-se na sincronização do receptor ao sinal do emissor caótico, que através de técnicas adequadas permite a descodificação por meio da separação da portadora caótica e da mensagem. Isto é, a mensagem é descodificada pela sincronização do receptor ao sinal caótico produzido pelo emissor, um processo não-linear de filtragem que reproduz localmente o sinal caótico do emissor livre da mensagem, que é então subtraído ao sinal caótico contendo a mensagem proveniente do transmissor. Os sistemas ópticos oferecem formas mais simples de gerar portadoras caóticas de elevada dimensionalidade que os sistemas eléctrico, e ao mesmo tempo oferecem a possibilidade de as taxas de transmissão muito superiores. O emprego de portadoras caóticas não requer alterações substanciais nas infra-estruturas e configurações das redes de fibra óptica existentes. As propostas de sistemas ópticos caóticos com interesses para as comunicações usam osciladores optoelectrónicos baseados em lasers semicondutores cuja operação é perturbada pela injecção óptica, feedback optoelectrónico, ou modulação directa da corrente que induz instabilidades no laser levando à geração de sinais ópticos caóticas de banda larga. Contudo, os sistemas propostos, híbridos ou monolíticos, apresentam um grau de complexidade assinalávell, necessitando um número considerável de componentes electrónicos e optoelectrónicos, o que torna a implementação prática destes sistemas de comunicação caóticos muito exigente. Reconhecendo que o sucesso económico das novas tecnologias está associado à superação do desafio de obter soluções simples de baixo custo e consumo de energia, a presente proposta tem como meta a demonstração de sistemas de comunicação baseados em portadoras caóticas empregando osciladores optoelectrónicos caóticos controlados por tensão (C-OVCOs) obtidos com a integração de díodos de efeito de túnel ressonantes (RTDs), incorporando regiões para foto-detecção (PD), e díodos de laser (LDs). O RTD-PD é um dispositivo semicondutor com uma característica corrente-tensão com a forma de um N, exibindo uma região de resistência diferencial negativa altamente não-linear (NDR) que pode ser usado para gerar oscilações eléctricos periódicas e caóticos até frequências de alguns terahertz (THz). A combinação da capacidade de transdução óptico-eléctrica (O/E) e da região NDR intrínseca altamente não-linear e de banda larga (multi-gigahertz) do RTD-PD, que também funciona como um amplificador intrínseco, e a capacidade de transdução eléctrico-óptico (E/O) não-linear dos LDs torna os OVCOs baseados em RTDs adequados para a geração de sinais caóticos de elevada dimensionalidade simultaneamente nos domínios eléctrico e óptico, ao mesmo tempo que permite o seu controlo por sinais eléctricos e ópticos externos. Especificamente, a equipa do projecto propõe-se demonstrar pontos de acesso de sistemas de comunicação óptica compactos e de baixo consumo de energia baseados na sincronização dos osciladores optoelectrónicos caóticos controlados por tensão (OVCOs), para taxas de transmissão de dados de vários Gb/s. |
3.1.b Em inglês
|
Chaotic systems produce signals that are highly sensitive to
specific parameters initial conditions, as well as being irregular (with
noise-like appearance), aperiodic, uncorrelated, and broadband which makes
their behavior difficult to predict over long periods of time. Since these are the signal properties required by communications systems such as spread-spectrum, multi-user and secure communications, chaotic signals have been proposed as broadband information carriers to enhance the robustness of communication channels subjected to perturbations and channel interference from narrowband frequency ranges and other unavoidable disturbances. Broadband signal generation at the physical layer offers extra degrees of privacy which can reinforce (via robust hardware encryption) both current software-based and future quantum cryptography systems. In other words, chaotic sources allow implementation of steganography at the physical layer improving the security of encryption techniques. Moreover, chaotic signals open the possibility to transmit signals below the average noise floor in applications where the transmission power or the power spectral density in the available band is limited as e.g. is the case of unlicensed radio applications, adding extra privacy to the transmission. In chaotic communication based schemes the encrypted message is encoded and embedded within a chaotic carrier in the emitter. The noise-like appearance of the chaotic signals is used to conceal the message in such a way that it is hard for an eavesdropper to extract without a priori knowledge of the chaotic carrier. Chaos-based communication systems are grounded on the synchronization of the chaotic behavior of the receiver to the information-bearing chaotic signal that with appropriate techniques allows the decoding through the separation of the chaotic carrier and the message. The message is decoded by the appropriate receiver synchronization to the emitter carrier, a nonlinear filtering process that replicates locally the message-free emitter chaotic signal, which is then used for subtraction from the encoded transmitted signal. Optical systems provide simple ways of generating very high-dimensional optical chaotic carriers offering the possibility of very high transmission rates without the need of changing substantially the existing networks infrastructures and configurations. Most optical chaotic systems that can be used for communications use optoelectronic oscillators based on semiconductor lasers which have their operation disturbed by optical injection, optoelectronic feedback, or direct modulation that induces instabilities in the laser leading to the generation of broad band chaotic optical signals. However, the complexity of these systems, either hybrid or monolithic, requiring a considerable number of linear and nonlinear optoelectronic components, makes practical realization of chaotic communication systems very challenging. Recognizing that a major challenge towards economically viable future optical chaos-based network technologies is to implement simple and low-cost chaotic systems, we propose the demonstration of such a system employing chaotic-optoelectronic voltage controlled oscillators (C-OVCOs) based on the integration of resonant tunneling diodes (RTDs), incorporating photo-detection (PD) regions, and laser diodes (LDs). The RTD is a semiconductor device with an N shaped current-voltage characteristic exhibiting a highly non-linear negative differential resistance (NDR) region that can be used to generate periodic and chaotic electrical oscillations in the microwave band of frequencies (1-40 GHz). The combination of the RTD-PD optical-electrical (O/E) transduction and intrinsic broadband (multi-gigahertz) highly non-linear NDR region, that also functions as an intrinsic amplifier, and the LD non-linear dynamic electrical-optical (E/O) transduction make the OVCOs suitable for generating high-dimensional broadband chaotic signals in both electrical and optical domains simultaneously that can be controlled by external electrical and optical signals. Specifically, we propose to demonstrate simple, compact low-cost and low-power chaotic communication access points at Gb/s data rates based on the synchronization of C-OVCO at the emitter (master oscillator) and C-OVCO at receiver (slave oscillator). The Principal Investigator know-how on RTD-based optoelectronic circuits, and the team members’ wide range of skills that includes knowledge of optical communication systems, modeling of nonlinear dynamics and chaos of RTDs, LDs and related systems, makes the team well qualified to accomplish the goal of the proposal: demonstration of chaotic access points using RTD-LD and RTD-PD chaotic-optoelectronic voltage controlled oscillators with the appropriate synchronization schemes to transmit messages at Gb/s data rates. |
3.2. Descrição
Técnica
|
3.2.1.
