
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Tese de Doutoramento

Doutoramento em Informática

Every normal logic program has
a 2-valued semantics:

theory, extensions, applications,
implementations

Alexandre Miguel dos Santos Martins Pinto

Julho de 2011

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Tese de Doutoramento

Every normal logic program has a 2-valued semantics:
theory, extensions, applications, implementations

Alexandre Miguel dos Santos Martins Pinto

Orientador:
Prof. Doutor Luís Moniz Pereira

Trabalho apresentado no âmbito do Doutoramento em
Informática, como requisito parcial para obtenção do
grau de Doutor em Informática.

Julho de 2011

Copyright © 2011 Alexandre Miguel dos Santos Martins Pinto, FCT-UNL, UNL

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de
investigação, não comerciais, desde que seja dado crédito ao autor e editor.

v

I almost wish I hadn’t
gone down that rabbit-hole
—and yet—and yet—
it’s rather curious, you know,
this sort of life!
Alice

Alice in Wonderland
Lewis Carrol, 1865

To Graça

In memoriam Jorge

Acknowledgements

I must start by thanking my wife, Graça, for her love, her support, all the encouragement
and patience she had during these years, and for truly being my partner in our Strongly
Connected Component. Also, I must thank my parents for all they have done for me, and
Isaura Coelho for her support.

I especially thank Prof. Dr. Luís Moniz Pereira, my supervisor, for lots of reasons
which include, but are not limited to: sharing with me his innovative thoughts and ex-
citement, proposing me the challenge to pursue this new and exciting world of open
possibilities, his availability for discussions even when he had his schedule already filled
up, for introducing me to several researchers within the right timing, for teaching me the
good practices of serious scientific research and allowing me to do it with him, and also
for his friendship and pleasant company.

Mário Abrantes, who is now on his PhD work with my supervisor as well, is pursuing
some of the avenues projected as Future Work in this thesis. I must thank him for the
critical discussions we have had, the problems he identified, the examples he offered.

I acknowledge the FCT-MCTES (Fundação para a Ciência e Tecnologia do Ministério
da Ciência, Tecnologia e Ensino Superior) for giving me the PhD grant (no. SFRH / BD
/ 28761 / 2006) that paid for my survival during these last four years.

Internationally, I thank Michael Gelfond for his comments on my previously published
works and, more importantly, for sharing with me his vision of what a semantics should be:
it turned out to be a priceless guideline for my writing of this thesis. I am also indebted to
Terrance Swift for the countless hours he spent with me on phone calls about the insides
of XSB Prolog, and all the times we worked together face-to-face. Bob Kowalski also
helped me immensely with his precious expertise and advice on various semantics issues.

I acknowledge the Departamento de Informática da Faculdade de Ciências e Tecnologia
da Universidade Nova de Lisboa, and its Centro de Inteligência Artificial (CENTRIA) for
giving me work conditions. Anabela Duarte and Sandra Raínha are also present in my
thank-you list for helping me with bureaucratic papers and arranging my travels during
these last years.

Finally, a word of appreciation must go to Ana Sofia Gomes for proofreading my
thesis, and to Marco Alberti, Davide d’Alimonte, Elsa Carvalho, Marco Correia, and
Jorge Cruz for their friendship, and for the interesting, and sometimes a bit crazy and
funny, discussions we had over so many lunches together.

vii

Abstract

After a very brief introduction to the general subject of Knowledge Representation and
Reasoning with Logic Programs we analyse the syntactic structure of a logic program and
how it can influence the semantics. We outline the important properties of a 2-valued
semantics for Normal Logic Programs, proceed to define the new Minimal Hypotheses se-
mantics with those properties and explore how it can be used to benefit some knowledge
representation and reasoning mechanisms.

The main original contributions of this work, whose connections will be detailed in
the sequel, are:

• The Layering for generic graphs which we then apply to NLPs yielding the Rule
Layering and Atom Layering — a generalization of the stratification notion;

• The Full shifting transformation of Disjunctive Logic Programs into (highly non-
stratified) NLPs;

• The Layer Support — a generalization of the classical notion of support;

• The Brave Relevance and Brave Cautious Monotony properties of a 2-valued se-
mantics;

• The notions of Relevant Partial Knowledge Answer to a Query and Locally Consis-
tent Relevant Partial Knowledge Answer to a Query;

• The Layer-Decomposable Semantics family — the family of semantics that reflect
the above mentioned Layerings;

• The Approved Models argumentation approach to semantics;

• The Minimal Hypotheses 2-valued semantics for NLP — a member of the Layer-
Decomposable Semantics family rooted on a minimization of positive hypotheses
assumption approach;

• The definition and implementation of the Answer Completion mechanism in XSB
Prolog — an essential component to ensure XSB’s WAM full compliance with the
Well-Founded Semantics;

• The definition of the Inspection Points mechanism for Abductive Logic Programs;
ix

x

• An implementation of the Inspection Points workings within the Abdual system [21]

We recommend reading the chapters in this thesis in the sequence they appear. How-
ever, if the reader is not interested in all the subjects, or is more keen on some topics
rather than others, we provide alternative reading paths as shown below.

1-2-3-4-5-6-7-8-9-12 Definition of the Layer-Decomposable Semantics family
and the Minimal Hypotheses semantics (1 and 2 are optional)

3-6-7-8-10-11-12 All main contributions – assumes the reader
is familiarized with logic programming topics

3-4-5-10-11-12 Focus on abductive reasoning and applications

Keywords: Layering Logic Programs, Semantics, Layer-Decomposable semantics, Min-
imal Hypotheses semantics, Inspection Points, Argumentation

Sumário

Após uma breve introdução ao tema geral de Representação do Conhecimento e Raciocínio
com Programas Lógicos, analisamos a estrutura sintáctica de um programa lógico e o modo
como ela pode influenciar a semântica deste. Discutimos algumas das propriedades im-
portantes e úteis de uma semântica a 2-valores para Programas Lógicos Normais (PLNs),
prosseguimos definindo a nova semântica de Hipóteses Mínimas que goza das propriedades
identificadas, e exploramos de que forma esta pode ser usada beneficiando alguns mecan-
ismos de representação de conhecimento e raciocínio.

As principais contribuições originais deste trabalho, cujas ligações serão detalhadas
mais à frente, são:

• O princípio de Distribuição em Camadas de grafos genéricos, que depois aplicamos
a PLNs dando origem à Distribuição em Camadas de Regras e à Distribuição em
Camadas de Átomos, sendo esta última uma generalização da conhecida noção de
Estratificação;

• A aplicação da transformação de Translação Total a Programas Lógicos Disjuntivos
produzindo Programas Lógicos Normais altamente não-estratificados;

• A noção de Suporte de Camada — uma generalização da noção clássica de Suporte;

• As propriedades Relevância Crédula e Monotonia Cautelosa Crédula de semânticas
a 2-valores;

• As noções de Resposta Relevante com Conhecimento Parcial a Pergunta e Resposta
Relevante e Localmente Consistente com Conhecimento Parcial a Pergunta;

• A família de Semânticas Decomponíveis em Camadas — a família das semânticas
que reflectem as supracitadas Distribuições em Camadas;

• A semântica, baseada numa abordagem argumentativa, denominada Modelos Aprova-
dos;

• A semântica de Hipóteses Mínimas para PLN— ummembro da família das Semânti-
cas a 2-valores Decomponíveis em Camadas radicada na abordagem de minimização
de adopção de hipóteses positivas;

xi

xii

• A definição e implementação do mecanismo de Completação de Resposta no XSB
Prolog — uma componente essencial para assegurar a completa reificação da Semân-
tica Bem-Fundada na WAM do XSB Prolog;

• A definição do mecanismo de Pontos de Inspecção para Programas Lógicos Abdu-
tivos;

• Uma implementação de Pontos de Inspecção dentro do sistema Abdual [21]

Recomendamos que se leiam os capítulos desta tese na sequência em que aparecem.
Contudo, se o leitor não estiver interessado em todas as matérias, ou se estiver interessado
em alguns tópicos mais do que noutros, apresentamos de seguida alguns percursos de
leitura alternativos.

1-2-3-4-5-6-7-8-9-12 Definição da família de Semânticas Decomponíveis em Camadas
e da Semântica de Hipóteses Mínimas (1 e 2 são opcionais)

3-6-7-8-10-11-12 Todas as principais contribuições – assume que o leitor
está familiarizado com os tópicos da programação em lógica

3-4-5-10-11-12 Foco em raciocínio abdutivo e aplicações

Palavras-chave: Distribuição em Camadas de Programas Lógicos, Semânticas, Semân-
ticas Decomponíveis em Camadas, Semântica de Hipóteses Mínimas, Pontos de Inspecção,
Argumentação

Contents

Acknowledgements vii

Abstract ix

Sumário xi

List of Figures xix

Preface xxi

I Knowledge Representation with Logic Programs 1

1 Introduction 3

1.1 Knowledge Representation Formalisms 3

1.2 Reasoning Methods 4

1.2.1 Deduction 5

1.2.2 Induction 8

1.2.3 Abduction 8

1.3 Reasoning Scope 9

1.3.1 Complete Knowledge Reasoning 9

1.3.2 Partial Knowledge Reasoning 10

2 The Structure of Knowledge 11

2.1 Knowledge Graph 11

2.1.1 Dependencies 12
xiii

xiv

3 Normal Logic Programs and their Structure 17

3.1 Normal Logic Programs 17

3.1.1 Language 18

3.2 The Structure of Normal Logic Programs 20

3.2.1 Layers and Strongly Connected Components of Rules 28

3.2.2 Transfinite Layering 29

4 Other Classes of Logic Programs 31

4.1 Extended Logic Programs 31

4.2 Disjunctive Logic Programs 33

4.2.1 Disjunctive LPs and the Intuitively Intended Meaning of Loops 35

II Semantics for Logic Programs 37

5 Basic Semantics Concepts 39

5.1 Interpretations 39

5.2 Rule Satisfaction and Models 40

6 Semantics Building Tools 45

6.1 The Notion of Support 46

6.2 Minimality 48

6.3 Syntactic-based Restrictions on Models 49

6.3.1 Definite Logic Programs 49

6.3.2 Locally Stratified Logic Programs 50

6.3.3 Full-fledged Normal Logic Programs 56

xv

6.4 State of the Art Semantics 57

6.4.1 Two-Valued Semantics 58

6.4.2 Three-Valued Semantics 61

6.5 Motivation for a New Semantics 69

6.5.1 Increased Declarativity 69

6.5.2 Modelling Argumentation 70

6.5.3 Allowing Arbitrary Updates and/or Merges 70

6.5.4 Intuitively Desired Semantics 73

6.5.5 Desirable Formal Properties 75

7 The Layer-Decomposable Semantics Family 83

7.1 Semantically Reflecting the Layerings 83

7.2 Procedural Methods for Layer Decomposable Models 91

7.3 Bounding the Layer-Decomposable Semantics Family 92

8 Minimal Hypotheses semantics 95

8.1 Minimality of Hypotheses 95

8.2 Properties of the Minimal Hypotheses Semantics 104

8.2.1 Relevance 108

8.2.2 Cumulativity 109

8.2.3 Complexity 109

8.3 Procedural Methods for Minimal Hypotheses semantics 111

9 Comparisons 113

9.1 Other Semantics for NLPs 113

xvi

9.2 Argumentation 115

9.3 Other Aspects 116

III Reasoning with Logic Programs 119

10 Abductive and Deductive Reasoning 121

10.1 Abduction and Deduction 122

10.2 Reasoning as Query-Answering 123

10.3 Inspecting Side-Effects of Abductions 124

10.3.1 Backward and Forward chaining 125

10.3.2 Operational Intuition of Inspection Points 126

10.3.3 Declarative Semantics of Inspection Points 129

10.3.4 Inspection Points in Other Abductive Systems 130

11 Implementations 133

11.1 Enforcing the WFS in XSB-Prolog via Answer Completion 134

11.1.1 Motivation — Unfounded Sets detection 134

11.1.2 Implementation of Answer Completion 136

11.2 Top-down Query-Solving Approach with XSB-Prolog 139

11.3 Inspection Points 141

11.3.1 ABDUAL with Inspection Points 143

11.3.2 Alternative Implementation Method for Inspection Points 147

12 Conclusions, Applications and Future Work 151

12.1 Conclusions 151

xvii

12.2 Applications 155

12.3 Future Work 156

Bibliography 159

A Proofs 181

A.1 Proofs from Chapter 2 181

A.2 Proofs from Chapter 3 182

A.3 Proofs from Chapter 6 184

A.4 Proofs from Chapter 7 187

A.5 Proofs from Chapter 8 188

List of Figures

3.1 A NLP’s rules distributed along the program’s layers. 25

3.2 NLP’s rules and atoms distributed along the program’s Rule and Atom
least Layerings. 27

4.1 Full shifting of a Disjunctive Logic Program. 35

7.1 Algorithm Bottom-Up Construct an LDM. 91

8.1 Algorithm Bottom-Up Construct an MH model. 111

11.1 Algorithm Iterate Answer Completion. 137

11.2 Algorithm Check Supported Answer. 138

xix

Preface

Complex knowledge can be formalized with logic, and it is of great convenience for us to
have computers handling Knowledge Representation and Reasoning (KRR) tasks based
on logic. There are many formalisms for KRR available and used. Computational Logic
(CL) is but one of those, which has been used for several decades now as a means to
represent some rational aspects of human thinking, and in fact [131] argues strongly in
favor of the use of CL for KRR. There are, nonetheless, several kinds of logics within
CL in use for KRR. One such formalism, resorting to Non-Monotonic Logics with Default
Negation, is Logic Programming. Logic Programs (LPs), provide a declarative and flexible
tool for KRR, having the expressive power of a Universal Turing Machine, and therefore
allowing for the expression of complex knowledge.

The complement to Knowledge Representation is Reasoning, and when dealing with
Computational Logic we are especially interested in rational logical reasoning, such as
deduction and abduction — the latter being akin to hypotheses assumption in order to
explain observations or to construct hypothetical scenarios entailing some desired goal.

In the past few decades Logic Programming has gained an increasing important role
for KRR, namely for its flexibility and applicability to knowledge-intensive tasks, and
their seamless combination, as diverse as search problems, planning, constraint solving,
abductive reasoning, argumentation modelling and, more recently, to Semantic Web ap-
plications, to name just a few.

The history of Logic Programming has also been tied to an ongoing effort to find a good
semantics for logic programs with varying criteria for evaluating how good a semantics is.
There exist several approaches to the semantics issue, ranging from 2-valued to 3-valued
and even to multi-valued and to fuzzy logics but, by far, the lion’s share of the efforts has
been concentrated in 2- and 3-valued semantics.

Successive 2-valued semantics proposals have assigned a meaning to ever larger classes
of programs, in part because one of the goals of 2-valued semantics is to provide a meaning
to every Normal Logic Program (NLP). This goal is even more significant in a context
where Knowledge Base (KB) updating and merging becomes progressively more common,
e.g., among Semantic Web applications — the lack of semantics for an updated and/or
merged Semantic Web KB could endanger the robustness of a whole web service. There
are 3-valued semantics that ensure that security, but there are yet no 2-valued ones that
achieve it while enjoying a number of useful properties.

The traditional 2-valued semantics approach fails to assign a meaning to every NLP

xxi

xxii

because of the way it handles non-well-founded negation (i.e., cyclic or with infinite de-
scending chains); whereas the 3-valued approach has a clever solution: the undefined
truth-value. Our new contribution is another step in the ongoing history of 2-valued se-
mantic progress by proposing a 2-valued semantics for all NLPs, that successfully deals
with non-well-founded negation by generalizing the classical notion of support. Assigning
a semantics to non-well-founded negation increases the flexibility in expressing knowledge
with NLPs, whilst simultaneously effectively separating the KRR task from the issue of
representing Integrity Constraints, which are duly covered by a specific kind of rule not
mistakable with a regular NLP rule.

Logic Programs can be used to represent knowledge from any subject domain and at
any desired level of detail. We first identify all the structural information of a program,
which we dub Layering. The Layering is induced by the interdependencies amongst rules
and it is a generalization of the well-known notion of stratification. The notion of Layering
is inspired by the works [22, 174, 175, 242], who argue that all fields of knowledge and
inquiry — ranging from physics, chemistry to biology, and other sciences — can and
should be knit together into a comprehensive worldview. The Layering notion divides
knowledge into layers of modules, each with a strong intra-dependency. Modules in a
layer may depend on others on layers below, but never reciprocally. We use Layering as
a guideline to constraint the space of acceptable 2-valued semantics: what is determined
true at some layer must not be contradicted by other layers. We do not advocate in
favour of a reductionist stance, but certainly of an inter-layer compatibility, leaving room
for intra-layer non-determinism.

We next define and propose one particular semantics fitting inside this Layered space of
semantics, the Minimal Hypotheses (MH) semantics, rooted in Ockham’s razor principle
of minimality of assumed hypotheses. The semantics for logic programs that have been
defined throughout history have insisted on minimality of models. With MH semantics
we focus instead, not on minimality of the whole model, but rather on minimality of the
hypotheses assumed to produce the model. As Albert Einstein put it

“The grand aim of all science is to cover the greatest number of empirical
facts by logical deduction from the smallest number of hypotheses or axioms.”

We argue that minimality of hypotheses is what a semantics should strive for, with
set-inclusion minimality of whole model, with respect to models of alternative sets of
hypotheses, being a possible, but not necessary, consequence of the minimally assumed
hypotheses. The MH semantics we propose achieves a delicate equilibrium between being
2-valued, enjoying a number of desirable theoretical properties, also useful for practical
applications, and allowing for relatively simple implementations, and not unusual compu-
tational complexity.

xxiii

In the past, some commonly used semantics for logic programs have been analysed
from the hypotheses assumption perspective as well, which has a natural parallel in ab-
ductive reasoning; but all these approaches consider only the default negated literals as
being the assumable hypotheses. This approach works fine in all situations except for
non-well-founded negation. To overcome this problem, we generalized the hypotheses as-
sumption perspective to allow the adoption of, not only negative hypotheses, but also of
positive ones. Having taken this generalization step we realized that positive hypotheses
assumption alone is sufficient to address all situations, i.e., there is no need for both pos-
itive and negative hypotheses assumption, and minimization of positive ones is enforced,
since this naturally takes care of the usual maximization of negative ones (or default as-
sumptions). This is the reason why we decided to embrace the only positive hypotheses
assumption perspective in this thesis.

Finally we show how deductive and abductive reasoning can be interchanged and
how to inspect for side-effects of hypotheses assumed in the process of finding a scenario
entailing some goal.

This thesis is divided into three parts, corresponding to the three main driving forces
behind its motivation: 1) to understand how the structure of a logic program can, and
must, influence its semantics (we cover this in Part I and also Chapter 7); 2) to build
a semantics for logic programs that complies with the structure of the knowledge repre-
sented by the program, enjoys a number of useful properties, and easily allows for both
deductive and abductive reasoning mechanisms (we cover this in Part II); and 3) to pro-
vide a theoretical means to inspect consequences of assumed hypotheses during abductive
reasoning as a way to lay down the foundations for future implementations of practical
systems with such inspection capabilities (we cover this in Part III).

Part I, consisting of Chapters 1, 2, 3, and 4 covers the general topic of Logic Programs
and their structure. In Chapter 1 we cover the basic abstract notions of Knowledge
Representation and Reasoning Methods as well as more practical issues concerning the
Scope of Knowledge addressed in various types of reasoning. Knowledge can be viewed
as a graph where individual knowledge sentences, or clauses, may depend on others.
Chapter 2 takes the general perspective of knowledge as a graph and uses the dependency
relation to outline the structure of a knowledge graph. Chapter 3 takes the general graph
notions from Chapter 2 and applies them to the particular case of Normal Logic Programs,
and compares this approach to other classically used approaches. Chapter 4 overviews
two other classes of Logic Programs commonly used for Knowledge Representation and
Reasoning, and shows how these can be translated into NLPs thereby focusing on the
need for a semantics just to NLPs, as we do not address topics such as paraconsistent
reasoning and belief revision.

Part II, consisting of Chapters 5, 6, 7, 8, and 9 covers the topic of semantics for

xxiv

Normal Logic Programs. In Chapter 5 we introduce the basic concepts for a semantics of
Logic Programs; these include the notions of interpretation satisfaction, model, and two
orderings of interpretations. In Chapter 6 we peruse the intuitive requirements a “good”
semantics should comply with, such as the notion of support and minimality. We also
examine a couple of classes of restricted logic programs and syntactic ways to determine
their models, and the currently most used semantics for logic programs. Then we outline
the motivation behind this thesis, including the formal properties a semantics for logic
programs should enjoy (some of the properties listed therein are part and parcel of new
contributions of this thesis). Chapter 7 takes the syntactical/structural information of a
program, according to Chapter 3, uses it to define a family of semantics for logic programs,
and argues that all “good” semantics should be members of this family. Chapter 8 takes
a hypotheses assumption perspective to semantics in the spirit of Albert Einstein’s quote
above concerning “cover(ing) the greatest number of empirical facts by logical deduction
from the smallest number of hypotheses”, and proceeds to define the Minimal Hypotheses
(MH) models semantics. We study the MH semantics’ properties and show that this
hypotheses assumption approach is compatible with the structural approach of Chapter 7.
The MH semantics is one of the major contributions of this thesis and, in Chapter 9, we
compare it to other semantics and approaches to logic programs (namely, argumentation).

Part III concerns Reasoning with Logic Programs and consists of Chapters 10, and 11.
Chapter 10 covers the general topic of abductive and deductive reasoning with logic pro-
grams (showing some of their similarities and differences), relates abductive/deductive rea-
soning with query-answering, and discusses the issue of abductions’ side-effects inspection.
Chapter 11 describes the implementations of some individual theoretical aspects covered
in this thesis. These implementations are prototypical in nature, but nonetheless intended
to show the efforts being made towards a reification of a whole logic-based knowledge rep-
resentation and reasoning system founded upon the novel concepts described herein. This
thesis’s contributions are mainly of a theoretical nature, yet we also wanted to show that
we put som effort into reifying some of the concepts presented herein, thereby opening
the way for further contributions and possibly a fully-functional implementation of an
abductive/deductive existential query-answering system, with local-knowledge sufficiency
as opposed to complete knowledge necessity, plus side-effect inspection capabilities.

Finally, we terminate with Chapter 12 where we draw out the conclusions of this work,
overview some of the types of applications that can benefit from our approach, and point
to the many branches of future work that stem from this initial stepping platform.

In order to streamline reading, we moved most of the proofs of theorems, corollaries,
lemmas, and propositions to Appendix A — Proofs.

Part I

Knowledge Representation with
Logic Programs

1 . Introduction

We will not know unless we begin.

Howard Zinn

We contemplate Artificial Intelligence as an intelligent problem solving technique which
can be broken down into Knowledge Representation and Reasoning. After a very brief
glance over the logic approach to Knowledge Representation we reflect on the main Rea-
soning methods and their scope.

According to [131]

“Artificial Intelligence (AI) is the attempt to program computers to behave
intelligently, as judged by human standards.”

We usually refer to such intelligent computer programs as rationally thinking software
agents. Also in [131], the author puts the rational thinking equation in the form:

Thinking = Knowledge Representation + Problem Solving

It signifies that, in the process of endowing software agents with (artificial) intelligence, we
must come up with a means to represent the agent’s knowledge about itself and the world
it is going to interact with, and also with a set of rational problem solving techniques that
rely on that knowledge.

1.1 Knowledge Representation Formalisms

There are a number of possible alternative ways to represent knowledge. In the process
of defining and understanding AI we have also learned much about our own human in-
telligence, the language of human thought and reasoning. In this thesis we follow the

3

4

perspective of [131] stating that

“Computational Logic has been developed in Artificial Intelligence over the
past 50 years or so, in the attempt to program computers to display human
levels of intelligence.”

Even within the Computational Logic area there are a variety of specific formalisms that
can be used for Knowledge Representation (KR) including, but not limited to, classical
logic ([58, 105, 225] amongst many others), description logics ([28, 29, 124]), modal logics
([141, 168]), temporal logics ([97, 240]), but also non-monotonic formalisms like default
logic ([42, 213]) and logic programs ([15, 31, 32, 133]).

The last of these (logic programs) is a formalism whereby knowledge is represented in
(Horn) clausal form permitting the use of default negation. In [132], the author argues
more generally for this use of logic programs for Knowledge Representation and Reasoning
(KRR). Logic Programming is the KR formalism we use throughout this thesis and we
proffer its details in Chapter 3.

The second part of the right-hand side of the “thinking equation” depicted right at the
beginning of this introduction is Problem Solving. In a KRR context within the framework
of logic programs, this is more aptly phrased as Reasoning Methods, which we now turn
to.

1.2 Reasoning Methods

In [129] the authors make a brief summary of the three different forms of reasoning
identified by Peirce [172]:

• Deduction — an analytic process based on the application of general
rules to particular cases, with the inference of a result.

• Induction — synthetic reasoning which infers the rule from the case
and the result.

• Abduction — another form of synthetic inference, but of the case from
a rule and a result.

Peirce further characterized abduction as the “probational adoption of a hy-
pothesis” as explanation for observed facts (results), according to known laws.

5

“It is however a weak kind of inference, because we cannot say that we believe
in the truth of the explanation, but only that it may be true”.

Induction is a reasoning method that is rather different from the other two; it lays outside
the scope of this thesis and, therefore, we shall only delve into and study deduction and
abduction.

1.2.1 Deduction

Deduction is the reasoning method which allows one to entail conclusions from premises.
We can formalize this statement as

KB |= C

where KB is a Knowledge Base (KB), C is the conclusion we deducted from KB, and |=
represents the deductive entailment relation. The |= relation is intimately connected to
the semantics used over the knowledge base, as it is the semantics that determines what
conclusions can and cannot be entailed by KB. In this sense, the |= relation must be
parametrized by a semantics S for the KB:

KB |=S C

But still, neither this entailment |= relation, nor the semantics S parameter say, in general,
anything about the necessity or mere possibility of C given KB and |=S . Since we
will be considering logic programs as our KR formalism for KB, the |=S relation must,
somehow, have a correspondence with the interpretations of KB accepted as models by S
(informally and roughly speaking, an interpretation of KB is a set of atomic statements
of KB believed to be true, and a model is an interpretation that satisfies all the rules
in KB — the formal concepts of interpretation, model and their relationship to logic
programs are detailed in Chapter 5). Thus, in the logic programming framework, the
KB |=S C statement must be translatable into a relation between C and the model(s) of
KB according to S. This poses the question of whether S accepts, in general, only one
interpretation as model of KB, or possibly many — and, in parallel, if S guarantees at
all the acceptance of at least one interpretation as model.

In this thesis we consider the case where S may, in general, accept several interpre-
tations as alternative models of KB, as this supersedes the “uni-model” semantics case.
Under this setting, the KB |=S C statement can be seen from either a skeptical or cred-
ulous perspective, according to the unanimity, or lack thereof, of the models of KB,
according to S, concerning C’s truth.

6

1.2.1.1 Skeptical Deduction

Under the logic programming context, skeptic deduction can thus be translated into the
unanimity of the models of KB, according to S, concerning C’s truth, thereby asserting
the necessity of C.
Definition 1.1. Skeptical Entailment. Let KB be a Knowledge Base, C a formula in
the same formalism as the one used for KB, S a semantics for KB, and SKB(M) denote
that the interpretation M is a model of KB according to S. Then

KB |=Sk
S C⇔∀M (SKB(M)⇒M |=S C)

i.e., the Knowledge Base KB skeptically entails the formula C iff C is true in every model
of KB according to S.

In the logic programming literature, this notion of skeptical entailment is also known
as “cautious reasoning”. For this reason, we shall henceforth write “cautious reasoning”
instead of “skeptical entailment”.

1.2.1.2 Credulous Deduction

Analogously to the previous 1.2.1.1 point, under the logic programming context, credulous
deduction can be translated into the existence of a model of KB, according to S, entailing
C’s truth, thereby asserting the possibility of C.
Definition 1.2. Credulous Entailment. Let KB be a Knowledge Base, C a formula
in the same formalism as the one used for KB, S a semantics for KB and SKB(M) denote
that the interpretation M is a model of KB according to S. Then

KB |=Cr
S C⇔∃M (SKB(M)∧M |=S C)

i.e., the Knowledge Base KB credulously entails the formula C iff C is true in some model
of KB according to S.

In the logic programming literature, this notion of credulous entailment is also known
as “brave reasoning”. For this reason, we shall henceforth write “brave reasoning” instead
of “credulous entailment”.

1.2.1.3 Query answering

Brave reasoning is intimately connected to existential query answering in knowledge bases
represented as logic programs to the extent that it also refers to finding if there exists at

7

least one model of the logic program — according to the chosen semantics — entailing
the truth of a user-specified logic formula, usually dubbed the user’s “query”.
Definition 1.3. Existential Query-answering in a Logic Program. Let P be
a logic program representation of the user’s Knowledge Base, Q a user-specified query
(a conjunction of literals), S a semantics for P , and M an interpretation of P . Then,
SQP (M) means that M is an existential answer, according to S, to the user’s query Q over
P . Formally,

SQP (M)⇔∃M (SP (M)∧M |=S Q)

The negative counterpart of an answer to Q is an answer to ¬Q, i.e., S¬QP (M) which
means there is one model M (a possible alternative amongst several other ones) where Q
is not true. Hence, in M , ¬Q can be inferred. Formally,

S¬QP (M)⇔∃M (SP (M)∧M 6|=S Q)

One can now easily sketch out the dual Universal Query-answering in a Logic Program
definition corresponding to cautious reasoning:
Definition 1.4. Universal Query-answering in a Logic Program. Let P be a
logic program representation of the user’s Knowledge Base, Q a user-specified query, S
a semantics for P and M an interpretation of P . Then, SQP means that Q is universally
entailed by P according to semantics S iff

SQP ⇔∀M (SP (M)⇒M |=S Q)

The negative counterpart now is S¬QP which means Q is not true in any model M of
P (according to semantics S), hence ¬Q can be unconditionally inferred. Formally,

S¬QP ⇔∀M (SP (M)⇒M 6|=S Q)

With a semantics allowing for several alternative models we can see each of them as a
set of hypotheses plus their corresponding necessary conclusions — a semantics allowing
for only one model would not allow any hypothesizing freedom.

In [129] the authors argue in favour of viewing default negated literals in bodies of rules
as abducibles, or assumable hypotheses. They defend that negation (and in logic programs
in particular, default negation) must play a central role in endowing negated elements with
eligibility to hypothesization. We take this hypotheses assumption perspective which
has also been taken by several semantics for logic programs before, namely, the Stable
Models semantics with which we compare our approach in subsequent chapters. There it
will become clear how specifically we embed and semantically implement this hypotheses
assumption principle.

8

1.2.2 Induction

Induction usually refers to a type of reasoning that involves producing a general rule from
a set of specific facts. It can also be seen as a form of learning or theory-building, in which
specific facts are used to create a theory that explains relationships between the facts and
allows prediction of future knowledge. In the context of logic programming, Inductive
Logic Programming [136, 162, 163] has been a productive research area in the past years.
Inductive reasoning lies outside the scope of this thesis as it is an orthogonal issue to the
one focused on here: finding a 2-valued semantics, with a specific set of properties, for all
NLPs.

1.2.3 Abduction

Abductive reasoning is discussed in Chapter 10 and is commonly understood as hypoth-
esizing plausible reasons sufficient for justifying given observations or supporting desired
goals. An abductive problem can be stated in the following way: let KB be a Knowl-
edge Base, Q a goal (also referred to as the abductive query), and ∆ a set of adoptable
(abducible) hypotheses. In this case we say δ ⊆ ∆ is an abductive solution to Q given
KB iff KB∪δ |=Q and δ |= ICs where ICs is the set of Integrity Constraints pertaining
KB. We may, of course, be also interested in the side-effects of abducing δ in KB. In
Chapter 10 we introduce an efficient method to check if some literal’s truth-value becomes
determined as a side-effect of a given abductive solution to a goal.

For centuries, a central guideline of rational scientific reasoning has been the heuristic
known as Ockham’s razor. The Encyclopedia Britannica [1] presents, amongst others,
the following formulation of this reasoning principle: “(. . .)the simplest explanation of
an entity is to be preferred.” This principle which has maximal skepticism at its heart,
is also known as the law of economy, or law of parsimony and has been formulated in
many different ways including “the explanation requiring the fewest assumptions is most
likely to be correct.” This correlates to abduction, or hypotheses assumption, in the sense
that Ockham’s razor states that we should always strive for minimal sets of hypotheses
explaining the observations, or entailing the query.

In turn, hypotheses assumption relates to credulous entailment (or existential query
answering) in the sense that, as stated at the end of 1.2.1.3, with “a semantics allowing
for several alternative models we can see each of them as a set of hypotheses plus their
corresponding necessary conclusions”. In the context of semantics for logic programs
allowing for more than one model, Abductive and Deductive reasoning end up being
almost equivalent as we show and further detail in Chapter 10.

9

The classical approach to semantics rests on demanding minimality of models, i.e.,
minimality of the set of hypotheses plus their conclusions; but as far as the Ockham’s razor
principle is concerned, the law of parsimony is only focused on the set-inclusion minimality
of the hypotheses, letting the orthogonal issue of minimizing their consequences as an
optional undertaking. Indeed, there may be non-minimal sets of hypotheses conducive
to minimal models when the former might be incompatible amongst themselves. This
issue occurs in logic programming due to default negation or integrity constraints, e.g.
Example 8.3. Minimality of hypotheses, while resolving away their incompatibility, will be
a major issue addressed in this thesis in the context of logic programming. In Chapter 8
we introduce a semantics focused only on minimality of the hypotheses.

1.3 Reasoning Scope

In this thesis we focus on using logic programs as the knowledge representation formalism
to encode knowledge bases [131]. Under this setting, and depending on the nature of the
problem at hand and the semantics considered, finding an intended solution for a query
may require taking into account all the formulas in the KB or, on the other hand, it may
suffice to consider only the fraction of the KB relevant to the query formula. In the first
case, finding a solution to the query requires the identification of a whole model for the
entire KB, whilst in the second case identifying a part of a model might suffice. When
solutions to the problem at hand involve by necessity whole models, we say we perform
complete knowledge reasoning when finding such solutions. Conversely, partial knowledge
reasoning refers to finding parts of model being enough, it being implicit that such part
models are extendible to a whole model in the program semantics used.

1.3.1 Complete Knowledge Reasoning

Complete knowledge reasoning pertains to identifying models of the whole knowledge
base that conform to some user-specified requirements. From a practical standpoint, this
corresponds to whole KB model computation. It is the role of the chosen semantics
to determine which interpretations of a KB are accepted as models. Depending on the
properties of the envisaged underlying semantics, whole model computation may be the
only possibility for any kind of problem solving. In particular, such complete knowledge
reasoning may be in general inevitable when the semantics lacks the relevance property.
This is discussed in further detail in subsection 6.5.5.

10

1.3.2 Partial Knowledge Reasoning

Reasoning with large KBs represented as NLPs can be computationally very expensive,
especially if the KB can be updated, whether by external agents or through self-updates.
When KBs are comprised of rules concerning several fields of knowledge, we can say we
have some modularization of the knowledge. This can be the case either when the KB itself
is used to represent an ontology plus the set of rules to derive new knowledge, or when the
KB is just such a set of rules and is associated with an ontology originating somewhere
else, as in [115]. In such cases, it can be quite common for the user to want to perform
some form of reasoning concerning just a fragment of the overall knowledge. Whole model
computation can then be computationally overwhelming and downright unnecessary. It
would also be putting too much of a burden on the user to require her/him to specify
the (sub-) module(s) of knowledge to be considered when finding a solution to the query.
Again, taking advantage of such a modularization naturally occurring in knowledge can
only be afforded when the indicated underlying semantics enjoys the relevance property.
Partial knowledge reasoning, which can be seen as partial model computation, using only
the fragments of knowledge strictly necessary to find an answer, can have significant
impact on real applications’s efficiency.

Having introduced some of the general concepts of knowledge representation and reasoning
we now take in Chapter 2 a closer look at the syntactic structure of a set of KBs induced
by their interdependencies.

2 . The Structure of Knowledge

An intimate Knowledge therefore of
the intellectual and moral World is
the sole foundation on which a stable
structure of Knowledge can be
erected.

John Adams
Letter to Jonathan Sewall, 1759

In Chapter 1 we took a brief overview of the Knowledge Representation and Reason-
ing problem in very general terms. In this chapter we analyze the structural properties
of arbitrary sets of (possibly interdependent) Knowledge Bases, assembled from a graph-
theoretic perspective, thereby identifying the structure of knowledge. Resulting from such
syntactical/structural analysis, we present the Layering notion for directed graphs which
we then specialize to the concrete case of NLPs. The notion of Layering we present is one
of the end products of our research. In [193, 194, 196, 197] we took several intermediate
steps which eventually lead us to the final definition in this chapter.

2.1 Knowledge Graph

In [22], P. W. Anderson says

“(. . .) one may array the sciences roughly linearly in a hierarchy (. . .)
The elementary entities of science X obey the laws of science Y.”

where “science Y” is more fundamental than “science X”. And he continues

“At each stage entirely new laws, concepts, and generalizations are necessary,
11

12

requiring inspiration and creativity to just as great a degree as in the previous
one.”

Knowledge can be represented in a Knowledge Base as a set of formulas (or sentences).
Different KBs can represent knowledge about different domains, each written in a possibly
different formalism, and where some KBs may depend on the knowledge in other KBs.
In this sense we can think of the whole body of Knowledge as a network, or graph, with
KBs as vertices. The structure of knowledge must, therefore, be closely related to the
structure of the graph of KBs, to which we now turn to analyze. For self-containment,
we very briefly recap the definition of graph in particular, the directed graph variant of
which is the one of specific interest here.

Definition 2.1. Directed Graph (adapted from [39]). We say G = (V,E) is a
directed graph iff V is the set of vertices of G, and E ⊆ V ×V is the set of directed edges
of G, where each edge is an ordered pair (vi,vj) standing for a directed connection from
vertex vi to vertex vj . When the graph at hand is not unambiguously determined, we
write VG and EG to denote, respectively, the set of vertices and the set of edges of graph
G. The vertices and edges will be, henceforth, also alternatively referred to as nodes and
arcs, respectively.

The directed edges in a graph are the central ingredient for the structure of the graph
as they can be seen to induce dependency relationships amongst the vertices. We thus
turn now to analyze these dependencies.

2.1.1 Dependencies

Definition 2.2. General dependencies in a graph. Let G= (V,E) be a graph. We
say vertex vj ∈ V directly depends on vertex vi ∈ V (abbreviated as vj ← vi) iff there is
an edge (vi,vj) in E, and we say vertex vm ∈ V depends on vertex vi ∈ V (abbreviated as
vm � vi) iff there is are edges (vi,vj),(vj ,vk), . . .(vl,vm) in E — i.e., there is a “path” in
G from vertex vi to vertex vm.

Definition 2.3. Sub-graph. Let G = (V,E) be a graph. We say G′ = (V ′,E′) is a
sub-graph of G iff V ′ ⊆ V and E′ ⊆ E such that ∀(vi,vj)∈E′vi ∈ V ′∧vj ∈ V ′.

Definition 2.4. Relevant sub-graph. Let G = (V,E) be a graph. We say vertex
vj ∈ V is relevant for vertex vi ∈ V iff vi depends on vj . The sub-graph of G relevant
for vertex vi is RelG(vi) = (RV,RE), where RV = {vi}∪{vj ∈ V : vi � vj}, and RE =
{(vk,vl) ∈E : vk ∈RV ∧vl ∈RV }. We say that RV is the set of vertices of G relevant for
vi.

13

We also define the inverse notion, the Influence sub-graph:

Definition 2.5. Influence sub-graph. Let G = (V,E) be a graph. We say vertex
vj ∈ V influences vertex vi ∈ V iff vi depends on vj . The sub-graph of G influenced
by vertex vj is InflG(vj) = (IV,IE), where IV = {vj}∪ {vi ∈ V : vi � vj}, and IE =
{(vk,vl) ∈E : vk ∈ IV ∧vl ∈ IV }. We say that IV is the set of vertices of G influenced by
vj .

In general, graphs can also have circular dependencies (paths leading from a vertex
back to itself); these give rise to the notions of loops and of Strongly Connected Com-
ponent ([39]). In graph theory [39] a loop in a graph is usually referred to as a Strongly
Connected Subgraph (SCSG). Finding the set of SCSGs of any given graph is known to
be of polynomial time complexity [235].

Definition 2.6. Loop. Let G= (VG,EG) be a graph. L= (VL,EL) is a loop of G iff L
is a subgraph of G such that for each pair of vertices vi,vj ∈ VL there is a path in L from
vi to vj and a path in L from vj to vi — i.e., vj � vi and vi � vj .

Definition 2.7. Strongly Connected Component (adapted from [39]). Let
G= (VG,EG) be a graph. S = (VS ,ES) is a Strongly Connected Component (SCC) of G
iff S is a maximal subgraph of G such that for each pair of vertices vi,vj ∈ VS there is a
path in S from vi to vj and a path in S from vj to vi — i.e., vj � vi and vi � vj . An
SCC is thus just a maximal Loop (Definition 2.6).

The concept of Strongly Connected Component from general Graph Theory [39] con-
siders single nodes not involved in loops as SCCs too.

