
Inspection Points and Meta-Abduction
in Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. In the context of abduction in Logic Programs, when finding an abduc-
tive solution for a query, one may want to check too whether some other literals
become true (or false) as a consequence, strictly within the abductive solution
found, that is without performing additional abductions, and without having to
produce a complete model to do so. That is, such consequence literals may con-
sume, but not produce, the abduced literals of the solution. We show how this type
of reasoning requires a new mechanism, not provided by others already available.
To achieve it, we present the concept of Inspection Point in Abductive Logic Pro-
grams, and show, by means of examples, how one can employ it to investigate
side-effects of interest (the inspection points) in order to help choose among ab-
ductive solutions. The touchstone of enabling inspection points can be construed
as meta-abduction, by (meta-)abducing an “abduction" to check (i.e. to passively
verify) that a certain concrete abduction is indeed adopted in a purported abduc-
tive solution. We show how to implement inspection points on top of already
existing abduction solving systems — ABDUAL and XSB-XASP — in a way
that can be adopted by other systems too.
Keywords: Logic Programs, Abduction, Side-Effects.

1 Introduction

We begin by presenting the motivation, plus some background notation and definitions
follow. Then issues of reasoning with logic programs are addressed in section 2, in par-
ticular, we take a look at abductive reasoning and the nature of backward and forward
chaining and their relationship to query answering in an abductive framework. In sec-
tion 3 we introduce inspection points, illustrate their need and their use with examples,
and provide a declarative semantics. In section 4 we describe in detail our implementa-
tion of inspection points and illustrate its workings with an example. To close the paper
we add conclusions, comparisons, and an elaboration on the possible use of inspection
points in future work is sketched.

1.1 Motivation

Sometimes, besides needing to abductively discover which hypotheses to assume in
order to satisfy some condition, we may also want to know some of the side-effects
of those assumptions; in fact, this is rather a rational thing to do. But, most of the



time, we do not wish to know all possible side-effects of our assumptions, as some of
them will be irrelevant to our concern. Likewise, the side-effects inherent in abductive
explanations might not all be of interest. One application of abductive reasoning is that
of finding which actions to perform, their names being coded as abducibles.

Example 1. Relevant and irrelevant side-effects. Consider this logic program where
drink_water and drink_beer are abducibles.

← thirsty, not drink. % This is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.
unsafe_drive← drunk.

Suppose we want to satisfy the Integrity Constraint(IC), and also to check if we
get drunk or not. However, we do not care about the glass becoming wet — that being
completely irrelevant to our current concern. In this case, computation of whole models
is a waste of time, because we are interested only in a subset of the program’s literals.
Moreover, in this example, we may simply want to know the side-effects of the possible
actions in order to decide (to drive or not to drive) after we know which side-effects
are true. In such a case, we do not want to simply introduce an IC expressed as ←
not unsafe_drive because that would always impose abducing not drink_beer. We
want to allow all possible solutions for the single IC ← thirsty, not drink and then
check for the side-effects of each abductive solution.

What we need is an inspection mechanism which permits to check the truth value of
given literals as a consequence of the abductions made to satisfy a given query plus
any ICs, but without further abducing. This will be achieved just through the inspect/1
meta-predicate, by introducing the IC← inspect(not unsafe_drive).

1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm

where H is an atom, and the Bi and Cj are atoms.

We callH the head of the rule, andB1, . . . , Bn, not C1, . . . , not Cm its body. Through-
out this paper we use ‘not ’ to denote default negation. When the body of a rule is empty,
we say its head is a fact and we write the rule just as H . When the head is empty, we
designate the rule an Integrity Constraint (IC).

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules, where non-gound rules stand for all their ground instances.

In this paper we consider solely Normal LPs (NLPs), those whose heads of rules are
positive literals, i.e. simple atoms, or empty. In the next sections we focus on abductive
logic programs, i.e., those with abducibles. Abducibles are chosen (by a system specific
declaration) literals, not defined by any rules and correspond to hypotheses that one can
independently assume or not — apart from eventual ICs affecting them. Abducibles or
their default negations may appear in bodies of rules, just like any other literal.



