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Abstract. Building upon the 2-valued Layered Models semantics for normal
programs, we introduce a refinement — the Layer Supported Models semantics
— which, besides keeping all of LMs’ properties, furthermore respects the Well-
Founded Model.
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1 Introduction
In [5] we presented the Layered Models semantics, a 2-valued semantics for Normal
Logic Programs (NLPs) which guarantees model existence, enjoys relevance and cu-
mulativity, and is a conservative extension of the Stable Models (SMs) semantics [3].
Although the LMs proposed in [5] already enforces minimality of its models, it does
not ensure compatibility with the Well-Founded Model (WFM). The refinement to the
LMs we now propose — Layer Supported Models (LSMs) semantics — obeys the pro-
viso that each model respects the WFM. To achieve this we simply refine the notion of
layering original of [5]. Intuitively, a program is conceptually partitioned into “layers”
which are subsets of its rules. Rules forming loops are placed in the same layer, while
rules not forming loops are placed in different layers — higher layer rules depending
on lower layer rules, but not vice-versa. An atom is then considered true in a model if
there is some rule for it, at some layer, where all literals in its body supported by rules
of lower layers are also true. Otherwise the atom is false.

The core reason SM semantics fails to guarantee model existence for every NLP is
that the stability condition it imposes on models is impossible to be complied with by
Odd Loops Over Negation (OLONs) — like a← not a, X 1. In fact, the SM semantics
community uses such inability as a means to write Integrity Constraints (ICs).

The LSM semantics provides a semantics to all NLPs. In the a← not a, X example
above, whenever X is true, the only LSM is {a, X}. For LSM semantics OLONs are not
ICs. ICs are implemented with rules for reserved atom falsum, of the form falsum←
X , where X is the body of the IC we wish to prevent being true. This does not prevent
falsum from being in some models. From a theoretical standpoint this means that the
LSM semantics does not include an IC compliance enforcement mechanism. ICs must
be dealt with in two possible ways: either by 1) a syntactic post-processing step, as a
“test phase” after the model generation “generate phase”; or by 2) embedding the IC
compliance in a query-driven (partial) model computation, where such method can be a

1 OLON is a loop with an odd number of default negations in its circular call dependency path.



top-down query-solving one a la Prolog, since the LSM semantics enjoys relevance. In
this second case, the user must conjoin query goals with not falsum. If inconsistency
examination is desired, like in the 1) case above, models including falsum can be
discarded a posteriori. This is how LSM semantics separates OLON semantics from IC
compliance.

After notation and background definitions, we present the formal definition of LSM
semantics and overview its properties. The applications afforded by LSMs are all those
of SMs plus those requiring OLONs for model existence, and those where OLONs are
actually employed for problem representation. Work under way concerns the efficient
implementation of the LSM semantics.

2 Background Notation and Definitions
Definition 1. Logic Rule. A Logic Rule r has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm where H , the Bi and the Cj are atoms.

We call H the head of the rule — also denoted by head(r). And body(r) denotes the set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout this
paper we will use ‘not ’ to denote default negation. When the body of the rule is empty,
we say the head of rule is a fact and we write the rule just as H . A Logic Program (LP
for short) P is a (possibly infinite) set of ground Logic Rules of the form in Definition 1.
In this paper we focus mainly on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean an NLP.

3 Layering of Logic Programs
The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified. The usual syntactic notions of dependency are mainly fo-
cused on atoms. They are based on a dependency graph induced by the rules of the
program. Useful these notions might be, for our purposes they are insufficient as they
leave out important structural information about the call-graph of P . To cover that in-
formation we also define below the notion of a rule’s dependency. Indeed, layering puts
rules in layers, not atoms. An atom B directly depends on atom A in P iff there is at
least one rule with head B and with A or not A in the body. An atom’s dependency is
just the transitive closure of the atom’s direct dependency. A rule directly depends on
atom B iff any of B or not B is in its body. A rule’s dependency is just the transitive
closure of the rule’s direct dependency. The Relevant part of P for some atom A, rep-
resented by RelP (A), is the subset of rules of P with head A plus the set of rules of P
whose heads the atom A depends on, cf. [2]. Likewise for the relevant part for an atom
A notion [2], we define and present the notion of relevant part for a rule r. The Relevant
part of P for rule r, represented by RelP (r), is the set containing the rule r itself plus
the set of rules relevant for each atom r depends on.

Definition 2. Parts of the body of a rule. Let r = H ← B1, . . . , Bn, not C1, . . . , not Cm

be a rule of P . Then, rl = {Bi, not Cj : Bi depends on H ∧ Cj depends on H}. Also,
rB = {Bi : Bi ∈ (body(r) \ rl)}, and rC = {Cj : not Cj ∈ (body(r) \ rl)}.



Definition 3. HighLayer function. The HighLayer function is defined over a set of
literals: its result is the highest layer number of all the rules for all the literals in the
set, or zero if the set is empty.