Revisão da Literatura
|
Communications using chaotic signals The signatures of chaotic systems behaviour include erratic, noise-like fluctuations in the temporal evolution of the system’s outputs, broad band features in the power spectrum, and extreme sensitivity to application of small perturbations to the systems’ variables [8]. Because of its intrinsically unpredictable behaviour and broad band nature, chaotic signals have been propose to act as chaotic carriers in communication systems taking advantage of the aforementioned chaotic signal characteristics to reinforce security of encrypted information-bearing signals [1]. Contrary to chaotic electronic signals that typically have bandwidths of hundreds of kHz or less optoelectronic chaotic oscillators employing high-speed resonant tunneling diode and laser diode devices can have bandwidths up to tens of GHz [1,9] which brings the possibility to implement broad-band chaos-based optical communication links employing chaotic optoelectronic oscillators as sources of chaotic carriers [4]. Indeed, the optical transmission of information using chaotic signals has been confirmed [9], followed by the demonstration of chaos-based optical communications at high bit rates using commercial fibre-optic links [1]. Semiconductor lasers are the most common source of light used in high bandwidth optical communications systems. According to Arecchi's classification (based on their number of degrees of freedom) [4], these types of lasers belong to the class-B lasers since their dynamical behaviour can be described using a two rate equations model (they have two degrees of freedom). According to the Poincaré-Bendixson theorem [8] they cannot be intrinsically chaotic and at least one degree of freedom must be added to produce chaos. Several ways of making semiconductor lasers chaotic have been proposed over the last decades using techniques such as modulation of the cavity losses, modulation of the resonance frequency laser cavity, modulation of the injection current, external optical injection locking and delayed feedback [4]. However, the chaotic based optical communication systems based on such schemes are quite complex configurations and involve a considerable number of linear and nonlinear components. Here we propose to demonstrate a new type of chaotic based optical communication scheme employing a C-OVCO that takes advantage of the wide bandwidth non-linear negative differential resistance (NDR) characteristic of resonant tunnelling diode (RTD)s to drive the laser diode (LD) dynamics, recently reported in [5,6]. Resonant tunnelling diodes Semiconductor double barrier quantum well (DBQW) resonant tunnelling diodes (RTDs) are semiconductor structures which utilize wave nature of electrons. RTDs present pronounced non-linear current-voltage (I-V) characteristic, Fig. 1, with wide-bandwidth NDR region, inherent high speed, structural simplicity and relative easiness of fabrication, flexible design, and versatile circuits’ functionalities [11]. The very high speed operation arises from the extremely small size of the DBQW structure along the direction of carrier transport and the tunnelling process responsible for carrier flow. Since the NDR corresponds to electric gain it can be applied to signal generation, detection and mixing, in multi-valued logic switches at extremely high frequency, as well as in low-power amplifiers, local oscillators and frequency locking circuits, and generation of multiple high frequency harmonics, extending well into the submillimetre-wave band [12]. RTD based optoelectronic relaxation oscillators can generate constant width short electrical and optical pulses over a large range of repetition rates (up to tens of GHz), be phase-locked at the harmonic and sub-harmonic frequencies [12,13], and be easily integrated either in hybrid or monolithic configurations [13,14]. Besides the high speed potential, the negative differential resistance (NDR) makes it possible to operate RTDs as so-called functional devices, enabling electrical and optoelectronic circuits to be designed on different principles from those applied to conventional devices [15,16]. RTD-based optoelectronic voltage controlled oscillators (OVCOs) The RTD-OVCOs, from now on refereed as RTD-PD-LD oscillators, combine the properties and capabilities of resonant tunneling diodes (RTDs), incorporating photo-detection (PD) regions, with laser diodes (LDs) functionalities. The output power of the laser is controlled by the current oscillation produced by the RTD when biased in the NDR region. The chaotic dynamics of this new system can be either entirely controlled be the RTD nonlinear behaviour or take also advantage of the LD non-linear dynamics capabilities. This means one can take advantage of both RTD and LD nonlinearities to produce high-dimensional chaos in the OVCO electrical and optical outputs. This system turns out to be a very rich chaos generator taking advantage of both electrical and optical components to produce instabilities and complex behaviour in the oscillator outputs. These oscillators are quite weel described as Liénard systems [17,19]. So far, our team preliminary results show the RTD-PD-LD oscillators can operate as voltage controlled oscillator [13,14], can be controlled either by electrical [6] and optical signals [20], produce chaotic output in the electrical and optical domains [5,17], and can operate in the self-injection regime [21]. The research activities associated with the proposed RTD-PD-LD system involves the study the processes that determine RTD-PD-LD rich non-linear dynamics in order to predict the best designs and operating parameters that leads to the production of high-dimensional chaos and robust synchronization. In ‘Plan and Methods’ we describe in detail the optoelectronic chaotic system and the synchronization methods that are object of the proposal. |
3.2.2.
Plano e Métodos
|
RTD-based optoelectronic voltage controlled chaotic oscillator The RTD-based optoelectronic voltage controlled oscillators (OVCOs), from now on refereed as RTD-PD-LD oscillators, combine the properties and capabilities of resonant tunneling diodes (RTDs), incorporating photo-detection (PD) regions, with laser diodes (LDs) functionalities. The optoelectronic chaotic system is based on the integration of a RTD driving circuit with a communications laser diode. The RTD driver is coupled to the laser diode (LD) forming a directly modulated laser diode RTD-LD system. The addition of the RTD to the laser driving circuit enhances the laser diode non-linear behaviour under external perturbation which can lead to higher-dimensional chaos. The physical layout of the RTD-PD-LD chaotic oscillator prototype circuit is shown in Fig. 2. The devices are surface-mounted on a printed circuit board (PCB). The laser diode (operating around 1550 nm) and the RTD are connected in series and are fed through a transmission microstrip line. The corresponding equivalent electrical circuit is illustrated in Fig. 3, where the parallel capacitor C corresponds to the RTD intrinsic capacitance. Figure 4 shows RTD, LD and RTD-LD current-voltage I-V characteristics exhibiting a strong non-linearity due to the negative differential resistance (NDR) region. Moreover, the DBQW-RTD consists of a unipolar semiconductor layer structure incorporating photo-condutive regions that makes possible the RTD work as a photo-detector (RTD-PD), Fig. 5. As represented schematical in Fig. 5, the RTD-PD-LD association can be controlled both electrically and optically. Considering both electrical and optical output and input ports, Figure 6(a) and (b) shows two possible configurations operating in a chaotic regime that take advantage of the strong