Definition 2.8. Modules of a Graph. Let G = (V,E) be a directed graph, and let
SCC(G) be the set of all SCCs of G. The set M(G) is said to be the set of modules of G
iff each member of M(G) is the set of vertices of an SCC of G.

M(G) = {Vscc : scc ∈ SCC(G)}

I.e., a module is the set of vertices of an SCC (which may include only one vertex).

Proposition 2.1. The set of modules is a partition of the vertices of the graph.
Let G= (VG,EG) be a graph andM(G) the set of modules of G. ThenM(G) is a partition
of VG. I.e.,

VG =
⋃

m∈M(G)
m

and
∀mi,mj∈M(G)mi 6=mj ⇒mi∩mj = ∅

14

Definition 2.9. Module dependencies. Let G = (V,E) be a graph, and M(G) the
set of modules of G (cf. Definition 2.8). We say module mi ∈M(G) depends on module
mj ∈M(G) (abbreviated as mi�mj) iff there are two vertices vi ∈mi, and vj ∈mj , such
that vi depends on vj in G.

Proposition 2.2. Different modules are non-mutually-dependent. Let G be a
graph and M(G) the set of modules of G. Then,

∀mi,mj∈M(G)
mi 6=mj

¬((mi �mj)∧ (mj �mi))

I.e., all modules are pairwise not mutually dependent.

With the notions of modules of a graph and their respective module dependencies we
can now lay down the Modules Graph of a graph.

Definition 2.10. Modules Graph. Let G = (V,E) be a directed graph, and M(G)
the set of modules of G. We say MG(G) = (M(G),ME(G)) is the modules graph of G iff
ME(G) = {(mi,mj) : ∃vi∈mi,vj∈mj (vi,vj) ∈ E}.

Theorem 2.1. Existence and uniqueness of the modules graph. Let G be a
graph. Then there is exactly one modules graph MG(G) of G.

Proof. Trivial from Definitions 2.8, 2.9, 2.10, and Proposition 2.1.

Proposition 2.3. The Modules Graph of a graph G is a Directed Acyclic
Graph1. Let G be a graph, and MG(G) its modules graph. Then, by construction,
MG(G) is a Directed Acyclic Graph.

We now present one of our new contributions: the Graph Layering notion.

Definition 2.11. Graph Layering. Let G = (V,E) be a graph with no infinitely
long descending chains of dependencies of vertices. A graph layering function Lf/1 is a
function mapping each vertex v ∈ V of graph G to a non-zero ordinal such that

∀v1,v2∈V

{
Lf(v1) = Lf(v2) ⇐ (v1 � v2) ∧ (v2 � v1)
Lf(v1)> Lf(v2) ⇐ (v1 � v2) ∧ ¬ (v2 � v1)

The two cases above, which are patently mutually exclusive, leave out independent ver-
tices, i.e., vertices that have no dependencies amongst themselves. According to this
definition there is no restriction on which ordinal to assign to each independent vertex in
what the other vertices’ assignations are concerned.

1A Directed Acyclic Graph is a directed graph with no Strongly Connected Components.

15

A graph layering of graph G is a partition . . . ,V i, . . . of V such that V i contains all
vertices v having Lf(v) = i. We write V <α as an abbreviation of ⋃β<αV β, and V ≤α

as an abbreviation of V <α∪V α, and define V 0 = V ≤0 = ∅. It follows immediately that
V = ⋃

αV
α = ⋃

αV
≤α, and also that the ≤ relation between layers is a total-order in the

sense that V i ≤ V j iff i≤ j.

Amongst the several possible graph layerings of a graph G we can always find the least
one, i.e., the graph layering with least number of layers, where the ordinals of the layers
are the smallest possible, and where the ordinals of Lf(v), for each vertex v, are also the
smallest possible, whilst respecting the graph layering function assignments. This least
graph layering is easily seen to be unique.
N.B.: In the following, when referring to the graph’s “layering”, we mean just such least
graph layering.

Theorem 2.2. Existence and uniqueness of least layering for a given graph
G. Let G be a graph. There is exactly one least layering of G.

In graph theory there are notions and results similar to the layering but, to the best
of our knowledge, none is exactly equivalent to it. There is one notion in particular —
the topological sort — which is quite similar to the layering.

Definition 2.12. Topological sort (Section 22.4 of [62]). A topological sort of
a Directed Acyclic Graph G = (V,E) is a linear ordering of all its vertices such that if
G contains an edge (u,v), then u appears before v in the ordering. If the graph is not
acyclic, then no linear ordering is possible.

A graph’s layering is akin to a topological sort albeit these notions do not coincide:

1. The topological sort is defined only for Directed Acyclic Graphs, whereas the Lay-
ering is defined for all Directed Graphs not necessarily Acyclic

2. There might be several topological sorts for a graph, whereas theres is only one least
layering

3. Each instance of a topological sort assigns different order numbers to vertices that
are assigned the same layer ordinal by the least layering, even for DAGs

All knowledge can be represented as a graph with Knowledge Bases as vertices (a
knowledge graph); the correspondingmodules graph is thus the intrinsic structure of knowl-
edge. Moreover, the least layering of such knowledge graph complements themodules graph
by providing ordering information reflecting the dependencies amongst vertices.

16

Layering is an ordering of modules, it is an ordering of knowledge according to syn-
tactic dependency. Whenever the user has some other specific intended way of ordering
knowledge, say, induced by some set of priorities, or ordering preferences, a different
preference-based layering might emerge. In this sense, the least layering presented above
is just the simplest, preference-free, form of layering; it is the default layering of knowledge.
Nonetheless, we leave open the possibility of some ordering-preferences to be associated
with a program, with the intent to specify how its knowledge is to be ordered, i.e., layered.
We do not explore this avenue of further possibilities in this thesis, but leave it for future
work.

As stated previously, in this thesis we have chosen Normal Logic Programs as the par-
ticular Knowledge Representation formalism, hence we now recap the basic definitions of
NLPs, and the different kinds of knowledge graphs over NLPs, as well as how layering
applies to NLPs.

3 . Normal Logic Programs and their Structure

Logic is not a body of doctrine, but a
mirror-image of the world.

Ludwig Wittgenstein

In this chapter we review the basic technical concepts of logic programming to introduce
notation and to bring the reader not familiar with these matters moderately up to speed.
We cover the notion of logic program, focusing particularly on Normal Logic Programs
(NLPs) as they will be the Knowledge Representation formalism we will be using through-
out this thesis, and also the concepts of interpretation, classical and minimal model, and
their relationship to rules.
Part of the contents of this chapter is based upon some of our previous publications, namely
[193, 194, 196, 197], where we took steps towards some of the definitions currently pre-
sented here.

3.1 Normal Logic Programs

Logic programs have been used for decades for Knowledge Representation and Reasoning.
Intuitively, a logic program consists of a (possibly countably infinite) set of rules, each one
connecting a set of finite premises with a conclusion. Some rules may have no premises,
and in such case we call them facts. An NLP is just a specific kind of logic program
with some particular restrictions on what kinds of premises and conclusions are allowed
in rules. We formalize these notions with the definitions below.

17

18

3.1.1 Language

Definition 3.1. Normal Logic Program. By an alphabet A of a language L we
mean a (finite or countably infinite) disjoint set of constants, predicate symbols, and
function symbols, with at least one constant. In addition, any alphabet is assumed to
contain a countably infinite set of distinguished variable symbols. A term overA is defined
recursively as either a variable, a constant or an expression of the form f(t1, . . . , tn) where
f is a function symbol of A, n its arity, and the ti are terms. An atom over A is an
expression of the form P (t1, . . . , tn) where P is a predicate symbol of A, and the ti are
terms. A literal is either an atom A or its default negation not A. We dub default literals
(or default negated literals — DNLs, for short) those of the form not A. A term (resp.
atom, literal) is said ground if it does not contain variables. The set of all ground terms
(resp. atoms) of A is called the Herbrand universe (resp. base) of A. For short we use H
to denote the Herbrand base of A. A Normal Logic Program is a set of rules of the form:

H←B1, . . . ,Bn,not C1, . . . ,not Cm, with (m,n≥ 0 and finite)

where H, the Bi and the Cj are atoms. Without loss of generality, NLPs can be
seen as possibly infinite (countable) sets of ground rules corresponding to all the possible
instantiations of variables of the non-ground version of rules. Thus, from this point
onwards, in order to simplify subsequent definitions and results, we consider only ground
NLPs, ground rules, ground literals, and ground atoms. In conformity with the standard
convention, we write rules of the form H ← also simply as H (known as “facts”). An
NLP P is called definite if none of its rules contain default literals. H is the head of the
rule r, denoted by head(r), and body(r) denotes the set {B1, . . . ,Bn,not C1, . . . ,not Cm}
of all the literals in the body of r.

Definition 3.2. Constrained Normal Logic Program. Let P be an NLP and C a
set of rules of the form

⊥←B1, . . . ,Bn,not C1, . . . ,not Cm, with (m,n≥ 0 and finite)

with a non-empty body. Such rules with head ⊥ (or “falsum”) are also known as a type
of Integrity Constraints (ICs), specifically denials. We say P ∪C is a Constrained Normal
Logic Program (CNLP). Although ⊥ (or “falsum”) may occur in P as head of IC rules,
it is not part of HP (the atoms of P) and therefore it cannot appear in bodies of any
rules.

19

Example 3.1. Constrained Normal Logic Program. Let P be

⊥ ← a
a ← not b
b ← not a

The Integrity Constraint rule ⊥← a is what turns this program into a Constrained NLP.
The other two rules — for a and for b — are regular NLP rules.

3.1.1.1 Useful notation

We abuse the ‘not ’ default negation notation applying it to non-empty sets of literals
too: we write not S to denote {not s : s ∈ S}, and confound not not a≡ a. When S is an
arbitrary, non-empty, set of literals — S = {B1, . . . ,Bn,not C1, . . . ,not Cm} — we use the
following notation

• S+ denotes the set {B1, . . . ,Bn} of positive literals in S

• S− denotes the set {not C1, . . . ,not Cm} of negative literals in S

• |S|= S+∪ (not S−) denotes the set {B1, . . . ,Bn,C1, . . . ,Cm} — the atoms of S

As expected, we say a set of literals S is consistent iff S+ ∩ |S−| = ∅. Also, we will
apply the notation above for arbitrary sets of literals S to bodies of rules: body(r)+,
body(r)−, and |body(r)|. We also write heads(P) to denote the set of heads of non-IC
rules of a (possibly constrained) program P , i.e., heads(P) = {head(r) : r ∈ P}\{⊥}, and
facts(P) to denote the set of facts of P — facts(P) = {head(r) : r ∈ P ∧ body(r) = ∅}.

We assume that the alphabet A used to write a program P consists precisely of all
the constants, predicates and function symbols that explicitly appear in P . By Herbrand
universe (resp. base) of P we mean the Herbrand universe (resp. base) of A. By grounded
version of a Normal Logic Program P we mean the (possibly infinite) set of ground rules
obtained from P by consistently substituting in all possible combined ways each of the
variables instances in P by elements of its Herbrand universe.

These base concepts of Alphabet, Language, Rule, Herbrand Base, and Normal Logic
Program are taken (with some minor changes) from [15]1.

1In this work we restrict ourselves to Herbrand interpretations and models. For the subject of semantics
based on non-Herbrand models, and solutions to the problems resulting from always keeping to Herbrand
models see e.g. [109, 133, 210]. Thus, without loss of generality (cf. [206]), we envisaged a Normal Logic
Program P standing for its grounded version.

20

3.2 The Structure of Normal Logic Programs

“Ordnung ist das halbe Leben.”
(“Order is half of life.”)

German saying

In Chapter 2 we assumed that the structure of knowledge is themodules graph. We now
turn to analyze some of the different approaches to identifying the knowledge structure
behind an NLP.

The traditional approach considers the atom dependency graph of an NLP.
Definition 3.3. Atom graph. Let P be an NLP. DG(P) is the atom dependency
(directed) graph of P where the atoms of P are the vertices of DG(P), and there is a
directed edge from a vertex A to a vertex B iff there is a rule in P with head B such that
A appears in its body.

But as the author of [65] puts it, relating the Dependency Graph with the Answer Set
semantics [113, 142]

“it is well-known, the traditional Dependency Graph (DG) is not able to rep-
resent programs under the Answer Set semantics: in fact, programs which are
different in syntax and semantics, have the same Dependency Graph.”

In this thesis we define a new family of semantics for NLPs, generalizing the Stable
Models semantics, so the “traditional” atom Dependency Graph is also not enough for
our purposes.

In the literature, we may find the rule graph, introduced in [82].
Definition 3.4. Rule graph (Definition 3.8 of [82]). Let P be a reduced negative
NLP (i.e., there are only negative literals in the bodies of rules). RG(P) is the rule graph
of P where the rules of P are the nodes of RG(P), and there is an arc from a node r1 to
a node r2 iff the head of rule r1 appears in the body of the rule r2.

But, as the author of [65] says,

“in our opinion it would be difficult to define any practical programming method-
ology on the basis of the rule graph, since it does not graphically distinguish
among cases which are semantically very different.”

21

This sentence from [65] assumes not only that the underlying semantics is the Stable
Models, but also that the arcs in the rule graph are supposed to contain all the seman-
tic information of the program. Besides, the rule graph as defined in [82], presupposes
reduced negative programs. As we shall see below, our semantic approach to rule graphs
considers its structural information as a crucial necessary part in determining the seman-
tics of the program, but not a sufficient one. Thus, we will be able to define a practical
programming methodology on the basis of the rule graph, plus other semantic constructs,
namely, hypotheses assumption, as we will see in the sequel.

The following definition extends the rule graph one (Definition 3.4) in the sense that
it is applicable to all NLPs and not just to reduced negative logic programs.

Definition 3.5. Complete Rule Graph. Let P = P ∪C be a Constrained NLP. The
complete rule graph of P (denoted by CRG(P)) is the directed graph whose rules of P
are the vertices of CRG(P) and there is a directed edge from vertex r1 to vertex r2 iff
the head of rule r1 appears in the body of the rule r2. I.e., CRG(P) = (P ,DP) where
DP = {(r1, r2) : r1, r2 ∈ P ∧head(r1) ∈ |body(r2)|}.

Definition 3.6. Dependencies in a program. We say a rule r2 directly depends on
r1 (written as r2 ← r1) iff there is a direct edge in CRG(P) from r1 to r2. We say r2
depends on r1 (r2 � r1) iff there is a directed path in CRG(P) from r1 to r2.

Naturally, we again consider the other combinations of (direct) dependencies amongst
atoms and rules. We also use the same graphical notation (←,�)amongst atoms, and
between atoms and rules to denote (direct, indirect) dependency.

Rule r directly depends on atom a iff a ∈ |body(r)|; and r depends on a iff either r
directly depends on atom a or r depends on some rule r′ which directly depends on a.
I.e.,

r← a ⇔ a ∈ |body(r)|
r� a ⇔ r← a∨∃r′∈P (r� r′∧ r′← a)

We say an atom a directly depends on rule r iff head(r) = a; and a depends on r iff either
a directly depends on r or a directly depends on some rule r′ such that r′ depends on r.
I.e.,

a← r ⇔ head(r) = a
a� r ⇔ a← r∨∃r′∈P (a← r′∧ r′� r)

We say an atom b directly depends on atom a iff a appears (possibly default negated) in
the body of a rule with head b, and b depends on a iff either b directly depends on a, or
b directly depends on some rule r which depends on a. I.e.,

b← a ⇔ ∃r∈P (b← r∧ r← a)
b� a ⇔ b← a∨∃r∈P (b← r∧ r� a)

22

Applying the relevant (Definition 2.4) and influence (Definition 2.5) sub-graph no-
tions to the particular case of (C)NLPs (cf. Definition 3.2) under their respective CRGs
(Definition 3.5) we have:

Definition 3.7. Sub-program Relevant for Rule(s). Let P =P ∪C be a Constrained
NLP, and CRG(P) its CRG. We say rule rj ∈ P is relevant for rule ri ∈ P iff ri depends
on rj . We write RelP(ri) to denote the set of such rj , i.e.,

RelP(ri) = {rj ∈ P : ri � rj}

RelP(ri) is thus the set of vertices of CRG(P) relevant for ri.

We abuse this notation by writing RelP(R), where R is a subset of rules of P , to
denote the set of rules that R depends on, i.e.,

RelP(R) =
⋃
r∈R

RelP(r)

Likewise, the inverse Influence sub-program notion:

Definition 3.8. Sub-program Influenced by Rule(s). Let P = P ∪C be a Con-
strained NLP, and CRG(P) its CRG. We say rule rj ∈ P influences rule ri ∈ P iff ri
depends on rj . We write InflP(rj) to denote the set of such ri, i.e.,

InflP(rj) = {ri ∈ P : ri � rj}

InflP(rj) is thus the set of vertices of CRG(P) influenced by rj .

We abuse this notation by writing InflP(R), where R is a subset of rules of P , to
denote the set of rules that R influences, i.e.,

InflP(R) =
⋃
r∈R

InflP(r)

We also apply these notions with the focus on atoms:

Definition 3.9. Sub-program Relevant for Atom. Let P = P ∪C be a Constrained
NLP, and CRG(P) its CRG. We say rule r ∈ P is relevant for atom a ∈HP iff a depends
on r. We write RelP(a) to denote the set of such r, i.e.,

RelP(a) = {r ∈ P : a� r}

Likewise, the inverse Influence sub-graph notion:

23

Definition 3.10. Sub-program Influenced by Atom. Let P = P ∪C be a Con-
strained NLP, and CRG(P) its CRG. We say atom a ∈ HP influences rule r ∈ P iff r
depends on a. We write InflP(a) to denote the set of such r, i.e.,

InflP(a) = {r ∈ P : r� a}

It will also be useful to define the notion of sub-program relevant for a conjunction of
literals and sub-program influenced by a conjunction of literals.

Definition 3.11. Sub-program Relevant for a Conjunction of Literals. Let P =
P ∪C be a Constrained NLP, CRG(P) its CRG, and Q= a1∧ . . .∧an∧not b1∧ . . .∧not bm
a conjunction of literals (with all the ai and bj in HP , at least one literal, and n,m≥ 0)
which we call a query. We write SQ to denote the set of all the literals in Q, i.e.,
SQ= {a1, . . . ,an,not b1, . . . ,not bm}.

We define RelP(Q), the Sub-program of P Relevant for the Conjunction of Literals
(or Query) Q, as the set of all rules relevant for all the atoms corresponding to the literals
in Q, i.e.,

RelP(Q) =
⋃

q∈|SQ|
RelP(q)

Definition 3.12. Sub-program Influenced by a Conjunction of Literals. Let
P = P ∪C be a Constrained NLP, CRG(P) its CRG, and Q = a1 ∧ . . .∧ an ∧ not b1 ∧
. . .∧not bm a conjunction of literals (with all the ai and bj in HP , at least one literal,
and n,m ≥ 0) which we call a query. SQ denotes the set of all the literals in Q, i.e.,
SQ= {a1, . . . ,an,not b1, . . . ,not bm}.

We define InflP(Q), the Sub-program of P Influenced by the Conjunction of Literals
(or Query) Q, as the set of all rules influenced by atoms corresponding to the literals in
Q, i.e.,

InflP(Q) =
⋃

q∈|SQ|
InflP(q)

Alongside with the graph perspective of logic programs is the classical stratification
notion which is usually associated with the atom dependency graph.

Definition 3.13. Stratification [210]. A program P is stratified if and only if it is
possible to decompose the set S of all predicates of P into disjoint sets S1, . . . ,Sr, called
strata, so that for every clause A← B1, . . . ,Bm,not C1, . . . ,not Cn, in P , where A’s, B’s
and C are atoms, we have that:

∀istratum(Bi)≤ stratum(A)
∀jstratum(Cj)< stratum(A)

24

where stratum(A) = i, if the predicate symbol of A belongs to Si. Any particular de-
composition {S1, . . . ,Sr} of S satisfying the above conditions is called a stratification of
P .

The stratification notion fails to capture all the structural information of a program
since it focuses only on the atoms — it misses the specific dependencies for each particular
rule. Moreover, there are cases of programs which have no stratification whatsoever, in
particular, programs with loops.

The Layering notion we developed (Definition 2.11), when applied to the Complete
Rule Graph (Definition 3.5) of a CNLP P , covers all programs and captures all the
structural information in each one.

Definition 3.14. Rule Layering. Let P = P ∪C be a CNLP with no infinitely long
descending chains of dependency and CRG(P) its complete rule graph (Definition 3.5).
A rule layering function Lf/1 of P is a function mapping each vertex of CRG(P) (a rule
r of P) to a non-zero ordinal such that

∀r1,r2∈P

{
Lf(r1) = Lf(r2) ⇐ (r1 � r2) ∧ (r2 � r1)
Lf(r1)> Lf(r2) ⇐ (r1 � r2) ∧ ¬ (r2 � r1)

A rule layering of P is thus a partition . . . ,P i, . . . of P such that P i contains all rules
r having Lf(r) = i. We write P<α as an abbreviation of ⋃β<αPβ, and P≤α as an
abbreviation of P<α ∪Pα, and define P0 = P≤0 = ∅. It follows immediately that P =⋃
αPα = ⋃

αP≤α, and also that the ≤ relation between layers is a total-order in the sense
that P i ≤ Pj iff i≤ j.

Amongst the several possible rule layerings of P we can always find the least one,
i.e., the rule layering with least number of layers, where the ordinals of the layers are the
smallest possible, and where the ordinals of Lf(r), for each rule r, are also the smallest
possible, whilst respecting the rule layering function assignments. This least rule layering
is easily seen to be unique.
N.B.: In the following, when referring to the program’s “layering”, we mean just such
least rule layering. Likewise, there is also a least stratification. We cover the relationship
between strata and layers in the sequel.2

2The layers notion in [123] have some similarities with the ones presented in Definition 2.11 when
applied to CRG(P), but the former (Definition 6.2 of [123]) has the limited role of providing the scaffolding
of a transfinite inductive definition of the weakly perfect model which is a subset of the Well-Founded
Model (as per Corollary 6.9 of [123]). The layering notion we present here has a standing of its own as an
important syntactical ordering, besides its structuring influence inducing certain desirable characteristics
of models of a semantics as we shall see in Section 7.1.

25

N.B.: The Rule Layering definition above states that two rules are placed in the
same layer if they depend on each other. Notice this is an if, not an if and only if. I.e.,
according to Rule Layering, two rules can be placed in the same layer when, e.g, they have
no dependencies amongst them. In the following example, the rules x← not x and e← e
are placed in the same layer despite there being no dependencies whatsoever between
them.

Example 3.2. Rule Layering example. Consider the following program P , depicted
along with the layer numbers for its least layering:

b← not b d← not c c← not d,not y,not a P 3 — Layer 3
b← not x y← not x z← f P 2 — Layer 2
x← not x e← e f P 1 — Layer 1
∅ P 0 — Layer 0

Figure 3.1: A NLP’s rules distributed along the program’s layers.

Atom f has a fact rule: its body is empty (it depends on no other rule), and therefore
it is placed in the lowest possible layer: P 1. The unique rule for x is also placed in Layer
1 in the least layering of P because it depends only on itself. Likewise for rule e← e.
Rules b← not x and y← not x are necessarily placed strictly above Layer 1 because they
both depend directly on the rule for x which in turn does not depend on any of them. So,
both these rules for y and for b are placed in Layer 2, P 2, in the least layering of P . For
the same reason, rule z← f is placed in Layer 2, because it depends on the (fact) rule for
f which is in Layer 1.

Notice this important difference between Layering and Stratification: the Layering
does not distinguish between positive and negative dependencies nor does it treat such
cases differently, as the Stratification does (cf. Definition 3.13). For the Layering notion
the only important factor is the existence of, or lack thereof, syntactic dependency, regard-
less of it being through a positive or negative literal. This is the reason why the Layering
puts rule z← f in a layer strictly above that of the fact f (because z← f depends on the
fact f and not vice-versa), whereas the Stratification would allow z← f to be in the same
stratum as the fact f (because z← f depends positively on the fact f). I.e., the Layering
and the Stratification use different criteria to assign layer/stratum ordinal indices.

Rule b← not b is placed strictly above all other rules for b that do not depend on
b, i.e., on Layer 3, P 3. The rule for c is placed strictly above the rule for y because it
depends on not y and no rule for y depends on any rule for c. The rule for d is placed in
the same Layer as the rule for c because they depend on each other. Hence, both rules
for c and d are placed in Layer 3, P 3.

26

Building upon the (rule) layering we can now define the “atom layering” — a notion
similar to that of stratification.

Definition 3.15. Atom-Layering of a Constrained Normal Logic Program P.
Let P = P ∪C be an CNLP, and Lf/1 a rule layering function of P . An atom layering
function ALf/1 is a function defined over the atoms of P , assigning each atom a ∈ HP
an ordinal, such that

ALf(a) =
{
lubr∈P:head(r)=a(Lf(r)) if ∃r∈Phead(r) = a

0 otherwise

where lub stands for the least upper bound — in this case, the least upper bound of all
the rule layer ordinals for layers containing a rule with the atom a as head.

An atom layering of program P is a partition . . . ,AiP , . . . of the set of atoms of P
— HP — such that AiP contains all atoms a having ALf(a) = i. We write A<αP as an
abbreviation of ⋃β<αAβP , and A≤αP as an abbreviation of A<αP ∪AαP , and define A<0

P = ∅.
It follows immediately that HP = ⋃

αA
α
P = ⋃

αA
≤α
P , and also that the ≤ relation between

layers of atoms is a total-order in the sense that AiP ≤ A
j
P iff i≤ j.

Amongst the several possible atom layerings of a program P we can always find the
least one corresponding to the definition of “atom layering function” ALf/1 based upon
the program’s least rule layering function Lf/1.
N.B.: In the following, when referring to the program’s “atom layering”, we mean just
such least atom layering, and we will explicitly mention “atom”, as in “atom layering” to
make the distinction from (rule) layering.

This notion of atom layering is a generalization of level-mapping [120, 123] because,
as explained in [123],

“Level mappings are mappings from Herbrand bases to ordinals, i.e. they in-
duce orderings on the set of all ground atoms while disallowing infinite de-
scending chains”

and the atom layering notion does allow for infinite descending chains. Atom layerings
are always defined, and in this sense they are generalizations of stratifications — partially
because atom layerings are applicable also when there are loops in the program, in which
cases there are no stratifications. Rule layerings are also always defined, and they capture
all syntactic structure of the program. Also, due to the definition of dependency, in gen-
eral, atom layerings do not coincide with stratifications [24], nor do rule layers coincide
with the layers definition of [209]. When a program is not stratified there are nonetheless

27

atom layerings. However, when the program at hand is stratified (according to [24]) it can
easily be seen that there is a relation between its atom layerings and its stratifications.
Notice that a stratification, applicable to atoms, may put two atoms in the same stratum
if one of them only depends through positive arcs on the other (without any reciprocal de-
pendency), whereas, in the same conditions, an atom layering would put them in different
layers — cf. Example 3.3 below concerning rule z← f . So, for each stratification there is
an atom layering, possibly with more layers than the strata there are in the stratification.
On the other hand, assuming the program is stratified, for each atom layering there is a
stratification. Moreover, there is a clear correspondence between a stratification and the
least atom layering for acyclic programs — in this case the only difference relates to the
atoms whose rules have only positive dependencies on some other atom.

The motivation for this difference between layering and stratification in what positive
non-reciprocal dependencies are concerned is mainly a matter of uniformity and simplicity
of the definition of layering. Both rule and atom layerings are particular cases of the
general case of graph layering (cf. Definition 2.11), and in that general case there is no
notion of “positive” or “negative” dependency: a vertex either depends on another or it
does not, and if the dependency is non-reciprocal then those vertices are placed in different
layers.
Example 3.3. Atom Layering example. Consider again the program from Exam-
ple 3.2, now depicted along with both its least rule layering and least atom layering:

Rule Layer Atom Layer Layer Index
P 3 = {b← not b d← not c c← not d,not y,not a} A3

P = {b,c,d} 3
P 2 = {b← not x y← not x z← f} A2

P = {y,z} 2
P 1 = {x← not x e← e f} A1

P = {x,e,f} 1
P 0 = ∅ A0

P = {a} 0

Figure 3.2: NLP’s rules and atoms distributed along the program’s Rule and Atom least Lay-
erings.

Atom a has no rules, therefore it is placed in atom-layer 0: A0
P . Atoms x,e,f have

only one rule in Layer 1, therefore they are placed in atom-layer 1: A1
P . Atoms y,z have

only one rule in Layer 2, and therefore they are placed in atom-layer 2: A2
P . Atom b has

two rules: one in Layer 2 and the other in Layer 3, therefore it is placed in atom-layer
3 which is the maximum of its rules’ layers: A3

P . Atoms c,d only have rules in Layer 3:
they are placed in A3

P .

Due to the definition of (least) atom layering — based on the (least) rule layering —
there is a close relation between the atom layering of an atom and the rule layering for the
rules having that atom as head. This relation is captured by the following proposition:

28

Proposition 3.1. The least atom layering of an atom identifies the highest
layer with rules for the atom. Let P be an CNLP, Lf/1 its least rule layering
function, and ALf/1 its least atom layering function.

∀a∈HPALf(a) = α⇔
(
∀r∈P:head(r)=ar ∈ P≤α∧ (α 6= 0⇔∃r′∈Pαhead(r′)=a)

)
Proposition 3.2. A rule’s layer is greater than or equal to each of the body’s
literals’ atom-layering. Let P be an CNLP, Lf/1 its least rule layering function, and
ALf/1 its least atom layering function.

∀ r∈P
a∈|body(r)|

Lf(r)≥ ALf(a)

3.2.1 Layers and Strongly Connected Components of Rules

We now turn to analyze the relationship between SCCs of rules and layers.

Proposition 3.3. Rules in the same SCC are in the same layer. Let P be a
CNLP.

∀r,r′∈P(r� r′∧ r′� r)⇒ Lf(r) = Lf(r′)

Proposition 3.4. Layering of SCCs. Let P be a CNLP. If there is an edge from
SCC1 to SCC2, with SCC1 6= SCC2, in the SCCG(P) then ∀r1∈SCC1

r2∈SCC2

Lf(r2)> Lf(r1).

3.2.1.1 Layers and bodies of rules

The (least) atom layering of a program allows us to partition the body of any given rule
into atom-layer indexed subsets.

Definition 3.16. Atom-layer partition of a rule’s body. Let P be a CNLP, r a
rule of P . body(r) can be then partitioned into subsets . . . , body(r)α, . . . such that each

body(r)α = {Bi ∈ body(r)+ : ALf(Bi) = α}∪{not Cj ∈ body(r)− : ALf(Cj) = α}

Corollary 3.1. A rule’s layer is greater than or equal to each of the body’s
subsets index. Let P be a CNLP and r a rule of P .

∀body(r)α⊆body(r)Lf(r)≥ α

Proposition 3.5. A rule’s body literals in a loop have atom-layering equal to
the rule’s layer.

∀a∈HP
r∈P

a ∈ |body(r)Lf(r)| ⇒ ALf(a) = Lf(r)

29

Proof. It follows trivially from Definition 3.16.

Corollary 3.2. Loop and non-loop parts of a rule’s body. Let P be a CNLP,
and r a rule of P . body(r)Lf(r) is the set of literals of body(r) which are in loop with r,
and body(r)\ body(r)Lf(r) is the set of literals of body(r) not in loop with r.

Proof. Trivial: it follows immediately from Definition 3.16 and Proposition 3.5.

In order to simplify notation we write body(r) as an abbreviation of body(r)\body(r)Lf(r).
By Proposition 3.2 we thus know that body(r) represents the subset of literals in the body
of r whose corresponding atoms have all their rules, if any, in layers strictly below that of
r. We use the body(r) notation in Definitions 6.2 and 6.7 to introduce the notion of layer
supported interpretation and the layered negative reduction operation, respectively.

3.2.2 Transfinite Layering

Layering also copes with programs with a transfinite number of layers, as long as there
is no infinitely long descending chain of dependencies. In practice, all useful programs
have a finite number of layers, but for theoretical completeness we show that this layering
notion also deals with the transfinite case.

Example 3.4. Program with transfinite number of layers. Let P =

p(s(X)) ← p(X)
p(0)

The ground (layered) version of this program, assuming there is only one constant 0 (zero)
is: ... ← ...

p(s(s(0))) ← p(s(0))
p(s(0)) ← p(0)
p(0)

This program has a layering even though it has an infinite chain of dependencies. This is
the case because that infinite chain is ascending — this program has a transfinite number
of layers.

A typical case of a program with no layering (representing a whole class of programs
with real theoretical interest) has an infinitely long descending chain of dependencies
and was presented by François Fages in [100]. We repeat it here for illustration and
explanation.

30

Example 3.5. Program with no layering [100].

q← not p(0)

p(X)← p(s(X)) p(X)← not p(s(X))

The ground version of this program, assuming there is only one constant 0 (zero):

q← not p(0)

p(0) ← p(s(0)) p(0) ← not p(s(0))
p(s(0)) ← p(s(s(0))) p(s(0)) ← not p(s(s(0)))

p(s(s(0))) ← p(s(s(s(0)))) p(s(s(0))) ← not p(s(s(s(0))))
... ← ← ...

The only model of this program is {p(0),p(s(0)),p(s(s(0))) . . .} or, in a non-ground form,
{p(X)}. This program is of theoretical interest for two reasons: 1) it has no layering
because is has an infinite descending chain of dependencies, and 2) it has no Stable
Models, even though it has no loops, which shows a whole class of NLPs to which the
SMs semantics provides no model. I.e., if a semantics for NLPs is to provide a model for
each and every NLP it must cater for transfinite support chains, classically considered
non-well-founded (cf. [100]).

Now that we have covered the syntactic structure of NLPs we turn to consider also a
few other classes of Logic Programs and see how they relate to NLPs.

4 . Other Classes of Logic Programs

(...) no single logic is strong enough
to support the total construction of
human knowledge.

Jean Piaget

In this chapter we discuss how other classes of Logic Programs, namely Extended Logic
Programs (ELPs) and Disjunctive Logic Programs (DisjLPs), can be transformed into
Normal Logic Programs. This allows us to focus the question of finding a semantics for
Logic Programs in just the class of NLPs without loss of generality concerning ELPs and
DisjLPs — we thus do not return to the topic of ELPs or DisjLPs outside this chapter.

4.1 Extended Logic Programs

Extended Logic Programs are different classes of Logic Programs that allow to derive
negative conclusions, i.e., heads of rules may be explicitly negated literals (distinct from
the default implicitly negated ones)[73].

Definition 4.1. Extended Logic Program. Extended Logic Programs are a gener-
alization of NLPs in the sense that the rules of an ELP are of the same form as those of
NLPs, but where all the non-default negated literals (both in the bodies and in the heads
of rules) are objective literals — an objective literal being either an atom A or its explicit
negation ¬A, where ¬¬A≡ A.

When considering ELPs contradictions may arise simply because heads of rules can
be explicitly negated literals, for example:

Example 4.1. Extended Logic Programs. In this ELP ‘not ’ is the default negation
31

32

and ‘¬’ is the explicit negation.
¬a
a
b ← not c
c ← not b

In this case, since both a and ¬a are facts, there is an outright explicit contradiction.

There are several alternative semantic approaches to deal with the possibility of explicit
contradictions ELPs syntactically allow for. One can either prevent explicit contradictions
or accept them. If we are to accept explicit contradictions there are two alternatives:

• Adopting classical logic’s Ex Contradictione Quodlibet (“anything follows from con-
tradiction”) principle: in this case the unique model1 is the set of all literals (positive,
explicitly and default negated) — in example 4.1 this means accepting as unique
model {a,¬a,not a,not ¬a,b,¬b,not b,not ¬b,c,¬c,not c,not ¬c}.

• Taking a paraconsistent approach: in this case there might be several models, de-
pending on the semantics being considered, and each model may be paraconsistent
— in example 4.1 this means there will be the two models
{a,¬a,not a,not ¬a,b,not ¬b,not c}, and {a,¬a,not a,not ¬a,c,not ¬c,not b} where
their paraconsistency is restricted to a, as opposed to the model according to the Ex
Contradictione Quodlibet in the previous point, where both b and c are also paracon-
sistent in its model despite there being no contradiction in the program concerning
b or c.

If we choose to prevent contradictions we can do so by means of a semi-normalization
[11, 74] of the program, i.e., by adding not ¬head(r) to the body of each rule r.

Definition 4.2. Semi-normalization. Let P be an Extended Logic Program. Then,
SN(P) = {head(r)← (body(r)∪{not ¬head(r)}) : r ∈ P} is the semi-normalized version
of P .

Consider the again the program from example 4.1

Example 4.2. Semi-normalization. After the semi-normalization the program be-
comes

¬a ← not ¬¬a
a ← not ¬a
b ← not c,not ¬b
c ← not b,not ¬c

1We formally define the notions of interpretation, satisfaction, and model in Chapter 5.

33

i.e.,
¬a ← not a
a ← not ¬a
b ← not c,not ¬b
c ← not b,not ¬c

Another simple way to discard inconsistent models is by adding ICs, in particular,
adding one IC of the form ⊥← a,¬a for each atom a ∈HP .

ELPs can straightforwardly be transformed into NLPs simply by mapping each ex-
plicitly negated literal ¬A into a new atom A∗ not previously present in the original
program’s Herbrand Base. This way, we provide a simple method to provide semantics
to ELPs: given a 2-valued semantics S for NLPs, just transform an ELP P into an NLP
P∗ with recourse to A∗ atoms as above, and considering the models of P∗ according to
S as the Extended S models of P . If desired, P∗ can be complemented with the ICs
⊥← a,¬a, i.e., ⊥← a,a∗.

After semi-normalization, transformation and IC inclusion, the program of the example
above becomes

⊥ ← a,a∗
⊥ ← b,b∗
⊥ ← c,c∗
a∗ ← not a
a ← not a∗
b ← not c,not b∗
c ← not b,not c∗

4.2 Disjunctive Logic Programs

Definition 4.3. Disjunctive Logic Program. Disjunctive Logic Programs (DLPs)
([43, 44, 86, 94, 139, 140, 158]) are another generalization of NLPs in the sense that the
rules of a DLP are of the same form as those of NLPs, but where the heads of rules are
disjunctions of literals, i.e., rules are of the form

H1∨ . . .∨Hq←B1, . . . ,Bn,not C1, . . . ,not Cm, with q > 0 and (m,n≥ 0 and finite)

where all the Hi,Bj ,Ck are objective literals.

34

DisjLPs can also be easily transformed into NLPs via a simple syntactic operation
known as the Shifting Rule [86]. For self-containment we include its definition.

Definition 4.4. Shifting rule (adapted from def. 3.1 of [86]). Let

H1∨ . . .∨Hq←B1, . . . ,Bn,not C1, . . . ,not Cm

be a disjunctive logic rule. The shifting rule is a rewriting rule that transforms r into r′

H1∨ . . .Hi−1∨Hi+1∨ . . .∨Hq←B1, . . . ,Bn,not C1, . . . ,not Cm,not Hi

for some Hi ∈ head(r). A complete shift is a sequence of such individual shifts that results
in a normal (i.e., non-disjunctive) rule.

In [86], the shifting rule was applied to DisjLPs, but with the special care of making
sure the resulting program was stratified. This concern with stratification is related with
the guarantee of existence of stable models for the resulting program (cf. lemma 5.2 of
[86]) because the 2-valued semantics considered for the NLPs resulting from the “shifted”
DisjLPs was the Stable Models semantics which, for some non-stratified programs cannot
guarantee model existence. We overview the Stable Models semantics in detail in 6.4.1.1.

In Chapter 3 we saw that our syntactic structure of reference is the Layering, instead
of the usual Stratification. Layering readily copes with loops, and SCCs in general, and
thus non-stratification raises no problem to our approach. Likewise, as we shall see in the
sequel, our semantics framework also deals with all kinds of non-stratification precisely
because it complies with Layering. Hence, our approach to DisjLP is more general than
the one in [86] because we allow for the arbitrary application of the shifting rule producing
a highly non-stratified NLP:

Definition 4.5. Full shifting rule. Let

H1∨ . . .∨Hq←B1, . . . ,Bn,not C1, . . . ,not Cm

be a disjunctive logic rule. The full shifting rule is a rewriting rule that transforms r into
the set of rules:

35

H1 ← B1, . . . ,Bn,not C1, . . . ,not Cm,not H2, . . . ,not Hq
... ← ...
Hi ← B1, . . . ,Bn,not C1, . . . ,not Cm,not H1, . . . ,not Hi−1,not Hi+1, . . . ,not Hq
... ← ...
Hq ← B1, . . . ,Bn,not C1, . . . ,not Cm,not H1, . . . ,not Hq−1

Figure 4.1: Full shifting of a Disjunctive Logic Program.

4.2.1 Disjunctive LPs and the Intuitively Intended Meaning of Loops

The set of rules resulting from the full shifting of a disjunctive rule form a loop where each
rule in the set directly depends on all the others. Taking the inverse perspective, we can
say that loops over default negation can be seen as a way of writing some disjunctions,
and this matches the intuition described in 6.5.4. Because the semantics for NLPs that
we define in the sequel (Chapters 7 and 8) build upon the layering notions, they can
assign a meaning (at least one model) to every NLP regardless of its possible resulting
non-stratification, and, therefore, it can assign a semantics for DisjLPs when these are
transformed into NLPs via full shifting. One of the advantages of our approach is that,
because it copes with all kinds of non-stratification (loops), it is effectively applicable to
all DisjLPs transforming them into NLPs which, according to the semantics we propose
in the sequel, are guaranteed to have a meaning.

