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Abstract. In a context of growing awareness and prevalence of mental disorders,
cognitive modeling has emerged as an important contribution to the study of the
mind and its processes. Computational models have proved to be indispensable
tools for precise and systematic simulations of cognitive processes, and have a
potential application in the diagnosis and treatment of such pathologies.

We propose a connectionist cognitive model that incorporates regulatory mech-
anisms, called Regulated Activation Networks (RANs), that will be applied to the
modeling of psychological phenomena. This paper summarizes the current early
stages of the development of the RANs model. The objectives, principles and ap-
proach taken are described, as well as the architecture of the RANs model, some
preliminary results and plans for future work.

Keywords: Cognitive model, connectionism, conceptual spaces, psychological
phenomena.

1 Introduction

Context: Every year, a third of the European Union population suffers from mental
disorders [8]. In a global scale the numbers are also worrying: the World Health Orga-
nization predicts that depression will be the leading cause of disease burden by 2030
[16]. This alarming trend is one of the reasons for the growing importance of the cog-
nitive science research field, which focuses on the study of the mind and its processes,
especially information representation, processing and transformation. Particularly, the
development of computational models which provide algorithmic specificity, concep-
tual clarity and precision, has allowed the realization of simulations that can either be
useful to test and validate psychological theories or to generate new hypotheses about
how the mind works. This has turned them into indispensable tools in the study of the
human mind.

Motivation: We aim at modeling mental processes with our RANs tool and, hopefully,
use it to aid in the diagnosis and treatment of some mental pathologies such as depres-
sion, schizophrenia and autism. To achieve this the RANs model will need to include
the parameters that are enough to mimic the neurological features responsible for simu-
lating and regulating both healthy and pathological cognitive processes. We envisage a
scenario where, given a particular instance of the RANs model, we allow it to learn the
values of those regulatory parameters from the inputs (e.g., words) given to, and out-
puts (e.g., other words) obtained from, a specific human user – with different users we
train different instances of the RANs. As some users may be previously diagnosed as
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clinical patients with some disorders, while others may be classified as healthy, we can
then use this collection of data to train a classifier to allow the diagnosis of new human
subjects. Some results in the literature [3,15,21] have already been achieved by other
researchers, which shows that this ambitious goal is not out of reach of computational
cognitive modeling. This type of computational tools with the ability to capture cog-
nitive phenomena has also the potential to simulate and help study some mental states
and processes such as those linked to creativity [12].

We aim to develop of a computational cognitive model with two main very long-
term goals. The first is to help understand and simulate cognitive phenomena such as
perception, emotion, learning and reasoning, creativity and, ultimately, different kinds
of psychological features and personality traits. The second is to provide a tool that can
aid in the simulation, diagnosis and, eventually, treatment, of said pathologies.

Challenges: Taking an incremental development and validation approach, in these first
steps we focus only on the following features: 1) the model must be able to receive
(sensory-like) input information from the outside, 2) it must allow for the representa-
tion and simulation of the dynamic time-variant cognitive state (initially set by the input
data), 3) it must be able to learn and abstract the patterns in its cognitive state, and 4)
it must be able to exhibit creative behavior by creating new concepts and by generating
new patterns of cognitive state. While developing mechanisms to represent the input
data may not be hard, simulating a dynamic cognitive state and corresponding learning,
and creative processes are not trivial. We do so by modeling certain psychological phe-
nomena concerned with the reception and response to the received stimulus; and also
two different kinds of learning. Specifically, we aim, at this stage, to model the effect of
Priming, the occurrence of False Memories and the Habituation and Sensitization pro-
cesses — we describe these phenomena in detail in subsection 2.1 – as these will allow
for the simulation of a simple cognitive state that changes through time. The learning
mechanism we implemented at this stage progressively identifies correlations between
elements of the cognitive state. At a later stage, left for now for future work, we will
address more complex kinds of learning (including the ones capable of creating new
concepts) and reasoning, and emotion representation, elicitation, and processing.