2 Abductive Reasoning with Logic Programs

Logic Programs have been used for a few decades now in knowledge representation and
reasoning. Amongst the most common kinds of reasoning performed using them, we
can find deduction, induction and abduction. When query answering, if we know that
the underlying semantics is relevant, i.e. guarantees it is enough to use only the rules
relevant to the query (those in its call-graph) to assess its truthfulness, then we need not
compute a whole model in order to find an answer to our query: it suffices to use just
the call-graph relevant part of the program. This way of top-down finding a solution to
a query, dubbed “backward chaining”, is possible only when the underlying semantics
is relevant in the above sense, because the existence of a full model is guaranteed.

Currently, the standard 2-valued semantics used by the logic programming commu-
nity is Stable Models [8]. Its properties are well known and there are efficient implemen-
tations (such as DLV and SModels [3, 11]). However, Stable Models (SMs) miss some
important properties, both from the theoretical and practical perspectives: guarantee of
model existence for every NLP, relevancy and cumulativity. Since SMs do not enjoy
relevancy they cannot use just backward chaining for query answering. This means that
it may incur in waste of computational resources, when extra time and memory are used
to compute parts of the model which may be irrelevant to the query.

When performing abductive reasoning, we want to find, by need only (via back-
ward chaining), one possible set of conditions (abductive literals of the program to be
assumed either true or false) sufficient to entail our query. However, sometimes we also
want to know which are (some of) the consequences (side-effects, so to speak) of such
conditions. I.e., we want to know the truth value of some other literals, not part of the
query’s call graph, whose truth-value may be determined by the abductive conditions
found. In some cases, we might be interested in knowing every possible side-effect —
the truth-value of every literal in a complete model satisfying the query and ICs. In
other situations though, our focus is only in some specific side-effects of abductions
performed.

In our approach, the side-effects of interest are explicitly indicated by the user by
wrapping the corresponding goals within reserved construct inspect/1. It is advanta-
geous, from a computational point of view, to be able to compute only the truth-value
of the important side-effects instead of the whole model, so as not to waste precious
time and computational resources. This is possible whenever the underlying semantics
guarantees model existence, and enjoys relevance.

2.1 Abduction

Abduction, or inference to the best explanation, is a reasoning method whereby one
chooses the hypotheses that would, if true, best explain the observed evidence. In LPs,
abductive hypotheses (or abducibles) are named literals of the program which have
no rules. They can be considered true or false for the purpose of answering a query.
Abduction in LPs ([1, 4, 5, 9, 10]) can naturally be used in a top-down query-oriented
proof-procedure to find an (abductive) answer to a query, where abducibles are leafs in
the call dependency graph. The Well-Founded Semantics (WFS) [7], which enjoys rele-
vancy, allows for abductive query answering. We used it in the specific implementation



described in section 4 based on ABDUAL [1]. Though WFS is 3-valued, the abduction
mechanism it employs can be, and in our case is, 2-valued.

Because they do not depend on any other literal in the program, abducibles can be
modeled in a Logic Program system without specific abduction mechanisms by includ-
ing for each abducible an even loop over default negation, e.g.,

abducible← not abducible_not. abducible_not← not abducible.
where neg_abducible is a new abducible atom, representing the (abducible) nega-

tion of the abducible. This way, under the SM semantics, a program may have models
where some abducible is true and another where it is false, i.e. neg_abducible is true.
If there are n abducibles in the program, there will be 2n models corresponding to all
the possible combinations of true and false for each. Under the WFS without a spe-
cific abduction mechanism, e.g. the one available in ABDUAL, both abducible and
neg_abducible remain undefined in the Well-Founded Model (WFM), but may hold
(as alternatives) in some Partial Stable Models.

Using the SM semantics abduction is done by guessing the truth-value of each ab-
ducible and providing the whole model and testing it for stability; whereas using the
WFS with abduction, it can be performed by need, induced by the top-down query solv-
ing procedure, solely for the relevant abducibles — i.e., irrelevant abducibles are left
unconsidered. Thus, top-down abductive query answering is a means of finding those
abducible values one might commit to in order to satisfy a query.

An additional situation, addressed in this paper, is when one wishes to only pas-
sively determine which abducibles would be sufficient to satisfy some goal but without
actually abducing them, just consuming other goals’ needed and produced abductions.
The difference is subtle but of importance, and it requires a new construct. Its mecha-
nism, of inspecting without abducing, can be conceived and implemented through meta-
abduction, and is discussed in detail in the sequel.