circuit’s non-linearities. These configurations are based on the perturbation schemes using external injection (a) and optoelectronic delayed feedback (b) to generate high-dimensional chaos. When not perturbed, the circuit produces self-oscillations - relaxation oscillations both in the optical and electrical domains. When driven by a periodic signals or when subjected to time-delayed feedback the optoelectronic circuit can display a sort of behaviours, depending of the applied signal or delayed characteristics: i) the natural oscillations can become entrained to oscillate at the same frequency as the driving force – frequency locking; ii) or the natural and the applied signals/ delay cavity can give rise to quasi-periodic signals or even chaotic behaviour in which the frequency content of the waveforms across the device dramatically changes with the characteristics of the perturbation. The behaviour transition sequences include frequency division, intermittency, frequency locking and several other phenomena [5,6,17]. The circuit is capable to generate deterministic chaos, with the long-term behaviour being extreme sensitivity to small perturbations to the circuit variables. Figure 7 shows examples of experimental quasi-periodic and chaotic regimes generated by external injection demonstrating the chaos generation capabilities of these circuits. RTD-PD-LD Modelling The study of nonlinear circuit oscillators has been important in the development of the theory of dynamical systems. For numerical purposes, the circuit of Fig. 3 can be modelled by the lumped RLC circuit configuration presented in Fig. 8. By applying Kirchoff's laws (using Faraday's law) to the circuit of Fig. 7, the voltage V across the capacitance C and the current I through the inductor L are given by a set of two first-order non-autonomous differential equations (Equation 1). The system of equations (Equation 1) correspond to the generalized Liénard's system under external periodic injection where the non-linear I-V electrical characteristic of the RTD-PD-LD is represented by a mathematical function F(V) (Equation 2) which provides a satisfactory physics-based I-V model analysis of RTD semiconductor compounds. In order to correlate the response of the laser diode to its physical parameters we use rate equations (Equation 3) to describe the transient behaviour of the laser. The laser rate equations describe the interaction between electrons and photons within the laser cavity that determine the laser nonlinearity. The RTD-PD-LD system is described by the coupling between the laser rate equations and the RTD-PD Liénard's oscillator, Equations 1-3. In this investigation we will study the physics that determine the instabilities occurring in the RTD and laser diode subjected to external injection and time delayed feedback. We will also investigate the contribution of laser intrinsic factors to the full system dynamics: the effects of nonlinear gain reduction and spontaneous emission factors will be investigated to find their influence in the appearance and disappearance of new routes to chaos. The main goal is to determine the most promising RTD-PD-LD oscillator topology for robust and high-dimensional chaos generation. Synchronization of chaos The key for chaos based communications is chaos synchronization [18]. In 1990 Pecora and Carroll [3] reported that chaotic systems possess a self-synchronization property showing that certain subsystems can be synchronized by linking them with common signals. In general the synchronization of a transmitter-receiver system can be achieved by injection, unidirectional or mutual coupling synchronization. They considered the situation of unidirectional driving, in which one has a couple of transmitter-receiver systems such that a signal from the transmitter is injected into the receiver in such a way that both systems become synchronized. They first considered the case of synchronizing two exact replicas of a given system (homogeneous driving) starting with different initial conditions. Then, they also showed that synchronization is robust to small perturbations on the parameters of the transmitter or receiver systems. This is an important result for experimental settings, where one does not usually have two exact replicas of a chaotic system. This situation is usually referred to as inhomogeneous driving. Following Pecora and Carroll work it is possible to construct a synchronization scheme using identical RTD-PD-LD emitter/receiver systems based on optical injection phenomena. This technique is usually called complete chaos synchronization [4, 18]. The chaos synchronization occurs after the receiver receives a chaotic signal from the transmitter when the transmitter and receiver are divided into several subsystems. In this case, the time lag of the signal in the receiver system is defined by time , which is the transmission time of signal from the transmitter to the receiver. In general, this type of chaos synchronization in laser systems is achieved by optical injection locking and amplification of signals form the transmitter to the receiver. This is a well-known phenomenon of injection-locking in laser systems and can be used to study the synchronization performance of RTD-PD-LD operating in the chaotic regime. Considering the high-bandwidth chaos generation and simple implementation of of RTD-PD-LD oscillators, and considering its low power consumption and optical and electrical control, we expect to achieve robust syncrhonization of RTD-PD-LD oscillators. The application of the chaos synchronization scheme to the novel RTD-PD-LD system will provide a deeper insight into the transmission and synchronization of chaotic signals in these new types of optoelectronic systems. The investigation in detail of the synchronization scheme of two chaotic RTD laser systems can produce an innovative approach in securing data communications by message encryption at the physical level offering a certain degree of intrinsic privacy, which can complement both classical software-based and other physical-based cryptography systems. Expected outcomes: - Test-bed demonstration of the feasibility of novel low cost chaotic sources using RTD-PD-LD circuits; - Development of simple, flexible and cost-effective RTD-PD-LD chaotic circuits capable of function as transmitter-receivers, with appropriated working characteristics for the novel chaos based communication networks operating with Gb/s transmission rates; Other expected outcomes: - Reinforce collaboration between researchers within the University of the Algarve and with research groups at University of Glasgow, UK, University of Illes Baleares, Spain, and INESC Porto/FE/UP. - Start interacting with other international research groups/projects/consortia to interchange nonlinear dynamics applied to enginnering systems know-how and chaos-based communication technologies. |
3.2.3.
Tarefas
|
Lista de tarefas (4) Task list (4) |
Ordem Order |
Designação da tarefa Task denomination |
Data de início Start date |
Data de fim End date |
Duração Duration |
Pessoas * mês Person * months |
1 | Implementation of RTD-PD-LD chaotic o... | 01-01-2013 | 31-12-2013 | 12 | 36 |
|
|||||
Descrição
da tarefa e Resultados Esperados Task description and Expected results |
|||||
The main objective of the proposal is to demonstrate
RTD-PD-LD oscillators operating in the chaotic regime that can be synchronized
in a robust manner. The main goal of this task is to determine the most
promising oscillators’ topologies for chaos generation and reception, providing