Paper Structure: Section 2 gives an overview of the basic psychological phenomena
we model in this early stage of our work. We also describe the cognitive modeling
approaches in the literature that are most relevant to our model, as it draws inspiration
and features from those approaches. In section 3 we present the overarching principles
behind the design our Regulated Activation Networks (RANs) cognitive model, and
also discuss the desiderata properties for the future full version of the model, as well
as its global characteristics, some of which are already implemented in the preliminary
version detailed in section 4.

In section 5 we show our first preliminary results; and in section 6 we provide con-
clusions and description of future work, which includes the design of a validation plan
we will use to assess the reliability regarding the ability to simulate the identified psy-
chological phenomena.
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2 Background

First, we review the main psychological phenomena our current simplified RANs model
is intended to capture, and why these phenomena matter for the future full version.
Then, we show the cognitive modeling approaches in the literature that we found to have
features that are important for our purposes – the RANs model includes an innovative
combination of these features, plus other new ones we describe later.

2.1 Psychological Phenomena

Priming: Priming is a phenomenon in which a response to a stimulus is influenced by
a previous exposure to the same or a similar stimulus. It happens in a non-conscious
way, making it an implicit memory effect [11]. Priming effects can be divided in two
main types, according to the relation between the stimulus. Perceptual priming stands
for stimulus with a similar form and conceptual/semantic priming for stimulus with
similar meaning. E.g., if someone is shown a list of words containing the word “mys-
tery”, and then the subject is asked to do a word completion task in which there is the
incomplete pattern “_ys_e_y”, the probability that the person will select the word “mys-
tery” is higher than if the person had not been primed [19]. This is a form of perceptual
priming for the stimulus relate in its form. As an example of conceptual priming, if we
consider the concept “fruit”, that stimulus will have positive effects on the response to
semantically related concepts, such as “apple”, leading to a faster response to that stim-
ulus [13]. This can occur even when the first concept is consciously forgotten. Other
priming types have been suggested (e.g. associative priming) in which stimulus are not
related semantically but are frequently associated or have a high probability of occur-
ring together. Another similar effect is context priming, in which context is used to deal
in a faster way with stimulus more likely to occur in the context.

The simulation of the priming effect is central to the modeling of psychological
phenomena related to implicit memory such as time-varying cognitive and emotional
context, bias, predisposition, prejudice, and many others, such as learning associations
and recalling related concepts.

Deese-Roediger-McDermott (DRM) Paradigm: The DRM paradigm is a procedure
initialized by J. Deese in the 1950s, and extended by H.L. Roediger and K. McDermott
in the 1990s with the aim to study false memory and false recall phenomena [20]. The
process typically involves reading a list of words to a subject, being all the words se-
mantically related to a non-present word. E.g., the words “bed”, “rest”, “awake” and the
non-present word “sleep”. After hearing the list, the subject is asked to recall the words
or to select those words from a new list. In both cases, the non-present target word is
recalled with the same frequency as the other words. Also, a high percentage of subjects
assure remembering hearing the word, suggesting the occurring of a false memory. This
phenomenon is quite similar to the conceptual priming described above, suggesting that
the underlying mechanisms in both effects are the same. However, the false memory in
the DRM paradigm implies that, in the retrieval phase, the target concept reaches an
activation level similar to the other concepts making the subject believe to have heard
the word and not only facilitating the response to it.
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We will use the modeling of the false memory mechanism to simulate thought-
drifting, dreams, delirium, and other divergent cognitive processes that may be nec-
essary to capture a variety of healthy mind processes and psychological pathologies.