2.2 Backward and Forward Chaining

Abductive query-answering is intrinsically a backward-chaining process, a top-down
dependency-graph oriented proof-procedure. Finding the side-effects of a set of abduc-
tive assumptions may be conceptually envisaged as forward-chaining, as it consists of
progressively deriving conclusions from the assumptions until the truth value of the
chosen side-effect literals is determined.

The problem with full-fledged forward-chaining is that too many (often irrelevant)
conclusions of a model are derived. Wasting time and resources deriving them only
to be discarded afterwards is a flagrant setback. Worse, there may be many alternative
models satisfying an abductive query (and the ICs) whose differences just repose on
irrelevant conclusions. So unnecessary computation of irrelevant conclusions can be
compounded by the need to discard irrelevant alternative complete models too.

A more intelligent solution would be afforded by selective forward-chaining, where
the user would be allowed to specify those conclusions she is focused on, and only
those would be computed in forward-chaining fashion. Combining backward-chaining
with selective forward-chaining would allow for a greater precision in specifying what
we wish to know, and improve efficiency altogether. In the sequel we show how such
a selective forward chaining from a set of abductive hypotheses can be replaced by



backward chaining from the focused on conclusions — the inspection points — by
virtue of a controlled form of abduction which, never performing extra abductions, just
checks for abducibles assumed elsewhere.

3 Inspection Points

Meta-abduction is used in abduction inhibited inspection. Intuitively, when an abducible
is considered under mere inspection, meta-abduction abduces only the intention to a
posteriori check for its abduction elsewhere, i.e. it abduces the intention of verify-
ing that the abducible is indeed adopted, but elsewhere. In practice, when we want to
meta-abduce some abducible ‘x’, we abduce a literal ‘consume(x)’ (or ‘abduced(x)’),
which represents the intention that ‘x’ is eventually abduced elsewhere in the process
of finding an abductive solution. The check is performed after a complete abductive
answer to the top query is found. Operationally, ‘x’ will already have been or will be
later abduced as part of the ongoing solution to the top goal.

Example 2. Police and Tear Gas Issue. Consider this NLP, where ‘tear_gas’, ‘fire’,
and ‘water_cannon’ are the only abducibles. Notice that inspect is applied to calls.

← police, riot, not contain. % this is an Integrity Constraint
contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

Notice the two rules for ‘smoke’. The first states that one explanation for smoke is
fire, when assuming the hypothesis ‘fire’. The second states ‘tear_gas’ is also a pos-
sible explanation for smoke. However, the presence of tear gas is a much more unlikely
situation than the presence of fire; after all, tear gas is only used by police to con-
tain riots and that is truly an exceptional situation. Fires are much more common and
spontaneous than riots. For this reason, ‘fire’ is a much more plausible explanation for
‘smoke’ and, therefore, in order to let the explanation for ‘smoke’ be ‘tear_gas’, there
must be a plausible reason — imposed by some other likely phenomenon. This is rep-
resented by inspect(tear_gas) instead of simply ‘tear_gas’. The ‘inspect’ construct
disallows regular abduction — only allowing meta-abduction — to be performed whilst
trying to solve ‘tear_gas’. I.e., if we take tear gas as an abductive solution for smoke,
this rule imposes that the step where we abduce ‘tear_gas’ is performed elsewhere,
not under the derivation tree for ‘smoke’. Thus, ‘tear_gas’ is an inspection point.
The IC, because there is ‘police’ and a ‘riot’, forces ‘contain’ to be true, and hence,
‘tear_gas’ or ‘water_cannon’ or both, must be abduced. ‘smoke’ is only explained
if, at the end of the day, ‘tear_gas’ is abduced to enact containment. Abductive solu-
tions should be plausible, and ‘smoke’ is plausibly explained by ‘tear_gas’ if there
is a reason, a best explanation, that makes the presence of tear gas plausible; in this
case the riot and the police. Plausibility is an important concept in science, for lending
credibility to hypotheses. Assigning plausibility measures to situations is an orthogonal
issue.