When we want to write the disjunction a∨ b, a common NLP-compatible way to do it
is by means of writing the set of two rules

a ← not b b ← not a

Likewise, if we want to write, say, the three disjunctions a∨ b, b∨ c and c∨ a we would
write the following set of six rules

a ← not b b ← not a
b ← not c c ← not b
c ← not a a ← not c

These rules are exactly the result of applying the Full shifting rule (Definition 4.5). Taking
a “reversed” perspective of the application of the Shifting Rule, we could say a NLP with
only these six rules is a representation of the three disjunctions, i.e., the intended meaning
of the six rules is in fact the three disjunctions. Determining the intended meaning of
a program is the task of a semantics, and we discuss this in Chapters 5 to 8, but since
the intuition behind the semantics we propose in Chapter 8 is based on this approach

36

of considering loops (or SCCs) as a kind of disjunction, we point that intuition out here
along with the discussion of Disjunctive LPs. This approach of considering the intended
meaning of loops (through default negated literals) is a disjunction raises the question of,
in this case, what would a program with only the three left-side rules

a ← not b
b ← not c
c ← not a

represent? Intuitively, we could interpret them a “half disjunction” since these three rules
are one half of the six rules above. Each pair of the six rules above (in a separate line)
stands for a single disjunction which is independent from another disjunction. E.g., the
two rules a← not b and b← not a gives us the choice of believing a is true, or b is true,
or both a and b are true — that is the meaning of the disjunction a∨ b. Any one of
these choices for the first disjunction is independent from the choice taken for the second
b∨c. When we have only the three left-side rules these can be interpreted as representing
a non-independent (or conditional) disjunction in the sense that, once we choose, say,
believe a is true, the truth-values of both b and c become immediately determined, i.e.,
their truth-values are non-independent of (or conditional on) the truth-value chosen for
a. Having no preferences nor priorities mechanism, in the three rules loop example above,
any one of a or b or c could be chosen to be believed in in first place thus giving rise
to three alternative solutions — we illustrate this with Example 8.1 where the literals in
that example are but a renaming of the a, b, and c herein. This is the intuition behind
the hypotheses assumption based semantics we define in Chapter 8.

Similarly to what was said previously about models for ELPs, models for DisjLPs can
be obtained by simply transforming a DisjLP P into a NLP PSR via the shifting rule
and then consider the models of PSR as the disjunctive models of P . In the case of an
Extended Disjunctive Logic Program (with both explicitly negated objective literals, and
disjunctions in the heads of rules) both transformations can be applied in sequence to
produce an NLP: the models of an EDisjLP P are the models of SN(PSR)∗.

Now that we know how to identify the structure of a (normal, or extended, or disjunctive)
logic program, we are ready to take on the task of defining a semantics for them.

Part II

Semantics for Logic Programs

5 . Basic Semantics Concepts

“Multum in parvo”
(“Much in little”)

Latin saying

We now cover the concepts of interpretation (both 2- and 3-valued ones), satisfaction,
and classical (and minimal) models; and also include two useful orderings among in-
terpretations and models. We conclude by defining what a semantics for (Constrained)
Normal Logic Programs is.

5.1 Interpretations

The notions herein presented are those in [15]. We define 2- and 3-valued Herbrand
interpretations and models of (constrained) normal logic programs. Since non-Herbrand
interpretations are beyond the scope of this work, in the sequel we sometimes drop the
qualification Herbrand.

Definition 5.1. 2-valued interpretation. A 2-valued interpretation I of an NLP P
is a set of ground literals whose atoms exhaust the Herbrand base HP of P . I.e., any
2-valued interpretation I is a set

I = I+∪ I−

where I+ ⊆HP is the set of atoms which are true in I, and I− = not (HP \I+) is the set
of negative literals of I, corresponding to the atoms false in I. These interpretations are
called 2-valued because in them each atom is either true or false, i.e. HP = I+∪|I−| and
I+∩|I−|= ∅.

As argued in [206], interpretations of a given program P can be thought of as “possible
beliefs” representing possible states of our knowledge about the meaning of P . Since that

39

40

knowledge is likely to be incomplete, we need the ability to describe interpretations in
which some atoms are neither true nor false but rather undefined, i.e. we need 3-valued
interpretations:

Definition 5.2. 3-valued interpretation. By a 3-valued interpretation I of a program
P we mean a set

I = I+∪ I−

where I+ and |I−| are disjoint subsets of the Herbrand base HP of P . The set I+ (the
true or positive part of I) contains all ground atoms true in I, the set I− (the false or
negative part of I) contains all ground negative literals with corresponding atom false in
I, and the truth value of the remaining atoms is undefined (or unknown). We sometimes
refer to the undefined atoms of I as Iu.

It is clear that 2-valued interpretations are a special case of 3-valued ones, for which
HP = I+∪|I−| additionally holds, having Iu = ∅ in consequence.

Proposition 5.1. Interpretation as function. Any interpretation I can equivalently
be viewed as a function I :HP → V where V = {0, 1

2 ,1} defined by:

I(A) =

0 if not A ∈ I−
1
2 if A ∈ Iu
1 if A ∈ I+

where I(not A) = 1− I(A).

Of course, for 2-valued interpretations there is no atom A such that I(A) = 1
2 . Actually,

I(A) = 1
2 iff A ∈ Iu, which is only the case when I is a 3-valued interpretation which is

not a 2-valued one.

5.2 Rule Satisfaction and Models

Definition 5.3. Interpretation Satisfaction. Let I be a 2-valued interpretation, and
S an arbitrary set of literals. We say that I satisfies S, written I |= S, iff I+ ⊇ S+ and
I− ⊇ S−.

Definition 5.4. Interpretation Default Satisfaction. Let I be a 3-valued interpre-
tation, and S an arbitrary set of literals. We say that I satisfies S by default, written
I |= S, iff I+ ⊇ S+ and I− ⊇ S−.

41

Proposition 5.2. Interpretation Satisfaction implies Interpretation Default
Satisfaction. I is a 2-valued interpretation and I satisfies S, then I also satisfies S by
default.

Proof. Trivial from Definitions 5.1, 5.2, and 5.3, 5.4.

Since the body of a rule is an arbitrary set of literals, we can establish a useful
relationship between an interpretation and the body of a rule:

Definition 5.5. Interpretation Satisfies Rule. We say a 3-valued interpretation I
satisfies a rule r of a program P by default, written I |= r, iff(

head(r) ∈ I+
)
∨
(
I 6|= body(r)

)

Informally, a 3-valued interpretation satisfying a rule by default means the head of the
rule is true in I or the body of the rule is not satisfied by default in I (either by having
one positive literal in the body which is not in I+, or by having a negative literal in the
body whose corresponding positive literal is in I+).

Models are defined based on the rule satisfaction by default notion:

Definition 5.6. 3-valued model. A 3-valued interpretation I is called a 3-valued
model of a program P (abbreviated as I |= P) iff for every ground instance of a program
rule r ∈ P we have I |= r.

The special case of 2-valued models has the following straightforward definition:

Definition 5.7. 2-valued model. A 2-valued interpretation I is called a 2-valued
model of a program P (abbreviated as I |= P) iff for every ground instance of a program
rule r ∈ P we have I |= r.

We also refer to 2-valued models as Classical Models (CMs) of P , and write CMP (M)
to denote M is a Classical Model of P , and CM(P) to denote the set of all Classical
Models of P .

When considering Constrained NLPs (cf. def. 3.2) models (either 2- or 3-valued ones)
must comply with the additional requirement of not including the reserved atom ⊥. I.e.,

Definition 5.8. Constrained model. An interpretation I is called a constrained
model of a Constrained NLP P = P ∪C, where C is the set of Integrity Constraints, iff I
is a model of P ∪C and ⊥ /∈ I.

42

It follows immediately from definitions 5.5 and 5.8 that a constrained model I of P ∪C
is such that I 6|= body(r⊥) for every Integrity Constraint rule r⊥ ∈ C.

When considering a paraconsistency approach, one can also be interested in paracon-
sistent models.

Definition 5.9. Constrained paraconsistent model. An interpretation I is called
a constrained paraconsistent model of a Constrained NLP P = P ∪C, where C is the set
of Integrity Constraints, iff I is a model of P ∪C and ⊥ ∈ I.

These orderings among interpretations and models will be useful:

Definition 5.10. Classical (or Truth) ordering. If I and J are two interpretations
then we say that I ≤ J if I(A) ≤ J(A) for any ground atom A. If I is a collection
of interpretations, then an interpretation I ∈ I is called minimal in I if there is no
interpretation J ∈ I such that J ≤ I and I 6= J . An interpretation I is called least in I if
I ≤ J for any other interpretation J ∈ I. A model M of a program P is called minimal
(resp. least) if it is minimal (resp. least) among all models of P .

We write MMP (M) to denote that M is a Minimal Model (MM) of P , and MM(P)
to denote the set of all MMs of P .

Definition 5.11. Fitting (or Knowledge) ordering. If I and J are two 3-valued
interpretations then we say that I ≤F J [101] iff I ⊆ J (where ⊆ is set-inclusion). If I
is a collection of interpretations, then an interpretation I ∈ I is called F-minimal in I if
there is no interpretation J ∈ I such that J ≤F I and I 6= J . An interpretation I is called
F-least in I if I ≤F J for any interpretation J ∈ I. A model M of a program P is called
F-minimal (resp. F-least) if it is F-minimal (resp. F-least) among all models of P .

Note that the classical ordering is related with the number of true atoms — one could
say it is a Truth Ordering, — whereas the Fitting ordering is related with the amount of
information, i.e. non-undefinedness — a Knowledge Ordering.

Finally, we can formally define what a semantics for Normal Logic Programs is.

Definition 5.12. Semantics for (Constrained) Normal Logic Programs. A se-
mantics S for (C)NLPs is a mapping, which assigns to every (C)NLP P a setModelsS(P)
of models of P such that ModelsS(P) =ModelsS(ground(P)), where ground(P) stands
for the Herbrand instantiation of P . We also write SP(M) to denote that M is a model
of P according to S.

43

Equipped with the understanding of the structure of NLPs and the basic semantics con-
cepts we now turn to build a general semantics framework for NLPs.

6 . Semantics Building Tools

The least of things with a meaning is
worth more in life than the greatest
of things without it.

C.G. Jung

In subsection 1.2.1 we saw that the quest for deductive reasoning with Logic Programs
spins around the central axis of semantics, i.e., answering the question “which should be
the intended models of a program?”. Determining which interpretations are considered
models is essential to both skeptical and credulous entailment, i.e., cautious and brave
deductive reasoning.
In the context of Knowledge Representation and Reasoning using Normal Logic Programs,
a semantics can be seen as a set of criteria to choose which interpretations, i.e., sets of
truth values assigned to the atoms of a program, to accept as models (cf. Definition 5.12).
This presupposes that there might be some degree of freedom in choosing the atoms’ truth
values, which immediately raises the question of what may provide or restrict such degrees
of freedom.
In this chapter we first depict some general criteria which can be used as guidelines to ac-
cept or reject as models candidate interpretations — these include the notions of support,
and set inclusion minimality. Then, we review some known syntactic methods to reduce
the set of candidate models by imposing restrictions on the degrees of freedom in choosing
truth values for atoms. Finally, we review the current State-of-the-Art semantics (both
2- and 3-valued) and outline the motivation and need for a new 2-valued semantics for
Normal Logic Programs. The contributions in this chapter stem from the research that
lead to our publications [193, 194, 196, 197, 198].

45

46

6.1 The Notion of Support

Several semantics (Minimal Models, Clark’s Completion [149], Perfect Models [207], Sta-
ble Models [113], Well-Founded Semantics [109], Default Extensions [213], etc.) agree
that whenever some interpretation I satisfies the body of a rule r (i.e., I |= body(r), cf.
Definition 5.3), then head(r) ∈ I must hold in order for I to be considered a candidate
model. This guideline mirrors the classical logic inference rule known as modus ponens:
from a known (or believed) to be true premise, and an implication with that premise as
antecedent, we must conclude (or believe in) the truth of the consequent. Formally, this
is rendered by (

∃r∈P (I |= body(r)∧head(r) /∈ I+)
)
⇒ I /∈ModelsS(P)

which is equivalent to

I ∈ModelsS(P)⇒
(
∀r∈P (I 6|= body(r)∨head(r) ∈ I+)

)
i.e. (cf. Definition 5.5),

I ∈ModelsS(P)⇒∀r∈P I |= r

where the right-hand side of the implication corresponds to the definition of classical
model (cf. Definition 5.7). So, this guideline requires that all models of a given semantics
to be classical models of the program:

I ∈ModelsS(P)⇒ CMP (I)

Some semantics take this guideline one step further and require all individual atoms
of I+ to have an individual support. Such requirement is known as classical support.

Definition 6.1. Classically Supported interpretation. An interpretation I is clas-
sically supported iff for every atom A∈ I+ there is some rule r ∈ P with head(r) =A such
that I |= body(r). When I is a 2-valued interpretation, this notion of support requires all
the literals in the body of some rule for A (even when trivially so because there are none)
to be true under I in order for A to be classically supported in I, because |I| exhausts
HP . In this case we also say r and A are classically supported.

There may also exist classical models (CMs) which are not classically supported as
the former (Definition 5.7) does not imply the latter (Definition 6.1), while the inverse
implication holds. For this reason, there might also be cases where some non-classically
supported CMs may be accepted as models by a semantics (e.g., as it happens with simple
Minimal Models semantics). Nonetheless, the classical notion of support has been consid-
ered by several LP semantics as a sine qua non condition for their models. The classical

47

support requirement, however, has its drawbacks as, namely, it may prevent model exis-
tence altogether. For example, the program with just the rule a← not a has no classically
supported model, though it has a minimal one. This hints that the classical support
notion might be too restrictive and that a slightly more relaxed notion of support may be
necessary to allow for model existence guarantee. In fact, if a semantics only accepts as
models classically supported interpretations it risks missing some useful theoretical prop-
erties (besides model existence) with practical implementations consequences as we shall
see below, in Section 6.5. For example, model existence guarantee is an indispensable
condition for, say, Relevance (cf. 6.5.5.2).

We now introduce a slightly more relaxed notion of support, that of layered support,
which is in accordance with the Layering notions of Chapter 3 with recourse to the body(r)
notation presented at the end of subsection 3.2.11 in page 29.

Literals in body(r) are, by definition, not in loop with r and hence the rules for those
literals are necessarily placed in layers strictly lower than that of r. Notice that, e.g., in
a rule r = a← a, we have body(r) = ∅, i.e., the part of the body in loop includes the atom
a which, in this case, coincides with the head of the rule, thus leaving the set of literals
of body(r) not in loop — body(r) — empty.

Definition 6.2. Layer Supported interpretation. We say an interpretation I of
P is layer supported iff every atom a of I is layer supported in I. Given a NLP P and
some interpretation I with atom a ∈ I, we say a is layer supported in I iff there is some
rule r in P with head(r) = a such that I |= body(r). Likewise, we say the rule r is layer
supported in I iff I |= body(r).

The notion of layered support requires that all body(r) literals be true under I in order
for head(r) to be layer supported in I. Hence, if body(r) is empty, r is ipso facto layer
supported.

Proposition 6.1. Classical Support implies Layered Support. Given a NLP P ,
an interpretation I, and an atom a such that a ∈ I, if a is classically supported in I then
a is also layer supported in I.

Proof. Knowing that, by definition, body(r)⊆ body(r) for every rule r, it follows trivially
from Definitions 6.1 (classical support) and 6.2 (layered support), that a is layer supported
in I if a is classically supported in I.

1The current notion of layered support is the product of a series of evolving steps previously published
[193, 194, 196, 197].

48

6.2 Minimality

Set inclusion minimality (which refers to Definition 5.10) is also usually a guideline in
restricting which interpretations can be accepted as models. Seeing models as sets of
beliefs, whole model minimality can be understood as a form of skepticism in the sense
that it would correspond to minimality of beliefs.

When performing abductive reasoning, for example, (cf. subsection 1.2.3 and Chap-
ter 10), typically minimality is not strictly required of abductive solutions. Abduction can
be modeled in Logic Programming, and in particular with ASP [65, 108, 142, 205, 237] sys-
tems, via NLP rules; i.e., an originally abductive LP can be syntactically transformed into
a regular NLP (cf. Section 10.1) to be used under some LP system without any specific
abduction mechanisms. In this sense, there is no fundamental difference between an NLP
and an abductive LP, just as there is no fundamental difference between deductive and
abductive reasoning (cf. Chapter 10), once suitable corresponding NLP representations
are employed.

When we envisage models of a program as a set of hypotheses (akin to abduction)
plus the consequences they entail via the rules of the program, the maximal skepticism
principle can be seen as applicable only to the set of hypotheses, i.e., the minimality
requirement aims at minimal sets of hypotheses, not necessarily minimal sets of conse-
quences. The motivation behind minimality is the Ockham’s razor principle mentioned
in 1.2.3, which is concerned with making the “fewest assumptions” possible. Taking this
approach one now needs to identify the set of assumable hypotheses — we do this in Chap-
ter 8. The best known and used semantics (review in Section 6.4) require whole model
minimality which makes no distinction between hypotheses and consequences because, for
minimal models, minimality of hypotheses and minimality of consequences coincide. In
this thesis we make the distinction clear and require minimality of hypotheses alone — in
Chapter 8 we define the new Minimal Hypotheses semantics based on this approach.

The minimality requirement is usually applied to the whole model, but we take a
hypotheses assumption perspective to semantics (akin to abduction), where we consider
the truth-value of some literals as potentially assumable hypotheses. Under this setting,
models of the semantics are the sets of assumed hypotheses plus the consequences they
entail (as long as they result in a classical model), and thus the minimality (skepticism)
principle should be applied to the set of assumed hypotheses and not necessarily to the
whole model — whole model minimality can be imposed as an optional additional require-
ment if so desired, with attending cost. We fully explore the minimality of hypotheses
semantics path in Chapter 8.

These two possibilities of minimality (of the assumed hypotheses set, and of the whole

49

model including the hypotheses and their consequences) are not exclusive and indeed they
can be both required, although, in that case, with possibly an increased level of complexity
in reasoning tasks.

6.3 Syntactic-based Restrictions on Models

The syntactic structure of a program can be used to restrict the truth-values of literals in
the program. This is especially true for Definite and for Locally Stratified Logic Programs
where the truth-values of all literals in the program are unambiguously determined simply
by the syntactic structure of the program’s rules.

6.3.1 Definite Logic Programs

The seminal paper [96] showed that the semantics of definite programs, where only positive
literals can be used to write rules, should single out one model: the least Herbrand model
(also known as simply the “least model”), known to be both classically supported (cf.
Definition 6.1) and set inclusion minimal (cf. Definition 5.10 and Section 6.2).

One way to calculate the least model of a definite ground program is by means of
the T operator by Van Emden and Kowalski [96]. For self-containment, we include the
formal definition of the T operator, original from [96], but presented here according to
the notation of [246] more similar to our overall notation.

Definition 6.3. T operator [96, 246]. Let P be a definite and ground Normal Logic
Program, and I an interpretation of P .

TP (I) = {head(r) : r ∈ P ∧ body(r)⊆ I}

The T operator returns the set of the heads of rules of P whose bodies are true in I. It
follows immediately that TP (I) can be equivalentely defined as

TP (I) = {head(r) : r ∈ P ∧ (body(r)\ I) = ∅}

or as
TP (I) = facts({head(r)← (body(r)\ I) : r ∈ P})

i.e.,
TP (I) = T{head(r)←(body(r)\I):r∈P}(∅)

The T operator is called the immediate consequences operator because it allows us to
extract the consequences of assuming I true in P .

50

The upward powers of TP starting from an interpretation I are defined as follows:

T 0
P (I) = I

T i+1
P (I) = TP (T iP (I)), for i≥ 0
TωP (I) =

⋃
i≥0

T iP (I)

The least Herbrand model of a definite ground NLP P is the Least Fixed Point of the
T operator applied to P , i.e., lfp(TP) = TωP (∅). It follows immediately from this definition
and the monotonic character of the TP operator that the ⊆ relation is a well-founded total
order of the set {TαP (∅) : 0≤ α}.

It is worthwhile noticing that the lfp(TP), being equal to TωP (∅), is a strict superset of
the empty set ∅ iff there are facts in P ; i.e., if the ≤ dependency relation between layers
of P (cf. Definition 2.11) is well-founded, or, equivalently, if not all rules of P have a
transfinite number of layers below them.

By definition of fixed point it also follows that lfp(TP) =TωP (∅) =Tω+1
P (∅) =TP (TωP (∅)) =

T{head(r)←(body(r)\TωP (∅)):r∈P}(∅) = facts({head(r)← (body(r)\TωP (∅)) : r ∈ P}).

From a computational perspective, the calculus of lfp(TP) = TωP (∅) by iterating cu-
mulative applications of the TP operator can be viewed as a syntactic incremental process
of establishing semantic information; in this particular case, the least Herbrand model of
P .

6.3.2 Locally Stratified Logic Programs

In [207] Przymusinski defined the class of locally stratified programs and showed it to be
a superset of the class of stratified programs. Lemma 4.1 of [41] shows that a “program P
is locally stratified if, and only if, the negative dependency relation of P is well-founded.”
As it is well-known, a relation is said to be well-founded iff 1) it is acyclic; and 2) it has
finitely long descending chains only. This means that locally stratified programs have no
loops over default negated literals (DNLs), nor do they have infinitely long descending
chains over DNLs (cf. Example 3.5). Moreover, also in [207], Przymusinski defined the
perfect model semantics and showed that every locally stratified program has a unique
perfect model, being a classically supported minimal model of P . Later (theorem 6.1 of
[109]) it was shown that, for locally stratified programs, the perfect model coincides with
the Well-Founded Model (we overview the Well-Founded Semantics and its Well-Founded
Model in more detail in 6.4.2.1). In this context, the uniqueness of model of P is enough
to say that, from a model-theoretic perspective, locally stratified logic programs are as

51

semantically determined (only allowing for one model) as definite programs. From this
we can conclude that the only possible source of existence of several alternative models
for a program rather than just one, relies on there existing loops over DNLs.

Intuitively, locally stratified programs are programs with no SCCs over DNLs in their
ground version, and for this particular class of programs the following theorem holds
trivially.

Theorem 6.1. Layered Support implies Classical Support for Acyclic Pro-
grams. Let P be an acyclic logic program, I an interpretation, and a ∈ I an atom. If a
is layer supported in P , then a is also classically supported, and vice-versa.

Analogously to what happens with definite logic programs, one can hence calculate the
unique model for a locally stratified LP by means of an alternative deterministic operator:
the program Remainder one (denoted by P̂), which was defined in [45] for calculating the
Well-Founded Model and, as said above, coincides with the unique perfect model for
locally stratified LPs. The Remainder can thus be seen as a generalization for NLPs of
the T operator, the latter applicable only to the subclass of definite LPs.

6.3.2.1 Program Remainder operator

For self-containment, we include here the definitions of [45] upon which the Remainder op-
erator relies, and adapt them where convenient to better match the syntactic conventions
used throughout this thesis.

Definition 6.4. Program transformation (def. 4.2 of [45]). A program transfor-
mation is a relation 7→ between ground logic programs. A semantics S allows a transfor-
mation 7→ iff ModelsS(P1) =ModelsS(P2) for all P1 and P2 with P1 7→ P2. We write 7→∗
to denote the fixed point of the 7→ operation, i.e.,

P 7→∗ P ′ where @P ′′ 6=P ′P ′ 7→ P ′′

Definition 6.5. Positive reduction (def. 4.6 of [45]). Let P1 and P2 be ground
programs. Program P2 results from P1 by positive reduction (P1 7→P P2) iff there is a rule
r ∈ P1 and a negative literal not b ∈ body(r) such that b /∈ heads(P1), i.e., there is no rule
for b in P1, and P2 = (P1 \{r})∪{head(r)← (body(r)\{not b})}.

Definition 6.6. Negative reduction (def. 4.7 of [45]). Let P1 and P2 be ground
programs. Program P2 results from P1 by negative reduction (P1 7→N P2) iff there is a
rule r ∈ P1 and a negative literal not b ∈ body(r) such that b ∈ facts(P1), i.e., b appears
as a fact in P1, and P2 = P1 \{r}.

52

The negative reduction of [45] is consistent with the classical notion of support, but
not with the layered one. Therefore, we introduce now a layered version of the negative
reduction operation.

Definition 6.7. Layered negative reduction. Let P1 and P2 be ground programs.
Program P2 results from P1 by layered negative reduction (P1 7→LN P2) iff there is a rule
r ∈ P1 and a negative literal not b ∈ body(r) such that b ∈ facts(P1), i.e., b appears as a
fact in P1, and P2 = P1 \{r}.

This more cautious layered negative reduction has a direct translation (cf. Propo-
sition 3.5) to deleting the rules that depend on the negation of a fact only if there are
no other rules in loop with it, i.e., the negation of the fact is in the part of the body
determined by rules of layers strictly below that of the rule being deleted.

Proposition 6.2. Layered negative reduction deletes at most the same rules
as Negative reduction. Let P be an NLP, and P 7→LN PLN , and P 7→N PN . Then,
PLN ⊇ PN .

Proof. Trivial from Definitions 6.6, and 6.7.

Proposition 6.3. Layered negative reduction adds only polynomial complexity
to Negative Reduction.

Proof. The Rule Layering can be calculated in polynomial time since it is equivalent to
identifying the SCCs in a graph [235], in this case, CRG(P). Once having the Rule
Layering, the Atom Layering can be calculated in linear time.

Once both Rule and Atom Layerings of a given P are established, the body(r) and
body(r)Lf(r) subsets of body(r), for each rule r, are identifiable in linear time — one needs
to check just once for each literal in body(r) if it is also in body(r) or in body(r)Lf(r).

Therefore, these polynomial time complexity operations are all the added complexity
Layered negative reduction adds over regular Negative reduction.

Definition 6.8. Success (def. 5.2 of [45]). Let P1 and P2 be ground programs.
Program P2 results from P1 by success (P1 7→S P2) iff there are a rule r ∈ P1 and a fact
b ∈ facts(P1) such that b ∈ body(r), and P2 = (P1 \{r})∪{head(r)← (body(r)\{b})}.

It is easy to see that, when P is a definite program, the Success operation is closely
related to the T operator (Definition 6.3) in the sense that

TωP (∅) = facts(PS), where P 7→∗S PS

53

Definition 6.9. Failure (def. 5.3 of [45]). Let P1 and P2 be ground programs.
Program P2 results from P1 by failure (P1 7→F P2) iff there are a rule r ∈ P1 and a
positive literal b ∈ body(r) such that b /∈ heads(P1), i.e., there are no rules for b in P1, and
P2 = P1 \{r}.

Definition 6.10. Loop detection (def. 5.10 of [45]). Let P1 and P2 be ground
programs. Program P2 results from P1 by loop detection (P1 7→L P2) iff there is a set A
of ground atoms such that

1. for each rule r ∈ P1, if head(r) ∈ A, then body(r)∩A 6= ∅,

2. P2 := {r ∈ P1|body(r)∩A= ∅},

3. P1 6= P2.

We are not entering here into the details of the loop detection step, but just taking
note that 1) such a set A corresponds to an unfounded set (cf. [109]); 2) loop detection
is computationally equivalent to finding the SCCs [235] in the ERG(P) graph, as per
Definition 3.5, and is known to be of polynomial time complexity; and 3) the atoms in the
unfounded set A have all their corresponding rules involved in loops (cf. Definition 2.7)
where all heads of rules in loop appear positive in the bodies of the rules in loop.

Example 6.1. Loop detection and elimination. Let P =

a ← b,c
b ← a
c

Then, applying the loop detection operation 7→L to P we obtain P ′ =

c

The loop detection is finding and deleting the loop over the rules a← b,c and b← a because
all the heads of the rules forming the loop appear as positive literals in the bodies of the
loop’s rules — for this reason we call this a positive loop. The unfounded set A as per
Definition 6.10 above is A= {a,b}.

From a philosophical or argumentation-theoretic perspective, the loop detection trans-
formation corresponds, grosso modo, to detecting and eliminating positive self-referential
arguments which are not unlike the begging the question fallacy. [2] defines the Begging
the Question argumentation fallacy as

54

“A form of circular reasoning in which a conclusion is derived from premises
that presuppose the conclusion.”

In essence, the loop detection transformation detects such positive-self-referential sets of
rules and discards them as a means to support belief in the consequents (heads) of the
rules involved.

Definition 6.11. Reduction (def. 5.15 of [45]).
Let 7→X denote the rewriting system: 7→X :=7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L.

Definition 6.12. Layered reduction.
Let 7→LX denote the rewriting system: 7→LX := 7→P ∪ 7→LN ∪ 7→S ∪ 7→F ∪ 7→L.

Lemma 6.1. Layered reduction deletes at most the same rules as Reduction.
Let P be an NLP, and P 7→LX PLX , and P 7→X PX . Then, PLX ⊇ PX .

Proof. From Definitions 6.11, and 6.12 we know that the only difference between 7→X

and 7→LX relies on the 7→N and 7→LN individual transformations. From Proposition 6.2
we know that, for every program P , P 7→LN PLN , and P 7→N PN , PLN ⊇ PN holds.
Therefore, having P 7→LX PLX and P 7→X PX , we conclude PLX ⊇ PX .

Definition 6.13. Remainder (def. 5.17 of [45]). Let P be a program. Let the
program P̂ satisfy

1. ground(P) 7→∗X P̂ ,

2. P̂ is irreducible w.r.t. 7→X , i.e., there is no P ′ 6= P̂ with P̂ 7→X P ′.

Then P̂ is called the remainder of P , and is guaranteed to exist and to be unique to P .
Moreover, the calculus of 7→∗X is known to be of polynomial time complexity [45]. When
convenient, we write Rem(P) instead of P̂ .

Lemma 5.18 of [45] shows that “Every program P has a program remainder, i.e., the
rewriting system 7→X is terminating.” Also important is Corollary 5.22 of [45] showing
that “The rewriting system 7→X is confluent and the program remainder P̂ is the unique
normalform of ground(P) w.r.t. 7→X .”

Definition 6.14. Layered Remainder. Let P be a program. Let the program P̊
satisfy

1. ground(P) 7→∗LX P̊ ,

55

2. P̊ is irreducible w.r.t. 7→LX , i.e., there is no P ′ with P̊ 7→LX P ′.

Then P̊ is called a layered remainder of P . Since P̊ is equivalent to P̂ , apart from the
difference between 7→LN and 7→N , it is trivial that P̊ is also guaranteed to exist and to be
unique for P . Moreover, the calculus of 7→∗LX is likewise of polynomial time complexity
because 7→LN is also of polynomial time complexity. When convenient, we write LRem(P)
instead of P̊ .

The Layered Remainder differs from the Remainder only the application of the Lay-
ered Negative Reduction instead of the Negative Reduction. Since the Layered Negative
Reduction is but a conditional application of the Negative Reduction, by the same token,
the rewriting system 7→LX is also confluent and the program layered remainder P̊ is the
unique normalform of ground(P) w.r.t. 7→LX .

Example 6.2. P̊ versus P̂ . Let P be

a ← not b
b ← not c
c ← not a
a

We can clearly see that the single fact rule is in layer 1 and that the remaining three rules
forming the loop are in layer 2 (because they all depend on the fact rule a which, in turn,
does not depend on any other rule).

P̂ is the fixed point of 7→X , i.e., the fixed point of 7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L.
Since a is a fact, the 7→N (Negative reduction — Definition 6.6) transformation deletes
the c← not a rule; i.e., P 7→N P ′ is such that P ′ =

a ← not b
b ← not c
a

Now in P ′ there are no rules for c and hence we can apply the 7→P (Positive reduction
— Definition 6.5) transformation which deletes the not c from the body of b’s rule; i.e,
P ′ 7→P P

′′ where P ′′ =
a ← not b
b
a

Finally, in P ′′ b is a fact and hence we can again apply the 7→N obtaining P ′′ 7→P P
′′′

where P ′′′ =
b
a

56

upon which no more transformations can be applied, therefore P̂ = P ′′′.

On the other hand, P̊ is the fixed point of 7→LX , i.e., the fixed point of 7→P ∪ 7→LN

∪ 7→S ∪ 7→F ∪ 7→L. To calculate P̊ the only applicable transformation is the 7→LN (Lay-
ered negative reduction — Definition 6.7) — which can potentially affect the c← not a
rule because there is a fact rule a.
However, the c← not a rule also depends on the a← not b rule which depends (indirectly
through the b← not c rule) on the c← not a;
therefore we have body(c←not a) = bodyLf(c←not a)(c←not a)∪body(c← not a) = {not a}∪
∅, i.e., body(c← not a) = ∅.
This means that the Layered negative reduction transformation, which considers only the
body(c← not a) part of the rule’s body, in this case, has no effect leaving the c← not a
rule intact.
Since there are no more applicable transformations of the Layered reduction, we end up
with P̊ = P , quite different from P̂ , because the Layered Remainder respects Layered
Support.

Lemma 6.2. The rules of the Remainder are “sub-rules” of the Layered Re-
mainder. Let P be an NLP. Then, ∀

r∈P̂∃r′∈P̊ (head(r) = head(r′)∧body(r)⊆ body(r′)).

All the individual transformations of both the Remainder and Layered Remainder
operators are patently deterministic: they rely solely on the irrefutable truth of facts;
the falsehood of atoms with no rules, and of those that uniquely depend positively on
themselves; and propagate those deterministically known truth-values to all the rules
that depend on them. As a consequence of the deterministic nature of the simplifications
performed by both the Remainder and Layered Remainder, it turns out that all the heads
of rules of P̂ , respectively P̊ , that are not simply facts correspond to literals whose truth-
value is not determinable by the truth of facts and falsehood of atoms with no rules
(or only positive self-referential rules) alone. For locally stratified programs all literals
become determined via Remainder P̂ , but this is not true in general for arbitrary normal
logic programs.

6.3.3 Full-fledged Normal Logic Programs

The results from the previous subsections 6.3.1 and 6.3.2 show that, in what NLPs in gen-
eral are concerned, the unique source of semantic model indeterminism (allowing for more
than one acceptable model) must come from non-well-founded negative dependencies, i.e.,
when the NLP has loops over DNLs, or a transfinite number of layers with negative de-
pendencies between rules of those layers (cf. Example 3.5). Under these circumstances
DNLs may be envisioned as assumable hypotheses, or free choices, as proposed by [129].

57

In fact, it is precisely the non-stratification of DNLs that takes away the determinism
in the truth-value assignment to literals allowing, in general, for several 2-valued models
for the program.

Several attempts at finding the “right” 2-valued semantics have been made in the
past decades, i.e., which 2-valued interpretations to accept as models, and one of the
major concerns with those attempts was precisely how to deal with non-stratified default
negation. We now review the most successful 2-valued and 3-valued approaches so far.

6.4 State of the Art Semantics

Over the past few decades the scientific community dedicated to knowledge representation
and reasoning problems has developed a number of different semantics for Logic Programs.
In fact, the history of the semantics for LPs has been one of successive attempts at
providing a 2-valued consistent semantics for all NLPs. The process of defining a semantics
has been guided by both the classical notion of support for rules and the minimality of
models. However, when dealing with cases like some kinds of loops and transfinite number
of Layers, the classical notion of support leads to unintuitive results. Some attempts to
circumvent such undesired results resorted to the third logical truth-value, the undefined.
In some cases a 3-valued semantics is actually desired and useful, but it is not an acceptable
solution when a 2-valued semantics is what one really needs.

2-valued semantics — like the Minimal Models [38], Clark’s Completion [60], Perfect
Models [207], and the Stable Model [113], amongst others — strive to achieve the most
complete information possible, assigning a truth-value to every atom, if possible. But in
spite of their effort and insistence, none have been able to provide a semantics to every
NLP.

3-valued semantics — like the Well-Founded Semantics [109] — sacrifice complete
true-or-false information about every atom in favor of some desirable properties that
some 2-valued semantics lack. The 3-valued semantics also assign a truth-value to every
atom — in some cases the truth-value is undefined.

There are also other approaches, including multi-valued logics. Some of these multi-
valued logics semantics tend to enter the realms of probabilistic reasoning, fuzzy-logic
[154, 159] or other similar domains; while others consider several logical values due to the
nature of the specific problem they are used to solve [27]. We leave this class of multi-
valued/probabilistic/fuzzy logics outside the scope of this thesis as we are here focusing
on Normal Logic Programs.

58

6.4.1 Two-Valued Semantics

There are several 2-valued proposals for semantics of Logic Programs: Minimal Models,
Clark’s Completion, Stable Models, are some of the best well-known examples.

Generally accepted by the scientific community working on 2-valued semantics for
Logic Programs as the de facto standard, the Stable Models semantics [113] gives exactly
the results one intuitively expects in most cases.

6.4.1.1 Stable Models

The semantics of Stable Models (SM) [113] is a cornerstone for the definition of some
of the most important results in logic programming of the past more than two decades,
providing an increase in logic programming declarativity and a new paradigm for program
evaluation.

Definition 6.15. Stable Model ([113]). In their famous paper presenting Stable
Models, Michael Gelfond and Vladimir Lifschitz defined a method to check if an interpre-
tation M is a Stable Model of a Normal Logic Program P . This method is enounced in
three steps:

1. Calculate a transformed NLP P/M by deleting from P all rules r having not A ∈
body(r), where A ∈M+. Then delete from all other rules all the remaining default
literals. This step is known as the Program division P/M . In a more compact
manner,

P/M = {head(r)← body(r)+ : r ∈ P ∧ (|body(r)−|∩M+) = ∅}

2. Since P/M is negation-free it has a unique Least Herbrand Model which we can
calculate through the iteration of the van Emden and Kowalski’s T operator [96].
The Least Model is the Least Fixed Point of the T operator applied to P/M , i.e.,
lfp(TP/M) = TωP/M (∅).

3. Check if M+ equals the calculated Least Model of the transformed Program.
M is a Stable Model of P iff M+ = TωP/M (∅).

In this document we also use an alternative notation for TωP/M (∅), which is ΓP (M).
M is thus an SM of P iff M+ = ΓP (M). For any interpretation I, we consider Γ0

P (I) = I,
and Γn+1

P (I) = ΓP (ΓnP (I)).

59

Intuitively, the first two steps of the method described above in Definition 6.15 can
be envisioned as calculating the consequences of the rules in P , according to the classical
notion of support, assuming true the atoms in M and all the others false. I.e., ΓP (M)
is the set of those classically supported consequences. It is also worth noticing that, by
definition of SM, requiring M+ = TωP/M (∅) implies requiring M+ to be a well-ordered
set in the sense pointed out after Definition 6.3 (T operator). Moreover, SMs obeys the
Closed World Assumption (CWA), whereby atoms without rules will be false, thereby
maximizing falsity whenever there is that particular absence of rule option. Alternatively
and equivalently, one could say that it minimizes truth in such cases. This remark will
become valuable as a point of view, when further on we will speak of minimizing positive
hypothesis as a means to deal with loops over default negated literals.

The SM semantics enjoys a set of properties, namely: 1) every SM is a minimal model;
2) every SM is classically supported (Definition 6.1); and 3) the definition of SM is very
simple: it only resorts to a fixed point of the Γ operator. On the other hand, there are
quite a few useful properties the SM semantics lacks, namely: 1) guarantee of model ex-
istence for every NLP; 2) relevance; 3) cumulativity.
The formal definition of these properties can be found in subsection 6.5.5. For now we
stay with their intuitive meaning and the possibilities they open for semantics who enjoy
them: relevance means that the truth of a literal can be determined considering solely
the rules it syntactically depends upon, and cumulativity means that the whole semantics
of the program remains unchanged if atoms known to be true are added as facts (akin
to storing lemmas). The lack of these properties somewhat reduces SMs applicability in
practice2, namely regarding local knowledge reasoning (cf. subsection 1.3.2) and abduc-
tive reasoning (mentioned in Section 1.2 and explored in detail in Chapter 10), creating
practical difficulties in required computational processing. Top-down query-solving, a
form of local knowledge reasoning, is not possible under SM semantics precisely because
it does not enjoy the relevance property — and also because it does not guarantee the
existence of a model. In this local form of reasoning, there is no need to compute whole
models, like SM implementations do, but just the part of models that sustain the answer
to the query. Relevance would ensure these could be extended to whole models.

Example 6.3. Stable Models semantics misses Relevance and Cumulativity.
Consider the program P =

c← not c

c← not a

a← not b b← not a

2In [68] the authors stress the importance of the cumulativity property and define an alternative more
credulous version of this property (dubbing it Extended Cumulativity — ECM, for short). They also show
that the SM semantics enjoys ECM although it does not enjoy cumulativity.