Habituation: Habituation is a behavioral response decrease, common in humans and
animals, that occurs after repeated exposure to the same stimulus. This process is dis-
tinct from sensory adaptation, in which sensory receptors change their sensitivity to the
stimulus, and that distinction is demonstrated by the inverse process (dishabituation)
and also by stimulus discrimination and spontaneous recovery of the habituation pro-
cess [7]. The following are some of the characteristics of the habituation process we
intend to model. Repeated exposure to a stimulus results in a gradual change of the re-
sponse to an asymptotic level. In most cases this results in an exponential decrease, but
linear habituation can also occur. Before the habituation, a response may show facilita-
tion due to a simultaneous process of sensitization (response amplification to the stim-
ulus). The decrease in habituation can be observed in response frequency, magnitude or
both. Habituation is a recoverable process. When given enough time without exposure
to the stimulus, the response recovers in a partial or total way (spontaneous recovery).
After repeated series of habituation and spontaneous recovery, the habituation is po-
tentiated, i.e. the decrease in response occurs progressively faster and more intensely.
Potentiation can also occur by increasing the frequency of the stimulus, that will also
result in faster and more intense decrease of response. The frequency of stimulation,
after the response reaches an habituated level, has been suggested to determine the rate
of recovery [17]. Repeated stimulation in this phase may delay the onset of spontaneous
recovery. Associated with this process are also the concepts of stimulus generalization
and discrimination. Once a response to a stimulus is habituated, a similar novel stimulus
will also have a certain degree of response decrease, according to the rate of similarity
between the novel and previous stimulus (generalization). Discrimination is observed
when a different stimulus does not have its response altered by the habituation of a pre-
vious stimulus. Dishabituation occurs when the presentation of another stimulus results
in the recovery of the habituated response of the original stimulus.

Modeling these processes is central for simulating learning processes, surprise, re-
sponse to, and recovery from, traumatic stress, among others.

2.2 Cognitive Modeling Approaches

Spreading Activation: Spreading Activation is a theory of memory [1] based on
Collins and Quillian’s computer model [4] which has been widely used for the cogni-
tive modeling of human associative memory and in other domains such as information
retrieval [5]. It intends to capture both the way information is represented and how it
is processed. According to the theory, long-term memory is represented by nodes and
associative links between them, forming a semantic network of concepts. The links are
characterized by a weight denoting the associative or semantic relation between the
concepts. The model assumes activating one concept implies the spreading of activa-
tion to related nodes, making those memory areas more available for further cognitive
processing. This activation decays over time, and the further it spreads, which can occur
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through multiple levels [14], the weaker it is. That is usually modeled using a decay-
ing factor for activation. The method of spreading activation has been central in many
cognitive models due to its tractability and resemblance of interrelated groups of neu-
rons in the human brain [18]. The connection between spreading activation theories and
priming effects is clear: when an activated node propagates activation to a semantically
related node semantic priming effects can be observed. I.e., automatic spreading of ac-
tivation between concepts are the underlying mechanisms for conceptual priming. As
for the creation of false memories it has been discussed whether or not the automatic
spreading of activation would be sufficient to originate the high rates of false recall ob-
served in the DRM paradigm. Evidence from [22] leads to the conclusion that the target
concept can be activated with such mechanisms.

Hopfield Networks: Invented by John Hopfield in 1982, Hopfield Networks are re-
current neural networks. Each node is a binary threshold unit, i.e. it only assumes two
possible values, normally 1 and -1, determined by whether the node’s input is above
or under its threshold. Each pair of nodes has a connection characterized by a weight
w, being the connections symmetrical: wij = wji, ∀i, j, and a node is not allowed to
connect to itself. Hence, the input of a node is the sum of other nodes’ states multiplied
by the weight of the connection between them.

One of the most interesting properties of Hopfield Networks is their ability to store
and retrieve patterns, working as an associative memory. This model uses an energy
function to determine the current state of the network, and remembering a learned pat-
tern is achieved by descending a gradient of energy toward a local minimum corre-
sponding to the pattern. Learning patterns results from training the network by lowering
the energy of the state that the network should remember. A common way to do this is
using Hebbian learning, strengthening the weights of connections between simultane-
ously activated nodes, and reducing the weight of the connection otherwise. This allows
the network to recover a “stored pattern” when given an incomplete version of that pat-
tern. With this training process, Hopfield Networks can store, approximately, 0.14 * n
patterns, n being the number of nodes [23].