In this example, another way of viewing the need for the new mechanism embodied
by the inspect predicate is to consider we have 2 agents: one is a police officer and has
the possibility of abducing (corresponding to actually throwing) tear_gas; the other
agent is a civilian who, obviously, does not have the possibility of abducing (throwing)
tear_gas. For the police officer agent, having the smoke ← inspect(tear_gas) rule,
with the inspect is unnecessary: the agent knows that tear_gas is the explanation for
smoke because it was himself who abduced (threw) tear_gas; but for the civilian agent
the inspect in the smoke← inspect(tear_gas) rule is absolutely indispensable, since
he cannot abduce tear_gas and therefore cannot know, without inspecting, if that is
the real explanation for smoke.

Example 3. Nuclear Power Plant Decision Problem. This example was extracted
from [12] and adapted to our current designs, and its abducibles do not represent ac-
tions. In a nuclear power plant there is decision problem: cleaning staff will dust the
power plant on cleaning days, but only if there is no alarm sounding. The alarm sounds
when the temperature in the main reactor rises above a certain threshold, or if the alarm
itself is faulty. When the alarm sounds everybody must evacuate the power plant imme-
diately! Abducible literals are cleaning_day, temperature_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
sound_alarm← temperature_rise
sound_alarm← faulty_alarm
evacuate ← sound_alarm

← not cleaning_day

Satisfying the unique IC imposes cleaning_day true and gives us three minimal
abductive solutions: S1 = {dust, cleaning_day},
S2 = {cleaning_day, sound_alarm, temperature_rise, evacuate}, and
S3 = {cleaning_day, sound_alarm, faulty_alarm, evacuate}. If we pose the query
?−not dustwe want to know what could justify the cleaners dusting not to occur given
that it is a cleaning day (enforced by the IC). However, we do not want to abduce the
rise in temperature of the reactor nor to abduce the alarm to be faulty in order to prove
not dust. Any of these justifying two abductions must result as a side-effect of the
need to explain something else, for instance the observation of the sounding of the
alarm, expressible by adding the IC ← not sound_alarm, which would then abduce
one or both of those two abducibles as plausible explanations. The inspect/1 in the
body of the rule for dust prevents any abduction below sound_alarm to be made just
to make not dust true. One other possibility would be for two observations, coded by
ICs ← not temperature_rise or ← not faulty_alarm, to be present in order for
not dust to be true as a side-effect. A similar argument can be made about evacuating:
one thing is to explain why evacuation takes place, another altogether is to justify it
as necessary side-effect of root explanations for the alarm to go off. These two prag-
matic uses correspond to different queries: ? − evacuate and ? − inspect(evacuate),
respectively.



3.1 Declarative Semantics of Inspection Points

A simple transformation maps programs with inspection points into programs without
them. Mark that the Stable Models of the transformed program where each abducible(X)
is matched by the abducible X (X being a literal a or its default negation not a) clearly
correspond to the intended procedural meanings ascribed to the inspection points of the
original program.

Definition 3. Transforming Inspection Points. Let P be a program containing rules
whose body possibly contains inspection points. The program Π(P ) consists of:

1. all the rules obtained by the rules in P by systematically replacing:

– inspect(not L) with not inspect(L);
– inspect(a) or inspect(abduced(a)) with abduced(a)

if a is an abducible, and keeping inspect(a) otherwise.

2. for every rule A← L1, . . . , Lt in P , the additional rule:
inspect(A)← L

′

1, . . . , L
′

t where for every 1 ≤ i ≤ t:

L
′

i =

abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

The semantics of the inspect predicate is exclusively given by the generated rules
for inspect

Example 4. Transforming a Program P with Nested Inspection Levels.

x← a, inspect(y), b, c, not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

Then, Π(P ) is:

x ← a, inspect(y), b, c, not d
inspect(x)← abduced(a), inspect(y), abduced(b), abduced(c), not abduced(d)
y ← not inspect(a)
y ← b, not inspect(z), c
inspect(y) ← not abduced(a)
inspect(y) ← abduced(b), not inspect(z), abduced(c)
z ← d
inspect(z) ← abduced(d)

The abductive stable model of Π(P ) respecting the inspection points is:
{x, a, b, c, abduced(a), abduced(b), abduced(c), inspect(y)}.