60

This program’s unique SM is {b,c}, therefore both b and c are in the intersection of the
models, i.e., the SM semantics considers both b and c as true. However, P ∪ {c} has
two SMs {a,c}, and {b,c} rendering b no longer true in the SM semantics, which is the
intersection of its models. This demonstrates that SM semantics lacks Cumulativity (cf.
formal definition of cumulativity in Definition 6.36). Informally, Cumulativity means that
any atom in the intersection of models can be added to the program as a fact without
changing that intersection. Also, though b is true in P according to SM semantics, b is
not true in RelP (b) = {a← not b; b← not a}, which shows SM semantics lacks Relevance
(cf. formal definition of relevance in Definition 6.30). Informally, Relevance means that
the truth-value of any atom in the intersection of models can be found by taking in
consideration just the relevant rules (in the call-graph) for that atom.

Moreover, a simple program like simply the rule a←not a has no SMs whatsoever, thus
proving the SM semantics lacks guarantee of model existence. In fact, the SM semantics
community uses this inability of SMs to assign a semantics in some cases where these
kinds of Loops are part of the program as a means to impose Integrity Constraints. E.g.,
writing rules such as a← not a,X, with no other rule for a. Here, the loop (with an
odd number of default negated literals) over a prevents any interpretation considering X
true from being stable according to (i.e., a fixed-point of) the Γ operator. Since the SM
semantics cannot provide a semantics to this rule whenever X holds, this type of loop is
used as IC. When writing such ICs under SMs one must be careful and make sure there
are no other rules for a. But the really unintuitive thing about this kind of IC used under
SM semantics is the meaning of the atom a. What does a represent? a is nothing but an
artificially introduced and reserved atom in order to write an IC. It has no meaning in
itself, nor does it represent any concept present in the knowledge being modeled.

A number tools like SModels [166], DLV [59], or Clasp [108] (amongst many others) are
currently used to efficiently compute whole models according to the SM (or Answer-Set —
AS) semantics. Given the lack of relevance of SM semantics, whole model computation is
the only possible way to answer a query. Moreover, SM-based whole model computation
can only take place on a fully grounded program, thereby requiring SM implementations
to ground every rule with every possible combination of values for the variables. This
grounding step is itself a major source of computational effort. In fact, there are even
competitions for finding the most efficient grounder for SM-based systems. Once more,
whole program grounding is necessary because the SM semantics lacks relevance, even
when the user is not interested in finding a model for the whole program, but just in
finding an answer to a query not involving the whole program. With some other 2-valued
semantics enjoying relevance only the relevant part for a query would be ground, and this,
depending on the proportion of the relevant part versus the whole program, may have a
significant impact on the performance of practical implementations and tools.

61

Furthermore, in an abductive reasoning situation with SM semantics, finding an ab-
ductive answer to a query requires computing a whole model which entails pronouncement
about every abducible whether or not it is relevant to the query at hand, and subsequently
filtering the irrelevant ones. If the underlying semantics being used — other than the SMs
— enjoys the relevance property, one can simply use a top-down proof-procedure (à la
Prolog), and abduce by need. In this second case, the user does not pay the price of com-
puting a whole model, nor the price of abducing all possible abducibles or their negations,
and then filtering irrelevant ones, because the only abducibles considered will be those
needed to answer the query.

The core reason SM semantics lacks all of these three properties (guarantee of model
existence for every NLP; relevance; and cumulativity) is that the well-foundedness of
classical support condition it imposes on models is impossible to be complied with on some
programs with loops (Definition 2.6), or a transfinite number of layers (as in Example 3.5).
Therefore, a 2-valued semantics guaranteeing model existence must not require classical
support, but it may resort to the more relaxed and sensible version of layered support.
And more sensible because it allows for solutions to all self-supporting loops over negation,
as we shall see.

6.4.2 Three-Valued Semantics

3-valued semantics usually have an elegant solution for most of the problems the 2-valued
semantics suffer: the undefined truth-value. By using a third unknown, or undefined,
truth-value, rules like a ← not a are neatly catered for. On the domain of 3-valued
semantics, the Well-Founded Semantics is by far the most generally accepted and used
one. In [21] it has been formally extended to embrace abduction.

6.4.2.1 Well-Founded Semantics

We can say the Well-Founded Semantics [109] (WFS for short) is to 3-valued semantics
as Stable Models is to 2-valued semantics: they both consider as models the classically
supported interpretations. However, the WFS has some highly desirable properties which
SMs lack; namely, guarantee of model existence, Relevancy and Cumulativity. All of these
properties are enjoyed by the WFS because it assigns a semantics to rules like a← not a
and all other loops and also to Transfinite Support Chains, as in the case of Example 3.5.
The WFS does so by resorting to the undefined truth-value. Moreover, the WFS has only
one Model — the Well-Founded Model (WFM) — whereas the Stable Models can have
several. However, the WFS in turn does not always produce a 2-valued model, though

62

for specific applications these may be desired, nor guarantees 2-valued model existence.

Definition 6.16. Well-Founded Model ([109]). The WFS was defined in [109] and
has been studied and characterized in many ways. It being a 3-valued model we can
denote the Well-Founded Model (WFM) of a program P as

WFM(P) =<WFM+(P),WFMu(P),WFM−(P)>

whereWFM+(P) denotes the set of atoms of P considered true in the WFM,WFMu(P)
denotes the set of atoms of P considered undefined in the WFM, andWFM−(P) denotes
the set of atoms of P considered false in the WFM.

We now recall two convenient and equivalent definitions of the WFM. One definition,
taking advantage of the already defined ΓP operator (Definition 6.15) used for the defi-
nition of Stable Model, is given in [37]: the WMF+(P) is the least fixed point of the Γ2

P
operator (lemma 3 of [37]) — where Γ2

P (I) = ΓP (ΓP (I)), — and all the other components
of the WFM are defined using WFM+(P) as a basis. I.e.,

WFM+(P) = lfp(Γ2
P) = (Γ2

P)ω(∅)
WFM+u(P) = ΓP (WFM+(P)) — (lemma 2 of [37])
WFMu(P) = WFM+u(P)\WFM+(P) = ΓP (WFM+(P))\WFM+(P)
WFM−(P) = HP \WFM+u(P)

where HP is the Herbrand Base of P .

The other alternative definition of WFM, theorem 5.19 of [45], resorts to the program
Remainder transformation (cf. Definition 6.13) as follows:

WFM+(P) = facts(P̂)
WFM+u(P) = heads(P̂)
WFMu(P) = WFM+u(P)\WFM+(P) = heads(P̂)\facts(P̂)
WFM−(P) = HP \WFM+u(P) =HP \heads(P̂)

It follows immediately from both alternative definitions that facts(P̂) = (Γ2
P)ω(∅) and

heads(P̂) = ΓP (facts(P̂)).

WFS enjoys the properties of relevance, cumulativity, guarantee (and uniqueness) of
model existence. Moreover, [45] shows that computing the WFM has polynomial time
complexity, and [232] hints that in some cases it can even be computed in linear time (in
particular, when there are no SCCs in the ERG(P) and, therefore, no need to perform

63

the “loop detection–elimination of unfounded sets” step which is the only step of P̂ with
a higher-than-linear complexity) [232].

The XSB-Prolog system [219] actually implements an incremental version of the Pro-
gram Remainder operator via the special predicate get_residual/2. The “get_residual”
naming comes from the fact that, originally and for efficiency reasons, this predicate
computed only the Program Residual, not the Program Remainder. In a nutshell, the
difference between the Program Residual and the Program Remainder is that the former
does not perform the loop detection, but resorts to program unfolding of positive liter-
als and deletion of tautologies (rules that have head(r) ∈ body+(r)). Further details on
the differences between these operators can be found in [45]. In [232] and Section 11.1
we describe our contribution to the implementation of the loop detection mechanism in
XSB-Prolog.

The extension of WFS to Extended Logic Programs (ELPs) became known as WFSX
[176] — Well-Founded Semantics with eXplicit negation. Taking the extension process
one step further, a para-consistent version of the WFSX — the WFSXp [72] — has also
been defined. Under this new semantics, even if an atom and its explicit negation are
both true in the model, the truth-value of all atoms that do not depend on any of those
contradictory ones is not affected. Para-consistent Logic Programs [6] has been a fruitful
area of research and this could be an interesting possibility for future work under the
new semantics we propose in the sequel. As mentioned before, the abductive extension of
WFS is covered in [21].

6.4.2.2 Layered Well-Founded Semantics

Since one definition of the Well-Founded Model (theorem 5.19 of [45]) is based upon the
Program Remainder operator (Definition 6.13) we can mutatis mutandis define a lay-
ered version of the Well-Founded Semantics based upon the Layered Program Remainder
operator (Definition 6.14).

Definition 6.17. Layered Well-Founded Model. The Layered WFS is a 3-valued
semantics with the Layered Well-Founded Model (LWFM) of a program P being defined
as

LWFM(P) =< LWFM+(P),LWFMu(P),LWFM−(P)>

where

64

LWFM+(P) = facts(P̊)
LWFM+u(P) = heads(P̊)
LWFMu(P) = LWFM+u(P)\LWFM+(P) = heads(P̊)\facts(P̊)
LWFM−(P) = HP \LWFM+u(P) =HP \heads(P̊)

Theorem 6.2. The Layered Well-Founded Model is more skeptical than the
Well-Founded Model. Let P be an NLP. Then

LWFM+(P) ⊆ WFM+(P)∧
LWFMu(P) ⊇ WFMu(P)∧
LWFM−(P) ⊆ WFM−(P)

Taking a 3-valued interpretation perspective of both the WFM and LWFM, we have(
LWFM+(P)∪LWFM−(P)

)
≤F

(
WFM+(P)∪WFM−(P)

)
according to Definition 5.11.

6.4.2.3 Baral and Subrahmanian’s Stable Classes

In [36, 37], Baral et al. defined the Stable Classes (SCs) semantics, providing yet another
approach to three-valued semantics. Let us recall here the definition of SC resorting to
the definition of graph of interpretations.

Definition 6.18. graph(P) (definition 2.4 of [36]). Suppose P is a Logic Program.
Then graph(P) is a directed graph which is defined as follows:

• The vertices of graph(P) are the interpretations of our language

• There is an arc from interpretation I to interpretation J iff ΓP (I) = J

Definition 6.19. Stable Class. Theorem 3 of [36] says that, for programs with a finite
Herbrand Base, I = {I1, . . . , In} is a non-empty strict stable class of P iff I is a cycle in
graph(P); i.e., Ii+1 = ΓP (Ii), and I1 = ΓP (In).

An important result from [37] established the relationship between the WFS and the
Stable Classes. In a nutshell, theorem 4 of [37] says the WFS is captured by a particular
stable class C of P , more concretely C = {WFM+(P),WFM+u(P)}.

65

Like any other 3-valued semantics, the Stable Classes semantics resorts to the undefined
truth-value to deal with loops over default negation. Depending on ones’ goals, that might
be exactly the desired outcome; but on the other hand, whenever a 2-valued complete
model is always necessary, a Stable Class might be a starting point, but, in general, not
the end result.

6.4.2.4 Dung’s Preferred Extensions

In [91] the author introduces the Preferred Extensions, which generalize SMs to the 3-
valued case. Most of the ideas and notions underlying the work we next present originate
from the Argumentation field — mainly from that foundational work of Phan Minh Dung.
For self-containment we provide the basic notions of argument (or set of hypotheses),
attack, conflict-free set of arguments, acceptable argument, and admissible set of argu-
ments (all originally from [91]). These notions serve as background for our argumentation
approach below where we shall introduce a 2-valued conservative extension of Dung’s
Preferred Extensions.

The relationships between argumentation and logic programs has been covered in
many other works, e.g., [15] which extends the argumentation framework for Extended
Logic Programs and consider other variants w.r.t. NLPs.; [167] that takes an argumenta-
tion approach to semantics of logic programs; and [42] where the authors take a general
argumentation approach to default reasoning.

Definition 6.20. Argument. In [91] the author presents an argument as

“an abstract entity whose role is solely determined by its relations to other
arguments. No special attention is paid to the internal structure of the argu-
ments.”

In this thesis, since we focus on Normal Logic Programs, we will pay special attention
to the internal structure of an argument. One common approach to arguments, when
considering NLPs are their representation system, is to consider an argument (or set of
hypotheses) as a set H of default negated literals of P , i.e., H ⊆ not HP . Thus, a simple
argument not a of H (or simple hypothesis) is just an element of an argument H.

Using these notions of argument and simple argument we can define the set of Ar-
guments of P — Arguments(P) — as the set of all arguments of P , i.e., the set of all
subsets of not HP .

Definition 6.21. Attack — Argument B attacks simple argument not a in P
[91]. In [91] Dung does not specify what the attacks relationship concretely is, this

66

way ensuring maximal generality of the argumentation framework. In our present work,
since we are considering NLPs, and arguments as sets of default negated literals (each
a simple argument), the attacks relationship corresponds to the entailment of a positive
literal contradicting one simple argument of the attacked argument.

Formally, if P is a NLP, B ∈ Arguments(P), and not a ∈ not Atoms(P), we say B
attacks not a in P iff P ∪B |= a3. For simplicity, we just write attacksP (B,not a).

Abusing notation, we also write attacksP (B,A), where both A and B are Argu-
ments of P , to mean that Argument B attacks Argument A in P . This means that
∃not a∈AattacksP (B,not a).

Definition 6.22. Conflict-free argument A [91]. An argument A of P is said to be
conflict-free iff there is no simple argument not a in A such that attacksP (A,not a). I.e.,
A does not attack itself.

Definition 6.23. Acceptable argument [91]. An argument A ∈ AR — where AR is
a set of arguments — of P is said to be Acceptable with respect to a set S of arguments
iff for each argument B ∈ AR: if B attacks A then B is attacked by S.

Definition 6.24. Admissible argument A of P [91]. A conflict-free argument
A is admissible in P iff A is acceptable with respect to Arguments(P). Intuitively,
A is admissible if it counter-attacks every argument B in Arguments(P) attacking A.
Formally,

∀B∈Arguments(P)∀not a∈AattacksP (B,not a)⇒∃not b∈BattacksP (A,not b)

This definition corresponds to the definition of Admissible Set presented in [91]. Notice
that it is not required attacking set B to be consistent with its consequences.

Definition 6.25. Preferred Extension [91]. A Preferred Extension is a maximal
(with respect to set inclusion) admissible Argument of P .

In [91] the author also shows that “Every argumentation framework possesses at least
one preferred extension.” (Corollary 12 of [91]) and “Hence, preferred extension semantics
is always defined for any argumentation framework.”

The relation between preferred extensions and stable models is then analyzed in:

Definition 6.26. Stable Extension (Definition 13 of [91]). A conflict-free set of
arguments S is called a stable extension iff S attacks each argument which does not belong
to S.

3Where we transform all literals of the form not a in new positive literals not_a and then, by virtue
of ending up with a definite program, we can resort to the least model to determine entailment.

67

and in:

Lemma 6.3. Stable Extensions are Preferred Extensions(Lemma 15 of [91]).
Every stable extension is a preferred extension, but not vice versa.

Finally, the author of [91] also says:

“Though stable semantics is not defined for every argumentation system, an
often asked question is whether or not argumentation systems with no stable
extensions represent meaningful systems? (. . .) we will provide meaningful
argumentation systems without stable semantics, and thus provide a definite
answer to this question.”

6.4.2.5 Our Argumentation Based Semantics

Dung’s Preferred Extensions covered in 6.4.2.4 extend the Stable Models in the sense that
every SM corresponds to a Stable Extension, and each Stable Extension is a Preferred
Extension; moreover, every NLP has at least one Preferred Extension. However, every
Preferred Extension that is not a Stable Extension (and, therefore, not a Stable Model)
leaves undefined the literals that are not stable, i.e., those that attack themselves. For
this reason, not all Preferred Extensions yield 2-valued complete models.

Assuming only negative hypotheses thus proved to be insufficient for guaranteeing
2-valued completeness of models. To respond to this lack we decided to take the next
step by allowing also positive hypotheses in our argumentation approach. In order to
keep consistency with the skeptical stance of maximal negative hypotheses, we had to
explicitly impose its dual: minimality of positive hypotheses. Our first attempt was [189]
where we also take the hypotheses assumption approach to semantics, applying it within
an argumentation context and demanding non-redundancy (Definition 11 of [189]) and
unavoidability (Definition 12 of [189]) of the set of positive hypotheses (positive literals
assumed as hypotheses) as well weak admissibility (Definition 10 of [189]) of the set of
negative hypotheses in order to construct a Revision Complete Scenario (Definition 13 of
[189]). Therein we defined a Revision Complete Scenario

Definition 6.27. Revision Complete Scenario (Definition 13 of [189]). Let P
be a NLP and H = H+∪H− a set of positive (H+) and negative (H−) hypotheses. We
say H is a Revision Complete Scenario iff

1. P ∪H is a consistent scenario and least(P ∪H) is a 2-valued complete model of P

68

2. H− is weakly admissible

3. H+ is not redundant

4. H+ is unavoidable

The intuition for a Revision Complete Scenario goes as follows: in order to guarantee
the Existence of a 2-valued total model for every NLP we allow positive hypotheses to be
considered besides the usual negative hypotheses. Under this setting, the easiest way to
solve the problem would be to accept every atom of a program as a positive hypotheses.
However, we want our argumentation based semantics to be the most skeptical possible
while ensuring compatibility among hypotheses.

To keep the semantics skeptical we want to have the maximal possible negative hy-
potheses and the minimum non-redundant positive hypotheses. Intuitively, a positive
hypothesis L is considered redundant if, by the rules of the program and the rest of
the hypotheses, L is already determined true; and a positive hypothesis L is considered
unavoidable if, the least model of the program plus the rest of the hypotheses minus L
is inconsistent; and a set H− of negative hypotheses is weakly admissible iff for each
counter-hypothesis E contradicting H− we know that P ∪H− ∪E contradicts E. The
formal details of these and other notions we appeal to can be found in [189]; we do not
enter here their specific details as it would divert the reader too much from the main
thread of this thesis.

Later, in [188], and building upon our work of [189], we defined the Approved Models
semantics for NLPs taking again an argumentation approach that generalizes the Preferred
Extensions approach discussed in 6.4.2.4 in the sense that all Approved Models are 2-
valued complete containing a Preferred Extension.

Definition 6.28. Approved Models (Definition 13 of [188]). Let P be a NLP and
M =M+∪M− a 2-valued interpretation of P . We say M is an Approved Model of P iff:

• M is an Approvable Interpretation of P , and

• M− contains a Preferred Extension of P

where M is an Approvable Interpretation iff M− is maximal given least(P ∪M)⊆M .

Although the Approved Models was another significant step forward it still had a
complex definition resorting to both negative and positive hypotheses. We then realized
we could solve the argumentation/semantics issue by virtue of a new paradigm: that of
positive hypotheses assumption alone, which is the topic of Chapter 8.

69

6.5 Motivation for a New Semantics

“Why the need for another 2-valued semantics for NLPs since we already have the Stable
Models one?” This is the question we heard the most whilst pursuing this avenue of
research. The question has its merit since the Stable Models semantics is exactly what
is necessary for so many problem solving issues, but the answer to it is best understood
when we ask it the other way around: “Is there any situation where the Stable Models
semantics does not provide all the intended models?” and “Is there any 2-valued general-
ization of SMs that keeps the intended models it does provide, adds the missing intended
ones, and also enjoys the useful properties of guarantee of model existence, relevance,
and cumulativity?” When considering to answer these other questions there are several
approaches we can take.

6.5.1 Increased Declarativity

As we have seen in Definition 3.2, an IC is a rule whose head is ⊥, and although such syn-
tactical definition of IC is generally accepted by the Logic Programming community, the
SM semantics employs odd loops over negation, such as the a← not a,X as discussed after
Example 6.3, to act as ICs, thereby mixing and unnecessarily confounding two distinct
Knowledge Representation issues: the one of IC use, and the one of assigning semantics
to loops. For the sake of declarativity, our position is that rules of the form in Defini-
tion 3.2 should be the only way to write ICs in a Logic Program: no rule, or combination
of rules, with head different from ⊥ should act as IC(s) under any given semantics. Rules
with “non-⊥” head should only establish what can/must be true in a model given some
conditions stated in the body, and rules with ⊥ head should only establish which models,
although complying with the “non-⊥” head rules, must be discarded anyway because of
IC violation. To allow each of these kinds of rules to play the role of the other is to
sacrifice and withhold a degree of freedom from declarativity. If it were really indifferent
and acceptable the use of one or the other kind of rule for both KRR purposes, then there
would be no need for two different kinds of rules. But, as we shall see, that is not the
case.

2-valued model existence should only be “threatened” in Constrained NLPs (CNLPs),
but never in other NLPs, because only “⊥-head” rules should play the role of rejecting
candidate models.

70

6.5.2 Modelling Argumentation

Another insight, from an argumentation perspective, comes from [91], where the author
states:

“Stable extensions do not capture the intuitive semantics of every mean-
ingful argumentation system.”

where the “stable extensions” have a one-to-one correspondence to the Stable Models
([91]), and also

“Let P be a knowledge base represented either as a logic program, or as a
nonmonotonic theory or as an argumentation framework. Then there is not
necessarily a “bug” in P if P has no stable semantics.

This theorem defeats an often held opinion in the logic programming and
nonmonotonic reasoning community that if a logic program or a nonmonotonic
theory has no stable semantics then there is something “wrong” in it.”

Thus, a criterium different from the stability one must be used in order to model argu-
mentation more adequately.

In 6.4.2.4 and 6.4.2.5 we saw different approaches to argumentation based semantics.
Stable Models are known to correspond to Stable Extensions which are a particular case
of Preferred Extensions, and these stem from a negative hypotheses assumption approach.
Revision Complete Scenarios and Approved Models generalize the Preferred Extensions
approach to include also positive hypotheses. The semantics we propose in Chapter 8,
when seen from an argumentation stance, solves the semantics problem by resorting to
positive hypotheses only.

6.5.3 Allowing Arbitrary Updates and/or Merges

One of the main goals behind the conception of non-monotonic logics was the ability to
deal with the changing, evolving, updating of knowledge. There are scenarios where it is
possible and useful to combine several Knowledge Bases (possibly from different authors
or sources) into a single one [34, 78, 76, 130, 245], and/or to update a given KB with
new knowledge [12, 137]. Assuming the KBs are coded as IC-free NLPs, as well as the
updates, the resulting KB is also an IC-free NLP. In such a case, the resulting (merged
and/or updated) KB should always have a semantics. The lack of such guarantee when the

71

underlying semantics used is the Stable Models, for example, compromises the possibility
of arbitrarily updating and/or merging KBs (coded as IC-free NLPs). In the case of self-
updating programs, the desirable “liveness” property is put into question, even without
outside intervention.

Example 6.4. Self-updating program with embedded odd-loop. Let us consider
the case where we use the Stable Models semantics as the underlying one for this EVOLP
[8] program. P =

a ← not b
assert(b← not c) ← not d
assert(assert(c← not a)) ← not e

EVOLP programs have the ability to update themselves without exterior intervention,
and that is precisely what happens when there is an EVOLP program rule of the form
assert(X)← Y . In the next time step, X becomes a new rule of the program if Y holds
in the previous time step model, whilst the assert rule (like any other) is kept by inertia
unless retracted.

Initially, the only Stable Model of this program is
{a,assert(b← not c),assert(assert(c← not a))}, since none of {b,d,e} hold. In EVOLP,
whatever assert term true in a model is then used to assert its rule argument to produce
the next program state by updating it with that rule. Since d does not hold in the initial
model, the new rule b← not c is added to the program. Also, since e does not hold in
the initial stable model of the program, the new rule assert(c← not a) is added to it. In
a nutshell, in the second time step the program becomes

a ← not b
b ← not c
assert(b← not c) ← not d
assert(assert(c← not a)) ← not e
assert(c← not a)

and its single stable model is
{b,assert(b← not c),assert(assert(c← not a)),assert(c← not a)}. A new evolution step
occurs, due to the ‘assert’ atoms in the model, and after the third time step the program
becomes

a ← not b
b ← not c
c ← not a % from the last rule in the prior program state
assert(b← not c) ← not d
assert(assert(c← not a)) ← not e
assert(c← not a)

72

Redundant effects of ‘asserts’ are discarded, i.e., asserting a rule already in the program
results in not adding the duplicate. This is the time step where the problem arises. Under
Stable Models semantics this EVOLP program no longer has a model due to the first three
rules constituting an odd loop over negation. This odd-loop was somehow camouflaged
by the ‘assert’ EVOLP rules in the first time step program. As the natural evolution
of the program unfolded, the odd-loop reached the ‘surface’ and revealed itself, thereby
terminating the liveliness of the programs’ evolution by moving it into a state with no
semantics.

The EVOLP mechanism is but one of many possible ways to (self-)update a logic
program, but it is enough to illustrate the need to guarantee model existence for updatable
knowledge bases.

Example 6.5. A Joint Vacation Problem — Merging Logic Programs. Three
friends are planning a joint vacation. First friend says “If we don’t go to the mountains,
then we should go to the beach”. The second friend says “If we don’t go travelling, then
we should go to the mountains”. The third friend says “If we don’t go to the beach, then
we should go travelling”. We code this information as the following NLP:

beach ← not mountain
mountain ← not travel

travel ← not beach

Each of these individual consistent rules come from a different friend. According to the
Stable Models semantics, each friend had a “solution” (a stable model) for its own rule,
but when we put the three rules together, because they form an odd loop over negation,
the resulting merged logic program has no stable model. In this case our intuition
tells us this program should have at least one (or possibly several alternative) model(s)
corresponding to joint vacation solution(s). This example too shows the importance of
having a 2-valued semantics guaranteeing model existence, in this case for the sake of
arbitrary merging of logic programs (and for the sake of existence of a joint vacation for
these three friends).

The examples just shown are quite simple, but they make evident that there a need
for a new 2-valued semantics guaranteeing model existence. Such a semantics will enable
“KB as NLP”-based systems to be safely used no matter how complex the series of merges
and/or updates it receives, and it will also contribute to guaranteeing the system’s liveness.
This is especially important for the Semantic Web [10] applications which may come to
rely on updatable (possibly self-updatable) logic-based web pages.

These three (6.5.1, 6.5.2, and 6.5.3) motivational issues raise the questions “Which
should be the 2-valued models of an NLP when it has no Stable Models?”, “How do

73

these relate to SMs?”, “Is there a uniform approach to characterize both such models and
the SMs?”, and “Is there any 2-valued generalization of the SMs that encompasses the
intuitive semantics of every logic program?”. To answer these questions is a paramount
motivation and thrust behind this thesis.

After some previous attempts [187, 193, 204] which aimed at answering the first two
of these questions, we have gotten a better understanding of what the answers to the
third and fourth ones should be, and of how to put them across. This new knowledge
lead us to an intuitive notion of how a 2-valued semantics should behave for all NLPs,
what properties it should enjoy, and how its meaning assignment should take place. We
analyze these in turn now.

6.5.4 Intuitively Desired Semantics

It is commonly accepted that the non-stratification of the default not is the fundamental
ingredient which allows for the possibility of existence of several models for a program, as
we have seen in subsections 6.3.1 and 6.3.2. The non-stratified DNLs (i.e., in a loop —
Definition 2.6) of a program can thus be seen as non-deterministically assumable choices.
The rules in the program, as well as the particular semantics we wish to assign them, is
what constrains which sets of those choices we take as acceptable.

Usually, both the Closed World Assumption (CWA) imposed on default negation not
and the ← in rules of Logic Programs reflect some intended ordering in the truth-value
assignment to literals. E.g., in a program with just the rule a← not b we first assign the
truth-value false to b because it has no rules (that is what the CWA does), and then, as
a consequence of b’s assumed truth-value, we are forced, by virtue of the rule a← not b,
to conclude a’s truth-value must be true; hence, the only intended model is {a}. This is
afforded by the syntactic asymmetry of the rule, reflected in the one-way direction of the
←, coupled with the intended semantics of CWA applied to default negation.

If we were to re-write the rule a← not b in classical logic form we would get a⇐¬b,
which, as we know, is equivalent to a∨¬¬b, i.e., a∨ b. And a∨ b can be (classically)
satisfied by any of the models {a}, {b}, and {a,b}. Clearly, the last of these is not
minimal considering the first two alternative models; these are thus the only candidate
models. But non-monotonic logic, the formalism used in Normal Logic Programs, is not
the same as classical logic, in part precisely because default negation is not the same as
classical negation (nor is the ← the same as ⇐). In NLPs we adopt the CWA principle,
a fair guideline underlying the rationale of a reasonable semantics for NLPs, which states
we always should assume as false atoms with no rules. This principle rejects {b} as a
model of program a← not b.

74

When rules form loops, the syntactic asymmetry disappears and, as far as the loop
alone is concerned, the truth value of the negative literals in the loop are equally as-
sumable choices, and that is why they become undefined in the Well-Founded Model of
the program. If we had the program P = {a← not b , b← not a}, there would be no
specific order in which to proceed in the truth-value assignment to literals, as far as a
and b are concerned — we could legitimately start by assuming a true and propagate the
consequences of that assumption to constraint b’s truth-value to false, or vice-versa. In
this case P would have two alternative models: {a} and {b}. If we were to re-write this
program in classical logic form we would get P = {a⇐¬b , b⇐¬a}, which we know
would be equivalent to P = {a∨¬¬b , b∨¬¬a}, i.e., P = {a∨ b , b∨a}, or simply
P = {a∨ b}. We already know that a∨ b has two minimal models: {a} and {b}. It is no
coincidence that both the original program with a loop P = {a← not b , b← not a}
and its classical logic representation P = {a∨ b} have exactly the same minimal models:
{a} and {b}. The syntactic symmetry of the loop thus induces a semantic symmetry on
the truth values of the literals involved, whether positive or negative.

However, the unidirectional way of the←s of all the loop’s rules must still be respected
as soon as the atom of one given DNL is assumed true. Intuitively, assuming true the atom
of one DNL of the loop should have the practical effect of “cutting” one of the loop’s arcs
thereby rendering the set of rules an asymmetric chain and, consequently, constraining
the truth values of the remaining literals (including the DNLs) in the (former) loop. The
semantic symmetry of the loop comes from the initial freedom in choosing any one DNL
to “break” the loop. However, loops may also depend on other literals with which they
form no loop. Those asymmetric dependencies should have the same semantics as the
single a← not b rule case described previously. Of course, because of symmetry, it does
not matter whether an atom or its default literal is chosen as true in order to break the
loop. However, because heads of rules are atoms only, choosing a DNL true may lead to
inconsistency, as in a← not a, so pragmatically it is better to concentrate on choosing
atoms true. But the symmetry lets us see the parallel with the view of DNLs as adoptable
assumptions, or as abducibles, whose overall minimality must be required and tested.

So, on the one side, asymmetric dependencies should have the semantics of a single
a← not b rule; and on the other, the symmetric dependencies (of any loop over negation,
whether an odd or even one) should subscribe to the semantic symmetry principle of
assuming true the atom of any one of the loop’s DNLs and extracting the consequences.
Intuitively, a good semantics should cater for both the symmetric and asymmetric de-
pendencies as described. Asymmetry in favor of DNLs is desirable in the absence of
(remaining) rules for their atoms, and symmetry desirable otherwise.

As seen above, ICs are commonly used as a simple and declarative way of imposing
the truthfulness (or falsehood, for that matter) of chosen conjunctions of literals. The

75

correct way of writing ICs is, as recalled in Definition 3.2, by means of rules with ⊥ for
head. A “good” semantics should allow this kind of IC and no other. I.e., no other kind
of “non-⊥” rule, or combination of such rules, should be diverted to function as IC lest
it undermine the declarativity of the knowledge representing rules with a “non-⊥” head,
and their use for KR; e.g. loops like a← not a must solely be usable as means to engender
solutions, not as a means to prune them. E.g., a program with the single rule a← not a
should have the model {a}.

6.5.5 Desirable Formal Properties

Depending on the particular problem solving task at hand, there are several formal prop-
erties of the engaged underlying semantics that can be quite useful. For example, one
might require a 2-valued answer to a query, or, on the contrary, be satisfied with a 3-
valued one. One might need the guarantee that no matter what the knowledge encoded
in the NLP it will have a semantics, at least one model; or, to the contrary, it might
be acceptable that a certain KB simply has no models. One might want to be able to
solve queries in a top-down fashion (à la Prolog) and be content with model subsets sup-
porting the query; or one might want to compute whole models for the entire NLP — a
dichotomy not unlike the local/global knowledge reasoning scope requirements identified
in 1.3.1 and 1.3.2. We might wish to have the possibility of storing lemmas (results from
previous computations) in, say, a table, to speed-up later computations.

The primary focus of this thesis is to provide a new 2-valued semantics for NLPs
which, by virtue of the properties it enjoys, lays the theoretical ground for practical and
computationally efficient Knowledge Representation and Reasoning with NLPs and their
extensions including Integrity Constraints (as in Definition 3.2), abduction, argumenta-
tion, explicit negation and disjunction.

The new semantics should abide by the intuitive caveats described in the previous
subsection 6.5.4, and also enjoy several practical properties such as guarantee of model
existence, allow for the development of top-down proof-procedures to answer queries,
allow for the storage of lemmas for speeding up computations, and being a generalization
of stable models by taking all of them, if any, as models also.

6.5.5.1 Model Existence

Guarantee of model existence ensures all programs without ICs have a semantics, i.e.,
at least one model. Of course, programs with ICs may indeed have no model simply
because the combination of ICs therein may utterly prevent them, unless a paraconsistent

76

semantics is being considered. This property, required of ICs-free programs, is especially
important when building a system or a service grounded on (self- and/or externaly-)
updatable knowledge bases. Any system built upon a reasoning engine using a semantics
not guaranteeing model existence may simply not work at all if the underlying knowledge
base has no model according to the semantics employed. Even if the initial KB has a
model according to the semantics, that may no longer be the case after an unpredictable
sequence of updates. Putting the issue on security matters terms, using a semantics not
enjoying guarantee of model existence is allowing a major security hole: an ill-intended
agent (or even a well-intended one making a mistake) can update the KB in such a way
that it would no longer have a model, thereby breaking down the whole system. Therefore,
a semantics guaranteeing model existence will be more theoretically robust, providing an
additional level of security.

Intersection of models There is a set of formal properties (discussed below) of a
2-valued semantics that are defined over the intersection of all models of the semantics.
Before we proceed introducing such properties we must, therefore, formalize the notion
of intersection of 2-valued models. In general, 2-valued semantics accept several models
for a given program. From these models one can extract a unique skeptic 3-valued model
resulting from the intersection.

Definition 6.29. Skeptic 3-valued model of a 2-valued semantics. Let P be an
NLP, Sem a 2-valued semantics for NLPs, and ModelsSem(P) the set of 2-valued models
of P according to Sem (cf. Definition 5.12).

The unique 3-valued model of P according to Sem is defined as

Sem3v(P) =< Sem+
3v(P),Semu

3v(P),Sem−3v(P)>

where
Sem+

3v(P) = ⋂
M∈ModelsSem(P)

M+ the true atoms according to Sem

Sem−3v(P) = | ⋂
M∈ModelsSem(P)

M−| the false atoms according to Sem

Semu
3v(P) = HP \ (Sem+

3v(P)∪Sem−3v(P)) the undefined atoms according to Sem

Naturally, the existence of such a 3-valued model is conditioned upon 2-valued model
existence. The relevance (and cumulativity, amongst others) properties of a semantics,
as defined in [85], pertain to such 3-valued model induced by the 2-valued models of the
semantics. The definitions of these properties, being focused on the 3-valued model, turns
out to be weak for our purposes: we are more interested in these properties at the level
of each individual model. Therefore, besides accounting for the properties in [85], we also
define and cater for their corresponding individual 2-valued model versions.

77

6.5.5.2 Relevance

Relevance ([85]) concerns simple (object-level) top-down querying about truth of a query
in the program (like in Prolog) without requiring production of the whole 3-valued model,
just the part of it supporting the call-graph rooted on the query. Formally:

Definition 6.30. Relevance. A semantics Sem for logic programs is said Relevant iff
for every program P

∀a∈HP a ∈ Sem(P)⇔ a ∈ Sem(RelP (a))

Since this definition (from [85]) had 3-valued models in mind, using the notation in ac-
cordance to Definition 6.29, we can re-write it as

∀a∈HP a ∈ Sem
+
3v(P)⇔ a ∈ Sem+

3v(RelP (a))

which is also equivalent to

∀a∈HP (∀M∈ModelsSem(P)a ∈M)⇔ (∀Ma∈ModelsSem(RelP (a))a ∈Ma)

Relevance, because it applies to the intersection of all 2-valued models, ensures Cau-
tious Reasoning (as discussed in Chapter 1) can take place considering only the relevant
part for the query and not, in general, the whole program, unless, of course, they coincide.
I.e., with a Relevant semantics, an atom is true in all the models of the whole program
iff it is true in all the sub-models of the part of the program relevant to the atom.

We now present the Brave counterpart of Relevance — the Brave Relevance — which,
mutatis mutandis, ensures Brave (or Credulous) Reasoning can take place considering
only the relevant part for the query.

Definition 6.31. Brave Relevance. Let P be an NLP, a an atom of P , M a model of
P according to semantics Sem, and Ma a model of RelP (a) according to semantics Sem.
A semantics Sem for logic programs is said Brave Relevant iff

∀a∈HP
(
∀M∈ModelsSem(P)a ∈M ⇒ (∃Ma∈ModelsSem(RelP (a))Ma ⊆M ∧a ∈Ma)

)
∧(

∀Ma∈ModelsSem(RelP (a))a ∈Ma⇒∃M∈ModelsSem(P)Ma ⊆M
)

I.e., with a Brave Relevant semantics, an atom is true in some model of the whole
program iff it is true in some sub-model of the part of the program relevant to the atom,

78

where that sub-model is a subset of a model for the whole program where the atom is
true.

Brave Relevance ensures both 1) that if a query is true in some complete model, then
it is also true in some submodel for the subset of the program relevant to the query and
2) that any submodel supporting the query’s truth can always be extended to a complete
model. This way, Brave Relevance guarantees that finding solutions to queries can be
done resorting only to the relevant call-graph and that any solution found is part of a
complete model. Moreover, Brave Relevance lays the cornerstone for abduction by need,
in that only abducibles in the call-graph need be considered for abduction, but we discuss
abductive reasoning further in Chapter 10, and the concomitent implementation issues in
Chapter 11.

Proposition 6.4. Brave Relevance implies Relevance. If a semantics Sem enjoys
Brave Relevance, then it also enjoys Relevance.

This means that whenever a semantics enjoys Brave Relevance, i.e., it allows the truth-
value of a literal in a model to be determined using only the relevant part for that literal,
then the semantics also enjoys Relevance, i.e., it allows the truth-value of a literal which
is common to all models to be determined using only the same relevant part.

6.5.5.2.1 Relevant Answer to Query The Relevance and Brave Relevance properties
are useful for a semantics in the sense that they allow the possibility of specification
and development of top-down proof-procedures that can be used to answer queries re-
sorting only to the partial knowledge relevant for the query. By virtue of requiring only
that partial knowledge, such query-answering methods are potentially more efficient than
computing complete knowledge models for the whole program which might need also to
check whether the computed whole model entails the query or not.

Definition 6.32. Relevant Partial Knowledge Answer to a Query. Let P be an
NLP, Q = a1∧ . . .∧an∧not b1∧ . . .∧not bm a conjunction of literals (with n,m ≥ 0 and
at least one literal) which we call a query, S a semantics for NLPs enjoying Relevance
and Brave Relevance. We write SQ to denote the set of all the literals in Q, i.e., SQ =
{a1, . . . ,an,not b1, . . . ,not bm}. Then,MQ is said to be a relevant partial knowledge answer
to Q iff

• MQ is a model of RelP (Q) (cf. Definition 3.11) according to S;

• MQ |=Q in the sense that MQ ⊇ SQ;

• There is some model M of P according to S such that M ⊇MQ

79

In this sense, a relevant partial knowledge answer to Q is a sub-model of P — indeed, a
model of RelP (Q), which is a subset of P — that entails the query.

For the general case of Constrained NLPs, model existence is not guaranteed and,
therefore, no non-paraconsistent semantics can enjoy Relevance nor Brave Relevance.
However, for paraconsistent semantics4, model existence can be guaranteed as well as
Relevance and Brave Relevance, depending, of course, on the definition of the semantics.
For paraconsistent semantics we additionally define:

Definition 6.33. Locally Consistent Relevant Partial Knowledge Answer to a
Query. Let P = P ∪C be a CNLP, Q= a1∧ . . .∧an∧not b1∧ . . .∧not bm a conjunction
of literals (with n,m≥ 0 and at least one literal) which we call a query, S a paraconsistent
semantics for CNLPs enjoying Relevance and Brave Relevance. We write SQ to denote
the set of all the literals in Q, i.e., SQ= {a1, . . . ,an,not b1, . . . ,not bm}. Then, MQ is said
to be a locally consistent relevant partial knowledge answer to Q (abbreviated as locally
consistent answer to Q) iff

• MQ is a model of RelP(Q)∪RelP(InflP(Q)∩C) according to S such that ⊥ /∈MQ;

• MQ |=Q in the sense that MQ ⊇ SQ;

• There is some model M of P according to S such that M ⊇MQ

The first condition for MQ to be a locally consistent answer to Q demands MQ to be
consistent given that MQ is a model, according to S, of the part of P relevant for Q, plus
all the rules that are relevant for the Integrity Constraints influenced by Q. With this
definition, even in the case where all the models of a program are paraconsistent, there
still might exist locally consistent sub-models entailing some queries.