both the emitter and the receiver chaotic oscillators. In the case of the RTD-PD-LD operating as a chaotic emitter, the task includes the numerical and experimental implementations of the circuit layouts that permit to obtain high-dimensional chaos and produce robust high-bandwidth electrical and optical chaotic carriers over a wide range of control parameters. The circuits are intended for Gb/s data rates transmission. There exist a priori many possibilities to generate a chaotic signal. This signal has to be used later in the project to mask or encrypt a message to be transmitted. The final carrier to be chosen for the encryption system should exhibit adequate characteristics such as good random properties, wide spectrum in a high bit rate bandwidth (up to Gb/s); large possibilities for choosing encryption, and a good ability for an accurately synchronization at the receiver (decoding capability). In the case of the RTD-PD-LD receivers the main objective is to obtain oscillator circuits topologies that can maximize the optical chaos reception for Gb/s signal extraction from a transmitted chaotic carrier. This part of the project is intended to define an optimal topology of the receiver chaotic access point in the encryption system. The numerical and computational electro-photonic RTD-PD-LD circuit models already implemented by the team will be tested. More detailed numerical and models will be considered to gain deeper insight into the chaotic regimes characteristics, in particular to investigate RTD-PD-LD nonlinear dynamic behaviours towards the determination of the most suitable circuit parameters to obtain high-dimensional chaotic behaviour that can be synchronized in a robust manner for optical communication purposes. Different topologies will be investigated analytically and numerically. Computational models of the circuits will be implemented using tools such as “Mathematica”, “Matlab”, and “Spice” – the general purpose circuit simulator. The following fundamental theoretical studies used in nonlinear dynamics will be carried out to provide a detailed map of the electrical-optical chaos generation outputs: - Time domain and frequency domain analysis; - Trajectory diagrams in the cylindrical space, in the plane space and Poincaré maps; - Synchronization and bifurcation maps: n-dimensional/Arnold tongues and circle maps/Devil staircases; - Chaos characterization: using Lyapunov spectrum, dimension and entropy analysis. The experimental part of the task will include the implementation of the chaotic oscillators according to the design and theoretical studies described previously and following the next guidelines: - Optimization of circuits capable of robust high-dimensional chaotic generation; - Experimental determination of the feasibility of chaos-encoded communication systems with transmitter-receiver oscillators; - Preliminary investigations of the necessary chaotic synchronization conditions and methods for transmission of data through chaotic carrier data encoding using RTD-PD-LD chaotic oscillators. Outcomes: Formulate numerical physical models of the RTD-PD-LD optoelectronic chaotic emitters and receivers. Obtain detailed information on the chaotic operation regimes of the implemented circuits, and an exhaustive report on the influence of circuit parameters that define and characterize the chaotic behaviour. Obtain chaotic emitter prototypes that operate in robust chaotic regimes and that exhibit adequate characteristics for optical chaos Gb/s data rate transmission. During this task we will interact frequently with Dr. Julien Javaloyes (UIB) in the modelling and with Professor Charles Ironside (UG) in the experimental aspects. |
|||||
|
|||||
Membros da equipa de investigação
nesta tarefa Members of the research team in this task |
|||||
(BI) Bolseiro de Investigação (Mestre) 1; (BPD) Bolseiro de Pós-Doutoramento 1; (BPD) Bolseiro de Pós-Doutoramento 2; Bruno Miguel Patarata Romeira; Henrique Manuel de Castro Faria Salgado; Horacio Izaias Cantu Quirino; João Manuel Barbosa de Oliveira; José Maria Longras Figueiredo; LUIS MANUEL DE SOUSA PESSOA; Ricardo Pedro Custodinho da Avó; | |||||
|
|||||
|
Ordem Order |
Designação da tarefa Task denomination |
Data de início Start date |
Data de fim End date |
Duração Duration |
Pessoas * mês Person * months |
2 | Investigation of RTD-PD-LD chaotic os... | 01-07-2013 | 30-06-2014 | 12 | 36 |
|
|||||
Descrição
da tarefa e Resultados Esperados Task description and Expected results |
|||||
The key phenomenon that enables two chaotic systems
to communicate is called synchronization. The main goals of this task are: - evaluate synchronization capacity between chaotic emitter and receiver; - evaluate pseudo-randomness permitting masking of secret messages; - preliminary analysis of compatibility of chaos cryptography with modern optical communication networks. This task is divided in two parts. In the first part (A) communication system receiver is studied with more detail because the receiver will extract the information transmitted by the emitter. In the second part (B) we will evaluate the synchronization quality before determining the communication link quality as measured by the bit error ratio (BER) in the final task 3 of this project. Part (A): Receiver operation and extraction of the message The properties of the RTD-PD-LD operating as receivers have to be matched with those of the RTD-PD-LD operating as emitters in order to provide chaotic synchronization. This means, the first part of this work task will be done in direct connection with the assigned Task 1. In particular the range for parameter mismatches to effect synchronisation has to be established to determine if the mismatch is strict enough to prevent the eavesdropper to fabricate a clone receptor. The determination of the following aspects is expected: - decrypting quality; - maximum transmission rate and confidentiality issues; - signal-noise ratio and signal division; - determine parameter mismatches to effect synchronisation; - robustness against environmental influence. Part (B): Evaluation of the synchronization quality The link between the two chaotic signals that allows for their synchronization is termed coupling. This coupling can be implemented in different ways: unidirectional coupling and bidirectional coupling are the most common. We will choose unidirectional coupling using and optical fiber as the transmission channel, which corresponds to the classic "master-slave" synchronization scheme where the slave signal is expected to faithfully follow the master signal. The master system is called the "emitter" and the slave system the "receiver." This strategy is simpler and low cost to be implemented using an optic-fiber link. The succefull implementations of the synchronization scheme will depende on the following aspects: - encoding and decoding methods; - method of synchronisation (uni-, bidirectional, etc.); - presence of noise, or some other perturbation (e.g., delay); Therefore, this part of the work will be implemented considering the following main themes to evaluate the synchronization quality: - High-bandwidth chaotic synchronisation. - Robustness of the Synchronisation. - Message encoding and decoding; - Determination of maximum bandwidth for message encoding. - Quantifying the Security of Message Transmission. The following analysis is expected from the synchronization tests: - Comparison of the performance of the closed-loop, Fig. 9(a), and open-loop receiver, Fig. 9(b), synchronization schemes - Determination of range of parameters for synchronisation. - Determination of frequency characteristics of synchronized receiver. Following the guidelines presented in the previous section which describes the optoelectronic system and synchronization schemes, the research activities aim the investigation of the optoelectronic complex system that has the potential to implement novel optical communication systems functions, especially optical communications using chaotic signals. Outcomes: Detailed information on the synchronization conditions needed to encode a message in the transmitter chaotic carrier and recover it using a receiver incorporating similar RTD-PD-LD chaotic oscillators. Determination of the feasibility of chaos-encoded communication with RTD-PD-LD oscillators. During this task we will interact frequently with Dr. Julien Javaloyes (UIB) and with Professor Charles Ironside (UG). |