Definition 4. Layering of a Logic Program P . Given a logic program P a layering
function L/1 is just any function defined over the rules of P ′, where P ′ is obtained from
P by adding a rule of the form H ← falsum for every atom H with no rules in P ,
assigning each rule r ∈ P ′ a positive integer, such that:

– L(r) = 0 if falsum ∈ body(r), otherwise
– L(r) ≥ max(HighLayer(rl), HighLayer(rB), (HighLayer(rC) + 1))

A layering of program P is a partition P 1, . . . , Pn of P such that P i contains all rules
r having L(r) = i, i.e., those which depend only on the rules in the same layer or layers
below it.
This notion of layering does not correspond to any level-mapping [4], since the later is
defined over atoms, and the former is defined over rules. Also, due to the definition of
dependency, layering does not coincide with stratification [1], nor does it coincide with
the layer definition of [6]. However, when the program at hand is stratified (according
to [1]) it can easily be seen that its respective layering coincides with its stratification.
In this sense, layering, which is always defined, is a generalization of the stratification.

Amongst the several possible layerings of a program P we can always find the least
one, i.e., the layering with least number of layers and where the integers of the layers
are smallest. In the remainder of the paper when referring to the program’s layering we
mean such least layering (easily seen to be unique).

4 Layer Supported Models Semantics
The Layer Supported Models semantics we now present is the result of the two new
notions we introduced: the layering, formally introduced in section 3, which is a gen-
eralization of stratification; and the layered support, as a generalization of classical
support. These two notions are the means to provide the desired 2-valued semantics
which respects the WFM, as we will see below.

An interpretation M of P is classically supported iff every atom a of M is classi-
cally supported in M , i.e., all the literals in the body of some rule for a are true under
M in order for a to be supported under M .

Definition 5. Layer Supported interpretation. An interpretation M of P is layer sup-
ported iff every atom a of M is layer supported in M , and this holds iff a has a rule r
where all literals in (body(r) \ rl) are true in M . Otherwise, it follows that a is false.

Theorem 1. Classical Support implies Layered Support. Given an NLP P , an inter-
pretation M , and an atom a such that a ∈M , if a is classically supported in M then a
is also layer supported in M .

Proof. Trivial from the definitions of classical support and layered support. ut
In programs without odd loops layered supported models are classically supported too.



Example 1. Layered Unsupported Loop. Consider program P :
c← not a a← c, not b b

The only rule for b is in the first layer of P . Since it is a fact it is always true in
the WFM. Knowing this, the body of the rule for a is false because unsupported (both
classically and layered). Since it is the only rule for a, its truth value is false in the WFM,
and, consequently, c is true in the WFM. This is the intuitively desirable semantics for
P , which corresponds to its LSM semantics. LM and the LSM semantics differences
reside both in their layering notion and the layered support requisite of Def. 5. In this
example, if we used LM semantics, which does not exact layered support, there would
be two models: LM1 = {b, a} and LM2 = {b, c}. {b} is the only minimal model for
the first layer and there are two minimal model extensions for the second layer, as a is
not necessarily false in the LM semantics because Def. 5 is not adopted. Lack of layered
support lets LM semantics fail to comply with the WFM. Note that adding a rule like
b ← a would not affect the semantics of the program, according to LSM. This is so
because, such rule would be placed in the same layer with the rules for a and c, but
leaving the fact rule b in the strictly lower layer.

Intuitively, the minimal layer supported models up to and including a given layer,
respect the minimal layer supported models up to the layers preceding it. It follows triv-
ially that layer supported models are minimal models, by definition. This ensures the
truth assignment to atoms in loops in higher layers is consistent with the truth assign-
ments in loops in lower layers and that these take precedence in their truth labeling. As
a consequence of the layered support requirement, layer supported models of each layer
comply with the WFM of the layers equal to or below it. Combination of the (merely
syntactic) notion of layering and the (semantic) notion of layered support makes the
LSM semantics.

Definition 6. Layer Supported Model of P . Let P 1, . . . , Pn be the least layering of
P . A layer supported interpretation M is a Layer Supported Model of P iff

∀1≤i≤nM |≤i is a minimal layer supported model of ∪1≤j≤i P j

where M |≤i denotes the restriction of M to heads of rules in layers less or equal to i:
M |≤i ⊆M ∩ {head(r) : L(r) ≤ i}

The Layer Supported semantics of a program is just the intersection of all of its
Layer Supported Models.

Layered support is a more general notion than that of perfect models [7], with sim-
ilar structure. Perfect model semantics talks about “least models” rather than “minimal
models” because in strata there can be no loops and so there is always a unique least
model which is also the minimal one. Layers, as opposed to strata, may contain loops
and thus there is not always a least model, so layers resort to minimal models, and these
are guaranteed to exist (it is well known every NLP has minimal models).

It is worth noting that atoms with no rules and appearing in the bodies of some rule
are necessarily “placed” in the lowest layer: an atom a having no rules is equivalent to
having the single rule a ← falsum. Any minimal model of this layer will consider
the heads of such rules to be false. This ensures compliance with the Closed World
Assumption (CWA).