Note that for each abduced(a) the corresponding a is in the model.



4 Implementation

We based our practical work on a formally defined, XSB-implemented, true and tried
abduction system — ABDUAL [1]. ABDUAL lays the foundations for efficiently com-
puting queries over ground three-valued abductive frameworks for extended logic pro-
grams with integrity constraints, on the well-founded semantics and its partial stable
models.

The query processing technique in ABDUAL relies on a mixture of program trans-
formation and tabled evaluation. A transformation removes default negative literals (by
making them positive) from both the program and the integrity rules. Specifically, a
dual transformation is used, that defines for each objective literal O and its set of rules
R, a dual set of rules whose conclusions not (O) are true if and only if O is false in
R. Tabled evaluation of the resulting program turns out to be much simpler than for
the original program, whenever abduction over negation is needed. At the same time,
termination and complexity properties of tabled evaluation of extended programs are
preserved by the transformation, when abduction is not needed. Regarding tabled evalu-
ation, ABDUAL is in line with SLG [13] evaluation, which computes queries to normal
programs according to the well-founded semantics. To it, ABDUAL tabled evaluation
adds mechanisms to handle abduction and deal with the dual programs.

ABDUAL is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a query,
abducibles are dealt with by means of extra rules the preprocessor added to that ef-
fect. These rules just add the name of the abducible to an ongoing list of current ab-
ductions, unless the negation of the abducible was added before to the lists failing
in order to ensure abduction consistency. Meta-abduction is implemented adroitly by
means of a reserved predicate, ‘inspect/1’ taking some literal L as argument, which
engages the abduction mechanism to try and discharge any meta-abductions performed
under L by matching with the corresponding abducibles, adopted elsewhere outside
any ‘inspect/1’ call. The approach taken can easily be adopted by other abductive sys-
tems, as we had the occasion to check, e.g., with system [2]. We have also enacted an
alternative implementation, relying on XSB-XASP and the declarative semantics trans-
formation above, which is reported below.

Procedurally, in the ABDUAL implementation, the checking of an inspection point
corresponds to performing a top-down query-proof for the inspected literal, but with
the specific proviso of disabling new abductions during that proof. The proof for the in-
spected literal will succeed only if the abducibles needed for it were already adopted, or
will be adopted, in the present ongoing solution search for the top query. Consequently,
this check is performed after a solution for the query has been found. At inspection-
point-top-down-proof-mode, whenever an abducible is encountered, instead of adopt-
ing it, we simply adopt the intention to a posteriori check if the abducible is part of
the answer to the query (unless of course the negation of the abducible has already been
adopted by then, allowing for immediate failure at that search node.) That is, one (meta-
) abduces the checking of some abducibleA, and the check consists in confirming thatA
is part of the abductive solution by matching it with the object of the check. According
to our method, the side-effects of interest are explicitly indicated by the user by wrap-



ping the corresponding goals subject to inspection mode, with the reserved construct
‘inspect/1’.

4.1 ABDUAL with Inspection Points

Inspection points in ABDUAL function mainly by means of controlling the general ab-
duction step, which involves very few changes, both in the pre-processor and the meta-
interpreter. Whenever an ‘inspect(X)’ literal is found in the body of a rule, where
‘X’ is a goal, a meta-abduction-specific counter — the ‘inspect_counter’ — is in-
creased by one, in order to keep track of the allowed character, active or passive, of
performed abductions. The top-down evaluation of the query for ‘X’ then proceeds
normally. Actual abductions are only allowed if the counter is set to zero, otherwise
only meta-abductions are allowed. After finding an abductive solution for the query
‘X’ the counter is decreased by one. Backtracking over counter assignations is duly
accounted for. Of course, this way of implementing the inspection points (with one
‘inspect_counter’) presupposes the abductive query answering process is carried out
“depth-first”, guaranteeing the order of the literals in the bodies of rules actually corre-
sponds to the order they are processed. We assume such a “depth-first” discipline in the
implementation of inspection points, described in detail below. We lift this restriction
at the end of the subsection.

Changes to the pre-processor:

1. A new dynamic predicate was added: the ‘inspect_counter/1’. This is initialized
to zero (‘inspect_counter(0)’) via an assert, before a top-level query is launched.