In this sense, a locally consistent relevant partial knowledge answer to Q is a sub-
model of P — indeed, a model of RelP(Q)∪RelP(InflP(Q)∩C), which is a subset of P
— that entails the query and still is consistent, i.e., does not include ⊥. Notice that we
do not require the whole program model M , such that M ⊇MQ, to be consistent.

6.5.5.3 Cumulativity

Cumulativity [84] signifies atoms true in the semantics can be added as facts without
thereby changing it; thus, lemmas can be stored. According to [84], Cumulativity equals
Cut plus Cautious Monotony. For self-containment we recap their respective definitions:

4We assume a paraconsistent semantics is such that it allows its models to contain ⊥.

80

Definition 6.34. Cautious Monotony [84]. A semantics is said to enjoy the Cautious
Monotony property iff

∀a,b∈HP (a ∈ Sem(P)∧ b ∈ Sem(P))⇒ b ∈ Sem(P ∪{a})
Definition 6.35. Cut [84]. A semantics is said to enjoy the Cut property iff

∀a,b∈HP (a ∈ Sem(P)∧ b ∈ Sem(P ∪{a}))⇒ b ∈ Sem(P)
Notice that P ∪{a} denotes the program P to which a is added as a fact.

Formally, cumulativity is defined as follows:
Definition 6.36. Cumulativity [84]. Let P be an NLP, and a,b two atoms of HP . A
semantics Sem is Cumulative iff the semantics of P (i.e., the intersection of models of P)
remains unchanged when any atom true in the semantics is added to P as a fact:

∀a,b∈HP a ∈ Sem(P)⇒ (b ∈ Sem(P)⇔ b ∈ Sem(P ∪{a}))
Similarly to what happens with Relevance (from [85]), this definition had 3-valued models
in mind, and using the notation in accordance to Definition 6.29, we can re-write it as

∀a,b∈HP a ∈ Sem
+
3v(P)⇒ (b ∈ Sem+

3v(P)⇔ b ∈ Sem+
3v(P ∪{a}))

which is also equivalent to
∀a,b∈HP

(
(∀M∈ModelsSem(P)a∈M)⇒ (∀M∈ModelsSem(P)b∈M⇔∀Ma∈ModelsSem(P∪{a})b∈Ma)

)
Cautious Monotony pertains to the possibility of adding as facts atoms true in the

semantics without altering the semantics. We now introduce the Brave reasoning coun-
terpart of Cautious Monotony — Brave Cautious Monotony — which expresses the same
possibility but for atoms true inside each individual model.
Definition 6.37. Brave Cautious Monotony. Let P be an NLP, and a an atom of
HP . A semantics Sem for logic programs is said to enjoy the Brave Cautious Monotony
property iff

∀ a∈HP
M∈ModelsSem(P)

a ∈M ⇒M ∈ModelsSem(P ∪{a})

Brave Cautious Monotony ensures that any atom found true in some model M can be
added as a fact to the program, and this addition preserves M as a model of the resulting
program. This Brave Cautious Monotony is useful to speed-up computations because as
soon as some atom a is found true in a partial solution to some query, we can store a in a
table of lemmas and use this table to immediately solve other parts of the query that rely
on a. Cautious Monotony, on the other hand, only allows this tabling of lemmas to take
place for atoms true in all models. Brave Cautious Monotony allows it even for individual
models. This property is all-important for enabling top-down tabled execution of queries
in semantics enjoying Brave Relevance.

81

6.5.5.4 Stable Models generalization

Definition 6.38. Model conservative generalization semantics. Let P be an
NLP, S1 and S2 two semantics for NLPs, and ModelsS1(P) and ModelsS2(P) the sets
of models of P according to S1 and S2, respectively. We say S1 is a model conservative
generalization of S2 iff ModelsS1(P)⊇ModelsS2(P), for every P .

The literature on semantics for NLPs usually follows the formalizations of [85] when
saying that a semantics S of an NLP P is defined as being the intersection of its models,
along the lines of Definition 6.29. When we have two semantics S1 and S2, where S1 is a
model conservative generalization of S2, we necessarily have S+

13v(P)⊆ S+
23v(P). This may

lead to misunderstandings on what we mean by the “model conservative generalization”
expression, as the reader may think that we mean S+

13v(P) ⊇ S+
23v(P), when in fact we

meanModelsS1(P)⊇ModelsS2(P) as per Definition 6.38. Informally, we say a semantics
S1 is a model conservative generalization of another S2 when it provides at least the same
models as the latter. In the particular case where S2 is not defined for all kinds of NLPs,
it may be that S1 is defined for some of the programs uncovered by S2. It is in this sense
that we say S1 is more general than S2.

Every SM complies with the intuitive requirements described in 6.5.4. For this reason,
one desirable property of any 2-valued semantics should be to be a model conservative
generalization of the Stable Models semantics.

Now that we know which formal properties we seek in a semantics for NLPs, we turn
to understand how the structure of an NLP (in accordance to Chapter 3) can, and should,
restrict any semantics for NLPs — this is the topic of the next Chapter 7.

7 . The Layer-Decomposable Semantics Family

(. . .) at each level of complexity
entirely new properties appear (. . .)

P.W. Anderson

As pointed out in the end of Chapter 2, the modules graph (Definition 2.10) of a knowl-
edge graph and corresponding least layering (Definition 2.11), capture both the structure
and ordering of the knowledge. In this chapter we define a family of semantics for Normal
Logic Programs — the Layer-Decomposable Semantics (LDS) family — which is compli-
ant with these structuring concepts, and we argue that all semantics for NLPs should be
part of this family. The LDS family not only includes the Layer Decomposable Models
and the Minimal Hypotheses semantics (defined in Chapter 8), but also the Stable Models
semantics.The new 2-valued Minimal Hypotheses semantics has some of the most impor-
tant and convenient formal properties of the Well-Founded Semantics. With a clear intent
to bridge together the Stable Models (and Answer-Set Programming) and Well-Founded
Semantics communities, this new semantics offer a new way to handle the truth-values of
atoms which would be undefined in a 3-valued Well-Founded Semantics.
The contributions in this chapter are rooted in our publications [193, 194, 196, 197, 198].

7.1 Semantically Reflecting the Layerings

In Chapter 2 we presented the notion of (least) layering, and in Chapter 3 we applied this
general notion to NLPs yielding both rule and atom (least) layerings of a NLP; these were
shown to exist and to be unique for each NLP. Since in Chapter 2 we showed that the
(least) layering notion captures the intrinsic ordering of a knowledge graph, we conclude
that every reasonable semantics for NLPs should accept as models only interpretations

83

84

that reflect the structural information of the layerings1. We dub the family of all such
semantics the Layer-Decomposable Semantics (LDS) family.

Intuitively, we say a semantics for NLPs is Layer-Decomposable iff all its models are
decomposable into a partition of subsets, each of which is a model for an individual
layer, containing all the atoms determined necessarily true in that layer, and the default
negation of all atoms necessarily false, and, what is more, also compliant with all the
models for the other layers where “compliance” will be characterized in the sequel. The
unique model for layer 0 is the set of default negated literals corresponding to the atoms
of P with no rules. The literals in the bodies of rules of a given layer that have no rules
for them in the same layer are to be considered as assumable hypotheses by each of the
individual layer models. Enforcing inter-layers compliance can be achieved by requiring
consistency of the union of individual layers’ models.

Before we introduce the formal definition of Layer Decomposable model (Definition 7.3)
— where we also formalize which sets of literals are eligible for being considered assumable
hypotheses within a given layer — we need to formalize the intuitive notion of actually
assuming those literals as hypotheses (we do this by addition of the positive literals in
the set of assumed hypotheses as facts to the layer, and then calculating the consequences
in the layer, given those new facts).

As we mentioned before, the hypotheses assumption approach we use focuses exclu-
sively on the adoption of positive literals. In this sense, assuming hypotheses corresponds
promptly to adding as facts to the program the adopted positive literals. We consider,
however, two ways of calculating the consequences of the newly assumed premises: one is
by means of the Remainder operator, the other by means of the Layered Remainder one
(both previously defined in 6.3.2).

Definition 7.1. Classical Division. Let P be an NLP and let I be a 3-valued
interpretation of P . The classical division of P by I, denoted by P :: I, is the Remainder
(Definition 6.13) reduction of P when we consider I+ true, i.e., P :: I = ̂(P ∪ I+).

Definition 7.2. Layer Division. Let P be an NLP and let I be a 3-valued interpre-
tation of P . The layer division of P by I, denoted by P : I, is the Layered Remainder
(Definition 6.14) reduction of P when we consider I+ true, i.e., P : I = ˚(P ∪ I+). Note
the operator ˚ is applied to the resulting union.

In both Definitions 7.1 and 7.2, the interpretation I plays the role of the set of assumed
hypotheses.

1Other works have been done concerning the syntactic structure of a program, with result similar, but
not quite equivalent to our own approach, namely [65, 66, 119, 120, 222, 223].

85

We need the Layer Division because we want to define a family of semantics that is
fully compatible with the notion of Layered Support (Definition 6.2), and the Classical
Division is clearly not. Notwithstanding, for locally stratified programs the Classical and
the Layer Divisions coincide simply because body(r) = ∅ for every rule r in a program.
Layer Division is nothing more than a layered support (cf. Section 6.1) compatible version
of Classical Division2. As a consequence of the definitions of Layer and Classical Divisions,
one can be sure that Classical Division deletes more rules than the Layer Division, and
the former also simplifies the bodies of rules more than the latter. Recall Example 6.2
that can also be used to illustrate the difference between P̂ ∪{a} and ˚P ∪{a} where
P = {a← not b , b← not c , c← not a , a}.

Proposition 7.1. Rules of P :: I are “sub-rules” of P : I. Let P be an NLP, and
I a 3-valued interpretation of P . Then,

∀r∈P ::I∃r′∈P :Ihead(r) = head(r′)∧ body(r)⊆ body(r′)

Proposition 7.2. Models of P :: I are Models of P : I. Let P be an NLP, and I a
set of literals of P . If some M is a model of P :: I then M is also a model of P : I.

We can now use the syntactic scaffolding of layers, along with the corresponding Layer
Division, to define the Layer-Decomposable semantics family. The intuitive idea behind
a Layer-Decomposable model M is that it can be decomposed into a set of sub-models
{M≤0, . . . ,M≤α, . . . ,M≤ω}, each of which referring to the set of layers ≤ α of P , i.e., to
P≤α. Each layer-specific sub-model takes as assumed hypotheses truth values for all
atoms whose rules appear only in strictly lower layers. Having assumed truth values
for such atoms that appear in P<α, we need to propagate, in a Layer-support-consistent
fashion, those truth values through the rules of Pα — we do this assumption+propagation
of consequences via Layer Division. Finally, we need to select models of the resulting rules
that are consistent with assumptions already adopted before (cf. Example 7.1 below).

Definition 7.3. Layer Decomposable Model. Let P be an NLP, and M a 2-
valued model of P . M is Layer Decomposable in P — denoted by LDMP (M) — iff
there is a Layer Decomposition LDP (M) = {M≤0, . . . ,M≤α, . . . ,M≤ω} of M in P , i.e.,
M = ⋃

α≥0M≤α and

∀α≥0M≤α is a 3-valued model of Pα :M<α with M−≤α = not (A≤αP \M
+
≤α)

where M<0 = M+
≤0 = ∅, and A≤αP is the set of atoms whose rules are all placed in layers

up to α as per Definition 3.15. We also write Mα as a shorthand notation for M≤α \M<α

2Since Layer Division and Classical Division are quite similar, it might be possible to implement Layer
Division via a syntactic program transformation. I.e., there might be some transformation LT/1 such
that, for every program P and interpretation I, P : I⇔ LT (P) :: I. In this thesis we do not explore this
path but only mention here its possibility and consider it for future work.

86

and say Mα is an individual layer model of Pα. M<α is the set of hypotheses assumed
for layer α and it pertains to atoms of layers strictly below Pα.

Each M≤α sub-model is a 3-valued model of P≤α, and thus a 3-valued interpretation
of P . The positive part of M≤α states which atoms are believed to be true considering
only the rules in P≤α. The negative part of M≤α, which is not (A≤αP \M

+
≤α), states that

all the atoms that were not determined true in M≤α and that have no more rules in
layers above Pα are necessarily determined false. It follows directly from Definition 7.2
that ∀α≤β M≤α ≤F M≤β according to the ≤F Fitting (knowledge) Ordering notation —
Definition 5.11 — where M is a Layer Decomposable model and M≤α,M≤β ∈ LDP (M).
As a consequence of this, ({M≤α : α≥ 0},≤F) is a total order with M≤0 its lower bound
and M = ⋃

α≥0M≤α its upper bound.

Along with Corollary 3.2 we introduced the notation body(r)Lf(r) and body(r) to make
the distinction between the parts of body(r) corresponding to the literals that have rules
in the same layer as r, and the literals whose rules, if any, are all placed in layers strictly
below that of r, respectively. Let us see the relationship between body(r), with r ∈ Pα,
and M<α. For any given layer Pα, all the literals in all the body(r), where r ∈ Pα, are
necessarily determined in M<α. This is the case because, by definition of body(r), all the
rules for the atoms corresponding to literals in body(r) are placed in P<α, and because
M<α is such that M−<α = not (A<αP \M

+
<α) we immediately conclude that for every atom

a ∈ A<αP either a ∈M+
<α or not a ∈M−<α simply because of the definition of M−<α. I.e.,

|M<α| ⊇ A<αP ⊇ |body(r)| for every rule r ∈ Pα.

In Definition 6.2 we relaxed the classical notion of support by introducing the dis-
tinction between body(r)Lf(r) and body(r) when we introduced the layered support notion
which only requires I |= body(r) in order for r to be layer supported in I. Thus, we opened
the way for an atom to be supported by rules in layers below, even if not classically sup-
ported by rules in its own layer. However, this still leaves open the question of how to
assign truth values to the literals in body(r)Lf(r). The Layer-Decomposable criterion only
demands rule satisfaction — by demanding M≤α being a model of Pα : M<α — as the
requirement for M≤α to be accepted as LD model of Pα : M<α. In Chapter 8 we intro-
duce a more strict criterion for the acceptance of candidate models: that of minimality
of positive hypotheses assumed to satisfy the rules of Pα :M<α.

Example 7.1. The Joint Vacation Problem Revisited. Recall the program in
Example 6.5 modeling the vacation related statements of three friends. We now add
another level of knowledge representation by making sure that travelling is possible only
if the passports of the three friends are OK, i.e., they are not expired; and they are expired
if they are not OK. We code this information as the following NLP:

87

beach ← not mountain
mountain ← not travel

travel ← not beach,not expired_passport

passport_ok ← not expired_passport
expired_passport ← not passport_ok

The rules for passport_ok and expired_passport are in layer 1, and the other three rules
for beach, mountain and travel are in layer 2. We can constructively identify the Layer
Decomposable models of this program the following way:

1. Begin at layer 0 with the 3-valued model M0 = not A0
P = not ∅= ∅

2. Make the Layer Division of P 1 by M<1 =M≤0 =M0 thus obtaining
P 1 :M<1 = P 1 : ∅= P̊ 1 = P 1 =

passport_ok ← not expired_passport
expired_passport ← not passport_ok

3. Non-deterministically select a 3-valued model M≤1 of P 1 :M<1 such that
M−≤1 = not (A≤1

1 \M+
≤1) — there are three such models:

M≤11 = {passport_ok,not expired_passport},
M≤12 = {not passport_ok,expired_passport},
M≤13 = {passport_ok,expired_passport}.
For the example’s illustration purposes let us pick, say, M≤11

4. Make the Layer Division of P 2 by M<21 =M≤11 thus obtaining
P 2 :M<21 = P 2 : {passport_ok,not expired_passport}=

beach ← not mountain
mountain ← not travel

travel ← not beach
passport_ok

5. Non-deterministically select a 3-valued model of P 2 :M<21 such that
M−≤2 = not (A≤2

2 \M+
≤2) — there are three such models:

M≤211
= {beach,travel,not mountain,passport_ok,not expired_passport},

M≤221
= {beach,not travel,mountain,passport_ok,not expired_passport},

M≤231
= {not beach,travel,mountain,passport_ok,not expired_passport}

and the process terminates because all layers have been covered

88

When we pick, say, M≤12 = {not passport_ok,expired_passport} as the 3-valued model
for layer 1, the corresponding Layer Division of P 2 by M<22 =M≤12 is
P 2 :M<22 = P 2 : {not passport_ok,expired_passport} which results in the set of facts

mountain
expired_passport

thus yielding the unique model
M≤212

= {not beach,not travel,mountain,not passport_ok,expired_passport}.

Not all classical models are Layer Decomposable. For example, the classical model
{not passport_ok,expired_passport, travel,not mountain,beach} is not Layer Decom-
posable because it includes M≤12 = {not passport_ok,expired_passport} and when we
do a Layer Division of P 2 by M≤12 , mountain becomes a fact and thus necessarily true
in any Layer Decomposable model.

Likewise, not all minimal models are Layer Decomposable. For example, a program
consisting of only the rule a← not b has as one of its minimal models M = {not a,b}
which is not Layer Decomposable: the unique rule is placed in Layer 1; a’s atom layering
is also 1, but since b has no rules its atom layering is 0. Since any LD model must include
not A≤0

P , and in this case A≤0
P = {b}, any LD model must include {not b} which is not

the case with M = {not a,b} above.

Definition 7.4. Layer-Decomposable Semantics. Let P be an NLP. A semantics
Sem for NLPs is Layer-Decomposable iff every model M of P according to semantics
Sem is Layer Decomposable.

The first and more obvious Layer-Decomposable semantics we can define is the Layer
Decomposable Models semantics which accepts all, and only, Layer Decomposable Models.

Definition 7.5. Layer Decomposable Models semantics. Let P be an NLP. The
Layer Decomposable Models semantics (LDMS) accepts as models all, and only, the Layer
Decomposable Models of P . I.e., ∀MLDMSP (M)⇔ LDMP (M).

As an immediate consequence of this definition 7.3 it follows that

Proposition 7.3. The Layer Decomposable Models semantics is a model con-
servative generalization of every Layer-Decomposable Semantics.

Proof. Trivial from Definitions 6.38, 7.4, and 7.5.

89

One can define many semantics fitting the Layer Decomposability criterion and thus
surely we are not here exploring all such possibilities. However there is one other Layer-
Decomposable semantics we can easily define:

Definition 7.6. Layer Decomposable Minimal Models semantics. Let P be an
NLP. The Layer Decomposable Minimal Models semantics (LDMS) accepts as individual
layer models all, and only, the minimal models of the layer after the respective Layer
Division. Layer Decomposable Models of P .

Let P be an NLP, andM a 2-valued model of P . M is a Layer Decomposable Minimal
Model of P iff there is a Layer Decomposition LDP (M) = {M≤0, . . . ,M≤α, . . . ,M≤ω} of
M in P , i.e., M = ⋃

α≥0M≤α and

∀α≥0M≤α is a minimal 3-valued model of Pα :M<α with M−≤α = not (A≤αP \M
+
≤α)

where M<0 = M+
≤0 = ∅, and A≤αP is the set of atoms whose rules are all placed in layers

up to α as per Definition 3.15.

We also define Classically Decomposable Model the same way as the Layer Decom-
posable Model but with Classical Division Pα ::M<α instead of Layer Division Pα :M<α,
and, accordingly, the notion of Classically-Decomposable Semantics. It follows imme-
diately that a Classically Decomposable Model is also a Layer Decomposable Model,
and that a Classically Decomposable Semantics is also a Layer-Decomposable Semantics.
As a consequence, since the Layer-Decomposable Semantics family is a superset of the
Classically Decomposable Semantics one, we focus solely on the former without loss of
generality.

Moreover, our focus on Layer-Decomposable Semantics stems also from the importance
of Layer Division (and, naturally, Layer Decomposability) versus Classical Division (and
Classical Decomposability) which is tied to the Cumulativity property (Definition 6.36).
A 2-valued semantics for NLP can only enjoy Cumulativity if all its models are compatible
with Layer Division.

Example 7.2. Layer Division is necessary for Cumulativity. Let P be

b ← a
a ← not b,c
c ← not a

which has no stable models. All the rules depend on each other, so they are all in the same
layer 1. This program has three classical models: M1 = {a,b,not c}, M2 = {not a,b,c},
and M3 = {a,b,c}. b is true in all models. If a semantics enjoys Cumulativity then we

90

can add b as a fact to P and the resulting semantics will remain unchanged. P ∪{b} is

b ← a
a ← not b,c
c ← not a
b

where the fact b is in layer 1 of P ∪{b} while the other three original rules are now in
layer 2 of P ∪{b}. The unique model for layers up to 0 is M≤0 = ∅, and the unique model
for layers up to 1 is M≤1 = {b}.

If we take a Classical Division then P 2 ::M≤1 is just the set of facts {b,c}. Let us see
why: we have P 2 ::M≤1 = ̂P 2∪{b} which results in

1. adding b as a fact to P 2

2. deleting the rule a← not b,c because b is a fact — cf. Definition 6.6 7→N

3. deleting the rule b← a because a has no rules — cf. Definition 6.9 7→F

4. deleting the not a from the body of the rule c← not a because a has no rules — cf.
Definition 6.5 7→P

hence, P 2 :: M≤1 = {b,c} and the unique model of P 2 :: M≤1 is M≤2 = {not a,b,c} —
recall that we must explicitly add the negation of all the atoms that were not assigned
the truth-value true and that have no more rules, if any, in layers above, i.e., M−≤2 =
not (A≤2

P \M
+
≤2) = not ({a,b,c}\{b,c}) = not {a}= {not a}. But now, after adding b as

a fact to the program, c becomes also true in every (just one) model — the semantics has
changed by the addition of an atom that was true in the semantics, i.e., the semantics is
not Cumulative.

If instead we take the Layer Division, then P 2 : M≤1 = ˚P 2∪{b} which results in just
adding b as a fact to P 2. Let us see why: in this Layer Division case the rule a← not b,c
is not deleted because, although b is a fact, there is also another rule b← a that depends
on a← not b,c, i.e., body(a← not b,c) = ∅ and the Layered negative reduction 7→LN

operation can only use facts b to delete rules if not b ∈ body(r), not if not b ∈ body(r) as
the (non-Layered) Negative reduction does. Since, in this case, the Layer Division does
not affect P 2 besides adding the fact b, all the M1, M2, and M3 previously seen remain
models of P ∪{b} thus keeping the intersection of models — the semantics — unchanged,
i.e., the semantics can enjoy Cumulativity.

91

The Layer Division is a crucial ingredient for Cumulativity exactly because the Layered
Negative reduction (the only difference between Layer Division and Classical Division)
prevents facts (that are always placed in layer 1) from deleting rules, with the negation
of the fact in their bodies, which are in loop with other rules whose head is the same as
the fact. Hence, with the Layer Division, atoms that are common to models of loops can
be safely added as facts.

7.2 Procedural Methods for Layer Decomposable Models

From Definition 7.3 we can think of different ways to computationally address the calculus
of Layer Decomposable Models for a given ground NLP with a finite number of layers.

From Example 7.1 and the Layer Decomposable models definition we can see that, for
programs with a finite number of layers, we can define a sound and complete constructive
method, which is guaranteed to terminate, for obtaining all the LD models of a program.
Such a “bottom-up” constructive method might indeed be useful for building models of
the whole program.

Definition 7.7. Constructive Method for Layer Decomposable models. Let P
be an NLP with a finite number n of layers. Then all the Layer Decomposable models of
P can be constructed in the following manner

Algorithm Bottom-Up Construct an LDM(Program P)

M≤0 =M0 = not A0
P is the unique individual layer model of layer 0, i.e., P 0 = P≤0;

for each layer index 0≤ i < n
Make the Layer Division of P i+1 by M<i+1 where M<i+1 =M≤i;
Non-deterministically select a 3-valued model M≤i+1 of P i+1 :M<i+1 such that
M≤i+1 ⊇M<i+1 and M−≤i+1 = not (A≤i+1

P \M+
≤i+1);

M≤n is a Layer Decomposable model of P
Figure 7.1: Algorithm Bottom-Up Construct an LDM.

Given that the definition of Layer Decomposable Model relies on the consistent union
of individual layer models for each layer Pα, we can also contemplate the possibility of
distributing the calculus of a LD model by several parallel tasks, one per layer. Each task
calculating an individual layer model M≤α for a given layer Pα would

1. Assume a set M<α of truth values for the all literals in body(r) all rules r ∈ Pα;

92

2. Make the Layer Division of Pα by M<α;

3. Non-deterministically calculate a 3-valued model M≤α of Pα : M<α with M−≤α =
not (A≤αP \M

+
≤α)

The union M = ⋃
α≥0M≤α of the individual layer models M≤α is a LD model of P iff M

is consistent.

However, one of the main motivations for this thesis is not so much the development
of constructive methods for Layer-Decomposable Semantics, but the development of a
2-valued semantics for NLPs that allows for top-down query-driven proof-procedures to
be developed and used. In this sense, the aim is to have a method for finding submodels,
relevant to the query, entailing the truth of the user’s query, and known to be extendible
to complete models covering the whole program. The Layer Decomposability (induced by
the syntactic structure of a program) is the general criterion we adopt for framing 2-valued
semantics for NLPs. This is, however, a very general criterion and possibly not all Layer-
Decomposable semantics are of interest to us because we are focused on semantics that also
enjoy a number of properties, as described in 6.5.5. In Chapter 8 we define and study one
such semantics which, we will show, also fits in the Layer-Decomposable Semantics family
and fulfils all the requirements we outlined before for a 2-valued semantics for NLPs.
For this reason we do not dwell any more upon methods for general Layer-Decomposable
semantics.

7.3 Bounding the Layer-Decomposable Semantics Family

Stable Models are often [21, 113, 143, 156] interpreted as sets of beliefs a rational agent
can have in order to satisfy a given set of rules. The requirement that every 2-valued
semantics should be a generalization of Stable Models, as described in 6.5.4, leads to the
intuitive perspective that the models of every 2-valued semantics should, somehow, have
this characteristic of embodying tenable sets of beliefs. Thus, together, the Stable Models
semantics and the Layer Decomposable Models semantics establish “lower” and “upper”
bounds on the set of models a Layer-Decomposable Semantics can accept. Formally, this
means that for every NLP P and 2-valued Layer-Decomposable Semantics Sem we have

ModelsLDMS(P)⊇ModelsSem(P)⊇ModelsSM (P)

And hence, by definition 6.29,
LDMS+

3v(P) ⊆ Sem+
3v(P) ⊆ SM+

3v(P)
LDMSu3v(P) ⊇ Semu

3v(P) ⊇ SMu
3v(P)

LDMS−3v(P) ⊆ Sem−3v(P) ⊆ SM−3v(P)

93

The LDS family requires the models for an individual layer to be consistent with the
other layers’ individual models. Moreover, a model for an individual layer assumes as
hypotheses certain truth values for all the literals having their rules in layers strictly
below the layer at hand, and possibly also literals with rules in the current layer. The
overall consistency requirement of the union of individual layers models ensures that
all the hypothesized truth values are compatible with the truth values assigned to the
same literals in models of other individual layers. Still, there might be some Layer-
Decomposable semantics that do not accept all Layer Decomposable Models, e.g., because
they impose stricter conditions on individual layer models.

The belief set self-corroboration of Stable Models can be seen as a notion of support.
In the case of the SMs, this is the classical one (Definition 6.1) which requires all the
literals in the body of some rule for an atom a to be true by default under interpretation
I in order for a to be classically supported in I. This classical notion of support makes no
distinction between literals whose atoms have rules in the same layer, and literals whose
atoms have all their rules (if any) in layers strictly lower than that of the rule at hand.

In Definition 6.2 we relaxed the classical notion of support by introducing the layered
support notion which only requires I |= body(r) in order for r to be layer supported in I.
In so doing, we opened the way for an atom to be supported by rules in layers below, even
if not classically supported by rules in its own layer. However, this still leaves open the
question of which notion of support should be required on body(r)Lf(r). The next Chap-
ter 8 indirectly addresses this issue by taking a novel and general approach to semantics
of NLPs.

8 . Minimal Hypotheses semantics

The grand aim of all science is to
cover the greatest number of
empirical facts by logical deduction
from the smallest number of
hypotheses or axioms.

Albert Einstein

In Chapter 3 we identified the syntactic structure of a program which is captured by the
(rule and atom) Layering notions. In Chapter 6 we took an overview of the current state-
of-the-art semantics, the constructs they use, and some “good” properties a semantics
should enjoy to allow efficient (possibly abductive) existential query-answering replied to
with enough partial knowledge only. In Chapter 7 we outlined the necessary semantic
skeleton drawn out of the syntactic scaffolding of the Layerings, which lead to the defini-
tion of the Layer-Decomposable family of semantics.
In this chapter we take a different approach at semantics but still following the guidelines
of 6.5.4. Fully taking the requirements outlined therein, we devised the Minimal Hypothe-
ses (MH) semantics, which we present in this chapter, it being also a Layer-Decomposable
semantics. MH semantics takes a hypotheses assumption approach as a means to provide
support to the body(r)Lf(r) part of a rule (cf. last paragraph of Chapter 7).
We begin by introducing the fundamental semantic concept lying at the core of the MHS,
that of minimality of assumed hypotheses, then go about defining the MH semantics based
on that concept, and proceed to analyse the semantics’ properties.

8.1 Minimality of Hypotheses

The abductive perspective of [129] depicts the atoms of default negated literals (DNLs) as
abducibles, i.e., assumable hypotheses. We explore this relation to abductive reasoning in
further detail in Chapter 10, but for now let us simply consider this hypotheses-assumption

95

96

perspective informally.

Atoms of DNLs can be considered as abducibles, i.e., assumable hypotheses, but not
all of them. When we have a locally stratified program (viz. 6.3.2) we cannot really say
there is any degree of freedom in assuming truth values for the atoms of the program’s
DNLs. In this sense, we realize that only the atoms of DNLs involved in non-well-founded
negation1 are eligible to be considered further assumable hypotheses.

Both the Stable Models and the approach of [129], when taking the abductive per-
spective, adopt negative hypotheses only. E.g., in a program like a← not b b← not a, if
we assume the hypothesis not b we conclude a is true which undermines b’s single rule,
thereby corroborating the initial not b assumption. This approach works fine for some
instances of non-well-founded negation such as loops (in particular, for even loops over
negation like this one), but not for odd loops over negation like, e.g. a← not a: assuming
not a would lead to the conclusion that a is true which contradicts the initial assump-
tion. To overcome this problem, we generalized the hypotheses assumption perspective
to allow the adoption, not only of negative hypotheses, but also of positive ones. Having
taken this generalization step we realized that positive hypotheses assumption alone is
sufficient to address all situations, i.e., there is no need for both positive and negative
hypotheses assumption. Indeed, because we minimize the positive hypotheses we are in
one stroke maximizing the negative ones, which has been the traditional way of dealing
with the CWA, and also with stable model because the latter’s requirement of classical
support minimizes models. This is the reason why we decided to embrace the only positive
hypotheses assumption perspective in this thesis.

In subsection 6.3.2 we recalled the Remainder (P̂) and Layered Remainder (P̊) oper-
ators, each consisting of a series of straightforward deterministic linear syntactic trans-
formations (except for the loop detection 7→L and the layered negative reduction 7→LN

which are polynomial). Both the Remainder and the Layered Remainder can be used
to simplify a program down to the subset of its original rules (some of which may have
their bodies likewise reduced) which then becomes (classically for P̂ , and layer-wise for P̊)
independent from those literals having determined truth-values. Since we are striving for
a hypotheses-assumption based approach to a Layer-Decomposable semantics, we must
select P̊ instead of P̂ as the means to simplify away the layer-wise deterministic part of P
in order to leave in P̊ the layered support compatible assumable hypotheses. Thus, all the
literals of P that are not determined false in P̊ are candidates for the role of hypotheses we
may consider to assume as true. Merging this perspective with the abductive perspective

1Recall that by non-well-founded negation we mean either Strongly Connected Components of rules
with at least one head of a rule appearing as a DNL in some body of a rule of the SCC (cf., e.g., Examples
6.5,7.1,7.2); or an infinitely long descending chain of rules with negative dependencies amongst them (cf.
Example 3.5).

97

of [129] (where the DNLs are the abducibles) we come to the following definition of the
Hypotheses set of a program.

Definition 8.1. Hypotheses set of a program. Let P be an NLP. We write Hyps(P)
to denote the set of assumable hypotheses of P : the atoms that appear as default negated
literals in the bodies of rules of P and which are not determined false in P̊ . Formally,

Hyps(P) = heads(P̊)∩{a : ∃r∈Pnot a ∈ body(r)}

or equivalently
Hyps(P) = {a : ∃r∈P̊not a ∈ body(r)}

One can define a classical support compatible version of the Hypotheses set of a pro-
gram, only needing to that effect to use the Remainder instead of the Layered Remainder.
I.e.,

Definition 8.2. Classical Hypotheses set of a program. Let P be an NLP. We write
CHyps(P) to denote the set of assumable hypotheses of P consistent with the classical
notion of support: the atoms that appear as default negated literals in the bodies of rules
of P and which are not determined false in P̂ . Formally,

CHyps(P) = heads(P̂)∩{a : ∃r∈Pnot a ∈ body(r)}

or equivalently
CHyps(P) = {a : ∃

r∈P̂not a ∈ body(r)}

In this thesis we are taking the layered support compatible approach and, therefore,
we will use the Hypotheses set as in Definition 8.1. However, since CHyps(P)⊆Hyps(P)
for every NLP P , there is no generality loss in using Hyps(P) instead of CHyps(P), while
at the same time using Hyps(P) allows for some useful semantics properties as we shall
examine in the sequel.

A 2-valued model of a program, by definition, assigns a 2-valued truth-value for every
literal in the program. Assuming as true the facts of P̊ , and as false all the atoms of
P with no rules in P̊ , is the first and most basic requirement any Layer-Decomposable
2-valued model must comply with. But a full 2-valued model must assign a truth-value to
all, if any, other atoms — i.e., the Hypotheses and the atoms that depend on them. Once
having simplified away the layer-deterministic part of P — obtaining P̊ — we must now
start making assumptions about the Hypotheses of the program, bearing in mind that
each such hypothesis assumed true may immediately constraint the possible truth-values
of other candidate hypotheses (and other literals depending on the hypothesis) via the
consequences it entails, in order to find a 2-valued model. We resort to the Remainder

98

P̂ as a means to fully propagate the truth-values of the assumed hypotheses and thus
calculate their consequences.

Intuitively, a Minimal Hypotheses model of a program is derived from a set of such
hypotheses which is sufficiently large to determine the truth-value of all literals via Re-
mainder, and simultaneously set-inclusion minimal, i.e., the hypotheses it assumes are no
more than those necessary to determine the truth-values of all literals, in the set inclusion
sense rather than in the cardinality sense.

Je n’avais pas besoin de cette
hypothése-lá.

Pierre-Simon Laplace

Definition 8.3. Minimal Hypotheses model. Let P be an NLP. Let Hyps(P) be
the set of assumable hypotheses of P (cf. Definition 8.1), and H some subset of Hyps(P).

A 2-valued model M of P is a Minimal Hypotheses model of P iff

M+ = facts(P̂ ∪H) = heads(P̂ ∪H)

where H = ∅ or H is non-empty set-inclusion minimal (the set-inclusion minimality is
considered only for non-empty Hs). I.e., the hypotheses set H is minimal but sufficient
to determine (via Remainder) the truth-value of all literals in the program.

Notice we do not resort to an incremental way of constructing a set of hypotheses by,
e.g., iteratively adding hypotheses as facts and computing the Remainder in order to check
if more hypotheses are needed or not — nor do we recompute new Layerings as hypotheses
would be added. Such a process cannot guarantee set-inclusion minimality of the assumed
hypotheses. Instead, finding a Minimal Hypotheses model can be done by selecting some
set of hypotheses, checking via Remainder that they are enough to propagate 2-valuedness
to all literals in the program, and then checking the initially assumed set of hypotheses
is minimal w.r.t guaranteeing 2-valued completeness.

By Definition 6.16 we know that WFM+(P) = facts(P̂) and that WFM+u(P) =
heads(P̂). Thus, whenever facts(P̂) = heads(P̂) we have WFM+(P) = WFM+u(P)
which meansWFMu(P) = ∅. Moreover, wheneverWFMu(P) = ∅ we know, by Corollary
5.6 of [109], that the 2-valued model M such that M+ = facts(P̂) is the unique stable
model of P . Thus, we conclude that, as an alternative equivalent definition, M is a
Minimal Hypotheses model of P iffM is a stable model of P ∪H where H is either empty
or a non-empty set-inclusion minimal subset of Hyps(P). This provides an alternative

99

way to understand Minimal Hypotheses models: as Stable Models of a program that
has been augmented with new facts — the hypotheses. The crucial point remains in
identifying the set of possible hypotheses Hyps(P) which, as seen in Definition 8.1, must
be compatible with the Layered Remainder. Were it not for this central new different
contribution — the Layered Remainder (the difference coming from the new Layered
Negative Reduction) — all MH models would coalesce to the SMs. It is the use of the
Layered Remainder that allows for more hypotheses, thus allowing for more MH models,
some of them not being SMs.

The H = ∅ case is necessary to cover the cases where the program is locally strat-
ified. For these cases it is known the Well-Founded Model is 2-valued complete, i.e.,
WFM(P)u = ∅ which means that facts(P̂) = heads(P̂), or equivalently facts(P̂ ∪∅) =
heads(P̂ ∪∅). In such cases we want to accept M∅ = WFM+(P)∪not WFM−(P) as a
MH model of P simply because M+

∅ = facts(P̂ ∪∅) =WFM+(P).

Example 8.1. Minimal Hypotheses models for the vacation problem. Recall
again the program from the vacation Example 6.5 (not the one from Example 7.1 with
the passport rules). P =

beach ← not mountain
mountain ← not travel

travel ← not beach

All the rules depend on each other, and so they are all in layer 1. What is more body(r) = ∅
for each and every rule in this program — all the literals in the bodies of these rules are
in loop with the rule whose body they are part of. In this case we thus have P = P̂ = P̊ ,
and also Hyps(P) = {beach,mountain, travel}. Let us see what are the MH models of
this program.

There is no point in trying out H = ∅ to check if M∅ is a MH model of P because we
already know that facts(P̂ ∪∅) = facts(P̂) 6= heads(P̂) = heads(P̂ ∪∅).

Assuming H = {beach} we have P ∪H = P ∪{beach}=

beach ← not mountain
mountain ← not travel

travel ← not beach
beach

and thus P̂ ∪H = ̂P ∪{beach} which is just the set of facts {beach,mountain}. This
means that M+

beach = facts(̂P ∪{beach}) = heads(̂P ∪{beach}) = {beach,mountain} and
thus Mbeach = {beach,mountain,not travel} is a Minimal Hypotheses model of P .

100

Likewise, assuming H = {mountain} we have M+
mountain = facts(̂P ∪{mountain}) =

heads(̂P ∪{mountain}) = {mountain, travel} rendering
Mmountain = {not beach,mountain, travel} also a MH model of P . And finally, as-
suming H = {travel} we have M+

travel = facts(̂P ∪{travel}) = heads(̂P ∪{travel}) =
{beach,travel} rendering Mtravel = {beach,not mountain, travel} also a MH model of
P . There are no other MH models of P as any other non-empty subset of H is not
minimal w.r.t. to at least one of the H = {beach}, H = {mountain} and H = {travel}
considered for the three models we have just seen.

Consider now the same example, but this time with an additional fourth stubborn
friend that insists on going to the beach for the vacation, no matter what the other
friends decide. The program is now2 Pstubborn =

beach ← not mountain
mountain ← not travel

travel ← not beach
beach

Again we have ˚Pstubborn = Pstubborn and thus the set of hypotheses of Pstubborn remains
{beach,mountain, travel}. Notice that the use of ˚Pstubborn instead of ̂Pstubborn allows
Hyps(Pstubborn) to be the same as for P (without the stubborn friend) above. The MH
models in this case are:
assuming H = ∅, we have Pstubborn∪H = Pstubborn∪∅= Pstubborn and M+

stubborn∅
=

facts(̂Pstubborn∪∅) = heads(̂Pstubborn∪∅) = {beach,mountain}, thus Mstuborn∅ = {beach,
mountain,not travel} is a Minimal Hypotheses model of Pstubborn;
assuming H = {beach}, we have Pstubborn ∪H = Pstubborn ∪{beach} = Pstubborn because
beach was already a fact in Pstubborn

beach ← not mountain
mountain ← not travel

travel ← not beach
beach

and M+
stubbornbeach

= facts(̂Pstubborn∪{beach}) = heads(̂Pstubborn∪{beach}) =
{beach,mountain}, thus Mstubornbeach = {beach,mountain,not travel} is a Minimal Hy-
potheses model of Pstubborn, exactly the same as Mstubborn∅ above;

2This variation of the vacation example is but a renaming of the literals in Example 6.2.

101

assuming H = {mountain}, we have Pstubborn∪H = Pstubborn∪{mountain}=

beach ← not mountain
mountain ← not travel

travel ← not beach
beach

mountain

andM+
stubbornmountain

= facts(̂Pstubborn∪{mountain}) = heads(̂Pstubborn∪{mountain}) =
{beach,mountain}, thus Mstubbornmountain = {beach,mountain,not travel} which is the
same MH model of Pstubborn as both Mstubborn∅ and Mstubbornbeach above;
assuming H = {travel}, we have Pstubborn∪H = Pstubborn∪{travel}=

beach ← not mountain
mountain ← not travel

travel ← not beach
beach
travel

and M+
stubborntravel

= facts(̂Pstubborn∪{travel}) = heads(̂Pstubborn∪{travel}) =
{beach,travel}, thus Mstubborntravel = {beach,not mountain, travel} is also an MH model
of Pstubborn, and there are no other.