Conceptual Spaces: Traditionally there are two main approaches to the problem of
modeling representations in artificial intelligence and cognitive science. One is the sym-
bolic approach, in which information is represented by symbols that when combined
give rise to expressions that relate to each other in a logical way. Processing informa-
tion in the symbolic paradigm corresponds to manipulating symbols, not regarding their
semantic content. The other is the connectionist approach, from which artificial neural
networks are the prime example. In this approach, cognitive processes are represented
by the dynamic activity of patterns of several interconnected units. Peter Gärdenfors
argues that none of these approaches can model some aspects of cognitive phenomena
and proposes a new way to represent information based on the use of geometrical struc-
tures, rather than symbols or connections between neurons. However, this approach
is not a substitute for previous approaches, but an intermediate level explaining how
symbolist representations can arise from connectionist ones [9]. This level of represen-
tation is called conceptual for it provides a way to describe concept formation [10]. The
thesis focuses on the existence of conceptual spaces as a way to locate concepts in a do-
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main, being the conceptual space formed by a set of quality dimensions which represent
object properties and are used to specify relations between them. Examples for quality
dimensions can be height, width, depth, temperature, color, etc. These dimensions are
endowed with the appropriate geometrical structure for its representation. For instance,
Henning’s tetrahedron[6] representation for the human gustatory space could be used
for the quality dimension “taste”. The spatial location of a point in the conceptual space
allows for the calculation of distance between points and the measure of similarity be-
tween concepts, which would be impossible to do in a symbolic approach. However,
the conceptual spaces theory imposes some constraints on what kinds of subspaces can
be considered concepts, namely requiring them to be convex, which may compromise
its applicability in general. We need a more general geometric notion of concept and
that requires a more powerful way of extracting the features, from particular examples,
that define the shape of the concept the examples belong to.

Deep Learning: “Deep learning” is a recent family of machine learning methods that
attempt to model high-level abstractions in data by using architectures composed of
multiple layers [2]. They usually resort to (restricted) Boltzmann Machines in each
layer using a feed forward input layer with no lateral connections. Although deep learn-
ing techniques are very powerful indeed for extracting features from complex data and
creating new representations for those more abstract concepts, they are not fit for rep-
resenting the direct relationships between same level concepts, vis-à-vis their lack of
“lateral” connections between same layer nodes, which is crucial for the simulation of
priming and DRM.

3 Principles of Regulated Activation Networks

The RANs model must be capable of representing and simulating the dynamic cogni-
tive state of an agent, its learning and recall processes, the association of ideas, and
the creation of new, more abstract, concepts. We assume these can be broken down
into, and emerge from, more basic cognitive phenomena simulated by simpler com-
putational processes. Particularly, in order to simulate the dynamic cognitive state, we
need at least 1) a notion of a time-variant activation state of a given concept in the
agent’s mind; and 2) an adaptive notion of relation and influence between two concepts
dependent on their respective activations in a given instant. These two constructs are
in principle enough to simulate the Priming phenomenon and, along with a sufficiently
time-condensed sequence of activation of concepts, enough to simulate as well the False
Memory phenomenon – when several concepts (e.g., representing words) are activated
by input, the concepts positively related to them should become more active as well,
and if their received combined activation is strong enough, the concept should be suf-
ficiently active to be considered “remembered” by the agent. For the Habituation and
Sensitization phenomena we need also our model to 3) be able to dynamically change
the parameters controlling its behavior. Finally, we also need 4) a learning mechanism
that can create new more abstract concepts as patterns of activation are detected among
the existing ones.
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The first step of the RANs model development is the creation of a connectionist layer
of nodes, each one representing a dimension of a concept – for very simple concepts,
a single node might suffice to represent the whole concept. A possible extension of
the RANs model consists in establishing a correspondence between individual nodes
and concepts in a user-defined ontology. Under this setting, a high activation level of a
given node may be interpreted as the detection of an instance of the related ontological
concept, and the spreading of activation may afford a kind of inference.

Fig. 1. Initialized single-layer RAN model (connections not shown)

In this way it resembles a semantic network, in which each node has an activa-
tion state representing its importance at the moment, and related nodes are associated
through a link with a weight representing the strength of the relation. This interpretation
of the nodes also allows the representation of a conceptual space where each node stands
for a dimension of the space and its activation level corresponds to a particular value
along that dimension. This layer of nodes receives input information, responding to the
stimulus and learning an internal representation of that stimulus through Hebbian-like
weight changing.