|||||
|
|||||
Membros da equipa de investigação
nesta tarefa Members of the research team in this task |
|||||
(BI) Bolseiro de Investigação (Mestre) 1; (BPD) Bolseiro de Pós-Doutoramento 1; (BPD) Bolseiro de Pós-Doutoramento 2; Bruno Miguel Patarata Romeira; Henrique Manuel de Castro Faria Salgado; Horacio Izaias Cantu Quirino; João Manuel Barbosa de Oliveira; José Maria Longras Figueiredo; LUIS MANUEL DE SOUSA PESSOA; Ricardo Pedro Custodinho da Avó; | |||||
|
|||||
|
Ordem Order |
Designação da tarefa Task denomination |
Data de início Start date |
Data de fim End date |
Duração Duration |
Pessoas * mês Person * months |
3 | Evaluation of chaos-based communicati... | 01-04-2014 | 31-12-2014 | 9 | 36 |
|
|||||
Descrição
da tarefa e Resultados Esperados Task description and Expected results |
|||||
The aim of this this task is to demonstrate that
reliable high-speed encoded optical communication. At the physical layer,
the encryption is not performed via algorithms implemented in software,
but via a novel form of hardware encryption called chaos cryptography using
chaos generated by RTD-PD-LD oscillators. This task examines the system limitations in terms of transmission, residual parameter mismatch, and security of a cryptographic system based on chaos. The main limitation is expected to be fibre dispersion due to the large width of the chaotic spectrum. Improvements are proposed to overcome possible limitations of the communication system, including the system architecture to account for known cryptography attacks. First, we will evaluate the compatibility of chaos cryptography with modern optical communications. Various deformations interfere with the signal during propagation through the fiber link. The high sensitivity of chaotic systems is an incitation to study the deformations of the transmitted message and the induced synchronization loss, or, at the least, the sharp degradation of the synchronization quality and the communication quality when the message is included. To analyze quantitatively the behavior of our system, we proceeded with preliminary tests that will determine the physical parameters to achieve robust synchronization with chaos encoded messages; - Investigation of several information encoding techniques such as chaos masking, Fig. 10(a), chaos modulation and chaos shift keying, Fig. 10(b) will be considered. - Determination of signal requirements and signal extraction performance. The last part of the task consists of the following communication tests: - evaluation of transmission through a point-to-point fibre link of encoded messages at Gbit/s rates (using NRZ and RZ data formats); - back-to-back transmission at laboratory level; - analysis of the different transmission schemes of the emitter and receiver; - bit error rate (BER) measurements; - compensation techniques. Outcomes: If achieved the main goals of task 2 and 3, we expect to have a significant impact in the state of the art of optoelectronic systems in general and chaos based systems in particular, namely: - demonstrate a new method of transmission based on chaos; - improve the state-of-the-art of existing methods of chaotic communication systems based on chaos synchronization towards component integration and miniaturization through the introduction of chaotic optical oscillators based on RTD-PD-LD oscillators. During this task we will interact frequently with Dr. Julien Javaloyes (UIB) and with Professor Charles Ironside (UG). |
|||||
|
|||||
Membros da equipa de investigação
nesta tarefa Members of the research team in this task |
|||||
(BI) Bolseiro de Investigação (Mestre) 1; (BPD) Bolseiro de Pós-Doutoramento 1; (BPD) Bolseiro de Pós-Doutoramento 2; Bruno Miguel Patarata Romeira; Henrique Manuel de Castro Faria Salgado; Horacio Izaias Cantu Quirino; João Manuel Barbosa de Oliveira; José Maria Longras Figueiredo; LUIS MANUEL DE SOUSA PESSOA; Ricardo Pedro Custodinho da Avó; | |||||
|
|||||
|
Ordem Order |
Designação da tarefa Task denomination |
Data de início Start date |
Data de fim End date |
Duração Duration |
Pessoas * mês Person * months |
4 | Managment | 01-01-2013 | 31-12-2014 | 24 | 4 |
|
|||||
Descrição
da tarefa e Resultados Esperados Task description and Expected results |
|||||
This task concentrates all the management activities
and will occur during all the extension of the project. The main goals are: - At the operational level, it is designed to ensure that the project will be progressing in conformity to the work plan in particular with regard to the milestones, the progress reports, as well as the planned resources. - At the organizational level, the goal is to achieve maximum efficiency of the infrastructural setup to support the project, with special attention paid to financial, logistics, information, coordination issues and in terms of quality and conformity to FCT rules and procedures. Daily administrative management work and handling of the project logistics is to be handled by the administrative staff of CEOT-UALGPorto and locally by administrative staff of INESC/Porto. The administrative staff, provided by each participating institution, will be supervised by each local coordinator. |
|||||
|
|||||
Membros da equipa de investigação
nesta tarefa Members of the research team in this task |
|||||
(BPD) Bolseiro de Pós-Doutoramento 1; (BPD) Bolseiro de Pós-Doutoramento 2; Henrique Manuel de Castro Faria Salgado; Horacio Izaias Cantu Quirino; José Maria Longras Figueiredo; LUIS MANUEL DE SOUSA PESSOA; | |||||
|
|||||
|
3.2.4.
Calendarização e Gestão do Projeto
|
3.2.4.a
Descrição da Estrutura de Gestão
|
||||||||||||||||||||||||||||||||||||||||
1. Management structure and coordination between partners This proposal includes researchers from two research institutions: CEOT-UAlG and INESC-Porto. Tasks 1, 2, and 4 will be executed at the CEOT-UAlg with the collaboration of the INESC-Porto team. Task 3 will be performed at INESC-Porto with the collaboration of CEOT-UAlG team. The Project Coordinator is Dr. José Figueiredo from CEOT-UAlG. His primary role is to represent the intermediary between the FCT and the consortium as well as to promote and supervise overall technical and scientific progress. The primary role of the Local Coordinator is to promote and supervise the local technical and scientific progress. List of local coordinators: - Dr. José Figueiredo (CEOT-UAlG) - Dr. Henrique Salgado (INESC-Porto) The Executive Committee is the decision-implementing body of the project and it is made up of the project and local coordinators. It will be in charge of the operational management of all the activities of the project. Senior researchers of this project may be invited to work as an advisory board to provide points of view and advices. Daily administrative management work and handling of the project logistics and the Intellectual Property support are ad hoc structures from CEOT-UAlG and INESC-Porto, respectively, which will support the execution of the project. 2. Meetings - Project meetings will join all the researchers involved in this proposal and will occur three times for the duration of this project: a kick-off meeting, half-way meeting and a end-off-project meeting. - Task meetings, will join all the researcher of a partner institution involved in a particular task and will occur regularly throughout the execution of the task. - Coordination meetings will join the members of the executive committee, and eventually the members of the advisory board, and will occur at the beginning, middle and end of each task. 3. Reporting processes A mid-term and final report will be produced for every task, which will be forming the year progress report, and respective final report. A compilation of the results will be done by producing a complete report every 12 months. Local coordinators will be responsible for internal progress reports at the end of each trimester. These are short reports aimed at keeping the other research partners informed of the global progress of the project and will be posted on the internet in a workgroup specially created for this project to share information, documentation and software and constituting a tool of coordination between the research teams. |