We can see that, when we add the fourth stubborn friend insisting on going to the
beach, we no longer have the Mmountain = {not beach,mountain, travel} model we had in
the original example. Recall that in the original program (without the beach fact) there
were three models {beach,mountain,not travel}, {beach,not mountain, travel}, and
{not beach,mountain, travel}. Of these, only the third model {not beach,mountain, travel}
is inconsistent with adding the fact beach, i.e., adding beach as a fact (insisting on going
to the beach) should not invalidate the {beach,not mountain, travel} model as this was
already a possibility considered by the three initial friends.

The minimality of H is not sufficient to ensure minimality of M+ = facts(P̂ ∪H)
making its checking explicitly necessary if that is so desired. Minimality of hypotheses
is indeed the common practice in science, not the minimality of their inevitable con-
sequences. To the contrary, the more of these the better because it signifies a greater
predictive power.

In Logic Programming whole model minimality is a consequence of resorting to least
fixed point definitions: the T operator in definite programs is conducive to defining a
least fixed point, a unique minimal model semantics; in SM, though there may be more

102

than one model, minimality turns out to be a property because of the stability (and
its attendant classical support) requirement; in the WFS, again the existence of a least
fixed point operator affords a minimal (information) model. In abduction too, minimality
of consequences is not a caveat, but rather minimality of hypotheses is, if that even.
Hence our approach to LP semantics via MHS is novel indeed, and by insisting instead
on positive hypotheses establishes an improved and more general link to abduction and
to argumentation [188, 189].

Example 8.2. Minimality of Hypotheses does not guarantee minimality of
model. Let P , affording a single layer and with no SMs, be

a ← not b,c
b ← not c,not a
c ← not a,b

In this case P = P̂ = P̊ , which makes Hyps(P) = {a,b,c}.

H = ∅ does not determine all literals of P because

facts(P̂ ∪∅) = facts(P̂) = ∅ and
heads(P̂ ∪∅) = heads(P̂) = {a,b,c}

H = {a} does determine all literals of P because

facts(P̂ ∪{a}) = {a} and
heads(P̂ ∪{a}) = {a}

thus yielding the MH model Ma such that M+
a = facts(P̂ ∪{a}) = {a}, i.e.,

Ma = {a,not b,not c}.

H = {c} is also a minimal set of hypotheses determining all literals

facts(P̂ ∪{c}) = {a,c} and
heads(P̂ ∪{c}) = {a,c}

thus yielding the MH model Mc of P such that M+
c = facts(P̂ ∪{c}) = {a,c}, i.e., Mc =

{a,not b,c}. However, Mc is not a minimal model of P because M+
c = {a,c} is a strict

superset of M+
a = {a}. Mc is indeed an MH model of P , but just not a minimal one

thereby being a clear example of how minimality of hypotheses does not entail minimality
of consequences.

103

Just to make this example complete, we show that H = {b} also determines all literals
of P because

facts(P̂ ∪{b}) = {b,c} and
heads(P̂ ∪{b}) = {b,c}

thus yielding the MH model Mb such that M+
b = facts(P̂ ∪{b}) = {b,c}, i.e., Mb =

{not a,b,c}. Any other hypotheses set is necessarily a strict superset of either H = {a},
H = {b}, or H = {c} and, therefore, not set-inclusion minimal.

Minimal Hypotheses models are Layer Decomposable models (as we show below), but
not all LD models are MH models, as the following example shows.

Example 8.3. Some Layer Decomposable models are not Minimal Hypotheses
models. Let single layer with no SMs P be

a ← k
k ← not t
t ← a,b
a ← not b
b ← not a

In this case P = P̂ = P̊ and therefore Hyps(P) = {a,b, t}. Since facts(P̂) 6= heads(P̂),
the hypotheses set H = ∅ does not yield a MH model.

Assuming H = {a} we have P̂ ∪H = P̂ ∪{a}=

a
k

so, P̂ ∪H is the set of facts {a,k} and, therefore, Ma such that M+
a = facts(P̂ ∪H) =

facts(P̂ ∪{a}) = {a,k}, is a MH model of P .

Assuming H = {b} we have P̂ ∪{b}=

a ← k
k ← not t
t ← a
b ← not a
b

thus facts(P̂ ∪{b}) = {b} 6= heads(P̂ ∪{b}) = {a,b, t,k}, which means the set of hypothe-
ses H = {b} does not yield a MH model of P .

104

Assuming H = {t} we have P̂ ∪{t}=

t ← a,b
b ← not a
a ← not b
t

thus facts(P̂ ∪{t}) = {t} 6= heads(P̂ ∪{t}) = {a,b, t}, which means the set of hypotheses
H = {t} does not yield a MH model of P .

Since we already know that H = {a} yields an MH model Ma with M+
a = {a,k}, there

is no point in trying out any subset H ′ of Hyps(P) = {a,b, t} such that a ∈H ′ because
any such subset would not be minimal w.r.t. H = {a}. Let us, therefore, move on to the
unique subset left: H = {b, t}. Assuming H = {b, t} we have ̂P ∪{b, t}=

t
b

thus facts(̂P ∪{b, t}) = {b, t} = heads(̂P ∪{b, t}), which means Mb,t such that M+
b,t =

facts(P̂ ∪H) = facts(̂P ∪{b, t}) = {b, t}, is a MH model of P .

It is important to remark that this program has other classical models, e.g, {a,k},{b, t},
and {a,t}, all of which are Layer Decomposable Models of P , but only the first two are
Minimal Hypotheses models — {a,t} is obtainable only via the set of hypotheses {a,t}
which is non-minimal w.r.t. H = {a} that yields the MH model {a,k}.

8.2 Properties of the Minimal Hypotheses Semantics

As explained in 6.5.5.4, every SM complies with the intuitive requirements described in
6.5.4 and hence the MH semantics (and any other 2-valued semantics for NLPs for that
matter) should be model conservative generalization of the Stable Models semantics.

Theorem 8.1. Every Stable Model is a Minimal Hypotheses model. Let P be
an NLP, and M a stable model of P . Then, M is also a Minimal Hypotheses model of
P . The Minimal Hypotheses semantics is thus a model conservative generalization of the
Stable Models semantics — cf. Definition 6.38.

It is also convenient to understand how MH models relate to the Well-Founded Model
(and to the Layered Well-Founded Model) of a program.

105

In the variation with the stubborn friend of Example 8.1 we saw that there are two
distinct MH models: {beach,mountain,not travel} and {beach,not mountain, travel}.
We can also see easily that the Well-Founded Model of that variation with the stubborn
friend is such that WFM(P)+ = {beach,mountain}, WFM(P)u = ∅, and WFM(P)− =
{travel}. Knowing this one can wonder why, then, is there a MH model like {beach,
not mountain, travel} which clearly contradicts the WFM, both in taking mountain as
false when it is true in the WFM, and by taking travel as true when it is false in the
WFM. To answer this question we must recall that, according to Definition 6.29, the
3-valued model of a 2-valued semantics for a given program results from the intersec-
tion of all the 2-valued models of the semantics for that program. In this sense, the 3-
valued model of Example 8.1 according to MH semantics is MH3v(Pstubborn)+ = {beach},
MH3v(Pstubborn)u = {mountain, travel},MH3v(Pstubborn)− = ∅ which complies (and even
coincides), not with the WFM, but with the Layered WFM (Definition 6.17). Since the
MH semantics is a Layer-Decomposable semantics, it only makes sense that its 3-valued
model complies with the LWFM but not necessarily with the WFM, the latter resting
upon the classical support notion, instead of the layered support of the former. The fun-
damental reason for there existing the MH model {beach,not mountain, travel} which
contradicts the WFM is that we want the MH semantics to enjoy Cumulativity, amongst
other properties, and, as seen on Example 7.2, a 2-valued semantics can only enjoy Cu-
mulativity if it is compatible with Layer Division. In that Example 7.2 we can clearly see
that, if the MH definition would allow the set-inclusion minimality required of H to range
over possible empty H then, in that case, there would be a single MH model for a program
which would coincide with its 2-valued Well-Founded Model, and this, as illustrated in
Example 7.2, would undermine Cumulativity.

In this current particular vacation example we can see an instance of the Theorem 6.2
where
MH3v(Pstubborn)+ = LWFM(P)+ = {beach} ⊆WFM(P)+ = {beach,mountain},
MH3v(Pstubborn)u = LWFM(P)u = {mountain, travel} ⊇WFM(P)u = ∅, and
MH3v(Pstubborn)− = LWFM(P)− = ∅ ⊆WFM(P)− = {travel}.

Nonetheless, Pstubborn has a MH model {beach,mountain,not travel} that completely
complies with and corroborates the WFM. And this is also true in general, i.e., for every
program P there is a MH model M such that M+ ⊇WFM+(P) and M− ⊇WFM−(P).

Theorem 8.2. At least one Minimal Hypotheses model of P complies with
the Well-Founded Model. Let P be an NLP. Then, there is at least one Minimal
Hypotheses model M of P such that M+ ⊇WFM+(P) and M− ⊇ not WFM−(P).

Theorem 8.3. All Minimal Hypotheses models of P comply with the Layered
Well-Founded Model. Let P be an NLP, and M a Minimal Hypotheses model M of
P . Then, M is such that M+ ⊇ LWFM+(P) and M− ⊇ not LWFM−(P).

106

The minimality requirement imposed on H for MH models is sufficient to ensure
Layer-Decomposablity of MH models.

Theorem 8.4. Minimal Hypotheses models are Layer Decomposable models.
Let P be an NLP, and M a Minimal Hypotheses model of P . Then, M is also a Layer
Decomposable model of P .

Example 8.4. Minimal Hypotheses models for the vacation with passport
variation. Consider again the vacation problem with the variation from Example 7.1
P =

beach ← not mountain
mountain ← not travel

travel ← not beach,not expired_passport

passport_ok ← not expired_passport
expired_passport ← not passport_ok

We have P = P̊ = P̂ and thus Hyps(P) = {beach,mountain, travel,passport_ok,
expired_passport}. Let us see which are the MH models for this program and how they
relate to the Layer Decomposable models in Example 7.1.

H = ∅ does not yield a MH model.
Assuming H = {beach} we have P ∪H = P ∪{beach}=

beach ← not mountain
mountain ← not travel

travel ← not beach,not expired_passport
beach

passport_ok ← not expired_passport
expired_passport ← not passport_ok

and P̂ ∪H =
mountain

beach
passport_ok ← not expired_passport

expired_passport ← not passport_ok

which means H = {beach} is not sufficient to determine the truth values of all literals of
P . One can easily see that the same happens for H = {mountain} and for H = {travel}:
in either case the literals passport_ok and expired_passport remain non-determined.

107

If we assume H = {expired_passport} then P ∪H is

beach ← not mountain
mountain ← not travel

travel ← not beach,not expired_passport

passport_ok ← not expired_passport
expired_passport ← not passport_ok
expired_passport

and P̂ ∪H =
mountain

expired_passport

which means M+
expired_passport = facts(P̂ ∪H) = heads(P̂ ∪H) =

{mountain,expired_passport}, i.e.,
Mexpired_passport = {not beach,mountain,not travel,not passport_ok,expired_passport},
is a MH model of P — this corresponds to M≤212

of Example 7.1. Since assuming
H = {expired_passport} alone is sufficient to determine all literals, there is no other set
of hypotheses H ′ of P such that H ′ ⊃ {expired_passport} (notice the strict ⊃, not ⊇),
yielding a MH model of P . E.g., H ′ = {travel,expired_passport} does not lead to a MH
model of P simply because H ′ is not minimal w.r.t. H = {expired_passport}.

If we assume H = {passport_ok} then P ∪H is

beach ← not mountain
mountain ← not travel

travel ← not beach,not expired_passport

passport_ok ← not expired_passport
expired_passport ← not passport_ok

passport_ok

and P̂ ∪H =
beach ← not mountain

mountain ← not travel
travel ← not beach

which corresponds to the original version of this example and still leaves literals with
non-determined truth-values. I.e., assuming the passports are OK allows for the three
possibilities of Example 6.5 but it is not enough to entirely “solve” the vacation problem:
we need some hypotheses set containing one of beach, mountain, or travel if (in this case,
and only if) it also contains passport_ok.

108

Corollary 8.1. Stable Models are Layer Decomposable models. Let P be an
NLP, and M a stable model of P . Then, M is also a Layer Decomposable Model of P .

Proof. Trivial from Theorems 8.1 and 8.4.

The MH semantics trivially guarantees model existence.

Theorem 8.5. Minimal Hypotheses semantics guarantees model existence.
Let P be an NLP. There is always, at least, one Minimal Hypotheses model of P .

8.2.1 Relevance

The MH semantics enjoys both Brave Relevance and Relevance, thus allowing for top-
down query-driven proof-procedures to be developed.

Theorem 8.6. Minimal Hypotheses semantics enjoys Brave Relevance. Let
P be an NLP. Then, according to Definition 6.31,(

∀ a∈HP
M∈ModelsMH(P)

a ∈M+⇒ (∃Ma∈ModelsMH(RelP (a))Ma ⊆M ∧a ∈M+
a)
)

∧(
∀ a∈HP
Ma∈ModelsMH(RelP (a))

a ∈M+
a ⇒∃M∈ModelsMH(P)Ma ⊆M

)

holds.

Theorem 8.7. Minimal Hypotheses semantics enjoys Relevance. Let P be an
NLP. Then, by Definition 6.30,

(∀M∈ModelsMH(P)a ∈M+)⇔ (∀Ma∈ModelsMH(RelP (a))a ∈M+
a)

holds.

Proof. It follows trivially from Proposition 6.4 and Theorem 8.6.

As pointed out before, one of the main goals of this thesis was to come up with a
2-valued semantics allowing for sound and complete top-down proof-procedures to be
developed and used for query-solving. The formal definition of a sound and complete
proof procedure regarding the MH semantics, along with corresponding proofs and imple-
mentation, is itself a task almost substantial enough for another PhD work. We do not

109

undertake such endeavour here, but only point some directions and hints on the specific
issues of MH semantics one such proof-procedure must address: in particular, during top-
down querying the solver must identify the SCC a queried literal might be involved in
before trying out different minimal sets of hypotheses determining all literals in the SCC
and simultaneously not contradicting (and if possible, at least partially satisfying) the top
queried literals. Notice SCC detection can be done efficiently (i.e., in polynomial time).
SCC detection is potentially simpler than detecting all call-graph loops a literal may be
involved in, as this is an NP-complete task. SCC detection is a computationally efficient
and deterministic task (there is only one graph of SCCs for any given program), and it
can even be performed only once, before any query takes place, as a pre-processing task.
In this case, query solving would only need to consult which SCCs a literal is involved in
and not to compute them at query-solving-time for optimized efficiency.

8.2.2 Cumulativity

MH semantics enjoys both Cumulativity and Brave Cautious Monotony, thus allowing for
lemma storing techniques to be used during computation of answers to queries.

Theorem 8.8. Minimal Hypotheses semantics enjoys Cumulativity. Let P be
an NLP. Then

∀a,b∈HP

(
(∀M∈ModelsMH(P)a ∈M+)⇒

(∀M∈ModelsMH(P)b ∈M+⇔∀Ma∈ModelsMH(P∪{a})b ∈M+
a)
)

Theorem 8.9. Minimal Hypotheses semantics enjoys Brave Cautious Monotony.
Let P be an NLP. Then

∀ a∈HP
M∈ModelsMH(P)

a ∈M ⇒M ∈ModelsMH(P ∪{a})

8.2.3 Complexity

The complexity issues usually relate to a particular set of tasks, namely: 1) knowing if the
program has a model; 2) if it has any model entailing some set of ground literals (a query);
3) if all models entail a set of literals. In the case of MH semantics, the answer to the
first question is an immediate “yes” because MH semantics guarantees model existence for
NLPs; the second and third questions correspond (respectively) to Brave and Cautious
Reasoning, which we now analyse.

110

8.2.3.1 Brave Reasoning

The complexity of the Brave Reasoning task with MH semantics, i.e., finding an MH
model satisfying some particular set of literals is ΣP

2 -complete.

Theorem 8.10. Brave Reasoning with MH semantics is ΣP
2 -complete. Let P

be an NLP, and Q a set of literals, or query. Finding an MH model such that M ⊇Q is
a ΣP

2 -complete task.

8.2.3.2 Cautious Reasoning

Conversely, the Cautious Reasoning task with MH semantics, i.e., guaranteeing that every
MH model satisfies some particular set of literals is ΠP

2 -complete.

Theorem 8.11. Cautious Reasoning with MH semantics is ΠP
2 -complete. Let

P be an NLP, and Q a set of literals, or query. Guaranteeing that all MH models are
such that M ⊇Q is a ΠP

2 -complete task.

Proof. Guaranteeing that all MH models are such that M ⊇ Q is equivalent to ensuring
there is no M +Q. I.e., ensuring there is no M ⊇ ¬Q. Cautious Reasoning is thus the
complement of Brave Reasoning, and since the latter is ΣP

2 -complete (Theorem 8.10), the
former must necessarily be ΠP

2 -complete.

The set of hypotheses Hyps(P) is obtained from P̊ which identifies rules that depend
on themselves. The hypotheses are the atoms of DNLs of P̊ , i.e., the “atoms of nots
in loop”. A Minimal Hypotheses model is then obtained from a minimal set of these
hypotheses sufficient to determine the 2-valued truth-value of every literal in the program.
The MH semantics imposes no ordering or preference between hypotheses — only their set-
inclusion minimality. For this reason, we can think of the choosing of a set of hypotheses
yielding a MH model as finding a minimal solution to a disjunction problem, where
the disjuncts are the hypotheses. In this sense, it is therefore understandable that the
complexity of the reasoning tasks with MH semantics is in line with that of, e.g., reasoning
tasks with SM semantics with Disjunctive Logic Programs, i.e, ΣP

2 -complete and ΠP
2 -

complete.

111

8.3 Procedural Methods for Minimal Hypotheses semantics

By Theorem 8.4 we know we can use the constructive method in Definition 7.7 for building
the Minimal Hypotheses models of programs with a finite number of layers. In order to
make this method sound and complete according to MH semantics, we need to include
the Minimal Hypotheses assumption step.

Definition 8.4. Layer-wise Constructive Method for Minimal Hypotheses mod-
els. Let P be an NLP with a finite number n of layers. Then all the Minimal Hypotheses
models of P can be constructed in the following manner

Algorithm Bottom-Up Construct an MH model(Program P)

M≤0 =M0 = not A0
P is the unique individual layer model of layer 0, i.e., P 0 = P≤0;

for each layer index 0≤ i < n
Make the Layer Division of P i+1 by M<i+1 where M<i+1 =M≤i;
Non-deterministically select a set Hi+1 ⊆Hyps(P i+1 :M<i+1) with
heads((P i+1 :M<i+1) ::Hi+1) = facts((P i+1 :M<i+1) ::Hi+1) such that
Hi+1 is set-inclusion minimal

M+
≤i+1 = facts((P i+1 :M<i+1) ::Hi+1);

M−≤i+1 = not (A≤i+1
P \M+

≤i+1);
M≤i+1 =M+

≤i+1∪M
−
≤i+1;

M≤n is a Minimal Hypotheses model of P
Figure 8.1: Algorithm Bottom-Up Construct an MH model.

Recall that P :: I = P̂ ∪ I as per Definition 7.1 and so, in the current definition we use
the P :: I notation instead of P̂ ∪ I just for convenience. Although such a constructive
method might be indeed useful, our main focus is on top-down querying using only the
part of the program relevant to the query, and under this setting a bottom-up constructive
method is not primarily important. We return to the issue of top-down query-solving with
MH semantics when we address the Relevance property below.

In this chapter we presented the Minimal Hypotheses semantics, a member of the Layer-
Decomposable semantics family complying with the Ockham’s razor principle of minimality
of hypotheses, and enjoying a number of properties useful for future practical implemen-
tations. We now turn to compare this semantics to others and to different approaches to

112

logic programming.

9 . Comparisons

The secret of what anything means to
us depends on how we have connected
it to all other things we know.

Marvin Minsky

In Chapter 7 we defined the Layer-Decomposable semantics family and showed how the
Layer Decomposable models mirror the syntactic structure of layering. In Chapter 8 we
defined the Minimal Hypotheses semantics and showed it to be a member of the Layer-
Decomposable semantics family (cf. Theorem 8.4). We have also shown that, because all
stable models are Minimal Hypotheses models (cf. Theorem 8.1), they are also Layer-
Decomposable (cf. Corollary 8.1).
The Minimal Hypotheses semantics is a special case of a Layer-Decomposable semantics,
but there might be several other Layer-Decomposable semantics. We are not defining and
studying here every possible Layer-Decomposable semantics; instead, we opt to focus on
MH semantics as this corresponds to the intuition described in Section 6.5 and enjoys
the properties detailed in 6.5.5, and consequently we choose it for comparison with other
semantics for NLPs and other approaches to logic.

9.1 Other Semantics for NLPs

As we have seen in Chapter 8, and in particular in Theorem 8.1, all stable models are
MH models. Since MH models are always guaranteed to exist for every NLP (cf. Theo-
rem 8.5) and SMs are not, it follows immediately that the Minimal Hypotheses semantics
is a strict model conservative generalization (cf. Definition 6.38) of the Stable Models
semantics. For Normal Logic Programs, the Stable Models semantics coincides with the
Answer-Set semantics (which is a generalization of SMs to Extended Logic Programs),
where the latter is known (cf. [110]) to correspond to Reiter’s default logic. Hence, all
Reiter’s default extensions have a corresponding Minimal Hypotheses model. Also, since

113

114

Moore’s expansions of an autoepistemic theory [160] are known to have a one-to-one cor-
respondence with the stable models of the NLP version of the theory, we conclude that for
every such expansion there is a matching Minimal Hypotheses model for the same NLP.

As shown in Theorem 8.2, at least one MH model of a program complies with its
well-founded model, although not necessarily all MH models do. E.g., the program from
Example 6.2 has the two MH models {a,b,not c} and {a,not b,c}, whereas the WFM(P)
imposesWFM+(P) = {a,b},WFMu(P) = ∅, andWFM−(P) = {c}. This, as we already
know, is due to the set of Hypotheses Hyps(P) of P being taken from P̊ (which is based
on the layered support notion) instead of being taken from P̂ (which is based upon the
classical notion of support).

Not all Minimal Hypotheses models are Minimal Models of a program. As we have
already noted in Chapter 8, the rationale behind MH semantics is minimality of hypothe-
ses, but not necessarily minimality of consequences, the latter being enforceable, if so
desired, as an additional requirement, although at the expense of increased complexity.

In [187, 204] (the latter being our M.Sc. thesis) we defined and studied the Revised
Stable Models (RSMs) semantics for NLPs. This semantics had the same motivational
drives as the ones for this thesis, but the definition of the RSM semantics turned out to be
quite hard to grasp and to explain. The RSM semantics built upon the notion of Reductio
ad Absurdum (RAA): intuitively, if some atom is assumed false in an interpretation and
the same atom comes out true as a consequence of that assumption plus the rest of
the interpretation, then, by reductio ad absurdum, that interpretation is rejected as a
candidate model.

Although we have not yet undergone a thorough comparative analysis between the MH
and the RSM semantics, in every example program we tried we noticed that all RSMs
were also MH models, although the converse was not true.

Example 9.1. Revised Stable Models versus Minimal Hypotheses models.
Let P be

c ← not m
m ← not b
b ← m,not c

This program has three MH models: M1 = {b,c,not m}, M2 = {not b,c,m}, and M3 =
{b,not c,m}. Of these, only M1 and M2 are RSMs.

In a very informal way, it seems that the RAA approach of RSMs can be seen as
a restricted version of the hypotheses assumption of MH semantics, but the rigorous
comparison of these two semantics is still to be done and, as such, is a topic for future
work. Moreover, it turned out that the RSM semantics does not enjoy Cumulativity as

115

we would desire, and this was one of the additional factors that motivated the definition
of the MH semantics. E.g., in the Example 9.1 above, according to the RSM semantics,
c is true in all RSMs, but if we add c as a fact to the program then P ∪{c} admits only
M2 = {not b,c,m} as an RSM thus rendering m also true in all its RSMs. Since m was
not true in all RSMs of P , the RSM semantics fails Cumulativity.

9.2 Argumentation

The relation between logic programs and argumentation systems has been considered for
a long time now ([14, 42, 91, 173] amongst many others) and we have also taken steps to
understand and further that relationship [188, 189, 190].

In 6.4.2.4 and 6.4.2.5 we saw different approaches to the argumentation perspective of
semantics for NLPs.

We are not making a comprehensive comparative analysis of the MH semantics with
the Revision Complete Scenarios but just noticing the philosophical similarities between
them, namely concerning the minimal assumption of hypotheses producing, as a conse-
quence, a 2-valued complete model. The MH semantics explicitly demands minimality
of positive hypotheses, whereas the Revision Complete Scenario argumentation approach
makes the non-redundant and unavoidable requirements on a set of positive hypotheses.
These are not the same as explicit minimality, but the rationale behind them is similar.
The Approved Models semantics, on the other hand, strives for maximality (in the sense
of Definition 5.10) of negative hypotheses M−. One feature of the Approved Models se-
mantics is that it generalizes Dung’s Preferred Extensions to 2-valued complete models.
It remains for future work to analyse the Minimal Hypotheses semantics from an argu-
mentation perspective, thoroughly comparing it to the Revision Complete Scenarios and
the Approved Models semantics.

In [167], the author (with whom we shared our goals and vision of semantics for NLPs
a few years ago) also aims at semantics for LPs, guaranteeing model existence, enjoying
relevance, and seamlessly encompassing the argumentation approach. He also compares
his own approach to our own [187] thereby showing that other researchers in our scientific
community have recognized the importance and non-triviality of the issues and concerns
we have been addressing.

116

9.3 Other Aspects

We can summarize a comparison of some complexity results of the main 2-valued and 3-
valued semantics (the SM and the WF semantics, respectively) against the MH semantics’s
own results in a table:

Model Existence Brave Reasoning Cautious Reasoning
WFS O(1) P-complete P-complete
SMs NP-complete NP-complete coNP-complete
MHs O(1) ΣP

2 -complete ΠP
2 -complete

By assigning a meaning, a model, to every NLP, the MH semantics completely lifts
any restriction on the use of NLP rules for Knowledge Representation and Reasoning and,
as pointed out in 6.5.1, it increases the declarativity of NLPs by unequivocally separating
the roles of Integrity Constraints from rules with “non-⊥” head. From a “generate-and-
test” perspective, with MH semantics, rules with “non-⊥” head can be arbitrarily used
for the “generate” role, whereas Integrity Constraints (rules with “⊥” as head) are used
for the “test” role. Most importantly, with MH semantics, only ICs can play the “test”
role, and only “non-⊥” head rules can play the “generate” role.

Overall, the MH is a 2-valued semantics (like the SMs one), it guarantees model ex-
istence, relevance and cumulativity (like the WFS), and also Brave Relevance and Brave
Cautious Monotony. By stemming from a hypotheses assumption approach, the MH se-
mantics is naturally fit for effectively embodying abductive knowledge representation and
reasoning, as well as argumentation settings as these can be described by argumentation
hypotheses assumption. Much remains to be explored.

The MH semantics builds upon a hypotheses assumption approach. This brings the MH
semantics very close to the abduction reasoning mechanism as previously discussed (in
1.2.3, Section 6.2, Section 7.1, and Chapter 8). The MH semantics strives to achieve a
pragmatic balance between being conceptually simple stand (like the Stable Models seman-
tics), enjoying a number of useful properties (like the Well-Founded Semantics), providing
a natural bridge between deductive and abductive reasoning, and allowing for relatively
simple implementations. Now that we have a slightly better understanding of the relations
between the MH and other semantics and approaches to logic programs, we can consider
Reasoning with Logic Programs, including abductive reasoning, with the MH semantics.

117

Part III

Reasoning with Logic Programs

10 . Abductive and Deductive Reasoning

Logic: The art of thinking and
reasoning in strict accordance with
the limitations and incapacities of the
human misunderstanding.

Ambrose Bierce

In the previous parts of this thesis we studied desirable properties of semantics and of
program structure, with a view to represent knowledge with Normal Logic Programs, and
also how to extend that representation formalism to deal with explicit negation and disjunc-
tion. We identified the intrinsic structure of knowledge as written as a set of sentences,
or logic rules, using such formalisms. We outlined the desirable properties a semantics
for such logic programs should enjoy, defined the family of semantics that conforms to
the structure of knowledge. Then, we defined the Minimal Hypotheses models semantics,
showed how if fits in that family, enjoys those properties, and compared it with other se-
mantics and approaches to logic programs. We now address the problem of reasoning with
logic programs under MH semantics.
We begin this chapter by establishing a quasi-equivalence relation between abduction and
deduction by showing that deductive reasoning can be seen as a particular case of abduc-
tive reasoning, and that, on the other hand, abductive reasoning can be emulated by purely
deductive reasoning. Then we show how general abductive and deductive reasoning boil
down to local knowledge existential query-answering. After doing so we turn to the issue
of checking for side-effect consequences of such query answers, for they might be of un-
avoidable interest in practical applications.
The contributions in this chapter have been previously published in [182, 192, 195].

121

122

10.1 Abduction and Deduction

As we have seen in Chapter 1, reasoning with Knowledge Bases represented as Logic
Programs can be split into three possible methods: deduction, induction, and abduction.
Induction, as said before, is out of the scope of this thesis, as it amounts to a sort of
learning which clearly is not a topic to be broached here.

In 1.2.3 we outlined the abductive problem-solving general idea as “hypothesizing plau-
sible reasons sufficient for justifying given observations or supporting desired goals”. The
simple common formalization of the abductive problem solving framework was stated as:
δ ⊆ ∆ is an abductive solution to goal (or abductive query) Q given a Knowledge Base
KB iff KB∪ δ |=Q and KB∪ δ 6|=⊥, where ∆ is the set of abducible hypotheses — and
usually abducibles are considered to have no rules, i.e., ∆∩heads(KB) = ∅. Without loss
of generality, we consider such abducibles to consist just of literals, as reasons in the form
of rules can simply have their bodies labeled by inclusion of hypothetical literals that can
switch a rule on or off.

Deductive reasoning can be easily perceived as a special case of abductive reasoning:
the one where there are no abducible hypotheses, and thus conclusions can only stem
from the (abducible-free) rules of the program.

On the other hand, 2-valued abductive logic programs can be modeled by “non-
abductive” normal logic programs: because they do not depend on any other literal
in the program, abducibles can be modeled in a Logic Program system without specific
abduction mechanisms by including, for each abducible, a pair of rules generating the two
alternative abductions, e.g.,

abducible ← not neg_abducible
neg_abducible ← not abducible

where both abducible and neg_abducible are new reserved atoms, (i.e., not previously
in HP) representing the abducible and its negation, respectively. This approach is also
followed by [238].

According to Definition 6.31, a semantics enjoying Brave Relevance allows for query
answering with partial knowledge only (i.e., resorting exclusively to the part of the pro-
gram relevant for the query). This guarantees that a sub-model entailing the query found
during relevant query-solving is extendible to a complete model. With this NLP represen-
tation of abducibles, an abductive answer to a query Q using only partial knowledge will
include just the abducibles δ ⊆∆ considered during the query-solving; i.e., the abductive
sub-model Mδ found entailing the query (Mδ |=Q) is a 3-valued abductive model guaran-
teed to be a part of a 2-valued abductive model M for the complete program (M |=KB).

123

This means that all abducibles that are not explicitly assumed true or false in Mδ remain
undefined in this sub-model, whereas they will have a 2-valued truth-value in each whole
model M |=KB such that M ⊇Mδ.

With this we see how in fact abduction and deduction are just two different ways of
dealing with the same sort of logical reasoning, which 1) buttresses even more the hypothe-
ses assumption approach as a way to define a semantics for (not necessarily abductive)
logic programs; and 2) is in accordance with [61].

We now turn to the general issue of (abductive/deductive) logical reasoning as query
answering.

10.2 Reasoning as Query-Answering

The semantic entailment |= used in the formulas above leaves open the issue of universal
versus existential (abductive/deductive) goal/query entailment as explained in 1.2.1; and
yet another orthogonal axis of problem framing covers the scope of reasoning — complete
versus partial knowledge reasoning, as outlined in 1.3.

One of the main motivations behind this work is to provide a formal scaffolding upon
which practical reasoning tools can be developed allowing for abductive/deductive exis-
tential query answering resorting only to partial knowledge. This is important for the
subsequent development of efficient practical tools and also because, when being guar-
anteed, further generalizations can be developed to encompass all the other scenarios,
namely:

• universal (abductive/deductive) query answering (either using partial or complete
knowledge) can be achieved by systematically checking each and every individual
existential query answer obtained with the same scope of knowledge

• existential (abductive/deductive) query answering using complete knowledge is triv-
ially achievable if existential query answering is attainable using only partial knowl-
edge — the “non-local” part of the global knowledge can simply be ignored

As seen before, partial knowledge reasoning requires the Relevance property — in its
several variants presented in 6.5.5.2. Since the Minimal Hypotheses semantics enjoys
all the Relevance properties (Relevance, and Brave Relevance) we can safely use it as
the underlying semantics for abductive/deductive universal/existential query answering
resorting to complete/partial knowledge.

124

Definition 10.1. Local Knowledge Existential Abductive Query-answering in a
Logic Program. Let P be a NLP representation of the user’s Knowledge Base, ∆ a set
of abducible hypotheses such that ∆∩heads(KB) = ∅, S a semantics for NLPs enjoying
Brave Relevance, and Q a user-specified (abductive) query.

MQ ∪ δ is a local-knowledge abductive existential answer to query Q according to
semantics S iff

• δ ⊆∆

• MQ∪ δ is a model of RelP (Q)∪ δ according to S

• MQ∪ δ ⊇Q

Since S enjoys Brave Relevance, we know that there is some model M of P ∪ δ such
thatM ⊇MQ, i.e., Brave Relevance guarantees existence of a complete knowledge answer
given a partial knowledge one. Also, notice that whenever ∆ = ∅, or δ = ∅ the definition
above coalesces into the simple deduction scenario (abduction-free).

As we have just seen, both deduction and abduction are fully covered (in both universal
and existential variants) by partial knowledge query-answering. In practical applications,
however, this may not be enough as it may be useful, sometimes indeed necessary, to
check for side-effects of an answer to a query, because only partial – not complete – models
are obtained in answer to queries. We now turn to further explore this aspect of logic
reasoning, so that side-effects can be just checked for, without conducing to abductions
just on their behalf.

10.3 Inspecting Side-Effects of Abductions

One application of abductive reasoning is that of finding which actions to perform, their
names being coded as abducibles. Under this setting, besides needing to abductively
discover which hypotheses to assume in order to satisfy some query/goal condition, we
may also want to know some of the side-effects of those assumptions; in fact, this is a
rather rational thing to do. But, most of the time, we do not wish to know all possible
side-effects of our assumptions, as some of them will be irrelevant to our concern. Likewise,
the side-effects inherent in abductive explanations might not all be of interest.

It is also important to point out that such a conceptual inspection mechanism is inde-
pendent of the underlying semantics used for the logic programs at hand: the side-effect

125

inspection construct is useful in itself independently of whether the Minimal Hypotheses
models, the Stable Models, the Well-Founded, or any other semantics is being used for
the abductive logic program.

Example 10.1. Relevant and irrelevant side-effects.

Consider this logic program where drink_water’ and ‘drink_beer’ are the abducibles.

wet_glass ← use_glass
use_glass ← drink ⊥ ← not drink,thirsty unsafe_drive ← drunk

drink ← drink_water drink ← drink_beer thirsty drunk ← drink_beer

Suppose we want to satisfy the Integrity Constraint, and also to check if we get drunk
or not. However, we do not care about the glass becoming wet — that being completely
irrelevant to our current concern. In this case, computation of whole models is a waste of
time, because we are interested only in a subset of the program’s literals. Moreover, in this
example, we may simply want to know the side-effects of the possible actions in order to
decide (to drive or not to drive) after we know which side-effects are true. In such a case,
we do not want to simply introduce an IC expressed as ⊥← unsafe_drive because that
would always impose abducing not drink_beer. We want to allow all possible solutions for
the single IC ⊥← not drink, thirsty and then check for the side-effects of each abductive
solution.

Checking for consequences of abductions amounts to inspecting the side-effects literals
of interest whose truth-value may be affected by the abductions. We now turn to define
both the declarative and procedural semantics of such an inspection mechanism.

10.3.1 Backward and Forward chaining

Backward and Forward chaining are but different procedural methods to implement a
deductive mechanism [55]. If abductive reasoning is desired, any deductive method plus
a hypothesizing mechanism will suffice [21, 61]. Procedurally, abductive query-answering
can be seen as a backward-chaining process, a top-down dependency-graph oriented proof-
procedure. On the other hand, finding the side-effects of a set of abductive assumptions
may be conceptually envisaged as forward-chaining, as it consists of progressively deriving
conclusions from the assumptions until the truth value of the chosen side-effect literals is
determined.

The problem with full-fledged forward-chaining is that too many (often irrelevant)
conclusions of the adopted assumptions are derived. Wasting time and resources deriving
them only to be discarded afterwards is a flagrant setback. Worse, there may be many al-
ternative models satisfying an abductive query (and the ICs) whose differences just repose

126

on irrelevant conclusions. This way, unnecessary computation of irrelevant conclusions
can be compounded by the need to discard irrelevant alternative complete models too.

A more intelligent solution would be afforded by selective forward-chaining, where
the user would be allowed to specify those conclusions (s)he is focused on, and only
those would be computed. Combining backward-chaining with selective forward-chaining
would allow for a greater precision in specifying what we wish to know, and improve
efficiency altogether. In the sequel we show how such a selective forward chaining from
a set of abductive hypotheses can be replaced by backward chaining from the focused on
conclusions — the inspection points — by virtue of a controlled form of abduction which,
never performing extra abductions, just checks for abducibles assumed elsewhere.

10.3.2 Operational Intuition of Inspection Points

In order to endow abductive logic programs with this side-effect inspection mechanism we
need to extend the abductive logic programming language with the special reserved con-
struct inspect/1. The operational intuition of inspection points goes as follows: the user
wraps with the reserved construct inspect(.) the literal whose truth-value (s)he intends
to check being a consequence of a solution to the query; then, when the user launches an
abductive query (which itself may include inspected literals), abducible hypothesis are
adopted, as usual, to satisfy the query except when the abduction step is to be performed
inside a sub-tree with an inspected literal as root.

Example 10.2. Police and Tear Gas Issue. Consider this NLP, where ‘tear_gas’,
‘fire’, and ‘water_cannon’ are the only abducibles. Notice that inspect is applied to
calls.

⊥ ← police,riot,not contain
contain ← tear_gas contain ← water_cannon
smoke ← fire smoke ← inspect(tear_gas)
police riot

Notice the two rules for ‘smoke’. The first states that one explanation for ‘smoke’ is
fire, when assuming the hypothesis ‘fire’. The second states ‘tear_gas’ is also a possible
explanation for smoke. However, the presence of tear gas is a much more unlikely situ-
ation than the presence of fire; after all, tear gas is only used by police to contain riots
and that is truly an exceptional situation. Fires are much more common and sponta-
neous than riots. For this reason, ‘fire’ is a much more plausible explanation for ‘smoke’
and, therefore, in order to let the explanation for ‘smoke’ be ‘tear_gas’, there must be
a plausible reason — imposed by some other likely phenomenon. This is represented

127

by inspect(tear_gas) instead of simply ‘tear_gas’. Declaratively, the ‘inspect’ Opera-
tionally, the ‘inspect’ construct disallows regular abduction to be performed whilst trying
to find an abductive answer to ‘tear_gas’ in a top-down abductive proof-procedure. I.e.,
if we take ‘tear_gas’ as an abductive solution for smoke, this rule imposes that the step
where we abduce ‘tear_gas’ must be performed elsewhere, not under the derivation tree
for ‘smoke’. Thus, ‘tear_gas’ is an inspection point. The IC, because there is ‘police’
and a ‘riot’, forces ‘contain’ to be true, and hence, ‘tear_gas’ or ‘water_cannon’ or
both, must be abduced. ‘smoke’ is only explained if, at the end of the day, ‘tear_gas’
is abduced to enact containment. Abductive solutions should be plausible, and ‘smoke’
is plausibly explained by ‘tear_gas’ if there is a reason, a best explanation, that makes
the presence of tear gas plausible; in this case the riot and the police. Plausibility is an
important concept in science, for lending credibility to hypotheses. Assigning plausibility
measures to situations is an orthogonal issue.

If we were to remove the ‘⊥← police,riot,not contain’ IC and launch the abductive
query ‘smoke’, the unique abductive answer would be ‘fire’. However, if we were to re-
move both the IC and the inspect around ‘tear_gas’ in the ‘smoke← inspect(tear_gas)’
rule — thus rendering it ‘smoke← tear_gas’ — then ‘tear_gas’ would become an al-
ternative abductive answer to the query ‘smoke’. This clearly shows how the inspect
construct enforces the passive role of merely checking if a literal’s truth-value follows as
a consequence of abductions instead of allowing extra abduction to take place solely in
order to satisfy the query.