Fig. 2. “Sensory” activation input to nodes in a single-layer RAN model (connections not shown)

Fig. 3. Hebbian learning in a RAN

This Hebbian learning means, from a conceptual spaces perspective, the identifica-
tion of a correlation between the dimensions of the concept. Also, since each node is
connected to every other node in the same layer, it resembles a Hopfield Network, al-
lowing the learning, and the emerging, of certain patterns of nodes’ activations which
then function as attractors. These attractors, points in the conceptual space, may be seen
as prototypical examples of the concept represented by all the points that converge, via
the spreading of activation, to the attractor. This representation has the advantage, over
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Gärdenfors specification, of not imposing the restriction that all concepts must be con-
vex subspaces. The particular geometric shape of the concept will emerge from the
Hebbian learning on the layer.

Within a given cognitive level of abstraction, mechanisms such as spreading activa-
tion, and Hebbian correlation identification may be enough for some of our cognitive
modeling goals. In particular, a single-layer RANs model (as the one we have imple-
mented and describe herein) only allows us to model the learning of simple correlations
between concepts. However, if we wish our RANs model to capture the generalization
and abstraction processes involved in higher-level cognitive processes, it must contain
some mechanism to progressively build new more abstract concepts into the model. The
RANs model will have to combine the “lateral” connectivity typical of models where
spreading activation can be applied, with deep learning capabilities for producing new,
more abstract layers of concepts. In the future full version of the RANs model a higher
learning mechanism will be triggered when, within one layer, the nodes’ activation
states stabilize: at that moment the RANs model will capture the network state, and
represent it by creating a new corresponding node in a new layer of higher abstraction.
This capturing can be done via a (restricted) Boltzman Machine, as it is usually the case
in deep learning architectures, or any other process that affords the extraction of the
relevant features in the pattern. This way, an instance of the RANs model evolves into a
deep structured set of layers, each one with a superior level of semantic abstraction, re-
ducing the number of dimensions (a pattern of activation in lower nodes is mapped into
a single higher-layer one), potentially drifting apart from connectionism, into a gradu-
ally more symbolic representation. With these features, we intend the RANs model to
allow for the incremental learning of bottom-up deep representations of progressively
more abstract concepts in conceptual spaces. While the semantics of the input “sensory”
nodes might be user specified, the new nodes that are eventually created for representing
detected patterns, and/or features, of activation may have no immediately obvious se-
mantics. However, it may be easier to recognize complex features/concepts represented
in the top level most abstract nodes.

Recalling concepts in the RANs model can be elicited at any desired level of ab-
straction. The user just has to input activation into any set of nodes and let the activa-
tion spread across the RAN until it stabilizes in a fixed-point pattern. When a node N
at level n is activated, it spreads its activation, not only to its companion nodes in the
same n layer, but also to the nodes in layer n−1 below which correspond to the pattern
the node N represents. These in turn repeat the process spreading activation “laterally”
to nodes in layer n − 1 and also downwards. Whenever the intra-layer spreading of
activation causes a stable fixed-point state to emerge, the nodes in the layer above get
also activated according to the similarity between the pattern of activation in the layer
below they represent and the current pattern active in the layer below. This mechanism
thus allows for activation to be spread 1) “upwards” whenever a stable state emerges in
a lower layer, 2) “downwards” whenever a node is activated for recall, and 3) “laterally”
to nodes in the same layer in all cases. Naturally, all these dynamics depend strongly on
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the parameters like the decay factor (which controls how much the activation decays
inside a node before it is spread), the learning rates (which control how strongly to
update the weights when learning), and others.

4 Architecture of the Single-layer RANs model

We now overview the basic characteristics of the single-layer RANs model.

Network Topology: The RANs’ topology, at this point, consists of one layer of nodes.
We have only tested the model with a full connectivity, but different configurations will
be tested in the future, namely: each node linked only to a fixed percentage of the total
of nodes; and layers with a small-world connectivity pattern.

Node Properties: Each node has an internal state, represented by its activation level,
which ranges from some minimum value to some maximum value and varies continu-
ously in time (the range [−1, 1] was the one implemented, but we are currently experi-
menting with the range [0, 1]). The mean value in the domain is called the rest state. The
activation of node at time t is denoted by Ani(t). When a node has a positive activation
state (above rest state) we consider it to be active, when it has negative activation (below
rest state) we consider it repressed, and if it is equal to the rest state it is considered in-
different. The semantics of the activation values may need to be redefined for the [0, 1]
interval.