||||||||||||||||||||||||||||||||||||||||
3.2.4.b
Lista de Milestones
|
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
3.2.4.c
Cronograma
|
||||||||||||||||||||||||||||||||||||||||
Ficheiro com a designação "timeline.pdf",
no 9. Ficheiros Anexos, desta Visão Global (caso exista). File with the name "timeline.pdf" at 9. Attachments (if exists). |
3.3. Referências
Bibliográficas
|
3.4. Publicações
Anteriores
|
3.5. Ressubmissão
de projectos
|
Ressubmissão? Resubmission? |
Não No |
4. Equipa de investigação
|
|
4.1 Lista
de membros
|
Nome Name |
Função Role |
Grau Degree |
% | CV nuclear Core CV |
CV |
J. M. L. Figueiredo; José Longras Figueiredo, José Figueiredo | Inv. Responsável | DOUTORAMENTO | 35 | ✓ | FCTSIG/cv |
B. Romeira | Investigador | DOUTORAMENTO | 50 | ☓ | FCTSIG/cv |
H. M. Salgado | Investigador | DOUTORAMENTO | 15 | ✓ | FCTSIG/cv |
Horacio I. Cantu | Investigador | DOUTORAMENTO | 50 | ☓ | FCTSIG/cv |
João Manuel Barbosa de Oliveira | Investigador | DOUTORAMENTO | 25 | ☓ | FCTSIG/cv |
L. M. Pessoa | Investigador | DOUTORAMENTO | 15 | ☓ | FCTSIG/cv |
Ricardo Avó | Investigador | DOUTORAMENTO | 20 | ☓ | FCTSIG/cv |
|
|||||
(O curriculum vitae de cada membro da equipa
está disponível clicando no nome correspondente)
(Curriculum vitae for each research team member is available by clicking on the corresponding name) |
|||||
|
|||||
Total: 7 |
4.2. Lista
de membros a contratar durante a execução do projeto
|
Membro da equipa Team member |
Função Role |
Duração Duration |
%tempo %time |
(BI) Bolseiro de Investigação (Mestre) 1 | Bolseiro | 18 | 100 |
(BPD) Bolseiro de Pós-Doutoramento 1 | Bolseiro | 24 | 100 |
(BPD) Bolseiro de Pós-Doutoramento 2 | Bolseiro | 24 | 100 |
|
|||
Total: 3 |
5. Outros projetos
|
|
5.1. Projetos
financiados
|
Referência Reference |
Título Title |
Estado Status |
Programa de Estímulo à Investigação | Física de circuitos osciladore... | Concluído |
PTDC/EEA-TEL/100755/2008 | WOWi - Interfaces electro-ópti... | Em curso |
|
||
(Os detalhes de cada projetos estão
disponíveis clicando na referência correspondente) (Details for each project are available by clicking on the corresponding reference) |
||
|
||
Total: 2 |
5.2. Candidaturas
similares
|
6. Indicadores previstos
|
|
Indicadores
de realização previstos para o projeto
|
Descrição Description |
2012 | 2013 | 2014 | 2015 | 2016 | Total |
A - Publicações Publications |
||||||
Livros Books |
0 | 0 | 0 | 0 | 0 | 0 |
Artigos em revistas internacionais Papers in international journals |
0 | 1 | 2 | 0 | 0 | 3 |
Artigos em revistas nacionais Papers in national journals |
0 | 1 | 2 | 0 | 0 | 3 |
B - Comunicações Communications |
||||||
Comunicações em encontros científicos
internacionais Communications in international meetings |
0 | 1 | 3 | 0 | 0 | 4 |
Comunicações em encontros científicos
nacionais Communications in national meetings |
0 | 1 | 2 | 0 | 0 | 3 |
C - Relatórios Reports |
0 | 1 | 2 | 0 | 0 | 3 |
D - Organização de seminários
e conferências Organization of seminars and conferences |
0 | 1 | 1 | 0 | 0 | 2 |
E - Formação avançada Advanced training |
||||||
Teses de Doutoramento PhD theses |
0 | 0 | 0 | 0 | 0 | 0 |
Teses de Mestrado Master theses |
0 | 1 | 2 | 0 | 0 | 3 |
Outras Others |
0 | 0 | 0 | 0 | 0 | 0 |
F - Modelos Models |
0 | 0 | 0 | 0 | 0 | 0 |
G - Aplicações computacionais Software |
0 | 0 | 0 | 0 | 0 | 0 |
H - Instalações piloto Pilot plants |
0 | 0 | 0 | 0 | 0 | 0 |
I - Protótipos laboratoriais Prototypes |
0 | 0 | 1 | 0 | 0 | 1 |
J - Patentes Patents |
0 | 0 | 1 | 0 | 0 | 1 |
L - Outros Other |
||||||
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | |
Acções
de divulgação da actividade científica
|
Produce material and/or collaborate
in the production of articles for the dissemination of the project scientific
component and project activities aimed at newspapers and magazines devoted
to spreading scientific and technological knowledge to the general public.
In collaboration with the Centro Ciência Viva do Algarve (CCV-Alg) we plan to produce a permanent poster exhibition to be complemented with oral presentations to disseminate the scientific fields and activities of project. Participate in the activities of the Equipa UALG, an initiative of the University of the Algarve dedicated to disseminate the scientific and technological activities of its R&D units and researchers at the basic and secondary schools in the Algarve region. |
7. Orçamento
|
|
Instituição
Proponente
|
||||||
Universidade do Algarve | ||||||
Descrição Description |
2012 | 2013 | 2014 | 2015 | 2016 | Total |
Recursos Humanos Human resources |
0,00 | 40.147,00 | 40.300,00 | 0,00 | 0,00 | 80.447,00 |
Missões Missions |
0,00 | 3.000,00 | 4.000,00 | 0,00 | 0,00 | 7.000,00 |
Consultores Consultants |
0,00 | 1.500,00 | 2.000,00 | 0,00 | 0,00 | 3.500,00 |
Aquisição de
bens e serviços Service procurement and acquisitions |
0,00 | 10.000,00 | 5.000,00 | 0,00 | 0,00 | 15.000,00 |
Registo de patentes Patent registration |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Adaptação de
edifícios e instalações Adaptation of buildings and facilities |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Gastos gerais Overheads |
0,00 | 13.476,00 | 10.260,00 | 0,00 | 0,00 | 23.736,00 |
TOTAL DESPESAS
CORRENTES TOTAL CURRENT EXPENSES |
0,00 | 68.123,00 | 61.560,00 | 0,00 | 0,00 | 129.683,00 |
Equipamento Equipment |
0,00 | 12.730,00 | 0,00 | 0,00 | 0,00 | 12.730,00 |
Total | 0,00 | 80.853,00 | 61.560,00 | 0,00 | 0,00 | 142.413,00 |
Instituições
Participantes
|
Instituto de Engenharia de Sistemas e Computadores do Porto | ||||||
Descrição Description |
2012 | 2013 | 2014 | 2015 | 2016 | Total |
Recursos Humanos Human resources |
0,00 | 6.572,00 | 13.219,00 | 0,00 | 0,00 | 19.791,00 |
Missões Missions |
0,00 | 1.500,00 | 3.500,00 | 0,00 | 0,00 | 5.000,00 |
Consultores Consultants |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Aquisição de bens e serviços Service procurement and acquisitions |
0,00 | 4.500,00 | 6.700,00 | 0,00 | 0,00 | 11.200,00 |
Registo de patentes Patent registration |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Adaptação de edifícios e instalações Adaptation of buildings and facilities |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Gastos gerais Overheads |
0,00 | 2.814,00 | 5.484,00 | 0,00 | 0,00 | 8.298,00 |
TOTAL DESPESAS CORRENTES TOTAL CURRENT EXPENSES |
0,00 | 15.386,00 | 28.903,00 | 0,00 | 0,00 | 44.289,00 |
Equipamento Equipment |
0,00 | 1.500,00 | 4.000,00 | 0,00 | 0,00 | 5.500,00 |
Total | 0,00 | 16.886,00 | 32.903,00 | 0,00 | 0,00 | 49.789,00 |
Orçamento
Global
|
||||||
|
Descrição Description |
2012 | 2013 | 2014 | 2015 | 2016 | Total |
Recursos Humanos Human resources |
0,00 | 46.719,00 | 53.519,00 | 0,00 | 0,00 | 100.238,00 |