In this example, another way of viewing the need for the new mechanism embodied by
the inspect predicate is to consider we have 2 agents: one is a police officer and has the
possibility of abducing (corresponding to actually throwing) ‘tear_gas’; the other agent is
a civilian who, obviously, does not have the possibility of abducing (throwing) ‘tear_gas’.
For the police officer agent, having the smoke← inspect(tear_gas) rule, with the inspect
is unnecessary: the agent knows that ‘tear_gas’ is the explanation for ‘smoke’ because
it was himself who abduced (threw) ‘tear_gas’; but for the civilian agent the inspect in
the smoke← inspect(tear_gas) rule is absolutely indispensable, since he cannot abduce
‘tear_gas’ and therefore cannot know, without inspecting, if that is the real explanation
for ‘smoke’.

10.3.2.1 Meta-abduction

An intuitive way to model the inspection mechanism is by viewing it as meta-abduction.
Intuitively, when an abducible is considered under mere inspection, meta-abduction ab-
duces only the intention to a posteriori check for its abduction elsewhere, i.e. it ab-
duces the intention of verifying that the abducible is indeed adopted, but elsewhere, not

128

under inspection. A practical operational way to implement such meta-abduction is,
when we want to meta-abduce some abducible ‘x’, we abduce a literal ‘consume(x)’ (or
‘abduced(x)’) instead, which represents the intention that ‘x’ is eventually abduced else-
where in the process of finding an abductive solution to the top query/goal. The check
is performed after a complete abductive answer to the top query is found. Operationally,
‘x’ will already have been, or will later be, abduced as part of the ongoing solution to the
top goal.

Example 10.3. Nuclear Power Plant Decision Problem. This example was ex-
tracted from [215] and adapted to our current designs, and its abducibles do not represent
actions.

In a nuclear power plant there is decision problem: cleaning staff will dust the power
plant on cleaning days, but only if there is no alarm sounding. The alarm sounds when
the temperature in the main reactor rises above a certain threshold, or if the alarm itself
is faulty. When the alarm sounds everybody must evacuate the power plant immediately!
Abducible literals are cleaning_day, temperature_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
⊥ ← not cleaning_day

evacuate ← sound_alarm
sound_alarm ← temperature_rise
sound_alarm ← faulty_alarm

Satisfying the unique IC imposes cleaning_day true and gives us three minimal abductive
solutions:

S1 = {dust,cleaning_day}
S2 = {cleaning_day,sound_alarm,temperature_rise,evacuate}
S3 = {cleaning_day,sound_alarm,faulty_alarm,evacuate}

If we pose the query ?−not dust we want to know what could justify the cleaners dusting
not to occur given that it is a cleaning day (enforced by the IC). However, we do not want
to abduce the rise in temperature of the reactor nor to abduce the alarm to be faulty in
order to prove not dust. Any of these justifying two abductions must result as a side-effect
of the need to explain something else, for instance the observation of the sounding of the
alarm, expressible by adding the IC ⊥← not sound_alarm, which would then force the
abduction of one or both of those two abducibles as plausible explanations. The inspect/1
in the body of the rule for dust prevents any abduction below sound_alarm to be made
just to make not dust true. One other possibility would be for two observations, coded
by ICs ⊥← not temperature_rise or ⊥← not faulty_alarm, to be present in order for
not dust to be true as a side-effect. A similar argument can be made about evacuating:
one thing is to explain why evacuation takes place, another altogether is to justify it as

129

necessary side-effect of root explanations for the alarm to go off. These two pragmatic
uses correspond to different queries: ?−evacuate and ?− inspect(evacuate), respectively.

10.3.3 Declarative Semantics of Inspection Points

A simple transformation maps programs with inspection points into programs without
them. Mark that the Minimal Hypotheses models of the transformed program where
each abducible(X) is matched by the abducible X (X being a literal a or its default
negation not a) clearly correspond to the intended procedural meanings ascribed to the
inspection points of the original program.

The intuition for the program transformation we present next is as follows: we trans-
form a program P into another Π(P) which is a duplication of P where the duplicate
rules are used for inspecting, i.e., under these duplicate rules all references to abducibles
L are replaced by meta-abductions (abduced(L)). This way, under an inspect rule there
are no abducibles, only eventually meta-abductions.

Definition 10.2. Transforming Inspection Points. Let P be a program containing
rules whose body possibly contains inspection points. The program Π(P) consists of:

1. all the rules obtained by the rules in P by systematically replacing:

• inspect(not L) with not inspect(L);
• inspect(a) or inspect(abduced(a)) with abduced(a)

if a is an abducible, and keeping inspect(a) otherwise.

2. for every rule A← L1, . . . ,Lt in P , the additional rule:
inspect(A)← L

′
1, . . . ,L

′
t where for every 1≤ i≤ t:

L
′
i =

abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

3. for every abducible A, the additional rules:

A ← not neg_A
neg_A ← not A

abduced(A) ← not abduced(neg_A)
abduced(neg_A) ← not abduced(A)

⊥ ← abduced(A),not A
⊥ ← abduced(neg_A),not neg_A

130

The semantics of the inspect predicate is exclusively given by the generated rules for
inspect.

Example 10.4. Transforming a Program P with Nested Inspection Levels.
Consider the following program where the abducibles are a,b,c,d

x ← a, inspect(y), b, c,not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

Then, Π(P) is:

x ← a, inspect(y), b, c,not d
inspect(x) ← abduced(a), inspect(y),abduced(b),abduced(c),not abduced(d)

y ← not abduced(a)
inspect(y) ← not abduced(a)

y ← b,not inspect(z), c
inspect(y) ← abduced(b),not inspect(z),abduced(c)

z ← d
inspect(z) ← abduced(d)

plus the rules for the abducibles a,b,c,d produced by step 3 of the program transformation
in def. 10.2. If, say, we want x to be true, we can simply add the IC ⊥← not x, in which
case the unique abductive layer decomposable model of Π(P)∪{⊥← not x} respecting
the inspection points is:
{x,a,b,c,abduced(a),abduced(b),abduced(c), inspect(y),abduced(neg_d)}. Note that for
each abduced(a) the corresponding a is in the model.

10.3.4 Inspection Points in Other Abductive Systems

In the context of abductive logic programs, we have presented a new mechanism of in-
specting literals that can be used to check for side-effects, by relying on conditional meta-
abduction. We have implemented the inspection mechanism within the Abdual [21] meta-
interpreter (cf. 11.3). We have further checked that our approach can easily be adopted,
in part, by other systems [57] with the help of these cited authors.

HyProlog [57] is an abduction/assumption system which allows for the user to specify if
an abducible is to be consumed only once or many times. In HyProlog, as the query solving
proceeds, when abducible/assumption consumptions take place, they are executed by
storing the corresponding consumption intention in a store. After an abductive solution for
a query is found, the actual abductions/assumptions are matched against the consumption
intentions. Overall, there is not such a big gap between the operational semantics of

131

HyProlog and the inspection points implementation we present; however, there is a major
functional difference: in HyProlog we can only specify consumption directly on abducibles,
whereas in our more general inspection points approach we can declare inspection of any
literal (not just abducibles) — meaning any abducible found below an inspect-wrapped
literal call is automatically just inspected.

In [215], the authors detect a problem with the IFF abductive proof procedure [104]
of Fung and Kowalski, in what concerns the treatment of negated abducibles in integrity
constraints (e.g. in their examples 2 and 3). They then specialize IFF to avoid such
problems, which arise only in ICs, and prove correctness of the new procedure. The
detected problem refers to the active use of an IC comprising in its body some not A,
where A is an abducible, whereas the intended use should be a passive one, simply checking
whether some A is proved in the abductive solution found. To that effect, by means of an
inference rule used during query evaluation, it is as if they replaced such occurrences of
not A by not provable(A), before moving each as a disjunct provable(A) to the IC head
along with other disjuncts, so as to ensure that no new abductions are allowed during IC
checking, by virtue of provable/1. For a detailed exposition the reader is referred to their
section 4.2. Our own work generalizes the scope of the problem they solved, and solves
the problems arising in this wider scope. For one, we abduce both positive and negative
literals, and the latter are not true by default. Moreover, we allow for passive checking
not just of negated abducibles but also of positive ones, as well as passive checking of any
literal, whether or not abducible and whether in ICs or other rules. Furthermore, we allow
to single out which specific occurrences are passive or active. Thus, we can cater for both
passive and active ICs, depending on the desired usage. Our solution uses abduction itself
to solve the problem, making it general for deployment in other abductive frameworks
and procedures.

We have covered some aspects of abductive and deductive reasoning with logic programs,
and also presented a practical method for inspecting side-effects of abductions which can
be used for different purposes. We now turn to describe our implementation efforts of
some of the mechanisms we use in this thesis.

11 . Implementations

To build may have to be the slow and
laborious task of years. To destroy
can be the thoughtless act of a single
day.

Winston Churchill

It is one of our ultimate goals to build a software application that uses the Minimal
Hypotheses semantics as the underlying platform for Knowledge Representation and Rea-
soning, and allows for top-down query-solving with abduction and respective side-effect
inspection. Once the theoretical fundaments for this are pinned down, however, such a
task is more of a software engineering challenge than a knowledge representation and rea-
soning within computational logic one, the latter being the scope of our present work. In
this thesis’s work we focus on the theoretical issues as they must be dealt with before any
practical implementation efforts can be undertaken. Nonetheless, we wanted to take the
initial implementation steps for some of the core components of the theoretical scaffolding
we presented in earlier chapters.
We firstly describe these prototypical proof-of-concept implementations now: first, our
contribution to the innards implementation of the loop detection mechanism of the Well-
Founded Semantics in XSB-Prolog, which is the engine of our choice; then, our envisioned
approach for solving queries in a top-down fashion resorting to XSB-Prolog and its XASP
interface to Smodels; and secondly and orthogonally, our implementation of abductions’
side-effect inspection described in Chapter 10. The motivation for the latter’s implemen-
tation arises from the need to be able to check for specific side-effect consequences of
abductive solutions to a query, but without in the process making further abductions whilst
doing the checking.
The reader not interested in implementations may skip this chapter without loss of any
other non-implementation-related content. Most of the contents of this chapter has been
previously published in our contributions [182, 192, 194, 195, 232].

133

134

11.1 Enforcing the WFS in XSB-Prolog via Answer Completion

The Prolog language has been for quite some time one of the most accepted means to
codify and execute logic programs, and as such has become a useful tool for research
and application development in logic programming. Several stable/production stage im-
plementations have been developed and refined over the years, with plenty of working
solutions to pragmatic issues, ranging from efficiency and portability to explorations of
language extensions. The XSB Prolog system1 is a particular instance of a Prolog system
with a special focus on implementing program evaluation following the WFS for NLPs.

XSB-Prolog intends to implement the WFS but, up to now, for efficiency reasons,
it had not yet included the loop detection mechanism (cf. Definition 6.10). Without
this loop detection the XSB-Prolog does not fully correctly implement the Well-Founded
Semantics and, equivalently, it does not fully correctly implement the Remainder operator
(cf. Definition 6.13). Herein we discuss our practical efforts towards implementing that
loop detection component in the SLG-WAM of XSB-Prolog. The vast majority of the
progress and results reported in this section are to be credited to our co-author Terrance
Swift [232], but since we did give a hands-on persistent contribution to them, and they
are closely related to the rest of this thesis, we include them here as well.

Answer Completion amounts to a reification of the positive loop detection and elimi-
nation necessary for a fully correct implementation of the WFS.

11.1.1 Motivation — Unfounded Sets detection

Designers of logic programming engines must weigh the usefulness of operations against
the burden of complexity they require. Perhaps the best known example is the occurs
check in unification. Prologs derived from the WAM do not usually perform occurs check
between two terms. Rather, the occurs check, if needed, must be explicitly invoked
through the ISO predicate
unify_with_occurs_check/2 or a similar mechanism. For evaluating normal programs
using tabling, checking for certain positive loops (cf. Definition 6.10) involves similar
considerations. While most positive loops can be efficiently checked, positive subloops
within larger negative loops are more difficult to detect, and account for the over-linear
complexity of evaluating a program P according to WFS, which is atoms(P)× size(P),
where atoms(P) is the number of atoms of P and size(P) is the number of rules of P .
As implemented in XSB, the SLG-WAM detects positive loops between tabled subgoals

1Both the XSB Logic Programming system and Smodels are freely available at: http://xsb.
sourceforge.net and http://www.tcs.hut.fi/Software/smodels.

135

so that answers are not added to a table unless they are true, or if they are involved in
a loop through negation and thus being undefined at the time of their addition (termed
conditional answers). This sort of evaluation can be done in time linear in size(P) 2.
However, a situation can arise where certain conditional answers are later determined to
be true or false. This determination might break a negative loop, which then uncovers
a positive loop and makes the answers false. Within SLG, this situation is addressed
by the Answer Completion operation, which is not implemented within the currently
available version of the SLG-WAM. So far, the lack of Answer Completion has not
proven a problem for most programs. However, the SLG-WAM is increasingly being
used to produce well-founded residues for highly non-stratified programs for applications
involving intelligent agents (e.g. [183]), where the need for Answer Completion is
greater.

In this section we examine issues involved in adding Answer Completion to the
SLG-WAM. We illustrate the situation of a positive loop being uncovered when a neg-
ative loop is resolved through a concrete example, and then we provide a formal result
on the contribution Answer Completion makes to the complexity of computing WFS.
We introduce an algorithm for efficiently performing Answer Completion (subject
to its complexity), and discuss performance results obtained by implementing it in the
SLG-WAM. We must assume knowledge of tabled evaluation of WFS through SLG reso-
lution [56] as well as certain data structures of the SLG-WAM [217].

Example 11.1. Need for positive loop detection. The following program is
soundly, but not completely, evaluated by the SLG-WAM, where tnot/1 indicates that
tabled negation is used:

:− table p/1, r/0, s/0.
p(X) :− tnot(s).
p(X) :− p(X).

s :− tnot(r).
s :− p(X).
r :− tnot(s), r.

The well-founded model for this program has true atoms {s} and false atoms {r,p(X)}.
Recall that literals that do not have a proof and that are involved in loops over default
negation are considered undefined in WFS. Unproved literals involved only in positive
loops, i.e., without negations, are unsupported and, hence, false in WFS. Accordingly,
p(X), whose second clause fails, is false; however, a query to p(X) in XSB indicates that
p(X) is undefined. The reason is that during evaluation the engine detects a strongly
connected component (SCC) of mutually dependent goals containing p(X), r and s, along

2This result corresponds to Theorem 1 of [232] whose proof and related definitions can be found
in that paper’s online full version with proofs at http://www.cs.sunysb.edu/~tswift/webpapers/
iclp-09-iac.pdf

136

with negative dependencies, and no answers for any of these goals. In such a situation, the
SLG-WAM delays negative literals and continues execution. Here, the literal tnot(s) in
the rule p(X) :−tnot(s) is delayed, producing an answer p(X) :−tnot(s)|, indicating that
p(X) is conditional on a delay list, here tnot(s). That answer is returned to the goal p(X)
in the clause p(X) : −p(X) and a conditional answer p(X) : −p(X)| is derived. Later, a
positive loop is detected for r, causing its truth value to become false. The failure of r
causes s to become true, and Simplification removes the answer p(X) :−tnot(s)|. At
this stage, however, no further simplification is possible for p(X) :−p(X)|, which is now
unsupported.

The Answer Completion operation addresses such cases by detecting positive loops
in dependencies among conditional answers. More precisely, Answer Completion
marks false sets of answers that are not supported: i.e. conditional answers for com-
pleted subgoals that contain only positive, and no negative dependencies in their delay
lists. The creation of unsupported answers are uncommon in the SLG-WAM because
its evaluation is delay minimal – that is, the engine performs no unnecessary Delaying
operations [218]. Delay minimality reduces the need for simplification of dependencies
among answers, and thereby the chances of uncovering positive loops among answers, as
with the answer p(X) :−p(X)| above.

11.1.2 Implementation of Answer Completion

Within an SLG evaluation, a tabled subgoal can be marked as complete, which indicates
that all possible answers have been produced for the subgoal, although Simplification
and Answer Completion operations may remain to simplify or delete conditional an-
swers. Completed subgoals do not require execution stack space, but only table space, so
that completing subgoals as early as possible is a critical step for engine efficiency. Accord-
ingly the SLG-WAM performs incremental completion via a completion instruction, which
maintains information about mutually dependent sets of subgoals (SCCs), and completes
each SCC when all applicable operations have been performed. In addition to marking
each subgoal S in an SCC as complete, if S failed (has no answers) the completion instruc-
tion may initiate Simplification for conditional answers that depend negatively on S.
In terms of Answer Completion, observe that any positive loop among the delayed lit-
erals of conditional answers must be contained within the SCC being completed, as each
delayed literal was a selected literal before it was delayed. This incremental approach
has several benefits. Performing Answer Completion operation within the comple-
tion instruction restricts the space that any such operation needs to search. In addition,
performing Answer Completion after all other Simplification operations have been

137

performed on answers within the SCC similarly reduces search space. As a final optimiza-
tion, Answer Completion is not required unless delaying has been performed within
the SCC, a fact that is easily noted using data structures in the SLG-WAM’s Completion
Stack, which maintains information about SCCs.

11.1.2.1 Iterate Answer Completion

The pseudo code for Iterate Answer Completion, which traverses all subgoals in the SCC
using the Completion Stack, and checks each answer for support, deleting unsupported an-
swers from the table and invoking Simplification operations, is presented in Figure 11.1.
Simplification may remove further negative loops, and uncover new unsupported other
answers as a side-effect. In such case, the Answer Completion procedure should be
executed once more, and this is guaranteed by the use of the reached_fixed_point flag.
A fixed-point is reached when all answers within the scope of the SCC are known to be
supported.

Algorithm Iterate Answer Completion (CompletionStack)

reached_fixed_point= FALSE;
while not reached_fixed_point

reached_fixed_point= TRUE;
for each subgoal S in the Completion Stack

for each answer A for subgoal S
if not Check_Supported_Answer(A) /* A is unsupported */

reached_fixed_point= FALSE;
delete A;
propagate A’s deletion’s simplifications;

Figure 11.1: Algorithm Iterate Answer Completion.

11.1.2.2 Check Supported Answer

This procedure (Figure 11.2) does the actual check of whether a (positive) answer is
unsupported. It detects positive loops whenever it encounters an answer that has already
been visited and which is in the SCC. In this case, the algorithm terminates returning
FALSE to indicate the answer is unsupported. On the other hand, if the answer has
been visited but is not part of the SCC, it means such answer has been produced during
some other branch of query-solving and was therefore, rightfully supported and stored in
the table: the algorithm terminates returning TRUE.

138

Checking a non-visited answer consists of 1) marking it as visited; 2) adding it to
the state of the search (stored in the Completion Stack); and then 3) traversing all the
Delay Elements (literals) of the Delay Lists for the answer recursively checking each in
turn for supportedness. Whenever an answer is determined to be unsupported, all Delay
Lists containing (Delay Elements that reference) it are deleted, which may cause further
simplification and iterations of Answer Completion.

Algorithm Check Supported Answer(Answer)

if Answer has already been visited
if Answer is in the SupportCheckStack return FALSE;
else return TRUE;

else
mark Answer as visited;
push Answer onto the SupportCheckStack;
mark Answer as supported_unknown;
for each Delay List DL for Answer

if Answer is supported_true exit loop;
mark DL as supported_true;
for each Delay Element DE in the Delay List DL

if DL is not supported_true exit loop;
if DE is positive and it is in the SupportCheckStack

recursively call Check Supported Answer(Answer of DE)
if Answer of DE is not supported_true

mark DL as supported_false;
if DL is supported_false

remove DL from Answer’s DLs list
if Answer’s DLs list is now empty

delete Answer node;
simplify away unsupported positives of Answer;

else mark Answer as supported_true;
if the Answer node was deleted return TRUE;
else return FALSE;

Figure 11.2: Algorithm Check Supported Answer.

Example 11.1 is actually representative of the typical situation where Answer Com-
pletion is needed. This is so because it contains (at least) two rules for some literal
(in this case p(X)) where the first one depends on a loop through negation (rendering
p(X) undefined) and the second one depend on a positive loop, which is unsupported.
The “undefinedness” coming from the first clause is passed on to the p(X) in the body of

139

the second one. Only then must Answer Completion be used to clean away the delay
list with p(X) from the answer coming from the second clause for p(X). The “patholog-
ical” nature of this example follows from the, until now, XSB’s SLG-WAM inability to
rightfully detect and simplify away unsupported literals such as p(X).

11.2 Top-down Query-Solving Approach with XSB-Prolog

In order to find a solution to a query, a Minimal Hypotheses semantics based top-down
query-solver will need to find a Minimal Hypotheses sub-model entailing the query’s
literals. The Relevance (and Brave Relevance) of the MH semantics ensures such a sub-
model is extendable to a complete model. Moreover, these properties also ensure that
considering only the relevant part of the program is sufficient (and necessary) to find such
an answer. To accomplish this task a MH-based query solver will need to

1. Collect rules in the program relevant for the query

2. Assign the truth-value false to atoms with no rules, and to atoms in positive loops
(cf. Section 11.1)

3. Assign the truth-value true to facts

4. Detect and “solve” strongly connected components of rules according to the Minimal
Hypotheses principle

In previous works [194] we resorted to XSB-Prolog’s get_residual/2 predicate as a
means to get the relevant rules for the query. According to the XSB Prolog’s manual “the
predicate get_residual/2 unifies its first argument with a tabled subgoal and its second
argument with the (possibly empty) delay list of that subgoal. The truth of the subgoal
is taken to be conditional on the truth of the elements in the delay list.” The delay list is
the list of literals whose truth value could not be determined to be true nor false in the
WFM, i.e., their truth value is undefined in the WFM of the program. It is possible to
obtain the residual clause of a solution for a query literal, and in turn the residual clauses
for the literals in its body, and so on. This way we can reconstruct the complete relevant
residual part of the KB for the literal — we call this a residual program or reduct for that
solution to the query. This way, not only do we get just the relevant part of the KB for
the literal, we also get precisely the part of those rules bodies still undefined, i.e., that are
involved in Loops Over Negation. The use of the get_residual/2 predicate proved to
be a useful strategy, but since not all MH models comply with the Well-Founded Model
of the program (cf. Example 6.2 on page 55), we cannot use it for a MH semantics based

140

system implementation. Instead we must collect the relevant rules by directly accessing
Prolog’s clause/2 ISO predicate. Alternatively, when a WAM-level implementation of
the Layered Remainder is available in XSB by a corresponding new system predicate,
e.g., get_layered_remainder/2, we could use it to construct the layered remainder part
relevant for the query. We leave such task for future work.

A prototypical implementation of a MH-based query solver could resort to a Stable
Models solver — e.g., Smodels [166] — to “solve” the SCCs of rules, according to the
Minimal Hypotheses principle, to that effect needing to incorporate the additional func-
tionality of minimal hypotheses assumption. The Smodels system [166] allows disjunctive
rules, i.e., with disjunctions in the heads of rules (cf. Section 4.2), which can be added
to a NLP. Such disjunctive rules could be used to allow the disjuncts to play the role of
hypotheses to be assumed. Moreover, the disjuncts in Disjunctive Stable Models gener-
ated by Smodels are automatically minimized (cf. Example 4.12 of [233]) thereby reifying
the minimality principle of assumed hypotheses. We can use XSB-Prolog’s capabilities
to accomplish items 1, 2, and 3 above; and surely a cleverly developed meta-interpreter
in XSB could also be implemented to fulfil step 4, but using Smodels with its handling
of Disjunctive rules could save a lot of work and debugging for this 4th step. Fortu-
nately, XSB-Prolog has an inbuilt interface to Smodels which allows the programmer to
accumulate rules in a clause-store that is sent to Smodels to solve.

The XASP interface [50, 52] (standing for XSB Answer Set Programming), is included
in XSB-Prolog as a practical programming interface to Smodels [166], one of the best
known implementations of the SMs over generalized LPs. The XASP system allows
one not only to compute the models of a given NLP, but also to effectively combine
3-valued with 2-valued reasoning. Such integration permits to make use of relevance for
queries. In SMs it is necessary to compute all complete models for the whole program.
In the implementation framework we propose, we sidestep this issue by collecting and
transforming the rules relevant for the query, and then by using XASP to send those
rules to Smodels for computation of stable models of the relevant sub-program. The top-
down computation, to boot, helps in partly or totally grounding the transformed relevant
sub-program.

XSB’s XASP communication with Smodels enables the programmer to use a “Smodels
clause store” to which several rules can be added. After adding all the original residual
relevant rules, and also the newly created disjunctive rules, we add two extra rules: 1)
userGoal :- Query, where Query is the query conjunct posed by the user (and userGoal
is a reserved atom); and 2) :- not userGoal which prevents Smodels from producing
as an answer any model where the userGoal does not hold. This clause store is then
sent to Smodels which will consider only those rules when computing the models — these
are obtained by asking Smodels to compute one model (and on backtracking to compute

141

others, if we so wish). The SMs obtained are Minimal Hypotheses sub-models of the
original program containing only the literals relevant for the query.

As we have seen before, with MH semantics loops/SCCs are seen as kinds of dis-
junctions. In this sense, a NLP might be transformable into a Disjunctive LPs where
the disjuncts are the assumable hypotheses. With this approach, in order to guarantee
sound and complete MH semantics based top-down querying implementation we still have
to answer two questions:

1. Which atoms to be considered hypotheses and, therefore, to include in heads of
disjunctive rules

2. Which literals should be in the bodies of the disjunctive rules

We do not address these questions for now, but leave them for future work along with the
implementation of a fully functional MH-based KRR system.

11.3 Inspection Points

Although the Inspection Points theoretical construct is independent of the underlying se-
mantics used, in order to actually implement and test it, we needed some solid abductive
platform. We based our Inspection Points implementation on a formally defined, XSB-
implemented, true and tried abduction system — ABDUAL [21]. ABDUAL lays the foun-
dations for efficiently computing queries over ground three-valued abductive frameworks
for extended logic programs with integrity constraints, on the well-founded semantics and
its partial stable models. We are aware of the fact that, by complying with the well-
founded semantics, the ABDUAL system is not fully suitable for inspecting side-effects of
abductive logic programs under the MH semantics. Nonetheless, this first implementation
of the IPs mechanism, simple as it is, stands on its own as a reification of a new reasoning
mechanism complementary to the abduction one.

The syntax of ABDUAL programs is roughly the same as that of Extended Logic
Programs, i.e., ABDUAL programs allow for explicitly negated literals to occur both in
the heads and bodies of rules. Moreover, ABDUAL allows for declaration of abducibles
via the reserved predicate abds/1, where its argument is a list of elements of the form
abducible_name/artity. The reader can find the full details of ABDUAL in [21].

The query processing technique in ABDUAL relies on a mixture of program trans-
formation and tabled evaluation. A transformation removes default negated literals (by

142

making them positive) from both the program and the integrity rules. Specifically, a dual
transformation is used, that defines for each objective literal O 3 and its set of rules R, a
dual set of rules whose conclusions not (O) are true if and only if O is false in R. Tabled
evaluation of the resulting program turns out to be much simpler than for the original
program, whenever abduction over negation is needed. At the same time, termination
and complexity properties of tabled evaluation of extended programs are preserved by the
transformation, when abduction is not needed. Regarding tabled evaluation, ABDUAL
is in line with SLG [51, 102, 103, 212, 216, 229, 230, 231] evaluation, which computes
queries to normal programs according to the well-founded semantics. To it, ABDUAL
tabled evaluation adds mechanisms to handle abduction and deal with the dual programs.

ABDUAL is composed of two modules: the preprocessor which transforms the origi-
nal program by adding its dual rules, plus specific abduction-enabling rules; and a meta-
interpreter allowing for top-down abductive query solving. When solving a query, ab-
ducibles are dealt with by means of extra rules the preprocessor added to that effect.
These rules just add the name of the abducible to an ongoing list of current abductions,
unless the negation of the abducible was added before to the lists failing in order to ensure
abduction consistency. The inspection point mechanism is implemented adroitly by means
of the reserved predicate, ‘inspect/1’ taking some literal L as argument, which engages the
ABDUAL’s abduction mechanism to try and discharge any meta-abductions performed
under L by matching with the corresponding abducibles, adopted elsewhere outside any
‘inspect/1’ call. The approach taken can easily be adopted by other abductive systems, as
we had the occasion to check, e.g., with system [57]. We have also enacted an alternative
implementation, relying on XSB-XASP and the declarative semantics transformation in
10.3.3, which is reported below.

Procedurally, in the ABDUAL implementation, the checking of an inspection point
corresponds to performing a top-down query-proof for the inspected literal, but with the
specific proviso of disabling new abductions during that proof. The proof for the inspected
literal will succeed only if the abducibles needed for it were already adopted, or will be
adopted, in the present ongoing solution search for the top query. Consequently, this
check is performed after a solution for the query has been found. At inspection-point-
top-down-proof-mode, whenever an abducible is encountered, instead of adopting it, we
simply adopt the intention to a posteriori check if the abducible is part of the answer to
the query (unless of course the negation of the abducible has already been adopted by
then, allowing for immediate failure at that search node.) That is, one (meta-) abduces
the checking of some abducible A, and the check consists in confirming that A is part
of the abductive solution by matching it with the object of the check. According to our
method, the side-effects of interest are explicitly indicated by the user by wrapping the
corresponding goals subject to inspection mode, with the reserved construct ‘inspect/1’.

3An objective literal is either an atom or its explicit negation.

143

11.3.1 ABDUAL with Inspection Points

Inspection Points in ABDUAL function mainly by means of controlling the general ab-
duction step, which involves very few changes, both in the pre-processor and the meta-
interpreter. Whenever an ‘inspect(X)’ literal is found in the body of a rule, where ‘X’ is
a goal, a meta-abduction-specific counter — the ‘inspect_counter’ — is increased by one,
in order to keep track of the allowed character, active or passive, of performed abductions.
The top-down evaluation of the query for ‘X’ then proceeds normally. Actual abductions
are only allowed if the counter is set to zero, otherwise only meta-abductions are allowed.
After finding an abductive solution for the query ‘X’ the counter is decreased by one.
Backtracking over counter assignations is duly accounted for. Of course, this way of im-
plementing the inspection points (with one ‘inspect_counter’) presupposes the abductive
query answering process is carried out “depth-first”, guaranteeing the order of the literals
in the bodies of rules actually corresponds to the order they are processed. We assume
such a “depth-first” discipline in the implementation of inspection points, described in
detail below. We lift this restriction at the end of the subsection.

11.3.1.1 Changes to the ABDUAL’s pre-processor:

1. A new dynamic predicate was added: the ‘inspect_counter/1’. This is initialized
to zero (‘inspect_counter(0)’) via an assert, before a top-level query is launched.

2. The original rules for the normal abduction step are now preceded by an additional
condition checking that the ‘inspect_counter’ is indeed set to zero.

3. Extra rules for the “inspection” abduction step are added, preceded by a condition
checking the ‘inspect_counter’ is set to greater than zero. When these rules are
called, the corresponding abducible ‘A’ is not abduced as it would happen in the
original rules; instead, ‘consume(A)’ is abduced. This corresponds to the meta-
abduction: we abduce the need to abduce ‘A’, the need to ‘consume’ the abduction
of ‘A’, which is finally checked when derivation for the very top goal is finished.

The semantics of inspection points in ABDUAL is such that if a meta-abduction on
‘X’ (resulting from abducing ‘consume(X)’) is not matched by an actual abduction on
‘X’ when we reach the end of solving the top query, the candidate abductive answer
is considered invalid and the query solving fails. On backtracking, another alternative
abductive solution (possibly with other meta-abductions) will be sought. The changes to
the meta-interpreter include all the remaining processing needed to correctly implement
inspection points, namely matching the meta-abduction of ‘consume(X)’ against the
abduction of ‘X’.

144

11.3.1.2 Changes to the meta-interpreter:

1. Two ‘quick-kill’ rules for improved efficiency that detect and immediately solve triv-
ial cases for meta-abduction:

• When literal ‘X’ about to be meta-abduced (‘consume(X)’ about to be added
to the abductions list) has actually been abduced already (‘X’ is in the abduc-
tions list) the meta-abduction succeeds immediately and ‘consume(X)’ is not
added to the abductions list;

• When the situation in the previous point occurs, but with ‘not X’ already
abduced instead, the meta-abduction immediately fails.

2. Two new rules for the general case of meta-abduction, that now specifically treat
the ‘inspect(not X)’ and ‘inspect(X)’ literals. In either rule, first we increase the
‘inspect_counter’ mentioned before, then proceed with the usual meta-interpretation
for ‘not X’ (‘X’, respectively), and, when this evaluation succeeds, we then decrease
‘inspect_counter’.

3. After an abductive solution is found to the top query, check (impose) that every
meta-abduction, i.e., every ‘consume(X)’ literal abduced, is matched by a respective
and consistent abduction, i.e., is matched by the abducible ‘X’ in the abductions
list; otherwise the tentative solution found fails.

A counter — ‘inspect_counter’ — is used instead of a toggle because several ‘inspect(X)’
literals may appear at different graph-depth levels under each other, and reseting a tog-
gle after solving a lower-level meta-abduction would allow actual abductions under the
higher-level meta-abduction. An example clarifies this.

Example 11.2. Nested Inspection Points. Consider again the program of the
previous example 10.4, where the abducibles are a,b,c,d:

x ← a, inspect(y), b, c,not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

When we want to find an abductive solution for the query ?−x, skipping over the
low-level technical details, we proceed as follows:

1. The inspect_counter is initially set to 0, and the running abductions list is initial-
ized to the empty list [];

2. We pick a rule for x (in this case, there is only one) and try to find an abductive
solution to its body ‘a, inspect(y), b, c,not d’;

145

3. a is an abducible and since the ‘inspect_counter’ is still set initially to 0 we can
abduce a by adding it to the running abductions list which now becomes [a];

4. Next we need to find an abductive solution to ‘inspect(y)’ — since y is not an ab-
ducible we cannot use any ‘quick kill’ rule on it. We increase the ‘inspect_counter’
— which now takes the value 1 — and proceed to find an abductive solution for y;

5. Since the ‘inspect_counter’ is now different from 0, only meta-abductions are al-
lowed;

6. Picking the first rule for y— ‘y← inspect(not a)’ — we need to satisfy the ‘inspect(not a)’
in its body, but since we have already abduced a— the running abductions list cur-
rently ‘[a]’ includes ‘a’ — a ‘quick-kill’ is applicable here: we already know that this
‘inspect(not a)’ will fail. The value of the ‘inspect_counter’ will remain 1;

7. On backtracking, we pick the second rule for y — ‘y← b, inspect(not z), c’ — and
now we need to find a solution to its body ‘b, inspect(not z), c’. b is an abducible
and to satisfy it we could simply abduce b by adding it to the running abductions
list, but since the inspect_counter is not 0 only meta-abductions are allowed, hence
we meta-abduce b instead, by adding ‘consume(b)’ to the ongoing abductions list
which now becomes [a,consume(b)];

8. Proceeding to satisfy the rest of the body ‘inspect(not z), c’ we go on to ‘inspect(not z)’;

9. We increase ‘inspect_counter’ again, making it take the value 2, and continue on,
searching for an abductive solution to not z;

10. The unique rule for z — z ← d — imposes that the only solution for not z is by
abducing not d, but since the ‘inspect_counter’ is greater than 0, we can only
meta-abduce not d, and thus ‘consume(not d)’ is added to the running abductions
list which now becomes [a,consume(b), consume(not d)];

11. Now that we are done with the rule for z we return to y’s rule: the meta-interpretation
of ‘inspect(not z)’ succeeds (because we were able to meta-abduce not d) and so we
decrease the ‘inspect_counter’ by one, it taking the value 1 again. Now we proceed
and try to solve c;

12. c is an abducible, but since the inspect_counter is not zero we can only meta-
abduce c by adding ‘consume(c)’ to the running abductions list which now becomes
[a,consume(b), consume(not d), consume(c)];

13. Now we are done with the rule for y and we thus return to x’s rule: the meta-
interpretation of ‘inspect(y)’ succeeded and so we decrease the ‘inspect_counter’
once more, and it now takes the value 0. From this point onwards regular abductions
will take place instead of meta-abductions;

146

14. The rest of the body of the rule for x we were using is b,c,not d, and since all these
literals correspond to abducibles we abduce b, c, and not d by adding them to the ab-
ductions list which now becomes [a,consume(b), consume(not d), consume(c), b, c,not d];

15. A tentative abductive solution is found to the initial query and it consists of the
abductions in the running abductions list above;

16. The abductive solution is now checked for matches between meta-abductions and
actual abductions. In this case, for every ‘consume(A)’ in the abduction list there
is an A also in the abduction list, i.e., every intention of abduction ‘consume(A)’
is satisfied by the actual abduction of A — e.g, consume(b) is matched by b, and
consume(not d) is matched by not d in the abductive solution found. Because
this final checking step succeeds, the whole answer is actually accepted. Note it is
irrelevant which order a ‘consume(A)’ and the corresponding A appear and were
placed in the abductions list. The A in consume(A) is just any abducible literal a
or its default negation not a.

In this example, we can see clearly that the inspect predicate can be used on any
arbitrary literal (as in the case of inspect(y)), and not just on abducibles.

The correctness of this implementation against the declarative semantics provided
before in Definition 10.2 can be sketched by noticing that whenever the inspect_counter
is set to 0 the meta-interpreter performs actual abduction which corresponds to the use
of the original program rules; whenever the inspect_counter is set to some value greater
than 0 the meta-interpreter just abduces consume(A) (where A is the abducible being
checked for its abduction being produced elsewhere), and this corresponds to the use of
the program transformation rules for the inspect predicate.

11.3.1.3 More general query solving

In case the “depth-first” discipline is not followed, either because goal delaying is taking
place, or multi-threading, or co-routining, or any other form of parallelism is being ex-
ploited, then each queried literal will need to carry its own list of ancestors with their
individual ‘inspect_counters’. This is necessary so as to have a means, in each literal, to
know which and how many inspects there are between the root node and the currently
being processed literal, and which inspect_counter to update; otherwise there would be
no way to know if abductions or meta-abductions should be performed. We did not im-
plement this more general method but only outline it here and envisage it for future work,
viz. 12.3.

147

11.3.2 Alternative Implementation Method for Inspection Points

The method presented here is an avenue for implementing the inspection points mecha-
nism through the simple syntactic program transformation of Definition 10.2 which can be
readily used by any logic programming system that implements some Layer-Decomposable
semantics. Our ultimate goal is to develop a Minimal Hypotheses semantics based abduc-
tive reasoning system with inspection points, but since the time requirements for building
such a system would surpass our time constraints for writing this thesis, we considered,
for now, an SM based implementation. Since the Stable Models semantics is a particular
case of a Layer-Decomposable semantics and there exist already several Stable Models
systems, like SModels [166], DLV [59], or Clasp [108], we can use this method to imple-
ment an abductive SM-based inspection mechanism. First, we need a way to implement
abduction in an SM based system. One can model SM-based abducibles of some program
P by transforming it into a P ′ where P ′ is obtained from P by adding an even loop over
negation for each abducible (like the one depicted in Section 10.1), by means of a newly
introduced reserved atom for that purpose. Secondly, in order to obtain the inspection
mechanism we just need to further transform P ′ into a CNLP without inspection points.
The program transformation we presented for the declarative semantics of the inspection
points (Definition 10.2) achieves both goals. Finally, we just need an implementation
of SMs, like SModels, DLV, Clasp, or any other. This way, under the SM semantics, a
program may have models where some abducible is true and another where it is false,
i.e. the corresponding reserved atom neg_abducible is true. If there are n abducibles in
the program, there will be 2n models corresponding to all the possible combinations of
true and false for each. Under the WFS without a specific abduction mechanism, e.g.
the one available in ABDUAL, both abducible and neg_abducible remain undefined in
the Well-Founded Model (WFM), but may hold (as alternatives) in some Partial Stable
Models.

When finding an abductive solution to a set of observations, a 2-valued abduction step
can be viewed as committing oneself to the just found possible abductive hypotheses —
e.g., assuming abducibles as true or as false. Using the SM semantics abduction is done by
guessing the truth-value of each abducible and providing the whole model and testing it for
stability; whereas using the MH semantics, which enjoys the several Relevance properties,
added now with abduction, the latter can be performed by need, induced by the top-down
query solving procedure, solely for the relevant abducibles — i.e., irrelevant abducibles
are left unconsidered. Thus, top-down abductive query answering is a means of finding
those abducible values one might commit to in order to satisfy a query. In particular,
this is one of the main problems which abduction over stable models has been facing,
in that it always has to consider all the abducibles in a program and then progressively
dismiss all those that are irrelevant for the problem at hand. This is not so in our system
framework, since we can usually begin evaluation by a top-down derivation of a query,

148

which immediately constrains the set of abducibles that are relevant to the satisfaction
and proof of that particular query.