2. The original rules for the normal abduction step are now preceded by an additional
condition checking that the ‘inspect_counter’ is indeed set to zero.

3. Extra rules for the “inspection” abduction step are added, preceded by a condi-
tion checking the ‘inspect_counter’ is set to greater than zero. When these rules
are called, the corresponding abducible ‘A’ is not abduced as it would happen in
the original rules; instead, ‘consume(A)’ (or ‘abduced(A)’) is abduced. This cor-
responds to the meta-abduction: we abduce the need to abduce ‘A’, the need to
‘consume’ the abduction of ‘A’, which is finally checked when derivation for the
very top goal is finished.

The changes to the meta-interpreter include all the remaining processing needed to
correctly implement inspection points, namely matching the meta-abduction of
‘consume(X)’ against the abduction of ‘X’.

Changes to the meta-interpreter: The semantics we chose for the inspection points
in ABDUAL is actually very close to that of the deontic verifiers mentioned before
(and also below), in the sense that if a meta-abduction on ‘X’ (resulting from abducing
‘consume(X)’) is not matched by an actual abduction on ‘X’ when we reach the end
of solving the top query, the candidate abductive answer is considered invalid and the
query solving fails. On backtracking, another alternative abductive solution (possibly
with other meta-abductions) will be sought.

In detail, the changes to the meta-interpreter include:



1. Two ‘quick-kill’ rules for improved efficiency that detect and immediately solve
trivial cases for meta-abduction:

– When literal ‘X’ about to be meta-abduced (‘consume(X)’ about to be added
to the abductions list) has actually been abduced already (‘X’ is in the abduc-
tions list) the meta-abduction succeeds immediately and ‘consume(X)’ is not
added to the abductions list;

– When the situation in the previous point occurs, but with ‘not X’ already ab-
duced instead, the meta-abduction immediately fails.

2. Two new rules for the general case of meta-abduction, that now specifically treat
the ‘inspect(not X)’ and ‘inspect(X)’ literals. In either rule, first we increase the
‘inspect_counter’ mentioned before, then proceed with the usual meta-interpretation
for ‘not X’ (‘X’, respectively), and, when this evaluation succeeds, we then de-
crease ‘inspect_counter’.

3. After an abductive solution is found to the top query, check (impose) that every
meta-abduction, i.e., every ‘consume(X)’ literal abduced, is matched by a respec-
tive and consistent abduction, i.e., is matched by the abducible ‘X’ in the abduc-
tions list; otherwise the tentative solution found fails.

A counter — ‘inspect_counter’ — is used instead of a toggle because several
‘inspect(X)’ literals may appear at different graph-depth levels under each other, and
reseting a toggle after solving a lower-level meta-abduction would allow actual abduc-
tions under the higher-level meta-abduction. An example clarifies this.

Example 5. Nested Inspection Points. Consider again the program of the previous
example, where the abducibles are a, b, c, d:

x← a, inspect(y), b, c, not d. y ← inspect(not a).
z ← d. y ← b, inspect(not z), c.

When we want to find an abductive solution for x, skipping over the low-level tech-
nical details we proceed as follows:

1. a is an abducible and since the ‘inspect_counter’ is still set initially to 0 we can
abduce a by adding it to the running abductions list;

2. y is not an abducible and so we cannot use any ‘quick kill’ rule on it. We increase
the ‘inspect_counter’ — which now takes the value 1 — and proceed to find an
abductive solution for y;

3. since the ‘inspect_counter’ is different from 0, only meta-abductions are allowed;
4. using the first rule for y we need to ‘inspect(not a)’, but since we have already ab-

duced a a ‘quick-kill’ is applicable here: we already know that this ‘inspect(not a)’
will fail. The value of the ‘inspect_counter’ will remain 1;

5. on backtracking, the second rule for y is selected, and now we meta-abduce b by
adding ‘consume(b)’ to the ongoing abductions list;

6. increase ‘inspect_counter’ again, making it take the value 2, and continue on,
searching an abductive solution for not z;

7. the only solution for not z is by abducing not d, but since the ‘inspect_counter’
is greater than 0, we can only meta-abduce not d, i.e.,
‘consume(not d)’ is added to the running abductions list;