In [5] the authors present an example (7) where three alternative joint vacation solu-
tions are found by the LM semantics, for a vacation problem modeled by an OLON. The



solutions found actually coincide with those found by the LSM semantics. We recall
now a syntactically similar example (from [8]) but with different intended semantics,
and show how it can be attained in LSM by means of ICs.

Example 2. Working example [8].
tired← not sleep sleep← not work work ← not tired

As in the example 7 of [5], the LSM semantics would provide three solutions for
the above program: {work, tired}, {work, sleep}, {sleep, tired}. Although some (or
even all!) of these solutions might be actually plausible in a real world case, they are not,
in general, the intended semantics for this example. With the LSM semantics, the way to
prune away some (or all) of these solutions is by means of ICs. For example, to eliminate
the {work, sleep} solution we would just need to add the IC falsum← work, sleep.

The principle used by LSMs to provide semantics to any NLP — whether with
OLONs or not — is to accept all, and only, the minimal models that are layer supported,
i.e., that respect the layers of the program. The principle used by SMs to provide se-
mantics to only some NLPs is a “stability” (fixed-point) condition imposed on the SMs
by the Gelfond-Lifschitz operator.

5 Properties of the Layer Supported Models semantics
Although the definition of the LSMs semantics is different from the LMs of [5], this
new refinement enjoys the desirable properties of the LMs semantics, namely: guarantee
of model existence, relevance, cumulativity, and being a conservative extension of the
SMs semantics. Moreover, and this is the main contribution of the LSMs semantics, it
respects the Well-Founded Model.

Due to lack of space, the complexity analysis of this semantics is left out of this
paper. Nonetheless, a brief note is due. Model existence is guaranteed for every NLP,
hence the complexity of finding if one LSM exists is trivial, when compared to SMs
semantics. Brave reasoning — finding if there is any model of the program where some
atom a is true — is an intrinsically NP-hard task from the computational complexity
point of view. But since LSM semantics enjoys relevance, the computational scope of
this task can be reduced to consider only RelP (a), instead of the whole P . From a
practical standpoint, this can have a significant impact in the performance of concrete
applications. Cautious reasoning (finding out if some atom a is in all models) in the
LSM semantics should have the same computational complexity as in the SMs, i.e.,
coNP-complete.

5.1 Respect for the Well-Founded Model

Definition 7. Interpretation M of P respects the WFM of P . An interpretation M
respects the WFM of P iff M contains the set of all the true atoms of the WFM of P ,
and it contains no false atoms of the WFM of P .

Theorem 2. Layer Supported Models respect the WFM. Let P be an NLP, and P≤i

denote
⋃

1≤j≤i P j , where P j is P ’s j layer. Each LSM M |≤i of P≤i, where M ⊇
M |≤i, respects the WFM of P i ∪M |<i.



Proof. By hypothesis, each M |≤i is a full LSM of P≤i. Consider P 1. Any M |≤1 con-
tains the facts of P , and their direct positive consequences, since the rules for all of
these are necessarily placed in the first layer in the least layering of P . Hence, M |≤1

contains all the true atoms of the WFM of P 1. Layer 1 also contains whichever loops
that do not depend on any other atoms besides those which are the heads of the rules
forming the loop. Any such loops having no negative literals in the bodies are determin-
istic and, therefore, the heads of the rules forming the loop will be all true or all false
in the WFM of P 1, depending on whether the bodies are fully supported by facts in the
same layer, or not, and, in the latter case, if the rules are not involved in other types of
loop making their heads undefined. In any case, an LSM of this layer will by necessity
contain all the true atoms of the WFM of P 1. On the other hand, assume there is some
atom b which is false in the WFM of P 1. b being false in the WFM means that either b
has no rules or that every rule for b has an unsatisfiable body in P 1. In the first case, by
definition 6 we know that b cannot be in any LSM. In the second case, every unsatisfi-
able body is necessarily unsupported, both classically and layered. Hence, b cannot be
in any LSM of P 1. This means that any LSM contains no atoms false in the WFM of
P 1, and, therefore, that they must respect the WFM of P 1.

By hypothesis M |≤i+1 is an LSM of P≤i+1 iff M |≤i+1 ⊇ M |≤i, for some LSM
M |≤i of P≤i, which means the LSMs M |≤i+1 of P≤i+1 are exactly the LSMs M |≤i+1

of P i+1 ∪M |≤i. Adding the M |≤i atoms as facts imposes them as true in the WFM of
P i+1 ∪M |≤i. The then deterministically true consequences of layer i + 1 — the true
atoms of the WFM of P i+1 ∪M |≤i — become necessarily present in every minimal
model of P i+1 ∪M |≤i, and therefore in its every LSM M |≤i+1. On the other hand,
every atom b false in the WFM of P i+1 ∪M |≤i has now unsatisfiable bodies in all its
rules (up to this layer i+1). Hence, b cannot be in any LSM of P i+1∪M |≤i. Therefore,
every M |≤i+1 respects the WFM of P i+1 ∪M |≤i. Hence, more generally, every M |≤i

respects the WFM of P i ∪M |<i

ut
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