In the absence of input activation from other nodes or input injected in the network,
the activation level of each node gradually converges to the rest state, accordingly with a
reposition rate (previously called decay factor), denoted by Rni , which ranges in [0, 1].

Each node ni has a threshold variable through time between the minimum and the
maximum activation level. Other configurations not including a threshold are currently
under consideration.

Activation Propagation: Links between nodes have a weight associated, which rep-
resents the importance of the activation from the source node to the next activation
level of the target node. The weight of the link from node ni to node nj is denoted by
wij and at the beginning all weights are set to zero: ∀i, j, wij = 0. This initialization to
zero, drastically different from what happens in traditional feedforward networks where
weights are initialized to random values, is inspired by the synaptogenesis process in
the human brain where neurons have initially very few connections, and grow new ones
as the child grows up.

At each processing step, each node will propagate activation and update its threshold
if

|Ani(t)| > |Tni(t)| (1)

In that case, the threshold will be updated according to the formula

Tni(t+ 1) = Tni(t)− δ ∗ΔTA (2)

where 0 ≤ δ ≤ 1 is the threshold’s learning rate, and ΔTA = |Ani(t)− Tni(t)|.
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The activation propagated to each node nj linked with ni is

Ani(t) ∗ wij (3)

When some node receives activation from its neighbors it is combined with the activa-
tion of the node itself. The activation level of node at time t+ 1 is:

Ani(t+ 1) = λni ∗ ((1−Rni) ∗Ani(t)) + (1 − λni) ∗ f(
∑

j

Anj (t) ∗ wij) (4)

where 0 ≤ λni ≤ 1 is the relative importance the node gives to its own activation
versus the activation received from other nodes, and it is called the solipsism factor, and
f : � → [minimum activation level, maximum activation level] is a sigmoid function,
e.g. f(x) = 1

1+e−βx ∗ 2− 1.
In a similar way, when an input is injected in the network, that component is pon-

dered with the node activation level, therefore being the activation level of node ni at
time t+ 1 given by the formula:

Ani(t+ 1) = λni ∗ ((1−Rni) ∗Ani(t)) + (1 − λni) ∗ I(i) (5)

where I(i) is the input to node ni.

Learning: Learning in the RANs model consists of two different processes. The first
one is the activation correlation process, in which weights are updated accordingly to
the correlation between the nodes’ activation level, in a Hebbian influenced learning.
The goal is to strengthen the links between nodes with similar levels of activation and to
weaken the links otherwise. This way, each time an input is received, for each node ni,
connections with other nodes are updated according to the level of similarity between its
activation states pondered by a learning rate. In this case, as activations vary between -1
and 1, the similarity rate is transformed to that same interval. The variation of weights
is thus

ΔWij = μac ∗ (2 ∗ similarityRate− 1) (6)

where 0 ≤ similarityRate = 1 − |Ani(t)−Anj(t)|
maxDif

≤ 1; 0 ≤ μac ≤ 1 is the

learning rate for activation correlation; maxDif = actMax - actMin; actMax and actMin
are, respectively, the maximum and minimum level of activation. After that process, the
network is given one time instant to spread activation. The inclusion of a second error-
driven learning process, similar to a backpropagation, is currently under consideration.

Simulation Procedure: The general procedure for running a simulation with the RANs
model comprehends the following steps: Considering N the number of nodes, initial-
ize NxN weight matrix and 1xN activation and threshold vectors to the same value as
the rest state. Initialize 1xN reposition rate and solipsism factor vectors and threshold
learning rate, activation correlation learning rate and simulation time with its respective
values (these are currently being subject to grid-search experimentation). Schedule a set
of 1xN input patterns and the time steps for their injection. Initialize time variable to 1.
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Until time reaches the established simulation time, run the following execution cycle:
In case of a pattern scheduled to that time instant, apply equation 5 to calculate the
new level of activation for the nodes and equation 6 to update the weights according to
the current activation level. Otherwise, apply equation 4 to update the nodes’ activation
level according to the output generated in the previous time step by the same nodes.
After that, for each node to which the condition 1 applies, calculate its activation output
using equation 3 and update its threshold using equation 2. In the future, these outputs
may be subject to some transformation (e.g. by regulatory mechanisms) before being
used as inputs. Finally, collect any desired data (current activation levels, weights, etc.)
and update the time variable.