8. returning to y’s rule: the meta-interpretation of ‘inspect(not z)’ succeeds and so
we decrease the ‘inspect_counter’ by one — it takes the value 1 again. Now we
proceed and try to solve c;

9. c is an abducible, but since the inspect_counter is set to 1, we only meta-abduce
c by adding ‘consume(c)’ to the running abductions list;

10. returning to x’s rule: the meta-interpretation of ‘inspect(y)’ succeeds and so we
decrease the ‘inspect_counter’ once more, and it now takes the value 0. From this
point onwards regular abductions will take place instead of meta-abductions;

11. we abduce b, c, and not d by adding them to the abductions list;
12. a tentative abductive solution is found to the initial query. It consists of the abduc-

tions: [a, consume(b), consume(not d), consume(c), b, c, not d];
13. the abductive solution is now checked for matches between meta-abductions and

actual abductions. In this case, for every ‘consume(A)’ in the abduction list there
is an A also in the abduction list, i.e., every intention of abduction ‘consume(A)’
is satisfied by the actual abduction of A. Because this final checking step suc-
ceeds, the whole answer is actually accepted. Note it is irrelevant which order a
‘consume(A)’ and the corresponding A appear and were placed in the abductions
list. The A in consume(A) is just any abducible literal a or its default negation
not a.

In this example, we can see clearly that the inspect predicate can be used on any arbi-
trary literal, and not just on abducibles.

The correctness of this implementation against the declarative semantics provided
before can be sketched by noticing that whenever the inspect_counter is set to 0 the
meta-interpreter performs actual abduction which corresponds to the use of the original
program rules; whenever the inspect_counter is set to some value greater than 0 the
meta-interpreter just abduces consume(A) (whereA is the abducible being checked for
its abduction being produced elsewhere), and this corresponds to the use of the program
transformation rules for the inspect predicate.

The implementation of ABDUAL with inspection points is available on request.

More general query solving In case the “depth-first” discipline is not followed, ei-
ther because goal delaying is taking place, or multi-threading, or co-routining, or any
other form of parallelism is being exploited, then each queried literal will need to
carry its own list of ancestors with their individual ‘inspect_counters’. This is nec-
essary so as to have a means, in each literal, to know which and how many inspects
there are between the root node and the currently being processed literal, and which
inspect_counter to update; otherwise there would be no way to know if abductions or
meta-abductions should be performed.

4.2 Alternative Implementation Method

The method presented here is an avenue for implementing the inspection points mech-
anism through a simple syntactic transformation which can be readily used by any SMs
system like SModels or DLV. Using an SMs implementation alone, one can get the ab-
ductive SMs of some program P by computing the SMs of P ′ where P ′ is obtained



from P by applying the program transformation we presented for the declarative se-
mantics of the inspection points, and then adding an even loop over negation for each
abducible (like the one depicted in section 2.1). Using XSB-Prolog’s XSB-XASP in-
terface, the process would be the same as for using an SMs implementation alone, but
instead of sending the whole P ′ to the SMs engine, only the residual program, relevant
for the query at hand, would be sent. This way, abductive reasoning can benefit from
the relevance property enjoyed by the Well-Founded Semantics implemented by the
XSB-Prolog’s SLG-WAM.

Given the top-down proof procedure for abduction, implementing inspection points
for program P becomes just a matter of adapting the evaluation of derivation subtrees
falling under ‘inspect/1’ literals, at meta-interpreter level, subsequent to performing
the transformation Π(P ) presented before, which defines the declarative semantics.
Basically, any considered abducibles evaluated under ‘inspect/1’ subtrees, say A, are
codified as ‘abduced(A)’, where:

abduced(A)← not abduced_not(A)
abduced_not(A)← not abduced(A)

All abduced/1 literals collected during computation of the residual program are later
checked against the stable models themselves. Every ‘abduced(a)’ must pair with a
corresponding abducible a for the model to be accepted.

5 Conclusions, Comparisons, and Future Work

In the context of abductive logic programs, we have presented a new mechanism of in-
specting literals that can be used to check for side-effects, by relying on meta-abduction.
We have implemented the inspection mechanism within the Abdual [1] meta-interpreter,
and also in XSB-XASP, and checked that it can be ported to other systems [2].