Missões Missions |
0,00 | 4.500,00 | 7.500,00 | 0,00 | 0,00 | 12.000,00 |
Consultores Consultants |
0,00 | 1.500,00 | 2.000,00 | 0,00 | 0,00 | 3.500,00 |
Aquisição de bens e serviços Service procurement and acquisitions |
0,00 | 14.500,00 | 11.700,00 | 0,00 | 0,00 | 26.200,00 |
Registo de patentes Patent registration |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Adaptação de edifícios
e instalações Adaptation of buildings and facilities |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Gastos gerais Overheads |
0,00 | 16.290,00 | 15.744,00 | 0,00 | 0,00 | 32.034,00 |
TOTAL DESPESAS CORRENTES TOTAL CURRENT EXPENSES |
0,00 | 83.509,00 | 90.463,00 | 0,00 | 0,00 | 173.972,00 |
Equipamento Equipment |
0,00 | 14.230,00 | 4.000,00 | 0,00 | 0,00 | 18.230,00 |
Total | 0,00 | 97.739,00 | 94.463,00 | 0,00 | 0,00 | 192.202,00 |
Plano de
financiamento
|
||||||
|
Descrição Description |
2012 | 2013 | 2014 | 2015 | 2016 | Total |
Financiamento solicitado à FCT Requested funding |
0,00 | 97.739,00 | 94.463,00 | 0,00 | 0,00 | 192.202,00 |
Financiamento próprio Own funding |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Outro financiamento público Other public-sector funding |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Outro financiamento privado Other private funding |
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Total do Projecto Total of the project |
0,00 | 97.739,00 | 94.463,00 | 0,00 | 0,00 | 192.202,00 |
8. Justificação do orçamento
|
|
8.1. Justificação
dos recursos humanos
|
Tipo Type |
Nº de pessoas No. of persons |
|
(BPD) Bolsa de Pós-Doutoramento | 2 | |
Duração (em meses) Duration (in months) |
Custo envolvido (€) (calculado) Total cost (€) (estimated) |
Outros custos (€) Other costs (€) |
24 | 71.760,00 | 8.687,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
||
2 BPD fellowship: - one post doctoral researcher to work on the experimental activities of tasks 1 and 2, and collaborate with the INESC team in task 3. Together with the PI the researcher will be in charge of the coordination of all experimental activities. - one post doctoral researcher to work and be responsible by the computational modeling of tasks 1, 2 and 3. Together with the PI the researcher will be in charge of the coordination of all computational modeling activities and experimental results numerical analysis. |
Tipo Type |
Nº de pessoas No. of persons |
|
(BI) Bolsa de Investigação (Mestre) | 1 | |
Duração (em meses) Duration (in months) |
Custo envolvido (€) (calculado) Total cost (€) (estimated) |
Outros custos (€) Other costs (€) |
18 | 17.640,00 | 2.151,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
||
18 months of a BI scholarship at INESC Porto for a graduate student that will be engaged on carrying out the experimental program of task 3, and also collaborate in the tasks 1 and 2. |
8.2. Justificação
de missões
|
Tipo Type |
Nº de deslocações No. of participations |
Estágios de curta duração | 2 |
Local Venue |
Custo envolvido (€) Cost (€) |
Espanha e Reino Unido | 5.500,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
|
The requested amount will support: - Short visits to the Departament de Física - Universitat de les Illes Balears, UIB), Spain, and to the University of Glasgow (GU), UK. At the UIB we will interact with Non Linear Waves Group concerning the improvement of numerical models under development; - Visits to GU to interact with the Optoelectronics and Micro- and Nanoelectronic research groups will be short (one week or two) stays and will be used to discuss new devices designs and certain fabrication procedures taking advantage of GU sophisticated fabrication facilities. |
Tipo Type |
Nº de deslocações No. of participations |
Participação em congressos | 8 |
Local Venue |
Custo envolvido (€) Cost (€) |
Europe, Americas and Asia | 6.500,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
|
To support the participation in relevant conferences and workshops for dissemination of results: 3 international and 3 national. |
8.3. Justificação
de consultores
|
Nome completo Full name |
|
Charles Norman Ironside | |
Instituição Institution |
|
Department of Electronics and Electrical Engineering, University of Glasgow | |
Fase do projeto Project phase |
Custo (€) Cost (€) |
All | 1.500,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
|
Professor Charles Ironside, of the Department of Electronics and Electrical Engineering, University of Glasgow (GU), will closely follow the tasks 2, 3 and 4 (partially), advising and interchanging know-how with the CEOT-UALG team on optoelectronic integrated circuits employing RTDs, as part of a collaborative scheme between the UG and the CEOT-UALG. His visit will also include the participation on seminars and workshops, giving last year undergraduate students the opportunity to interact with a highly experienced scientist which can be an extra incentive for them to consider a carrier in R&D. | |
Página na Internet onde pode ser
consultado o CV do consultor Web page where the consultant’s CV can be accessed |
|
http://userweb.elec.gla.ac.uk/i/ironside/ |
Nome completo Full name |
|
Julien Javaloyes | |
Instituição Institution |
|
Departament de Física - Universitat de les Illes Balears | |
Fase do projeto Project phase |
Custo (€) Cost (€) |
All | 2.000,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
|
Dr. Julien Javaloyes will closely follow the first tasks, advising and interchanging know-how with the CEOT-UALG team on non-linear circuits employing RTDs, as part of a collaborative schemes between the UIB and the CEOT. His visit will also include the participation on seminars and workshops, giving last year undergraduate students the opportunity to interact with a highly experienced scientist which can work as an extra incentive for them to consider a carrier in R&D. | |
Página na Internet onde pode ser
consultado o CV do consultor Web page where the consultant’s CV can be accessed |
|
http://nova.uib.es/ONL/Members/Members.html |
8.4. Justificação
de aquisição de bens e serviços
|
Tipo Type |
Custo (€) Cost (€) |
Devices and RF/Optical components | 26.200,00 |
Justificação do financiamento
solicitado Rationale for requested funding |
|
As a start RTD-PD-LD oscillator circuits will be fabricated using commercial and research communication laser diode samples and already fabricated RTDs. As the work progresses we foresee the need to optimize RTD-PD structures. That will require new wafers growth and corresponding device fabrication possibly at UG facilities. Electronic and optical components and materials specifically for C-OVCOs implementation, characterization and testing; 100 km of SMF-28 fiber; dispersion compensation fibers; materials for scientific activity spreading actions; |
8.6. Justificação
do Equipamento
|
8.6.1. Equipamento já disponível
para a execução do projecto 8.6.1 Available equipment |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Wide-Bandwith Osciloscope | Agilent | Infiniium DCA 86100A | 2003 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Network Analyser | Agilent | N5230A | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Optical Spectrum Analyser | Anritsu | MS9710b | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Electrical spectrum analyzer | Anritsu | MS2668C | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Tunable Filter OTF-920 with 12S2 filter on both sliders to cover 1530nm-1610nm | Santec | OTF-920-D-1-12-S2-2-12-S2-F-A | 2003 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Wire Bonder | TPT | HB06/08/10 | 2007 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Vector signal generator 6GHz | Rhode & Schwarz | SMJ100A | 2009 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Lightwave component analyzer | Agilent | 8703B-20GHz | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Optical spectrum analyzer | Ando | AQ6317B | 2004 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Oscilloscope Mainframe | Agilent | 86100C Infiniium DCA-J | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