The execution cycle is summarized in the following pseudo code:

Algorithm 1. RANs cycle
while time < simulation time do

if isPatternScheduled(time) then
inject input pattern (5)
do activation correlation learning process (6)

else
activation input (4)

end if
for each node do

if node activation above threshold then (1)
calculate node output (3)
update threshold (2)

end if
end for
collect data
time ← time+ 1

end while

5 Preliminary Results

The results herein shown regard a specific parametrization of the model. However, the
architecture of the RANs model will be subject to detailed exploration and experimen-
tation concerning its topological properties and the influence of different types of con-
nectivity, learning, regulation processes and parameters on the network’s behavior and
utility to the modeling of the intended phenomena. Still, these preliminary results serve
as an appetizer for the model’s capabilities while providing some insight on how we are
dealing with the input patterns.

The simulations used the following parameters: Num. of nodes: 50; Connectivity:
Total; Activations in [−1, 1]; Weights in [−∞,∞]; ∀i, Rni = 0.05; ∀i, λni = Random
value (uniform distribution over [0, 1]); ∀i, Ani(0) = 0; ∀i, δni = 0.1.

The simulation process involves generating a random pattern, and injecting it pe-
riodically (in this case, each 100 time steps) in the network. Fig. 4 shows how nodes’
activation evolve through time (each line represents a single node activation state). From
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Fig. 4. RANs preliminary experiments with learning a pattern

Fig. 5. RANs preliminary experiments with creative processes – “new zone” boxed

a global perspective, we observe that when an input is injected the network has an im-
mediate response (for that input is directly injected in the nodes) and the activation is
reposed to the rest state value (in this case, 0). Each time the pattern is injected, a round
of Hebbian updating of weights takes place, and as a consequence of that learning, the
reposition phase becomes progressively longer, i.e, the network takes longer to return
to a neutral cognitive state. When an input is given in a non-neutral state (t = 600) the
network alters its behavior and activations start to converge to a stable fixed-point state.
Subsequent pattern injections only reveal minor changes in the value for each node ac-
tivation, and can be considered as slight adjustments to the representation of the pattern
previously learned.
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A first attempt at simulating creativity was experimented as well. The process was
very similar to the previous one, with the exception that at a time step where the network
has already converged to a stable state (t = 1400, fig. 5) we stopped injecting the
input patterns, and at t = 1700 a new random pattern was inserted. The interest in
fig. 5 comes from the difference between the activations before and after that moment.
Besides some minor changes to some nodes’ activations, we observe a totally new “zone
of activation” that was previously neutral. It is premature to assume that the production
of the new RANs’ state can be described as creative, but the fact that our model can
integrate two different states in a new representation can be a good starting point for
modeling creative processes.

6 Conclusions and Future Work

Prevalence of psychological and psychiatric diseases, such as depression, schizophrenia
and others, is a growing concern in the industrialized world. Computational cognitive
models can help in understanding and simulating mental processes, both healthy and
pathological ones, hopefully contributing to the diagnosis and treatment of the latter.
Also, there is a recent growing interest in understanding and potentiating creative pro-
cesses, both in humans and in computers. For these reasons, we put forward the desider-
ata, and first simplified version, of our Regulated Activation Networks model, a new
computational cognitive model capable of simulating a variety of psychological phe-
nomena including, among others, Priming, False Memory, Habituation, different kinds
of Learning, and Memory. The current preliminary version of the RANs model has only
one fully connected layer of nodes representing concepts, uses a Hebbian learning rule,
and resorts to spreading activation as means for inference and recall.

We are also currently experimenting with a probabilistic approach at the Hebbian
learning of weights and the spreading of activation. Future work includes implement-
ing the full version of the model with a deep learning mechanism that will afford the
dynamic creation of new nodes representing more abstract concepts, as well as the im-
plementation of regulatory parameters and mechanisms. We will develop and execute a
validation plan in collaboration with psychologists, in order to assess how realistic and
reliable are the simulations with the RANs model.
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