HyProlog [2] is an abduction/assumption system which allows for the user to spec-
ify if an abducible is to be consumed only once or many times. In HyProlog, as the
query solving proceeds, when abducibles/assumptions consumptions take place they
are executed as storing the respective consumption intention in a store. After an ab-
ductive solution for a query is found, the actual abductions/assumptions are matched
against the consumption intentions. In general, there is not such a big difference be-
tween the operational semantics of HyProlog and the inspection points implementation
we present; however, there is a major functionality difference: in HyProlog we can only
require consumption directly on abducibles, and with inspection points we can inspect
any literal, not just abducibles.

In [12], the authors detect a problem with the IFF abductive proof procedure [6] of
Fung and Kowalski, in what concerns the treatment of negated abducibles in integrity
constraints (e.g. in their examples 2 and 3). They then specialize IFF to avoid such
problems and prove correctness of the new procedure. The problems detected refers to
the active use of an IC of some not A, where A is an abducible, whereas the intended use
should be a passive one, simply checking whether A is proved in the abductive solution
found. To that effect they replace such occurrences of not A by not provable(A), in
order to ensure that no new abductions are allowed during the checking. Our own work



generalizes the scope of the problem they solved and solves the problems involved in
this wider scope. For one we allow for passive checking not just of negated abducibles
but also of positive ones, as well as passive checking of any literal, whether or not
abducible, and allow also to single out which occurrences are passive or active. Thus,
we can cater for both passive and active ICs, depending on the use desired. Our solution
uses abduction itself to solve the problem, making it general for use in other abductive
frameworks and procedures.

A future application of inspection points is planning in a multi-agent setting. An
agent may have abduced a plan and, in the course of carrying out its abduced actions, it
may find that another agent has undone some of its already executed actions. So, before
executing an action, the agent should check all necessary preconditions hold. Note it
should only check, thereby avoiding abducing again a plan for them: this way, if the
preconditions hold the agent can continue and execute the planned action. The agent
should only take measures to enforce the preconditions again whenever the check fails.
Clearly, an inspection of the preconditions is what we need here.

6 Acknowledgements

We thank Robert Kowalski, Verónica Dahl and Henning Christiansen for discussions,
Pierangelo Dell’Acqua for the declarative semantics, and Gonçalo Lopes for help with
the XSB-XASP implementation.

References

1. J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and gener-
alized stable models via tabled dual programs. Theory and Practice of Logic Programming,
4(4):383–428, July 2004.

2. H. Christiansen and V. Dahl. Hyprolog: A new logic programming language with assump-
tions and abduction. In M. Gabbrielli and G. Gupta, editors, ICLP, volume 3668 of LNCS,
pages 159–173. Springer, 2005.

3. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In 12th Workshop on Logic Programming, 1997.

4. M. Denecker and D. De Schreye. Sldnfa: An abductive procedure for normal abductive
programs. In Apt, editor, Proceedings of the Joint International Conference and Symposium
on Logic Programming, pages 686–700, Washington, USA, 1992. The MIT Press.

5. T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: semantics and complex-
ity. Theoretical Computer Science, 189(1–2):129–177, 1997.

6. T. H. Fung and R. Kowalski. The iff proof procedure for abductive logic programming. J.
Log. Prog., 33(2):151 – 165, 1997.

7. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. of ACM, 38(3):620–650, 1991.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

9. K. Inoue and C. Sakama. A fixpoint characterization of abductive logic programs. Journal
of Logic Programming, 27(2):107–136, 1996.



10. A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming. In Hand-
book of Logic in AI and LP, volume 5, pages 235–324. Oxford University Press, 1998.

11. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-
founded semantics for normal logic programs. In Procs. 4th Intl. Conf. Logic Programming
and Nonmonotonic Reasoning, volume 1265 of LNAI, pages 420–429, July 1997.

12. F. Sadri and F. Toni. Abduction with negation as failure for active and reactive rules. In
E. Lamma and P. Mello, editors, AI*IA, volume 1792 of LNCS, pages 49–60. Springer, 1999.

13. T. Swift and D. S. Warren. An abstract machine for slg resolution: Definite programs. In
Symp. on Logic Programming, pages 633–652, 1994.