40 GHz optical / 50 GHz module, 1000-1600 nm SMF electrical | Agilent | 86109B | 2004 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Pattern Generator & Error Detector | Agilent | N4901B-100 | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Bench-top EDFA | IPGPhotonics | WDM EAD-1-C3-W | 2005 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Vector network analyzer 40 GHz | Agilent | E8363B | 2007 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Spectrum Analyzer 50 GHz | Agilent | E4448A | 2007 |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Ano Year |
Signal generator 40GHz | Agilent | E8257D | 2007 |
8.6.2. Discriminação do equipamento
a adquirir 8.6.2. New equipment requested |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
HIGHLY STABLE DFB LASER DIODE SOURCE (1550 nm) | OZ Optics | HIFOSS-01-3S-9/125-1550-S-1 | 2.500,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
HIGHLY STABLE DFB LASER DIODE SOURCE (1550 nm); This equipment will be used in the characterization experiments of the chaotic emitter oscillators for our task 1, and in task 2 and 3 for the optical encoding of the message (chaos masking) in the chaotic optical carrier. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
OPTICAL POWER METER WITH SMART DETECTOR HEAD | Thorlabs | PM100D+S155C | 1.500,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
OPTICAL POWER METER WITH SMART DETECTOR HEAD: This equipment will be used in the characterization experiments of the emitter and receiver oscillators for our task 1, and in task 2 to monitor the optical power of the emitter and evaluate the coupling strength in the synchronization experiments. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
High-speed 5 GHz Fiber Optic Detectors (1550 nm) | Thorlabs | SIR5-FC | 1.000,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
High-speed 5 GHz Fiber Optic Detectors (1550 nm): This equipment will be used in the characterization experiments of the emitter oscillators for our task 1. This equipment will be also used in the message extraction experiments for our tasks 2 and 3, as part of the synchronization system to detect and extract the message+optical carrier transmitted in the optical link. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
FIBER OPTIC ISOLATOR | Thorlabs | IO-F-1550APC | 1.200,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
FIBER OPTIC ISOLATOR: This equipment will be used in the synchronization and chaos optical transmission experiments for our tasks 2 and 3 as part of the synchronization scheme to provide uni-directional coupling between the emitter and the receiver chaotic oscillators. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
FIBER OPTIC CIRCULATOR | Thorlabs | 6015-3-APC | 750,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
FIBER OPTIC CIRCULATOR: This equipment will be used in the synchronization schemes and chaos optical transmission experiments for our tasks 2 and 3 as part of the synchronization schemes to separate optical signals that travel in the optical fiber, functioning as an isolator of the input, providing also bi-directional transmission over a single fiber for the synchronization tests. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
Electro-Optic Modulators 10 Gb/s | Thorlabs | LN83S-FC | 1.550,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
Electro-Optic Modulators 10 Gb/s: This equipment will be used in the characterization experiments of the modulation characteristics of the chaotic receiver oscillators for our task 1, and in task 2 and 3 for the optical encoding of the Gb/s message (chaos masking) in the chaotic optical carrier. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
Stereo Microscope | Motic | SMZ-143-N2GG | 500,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
Stereo microscopes for unpackaged die inspection and circuit assembly. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
Semiconductor Optical Amplifier, 1528 - 1562 nm, Polarization Insensitive | Thorlabs | S9FC1004P | 2.500,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
Semiconductor Optical Amplifier, 1528 - 1562 nm, Polarization Insensitive: This equipment will be used in the characterization experiments of the receiver oscillators for our task 1, and in task 2 to evaluate the coupling efficient in the synchronization experiments as a function of the received optical power level. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
FIBER PIGTAILED ULTRA STABLE LASER MODULE (1550 nm) | Thorlabs | PSC-1550-FC | 750,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
FIBER PIGTAILED ULTRA STABLE LASER MODULE (1550 nm): This equipment will be used in the characterization experiments of the emitter chaotic oscillators for our task 1, and in task 2 and 3 for the optical encoding of the message (chaos masking) in the chaotic optical carrier. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
2x2 SM Coupler, 1310 nm & 1550 nm, 50:50 Split, FC/APC | Thorlabs | 10202A-50-APC | 160,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
2x2 SM Coupler, 1310 nm & 1550 nm, 50:50 Split, FC/APC: This equipment will be used in the synchronization and chaos optical transmission experiments for our tasks 2 and 3 as part of the synchronization experiments to split message+optical carrier transmitted in the optical link to inject into the receiver and the subtraction unit. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
2x2 SM Coupler, 1310 nm & 1550 nm, 90:10 Split, FC/APC | Thorlabs | 10202A-90-APC | 160,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
2x2 SM Coupler, 1310 nm & 1550 nm, 90:10 Split, FC/APC: This equipment will be used in the synchronization and chaos optical transmission experiments for our tasks 2 and 3 as part of the synchronization experiments to split message+optical carrier transmitted in the optical link to inject into the receiver and the subtraction unit. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
2x2 SM Tap, 1310 nm & 1550 nm, 99:1 Split, FC/APC | Thorlabs | 10202A-99-APC | 160,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
2x2 SM Tap, 1310 nm & 1550 nm, 99:1 Split, FC/APC: This equipment will be used in the synchronization and chaos optical transmission experiments for our tasks 2 and 3 as part of the synchronization experiments to split message+optical carrier transmitted in the optical link to inject into the receiver and the subtraction unit. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
2 EDFA | Multiwave photonics | EDFA | 4.000,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
2 EDFA to provide the necessary power recovery after transmission, followed by an optical filter to remove unwanted amplified spontaneous emission noise. |
Tipo de equipamento Equipment type |
Fabricante Manufacturer |
Modelo Model |
Custo (€) Cost (€) |
Computer | Asus | Asus | 1.500,00 |
|
|||
Justificação do financiamento
solicitado Rationale for requested funding |
|||
To be used in the numerical modeling, analysis of results and to control the characterization instrumentation. |
8.7. Justificação
de registo de patentes
|
8.8. Justificação
de adaptação de edifícios e instalações
|
9. Ficheiros Anexos
|
|
Nome Name |
Tamanho Size |
COOC - Equations.pdf | 69Kb |
COOC - Figures.pdf | 2254Kb |
COOC - timeline.pdf | 23Kb |
timeline.pdf | 23Kb |
10. Possíveis conflitos de interesse
|
|
Lista List |
12-01-2019 3:44:02