An important consideration when computing consequences of abductive solutions, is
that we could end up having to compute the models of the whole program in order
to obtain just a particular relevant subset that will be used to enact on it a posteriori
preferences. This can be easily avoided by performing preliminary computation of the
relevant sub-program, given the consequences that we expect to observe. This means
that the consequences believed significant for model preference can be computed on the
XSB side, and their additional relevant sub-program sent to Smodels as well. For a
MH semantics based implementation of Inspection Points using XSB Prolog we would
need, as said before, a get_layered_remainder/2 predicate to compute the Layered
relevant sub-program. In this phase, we do not allow for additional abduction of literals,
but merely enforce that rules for consequences are consumers of considered abducibles
which have already been produced. In this way, we combine a declarative methodology to
describe the abductive process, with an efficient and viable implementation of reasoning
by complementing a 3-valued well-founded derivation with the computation of the stable
models of the relevant sub-program, in a natural way to obtain all the possible 2-valued
models from the well-founded one. Using XSB-XASP, the process would be the same as
for using an SMs implementation alone, but instead of sending the whole transformed
program to the SMs engine, only the sub-program relevant for the query at hand would
be sent. This way, abductive reasoning can benefit from the relevance property enjoyed
by the Well-Founded Semantics implemented by the XSB-Prolog’s SLG-WAM.

Given the top-down proof procedure for abduction, implementing inspection points
for program P becomes just a matter of adapting the evaluation of derivation subtrees
falling under ‘inspect/1’ literals, at meta-interpreter level, subsequent to performing the
transformation Π(P) presented before, which defines the declarative semantics. Basically,
any considered abducibles evaluated under ‘inspect/1’ subtrees, say A, are codified as
‘abduced(A)’, where:

abduced(A) ← not abduced_not(A)
abduced_not(A) ← not abduced(A)

All abduced/1 literals collected during computation of the relevant sub-program are later
checked against the stable models themselves. Every ‘abduced(a)’ must pair with a cor-
responding abducible a for the model to be accepted. Thus, we combine and complement
the best of both worlds, the 2- and the 3-valued ones.

In the next and final Chapter we summarize the contributions in this thesis, make a
brief overview of some applications the Minimal Hypotheses semantics can be useful for,
and point to future work directions.

149

12 . Conclusions, Applications and Future Work

“Ex terminus novus orsa”
(“From ends new beginnings”)

Latin saying

We summarize here the present thesis, underscore the most important subjects and is-
sues, highlight our novel contributions, overview some of the applications where our results
have been used in the past few years, and point to future work directions. The applications
overviewed here are discussed in [182, 190, 192, 195].

12.1 Conclusions

One of the goals of the general Artificial Intelligence field is to automate logic based
Knowledge Representation and Reasoning by means of computers. This aim has been
growing in importance, e.g. to provide a solid foundation for Semantic Web applications.
We addressed both Knowledge Representation and Reasoning issues in the context of logic
programming, adopting a novel approach both to the syntactic structure of a program
and to its semantics.

The standard syntactic notion of (acyclic) stratification is applied to atoms of a pro-
gram, and not all programs are stratifiable. With the intention of modelling relations be-
tween Knowledge Bases we considered a generic (possibly cyclic) graph perspective, with
KBs at the vertices and the edges representing dependency relations. For such graphs we
defined, instead of stratification, the general notion of Layering, which attaches an order-
ing to the Strongly Connected Components of the graph and to the remaining vertices
not part of any SCC. The generic graph notion of Layering is not unlike, but not the same
as, a topological sorting.

151

152

Casting this new notion to the specific case of logic programs, we devised two syntac-
tic notions, dubbed Rule Layering and Atom Layering, which are applied, respectively, to
rules and to atoms of the program — the latter being more general than the stratification
and depending on the former, the more fundamental one. These layerings fully capture
all the syntactic information of the program and thus provide a sound basis for the defi-
nition of a semantics. Moreover, and from the practical implementations perspective, the
syntactical information of the layerings can itself be useful in developing modular and
efficient reasoning engines, as they provide an easy and natural means of partitioning
and composing the knowledge represented in a logic program. Extended Logic Programs
and Disjunctive Logic Programs can be syntactically transformed into Normal Logic Pro-
grams, and by showing this much, we can restrict the job of building a semantics for logic
programs only to NLPs without loss of generality concerning ELPs and DisjLPs1.

We analysed some of the fundamental principles behind the construction of a semantics
including the notion of support. We realized the classical semantic notion of support is
not fully compatible with the new layering generalization of stratification. This lead us
to the define the new notion of layered support, a generalization of the classical support
that is in harmony with the layerings.

We learned, from reviewing the currently most used 2- and 3-valued semantics for
NLPs, some of the features that make each of them interesting, useful, and intuitive, but
also their drawbacks and contexts where they cannot be applied with as much success.
From this encompassing glance we summarized, both from an intuitive and formal ap-
proaches, the desirable properties of 2-valued semantics for NLPs: guarantee of model
existence, relevance, cumulativity, exhibiting a model conservative generalization of the
stable models (i.e., all SMs being also models of the new semantics). Model existence guar-
antee is especially important to lend robustness to the whole system, thereby enabling
arbitrary KB merging and/or updating. Relevance allows the construction of top-down
query-solving proof-procedures à la, Prolog sound and complete according to the seman-
tics, and is thus quite convenient especially when doing query-answering in very large
KBs which possibly contain knowledge about sparsely connected domains. We leave a
construction for such a top-down proof-procedure for future work. Cumulativity allows
tabling/lemma storing techniques to be used to speed-up computations, and one knows
that there is no such thing as “too much efficiency”.

Based on the Layerings we defined a family of semantics, the Layer-Decomposable
Semantics family, whose members ensure their models “respect” the Layerings. We ar-
gue that every “good” semantics for logic programs should be a member of this family.
Naturally, not all semantics that are members of this family enjoy the same properties —

1We need impose no restrictions on the use of the shifting rule for disjunctions when we can assign
semantics to any loops.

153

e.g., the Stable Models semantics is a member of the Layer-Decomposable Semantics and
it does not enjoy the same properties as, say, the Minimal Hypotheses semantics.

There have been in the literature approaches to semantics that consider default negated
literals as assumable hypotheses. Under this perspective, the truth values of other literals
become determined by those actually assumed negative hypotheses. This approach is
usually associated with requiring maximality of negative hypotheses safeguarding overall
consistency and the results stemming from it correspond to Stable Models in the 2-valued
case, and to the Well-Founded Semantics in the 3-valued one. With the intent of coming
up with a 2-valued semantics for NLPs with the useful properties we identified before,
we took the hypotheses assumption approach one step further to allow for positive hy-
potheses too. Soon enough we found out there is no need for assuming both positive and
negative hypotheses to define a model for an NLP according to some semantics: assuming
positive hypotheses is enough per se to guarantee model existence (one of the properties
for a semantics we consider highly desirable) and it generalizes negative hypotheses as-
sumption. The dual version of the maximal negative hypotheses assumption principle is
minimal positive hypotheses assumption, and it is based on this new strategy that we
defined the Minimal Hypotheses semantics. We show that MH semantics is a member of
the Layer-Decomposable Semantics family, and that it enjoys all the properties we listed
as desirable. MH semantics is a model conservative extension of the SM semantics, and
as a secondary gain of this thesis’s work we show the Stable Models semantics is also a
member if the Layer-Decomposable Semantics family. Furthermore, since MH semantics
guarantees model existence for every NLP, it successfully separates the knowledge rep-
resentation role of NLP rules from the integrity constraint role of rules with ⊥ as head
that are typical of Constrained NLPs, as explained in 6.5.1. This way, MH semantics
not only guarantees that all stable model solutions to a search problem are preserved as
MH models, but also that only ICs are allowed to prune candidate solutions2. Also, by
growing from a hypotheses assumption stance, the MH semantics seamlessly encompasses
abductive reasoning.

Throughout these last few years we have defined several tentative semantics, always
with the intent to come up with one enjoying the properties we identified as desirable.
These semantics have worked as stepping stones that finally lead us to the Minimal
Hypotheses semantics. To accomplish that, one key feature of such a semantics would
have to be guarantee of model existence for every NLP. This immediately raises the issue
that inevitably, some of the models of the new semantics would lack classical support.
This is also, and unavoidably so, the case of some MH models. In fact, all MH models that
are not also SMs lack classical support, and this has been one of the main criticism for the
semantics we have defined, including the Minimal Hypotheses semantics. It is, however,

2We have reused the SM programs in the literature that use odd loops over default negation to
implement ICs, and ascertained that they can all be readily rewritten as ICs instead.

154

an inescapable feature if one wants to guarantee model existence, amongst other useful
properties. On the other hand, all MH models (and, naturally, all SMs too) enjoy the new
generalized layered support which, we believe and propose, should be the standard notion
of support. Nevertheless, any MH model which is also a SM exhibits classical support.
On the other hand, the extension of support beyond the classical one is a feature arising
from the possibility of breaking non-well-founded negation (odd loops over negation)by
means of “self-supporting” minimal positive hypotheses.

For query answering, the MH semantics provides mainly three advantages over the
SMs: 1) by enjoying Relevance (and Brave Relevance) top-down query-solving is possible,
thereby circumventing whole model computation (and grounding) which is unavoidable
with SMs; 2) by considering only the relevant sub-part of the program when answering
a query it is possible to enact grounding of only those rules, if grounding is really de-
sired, whereas with SM semantics whole program grounding is, once again, inevitable
— grounding is known to be a major source of computational time consumption; MH
semantics, by enjoying Relevance, permits curbing this task to the minimum sufficient to
answer a query; 3) by enjoying Cumulativity (and Brave Cautious Monotony), as soon as
the truth-value of a literal is determined in a branch for the top query it can be stored
in a table and its value used to speed up the computations of other branches within the
same top query.

Goal-driven abductive reasoning is elegantly modelled by top-down abductive-query-
solving and by taking a hypotheses assumption approach and, by enjoying Relevance,
MH semantics caters nicely for this convenient problem representation and reasoning
category. Abductive logic programming is also used to model planning problems with
abducibles coding actions. In this context, inspecting for side-effects of abduced actions
can be quite useful in evaluating alternative abductive scenarios. We introduced a new
reasoning mechanism corresponding to this side-effect inspection, dubbing it Inspection
Points, which avoids having to produce whole models for examining just the side-effects
of interest, and also avoids producing irrelevant abductions.

This thesis focuses mainly on establishing new theoretical foundational principles for
logic program based knowledge representation and reasoning. Notwithstanding, we took
some proof-of-concept implementation steps with which we learned valuable lessons for the
future building of a Minimal Hypotheses based Knowledge Representation and Reasoning
abductive system with Inspection Points.

155

12.2 Applications

Many applications have been developed using the Stable Model/Answer-set semantics as
the underlying theoretical platform. These generally tend to be focused on solving prob-
lems that require complete knowledge, such as search problems where all the knowledge
represented is relevant to the solutions. However, as Knowledge Bases increase in size
and complexity, and as merging and updating of KBs becomes more and more common,
e.g. for Semantic Web applications [115], partial knowledge problem solving importance
grows, as well as the need to ensure overall consistency of the merged/updated KBs.

During these last years that we have been developing different approaches to semantics
of NLPs, one of the questions we heard most frequently was “What is the application
for your semantics?”. We want to answer here clearly to that question: the Minimal
Hypotheses semantics is intended to, and can be used in all the applications where the
Stable Models/Answer-Sets semantics are used to model KRR and search problems, plus
all applications where query answering (both under a credulous mode of reasoning as well
as under a skeptical one) is intended, plus all applications where abductive reasoning is
needed. The MH semantics presumes in its aims to be a sound theoretical platform for
2-valued (possibly abductive) reasoning with logic programs.

Although we have not yet implemented a fully functional and integrated MH-based
KRR system, we have already done prototypical implementations of some components as
described in Chapter 11. Some of these components have already been integrated into
other systems. For example, in Section 11.2 we described our XSB-Prolog/XASP/Smodels
interaction mechanism which we use to collect relevant rules for a query (on the XSB-
Prolog side), and then transform and send them to Smodels via XSB’s XASP interface
for relevant sub-model computation. This mechanism was embedded at the core of the
application system ACORDA [152, 153, 203, 178, 179, 184, 185, 199, 200, 201, 202] used to
build prospective logic agents. Also, the inspection points mechanism, formally defined in
Section 10.3, and some of its implementation alternatives in Section 11.3, has been adopted
in [181, 195] and also as a way to implement a posteriori preferences for filtering models,
e.g, subsections 1.2.1.3 “Conditional Abduction”, and 1.3.1 “Constraining Abduction” of
[182]3.

Yet another application scenario that can benefit from our current work is collaborative
learning. In [190] we address several issues that could benefit from MH semantics:

1. Inductive concept learning in a 3-valued setting where we learn a definition for both
the target concept and its opposite, considering positive and negative examples as

3Subsection 1.3.4 “Modelling Inspection Points” of [182] makes explicit reference to our work.

156

instances of two disjoint classes. Explicit negation is used to represent the oppo-
site concept, while default negation is used to ensure consistency and to handle
exceptions to general rules. Under this 3-valued setting we resort to the WFSX
(Well-Founded Semantics with eXplicit negation, cf. [7, 15]); but if the setting were
to be a 2-valued one, and needed to guarantee model existence, then one could
benefit from Minimal Hypotheses semantics.

2. Collaborative KB construction: after obtaining the knowledge resulting from a
learning process, an agent can then interact with the environment by perceiving
it and acting upon it. One single agent exploring an environment may gather only
so much information about it and that may not suffice to solve some problem. In
such case, a collaborative multi-agent strategy, where each agent explores a part
of the environment and shares with the others its findings, might provide better
results. A semantics that ensures overall model existence, like the MH semantics,
would lend robustness to such a collaboratively built Knowledge Base.

12.3 Future Work

Much work still remains to be done that can be rooted in this platform contribution.

In Chapter 2 we assumed the edges of a graph with KBs for vertices as the fundamental
means to identify the least layering of the graph, but we also mentioned the possibility of
having the user specifying his own ordering preferences thereby gaining explicit control
over the layering. We consider this for future work, with its relation to other works about
preferences, and also to Multi-Dimensional updates [138].

The (non-preference based) least layerings are a syntactical notion. When considering
a static KB (with no updates nor merges) one can contemplate the practical usefulness
of compiling the layers of a program into an efficient representation, perhaps resorting to
lower abstraction level programming languages like C/C++. A particular possible road of
development would include implementing the Layered Negative reduction and the Layered
Remainder in XSB-Prolog’s WAM. This could be done by taking advantage of the efforts
already made to implement the Loop detection operation, in the context of the Answer
Completion implementation, since both operations resort to the identification of Strongly
Connected Components. Although one of the aims of MH semantics is to be usable for
top-down query answering, it can also be used for modelling search problems where the
answers are models for the whole program. In this case those low-level representations
can then be used for improving efficiency of whole model computation.

The general topics of using logic programs for Belief Revision([18, 77, 135]), Updates

157

([13, 12, 16, 30, 138, 224, 239, 247, 248]), Preferences ([79, 80, 180]), etc., are per se orthog-
onal to the semantics issue, and therefore, all these subjects can now be addressed with
Minimal Hypotheses semantics as the underlying platform, and some of them might even
benefit from the Inspection Points mechanism, e.g., for enacting some kinds of preferences
(cf. [182]). Importantly, MH can guarantee the liveness of updated and self-updating LP
programs such as those of EVOLP and related applications [10, 8, 137, 178, 179, 184, 190].

The Minimal Hypotheses semantics still has not been thoroughly compared with Re-
vised Stable Models [187], PStable Models [170], and other related semantics.

In 11.2 we mention the possibility of an implementation of the Minimal Hypotheses
semantics resorting to Stable Models and Disjunctive Logic Programs. This can only be
the case if there is some syntactic transformation of an NLP P into another P ′ where the
MH models of P exactly coincide with the disjunctive SMs of P ′. We consider this line
of research for future work as it may help in providing an alternative way to explain the
intuition of the MH semantics to the logic programming community.

As mentioned before (in 11.3.1.3), a more general and flexible implementation of the
Inspection Points mechanism is needed, namely for allowing parallel processing of branches
of the same query. Associating the list of ancestors to each node in the query tree might
be a possible way to facilitate the parallelization.

A future application of Inspection Points is planning in a multi-agent setting. An agent
may have abduced a plan (a sequence of abducible individual actions) and, in the course
of carrying out its abduced actions, it may find that another agent has undone some of
its already executed actions. So, before executing an action, the agent should check all
necessary preconditions hold. Note it should only check, thereby avoiding abducing again
a plan for them: this way, if the preconditions hold the agent can continue and execute
the planned action. The agent should only take measures to enforce the preconditions
again whenever the check fails. Clearly, an inspection of the preconditions is what we
need here. On the other hand, the “other” agent can actually be cooperating with our
agent; and when our agent goes on to execute some planned action, it might find that the
companion agent has already done some of the work for him. In this case, our agent also
wants only to check, not perform any actions in order to ensure the conditions. Merely
checking if an intermediate goal has already been achieved — because some other agent
helped, for example — is what we need to take advantage of this collaborative scenario.
Again, an inspection is the way to implement such check.

More generally, inspection points afford us with the ability to avoid having to generate
complete abductive models in order to glean the consequences of interest of abductive
solutions. The developed techniques can be employed too for permitting passive ICs,
which are not allowed to actively abduce but only to verify their satisfaction with regard

158

to given abductions, in contrast to active ICs that can further abduce in order to be
satisfied. Plus, of course, to enable ICs which contain a combination of both active and
passive literals.

Another future use concerns the computation of inspected consequences of partially
defined 2-valued models, obtained by top-down querying of NLPs, wherein the abducibles
are the default nots themselves, plus appropriate ICs to enforce consistency. Once again,
the computation of complete models can thus be avoided. A 2-valued semantics which
enjoys relevance must then be used, or otherwise a guarantee that the NLP is stratified
or does not contain non-well-founded negation.

In summary, we have provided a fresh platform on which to re-examine some seman-
tic issues present in Logic Programming and its uses, which purports to provide a natural
continuation and improvement of LP development.

Bibliography

[1] Encyclopedia britannica — http://www.britannica.com/.

[2] Internet encyclopedia of philosophy — http://www.iep.utm.edu/.

[3] Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania. ACM
Press, 1989.

[4] F. Toni A. Kakas, R. Kowalski. The role of abduction in logic programming. Oxford,
1995.

[5] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
and Paolo Torroni. Verifiable agent interaction in abductive logic programming:
The sciff framework. ACM Trans. Comput. Logic, 9(4):1–43, 2008.

[6] João Alcântara, Carlos Viegas Damásio, and Luís Moniz Pereira. Paraconsistent
logic programs. In In S. Flesca and G. Ianni, editors, Proceedings of the 8th European
Conference of Logics In Artificial Intelligence, JELIA 2002, volume 2424, pages
345–356. Springer, September 2002.

[7] José Júlio Alferes. Semantics of Logic Programs with Explicit Negation. PhD thesis,
Universidade Noval de Lisboa, October 1993.

[8] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luís Moniz Pereira.
Evolving logic programs. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors,
Procs. of the 8th European Conf. on Logics in Artificial Intelligence (JELIA’02),
number 2424 in LNCS, pages 50–61. Springer, September 2002.

[9] José Júlio Alferes, Carlos Viegas Damásio, and Luís Moniz Pereira. Slx - a top-down
derivation procedure for programs with explicit negation. In SLP, pages 424–438,
1994.

[10] José Júlio Alferes, M. Eckert, and Wolfgang May. Semantic Techniques for the
Web, The REWERSE Perspective, volume 5500 of LNCS, chapter Evolution and
Reactivity in the Semantic Web, pages 161–200. Springer Verlag, 2009.

[11] José Júlio Alferes, Heinrich Herre, and Luís Moniz Pereira. Partial models of ex-
tended generalized logic programs. In Lloyd et al. [150], pages 149–163.

[12] José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, H. Przymusinska, and
T. C. Przymusinski. Dynamic updates of non-monotonic knowledge bases. The
Journal of Logic Programming, 45(1–3):43–70, September/October 2000.

159

160

[13] José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, and Paulo Quaresma.
Planning as abductive updating. In D. Kitchin, editor, Procs. of the AISB’00 Sym-
posium on AI Planning and Intelligent Agents, pages 1–8. AISB, 2000.

[14] José Júlio Alferes and Luís Moniz Pereira. An argumentation theoretic semantics
based on non-refutable falsity. In Dix et al. [88], pages 3–22.

[15] José Júlio Alferes and Luís Moniz Pereira. Reasoning with Logic Programming,
volume 1111 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996.

[16] José Júlio Alferes and Luís Moniz Pereira. Update-programs can update programs.
In Non-Monotonic Extensions of Logic Programming, pages 110–131, 1996.

[17] José Júlio Alferes, Luís Moniz Pereira, H. Przymusinska, and T. C. Przymusinski.
Lups - a language for udating logic programs. Artificial Intelligence, 138(1–2), 2002.

[18] José Júlio Alferes, Luís Moniz Pereira, and Teodor C. Przymusinski. Belief revision
in non-monotonic reasoning and logic programming. Fundam. Inform., 28(1-2):1–
22, 1996.

[19] José Júlio Alferes, Luís Moniz Pereira, and Teodor C. Przymusinski. ‘classical’
negation in nonmonotonic reasoning and logic programming. J. Autom. Reasoning,
20(1):107–142, 1998.

[20] José Júlio Alferes, Luís Moniz Pereira, and Terrance Swift. Well-founded abduction
via tabled dual programs. In International Conference on Logic Programming, pages
426–440, 1999.

[21] José Júlio Alferes, Luís Moniz Pereira, and Terrance Swift. Abduction in well-
founded semantics and generalized stable models via tabled dual programs. Theory
and Practice of Logic Programming, 4(4):383–428, July 2004.

[22] P. W. Anderson. More is different. Science, 177(4047):393–396, August 1972.

[23] Christian Anger, Kathrin Konczak, and Thomas Linke. Nomore: Non-monotonic
reasoning with logic programs. In Proceedings of the Eighth European Conference
on Logics in Artificial Intelligence (JELIA’02, pages 521–524. Springer, 2002.

[24] Krzysztof R. Apt and Howard A. Blair. Arithmetic classification of perfect models
of stratified programs. Fundam. Inform., 14(3):339–343, 1991.

[25] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declar-
ative knowledge. In Foundations of Deductive Databases and Logic Programming.,
pages 89–148. Morgan Kaufmann, 1988.

161

[26] Krzysztof R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. J. ACM, 29:841–862, July 1982.

[27] Francisco Azevedo. Constraint Solving over Multi-valued Logics - Application to
Digital Circuits, volume 91 of Frontiers of Artificial Intelligence and Applications.
IOS Press, 2003.

[28] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope. In
Kaelbling and Saffiotti [127], pages 364–369.

[29] Franz Baader, Diego Calvanese, Deborah L. Mcguinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider. The description logic handbook: theory, implementation,
and applications. Cambridge University Press, New York, NY, USA, 2003.

[30] Federico Banti, José Júlio Alferes, and Antonio Brogi. Well founded semantics for
logic program updates. In J. A. González C. Lemaître, C. A. Reyes, editor, Advances
in Artificial Intelligence - IBERAMIA 2004, 9th Ibero-American Conference on AI,
volume 3315 of Lecture Notes in Computer Science, pages 397–407. Springer-Verlag,
2004.

[31] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, 2003.

[32] Chitta Baral and Michael Gelfond. Logic programming and knowledge representa-
tion. J. Log. Program., 19/20:73–148, 1994.

[33] Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with
answer sets. TPLP, 9(1):57–144, 2009.

[34] Chitta Baral, Sarit Kraus, Jack Minker, and V. S. Subrahmanian. Combining
knowledge bases consisting of first order theories. In ISMIS ’91: Proceedings of
the 6th International Symposium on Methodologies for Intelligent Systems, pages
92–101, London, UK, 1991. Springer-Verlag.

[35] Chitta Baral and V. S. Subrahmanian. Stable and extension class theory for logic
programs and default logics - technical report cs-tr-2402. Technical report, Univer-
sity of Maryland, 1990.

[36] Chitta Baral and V. S. Subrahmanian. Stable and extension class theory for logic
programs and default logics. Journal of Automated Reasoning, 8:345–366, 1992.

[37] Chitta Baral and V. S. Subrahmanian. Dualities between alternative semantics for
logic programming and nonmonotonic reasoning. J. Autom. Reasoning, 10(3):399–
420, 1993.

162

[38] Rachel Ben-eliyahu and Rina Dechter. On computing minimal models. Annals of
Mathematics and Artificial Intelligence, 18:2–8, 1993.

[39] Claude Berge. Graphes et hypergraphes. Dunod, Paris, 1970.

[40] Bharat K. Bhargava, Timothy W. Finin, and Yelena Yesha, editors. CIKM 93,
Proceedings of the Second International Conference on Information and Knowledge
Management, Washington, DC, USA, November 1-5, 1993. ACM, 1993.

[41] Howard A. Blair, Wiktor Marek, and John S. Schlipf. The expressiveness of locally
stratified programs. Annals of Mathematics and Artificial Intelligence, 15:209–229,
1995.

[42] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni.
An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell.,
93:63–101, 1997.

[43] Stefan Brass and Jürgen Dix. Characterizations of the disjunctive well-founded
semantics: Confluent calculi and iterated gcwa. In Journal of Automated Reasoning,
pages 268–283. Springer, LNCS, 1997.

[44] Stefan Brass and Jürgen Dix. Semantics of (disjunctive) logic programs based on
partial evaluation. J. Log. Program., 40(1):1–46, 1999.

[45] Stefan Brass, Burkhard Freitag, and Ulrich Zukowski. Transformation-based
bottom-up computation of the well-founded model. Technical Report MIP-9620,
Universität Passau, 2001.

[46] Gerhard Brewka and Jérôme Lang, editors. Principles of Knowledge Representation
and Reasoning: Proceedings of the Eleventh International Conference, KR 2008,
Sydney, Australia, September 16-19, 2008. AAAI Press, 2008.

[47] G. Brignoli, S. Costantini, O. D’Antona, and A.Provetti. Characterizing and com-
puting stable models of logic programs: the non-stratified case. In C. Baral and
H. Mohanty, editors, Proceedings of the 1999 Conference on Information Technol-
ogy. AAAI Press — 2000, Decemebr 1999.

[48] Marco Cadoli. The complexity of model checking for circumscriptive formulae. Inf.
Process. Lett., 44(3):113–118, 1992.

[49] Marco Cadoli and Andrea Schaerf. Compiling problem specifications into sat. Ar-
tificial Intelligence, 162:89–120, 2005.

[50] L. Castro, T. Swift, and D. S. Warren. XASP: Answer Set Programming with XSB
and Smodels. http://xsb.sourceforge.net/packages/xasp.pdf.

163

[51] L.F. Castro, T. Swift, and D.S. Warren. Suspending and resuming computations
in engines for SLG evaluation. In Practical Applications of Declarative Languages,
volume 2257 of LNCS, pages 332–346. Springer-Verlag, 2002.

[52] L.F. Castro and D.S. Warren. An environment for the exploration of non monotonic
logic programs. In A. Kusalik, editor, Proc. of the 11th Intl. Workshop on Logic
Programming Environments (WLPE’01), 2001.

[53] Philip K. Chan and Salvatore J. Stolfo. Experiments on multi-strategy learning by
meta-learning. In Bhargava et al. [40], pages 314–323.

[54] Philip K. Chan and Salvatore J. Stolfo. Toward multi-strategy parallel & distributed
learning in sequence analysis. In Hunter et al. [125], pages 65–73.

[55] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization
of forward and backward chaining in the inverse. In In Uli Furbach and Natrajan
Shankar, editors, Proceedings of the 3rd International Joint Conference on Auto-
mated Reasoning (IJCAR’06, pages 97–111. Springer, 2006.

[56] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20–74, January 1996.

[57] Henning Christiansen and Verónica Dahl. Hyprolog: A new logic programming
language with assumptions and abduction. In Gabbrielli and Gupta [106], pages
159–173.

[58] Alonzo Church. Introduction to Mathematical Logic. Princeton, Princeton Univer-
sity Press, 1956.

[59] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis,
G. Pfeifer, and F. Scarcello. The DLV system: Model generator and advanced
frontends (system description). In Workshop Logische Programmierung, 1997.

[60] K. Clark. Negation as failure. In H.Gallaire and J.Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, 1978.

[61] Luca Console, Daniele Theseider Dupre, and Pietro Torasso. On the relationship
between abduction and deduction. Journal of Logic and Computation, 1(5):661–690,
1991.

[62] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms, second edition, 2001.

[63] Agostino Cortesi and Gilberto Filé. Graph properties for normal logic programs.
Theor. Comput. Sci., 107(2):277–303, 1993.

164

[64] Stefania Costantini. Contributions to the stable models semantics of logic programs
with negation. Theoretical Computer Science, 149(2):231–255, 1995.

[65] Stefania Costantini. Comparing different graph representations of logic programs
under the answer set semantics. In Provetti and Son [205].

[66] Stefania Costantini. Component-based answer set programming. In Osorio and
Provetti [171].

[67] Stefania Costantini. On the existence of stable models of non-stratified logic pro-
grams. TPLP, 6(1-2):169–212, 2006.

[68] Stefania Costantini, Gaetano Aurelio Lanzarone, and Giuseppe Magliocco. Assert-
ing lemmas in the stable model semantics. In JICSLP, pages 438–452, 1996.

[69] Carlos Viegas Damásio, Wolfgang Nejdl, and Luís Moniz Pereira. Revise: An ex-
tended logic programming system for revising knowledge bases. In Knowledge Rep-
resentation and Reasoning. Morgan Kaufmann, 1994.

[70] Carlos Viegas Damásio and Luís Moniz Pereira. Abduction over 3-valued extended
logic programs. In Marek and Nerode [155], pages 29–42.

[71] Carlos Viegas Damásio and Luís Moniz Pereira. Default negated conclusions: Why
not? In Dyckhoff et al. [92], pages 103–117.

[72] Carlos Viegas Damásio and Luís Moniz Pereira. A paraconsistent semantics detect-
ing contradiction support. In J. Dix, U. Furbach, and A. Nerode, editors, Logic
Programming and NonMonotonic Reasoning, 4th Int. Conf., number 1265 in LNAI,
pages 224–243. Springer, July 1997.

[73] Carlos Viegas Damásio and Luís Moniz Pereira. A survey of paraconsistent se-
mantics for logic programs. In D.M. Gabbay and Ph. Smets, editors, Handbook
of Defeasible Reasoning and Uncertainty Management Systems, volume 2, pages
241–320. Kluwer Academic Publishers, 1998.

[74] Carlos Viegas Damásio, Luís Moniz Pereira, and Terrance Swift. Coherent well-
founded annotated logic programs. In Gelfond et al. [112], pages 262–276.

[75] Terrance Deacon. Evolution and Learning: The Baldwin Effect Reconsidered, chap-
ter The Hierarchic Logic of Emergence: Untangling the Interdependence of Evolu-
tion and Self-Organization. MIT Press, 2003.

[76] James P. Delgrande and Torsten Schaub. Consistency-based approaches to merging
knowledge bases: Preliminary report. In Leite (Eds.), Proceedings of the Ninth
European Conference on Logics in Artificial Intelligence (JELIA’04), Lecture Notes
in Artificial Intelligence, pages 126–133, 2004.

165

[77] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan Woltran. Belief
revision of logic programs under answer set semantics. In Brewka and Lang [46],
pages 411–421.

[78] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan Woltran. Merging
logic programs under answer set semantics. In Hill and Warren [118], pages 160–174.

[79] Pierangelo Dell’Acqua and Luís Moniz Pereira. Preferring and updating in logic-
based agents. In Bartenstein, Geske, Hannebauer, and Yoshie, editors, Web-
Knowledge Management and Decision Support, volume 2543 of LNAI, pages 69–71.
Springer, 2003.

[80] Pierangelo Dell’Acqua and Luís Moniz Pereira. Preferential theory revision. J.
Applied Logic, 5(4):586–601, 2007.

[81] Marc Denecker and Daniel De Schreye. SLDNFA: An abductive procedure for
normal abductive programs. In Apt, editor, Proceedings of the Joint International
Conference and Symposium on Logic Programming, pages 686–700, Washington,
USA, 1992. The MIT Press.

[82] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic pro-
grams and default theories. Theoretical Computer Science, 170(1-2):209 – 244, 1996.

[83] Jürgen Dix. A Framework for Representing and Characterizing Semantics of Logic
Programs. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Third International Conference
(KR ’92), pages 591–602. San Mateo, CA, Morgan Kaufmann, 1992.

[84] Jürgen Dix. A Classification Theory of Semantics of Normal Logic Programs: I.
Strong Properties. Fundamenta Informaticae, 22(3):227–255, 1995.

[85] Jürgen Dix. A Classification Theory of Semantics of Normal Logic Programs: II.
Weak Properties. Fundamenta Informaticae, 22(3):257–288, 1995.

[86] Jürgen Dix, Georg Gottlob, Wiktor Marek, and Cecylia Rauszer. Reducing disjunc-
tive to non-disjunctive semantics by shift-operations. Fundamenta Informaticae,
28:87–100, 1996.

[87] Jürgen Dix and Martin Müller. Partial evaluation and relevance for approximations
of stable semantics. In ISMIS ’94: Proceedings of the 8th International Sympo-
sium on Methodologies for Intelligent Systems, pages 511–520, London, UK, 1994.
Springer-Verlag.

166

[88] Jürgen Dix, Luís Moniz Pereira, and Teodor C. Przymusinski, editors. Non-
Monotonic Extensions of Logic Programming (NMELP’94), ICLP ’94 Workshop,
Santa Margherita Ligure, Italy, June 17, 1994, Selected Papers, volume 927.
Springer, 1995.

[89] Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors. Proceed-
ings, Tenth International Conference on Principles of Knowledge Representation
and Reasoning, Lake District of the United Kingdom, June 2-5, 2006. AAAI Press,
2006.

[90] Phan Minh Dung. On the relations between stable and well-founded semantics of
logic programs. Theoretical Computer Science, 105:7–25, 1992.

[91] Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[92] Roy Dyckhoff, Heinrich Herre, and Peter Schroeder-Heister, editors. Extensions
of Logic Programming, 5th International Workshop, ELP’96, Leipzig, Germany,
March 28-30, 1996, Proceedings, volume 1050. Springer, 1996.

[93] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. An Efficient
Implementation of Sugiyama’s Algorithm for Layered Graph Drawing. Journal of
Graph Algorithms and Applications, 9(3):305–325, 2005.

[94] Thomas Eiter and Georg Gottlob. Complexity results for disjunctive logic program-
ming and application to nonmonotonic logics. In Proceedings of the International
Logic Programming Symposium (ILPS, pages 266–278. MIT Press, 1993.

[95] Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction from logic programs:
semantics and complexity. Theoretical Computer Science, 189(1–2):129–177, 1997.

[96] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. J. ACM, 23(4):733–742, October 1976.

[97] E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer
Science, pages 997–1072, 1990.

[98] Esra Erdem and Vladimir Lifschitz. Tight logic programs. Theory and Practice of
Logic Programming, 3(4):499–518, 2003.

[99] Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors. Logic Programming and
Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam,
Germany, September 14-18, 2009. Proceedings, volume 5753 of Lecture Notes in
Computer Science. Springer, 2009.

167

[100] François Fages. Consistency of Clark’s Completion and Existence of Stable Models.
Methods of Logic in Computer Science, 1:51–60, 1994.

[101] Melvin Fitting. A Kripke-Kleene Semantics for Logic Programs. J. Log. Program.,
2(4):295–312, 1985.

[102] J. Freire, T. Swift, and D. S. Warren. An alternative scheduling strategy for the
slg-wam. Technical report, SUNY at Stony Brook, 1995.

[103] J. Freire, T. Swift, and D. S. Warren. A framework for scheduling strategies in slg.
Technical report, SUNY Stony Brook, 1998.

[104] T. H. Fung and Robert A. Kowalski. The IFF logic programming. J. Log. Prog.,
33(2):151 – 165, 1997.

[105] Dov M. Gabbay. Classical vs non-classical logic. In D.M. Gabbay, C.J. Hogger,
and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 2, chapter 2.6. Oxford University Press, 1994.

[106] Maurizio Gabbrielli and Gopal Gupta, editors. Logic Programming, 21st Inter-
national Conference, ICLP 2005, Sitges, Spain, October 2-5, 2005, Proceedings,
volume 3668. Springer, 2005.

[107] M. Osorio Galindo, J. R. Arrazola Ramírez, and J. L. Carballido. Logical weak
completions of paraconsistent logics. Journal of Logic and Computation, 18(6):913–
940, 2008.

[108] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. The conflict-driven an-
swer set solver clasp: Progress report. In Erdem et al. [99], pages 509–514.

[109] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620–650, July 1991.

[110] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, ICLP, pages 579–597. MIT Press, 1990.

[111] Michael Gelfond. On stratified autoepistemic theories. In AAAI, pages 207–211,
1987.

[112] Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors. Logic Programming
and Nonmonotonic Reasoning, 5th International Conference, LPNMR’99, El Paso,
Texas, USA, December 2-4, 1999, Proceedings, volume 1730 of Lecture Notes in
Computer Science. Springer, 1999.

168

[113] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In In Procs. of ICLP-88, pages 1070–1080. International Conference on
Logic Programming 88, 1988.

[114] Matthew Ginsberg. Bilattices and modal operators. Journal of Logic and Compu-
tation, 1:1–41, 1990.

[115] Ana Sofia Gomes, José Júlio Alferes, and Terrance Swift. Implementing query an-
swering for hybrid mknf knowledge bases. In Manuel Carro and Ricardo Peña,
editors, Practical Aspects of Declarative Languages, 12th International Symposium,
PADL 2010, volume 5937 of Lecture Notes in Computer Science, pages 25–39.
Springer, January 2010.

[116] Patrick Healy and Nikola S. Nikolov. How to layer a directed acyclic graph. In
Mutzel et al. [164], pages 16–30.

[117] Patrick Healy and Nikola S. Nikolov. A branch-and-cut approach to the directed
acyclic graph layering problem. In Revised Papers from the 10th International Sym-
posium on Graph Drawing, GD ’02, pages 98–109, London, UK, 2002. Springer-
Verlag.

[118] P. Hill and D. Warren, editors. Proceedings of the Twenty-fifth International Confer-
ence on Logic Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[119] Pascal Hitzler. Topology and logic programming semantics. Diplomarbeit in math-
ematik, Universität Tübingen, 1998.

[120] Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of selector
generated models for logic programs. In Wolf et al. [243], pages 65–75.

[121] Pascal Hitzler and Anthony Karel Seda. A note on the relationships between logic
programs and neural networks. In Proceedings of the Fourth Irish Workshop on
Formal Methods, IWFM’00, Electronic Workshops in Computing (eWiC). British
Computer Society, pages 1–9, 2000.

[122] Pascal Hitzler and Anthony Karel Seda. Unique supported-model classes of logic
programs. Information, 4:4–3, 2001.

[123] Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics. TPLP, 5(1-2):93–121, 2005.

[124] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible sroiq. In
Doherty et al. [89], pages 57–67.

169

[125] Lawrence Hunter, David B. Searls, and Jude W. Shavlik, editors. Proceedings
of the 1st International Conference on Intelligent Systems for Molecular Biology,
Bethesda, MD, USA, July 1993. AAAI, 1993.

[126] Katsumi Inoue and Chiaki Sakama. A fixpoint characterization of abductive logic
programs. Journal of Logic Programming, 27(2):107–136, 1996.

[127] Leslie Pack Kaelbling and Alessandro Saffiotti, editors. IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30-August 5, 2005. Professional Book Center, 2005.

[128] A. C. Kakas and F. Riguzzi. Learning with abduction. In S. Džeroski and N. Lavrač,
editors, Proceedings of the 7th International Workshop on Inductive Logic Program-
ming, volume 1297, pages 181–188. Springer-Verlag, 1997.

[129] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic pro-
gramming. J. Log. Comput., 2(6):719–770, 1992.

[130] Sébastien Konieczny. On the difference between merging knowledge bases and com-
bining them, 2000.

[131] Robert A. Kowalski. Computational logic and human thinking: How to be artifi-
cially intelligent — http://www.doc.ic.ac.uk/∼rak/papers/newbook.pdf.

[132] Robert A. Kowalski. Logic for problem solving. Elsevier North Holland, New York,
1979.

[133] Kenneth Kunen. Negation in logic programming. J. Log. Program., 4(4):289–308,
1987.

[134] Evelina Lamma and Paola Mello, editors. AI*IA 99:Advances in Artificial Intelli-
gence, 6th Congress of the Italian Association for Artificial Intelligence, Bologna,
Italy, September 14-17, 1999, Proceedings, volume 1792. Springer, 2000.

[135] Evelina Lamma, Luís Moniz Pereira, and Fabrizio Riguzzi. Belief revision via lamar-
ckian evolution. New Generation Computing, 21(3):247–275, August 2003.

[136] N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York, 1994.

[137] João Alexandre Leite. Evolving Knowledge Bases - Specification and Semantics.
IOS Press, 2003.

[138] João Alexandre Leite, José Júlio Alferes, Luís Moniz Pereira, H. Przymusinska, and
T. C. Przymusinski. A language for multi-dimensional updates. Electronic Notes
in Theoretical Computer Science, 70(5), 2002.

170

[139] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Stable model checking for
disjunctive logic programs. In LID ’96: Proceedings of the International Workshop
on Logic in Databases, pages 265–278, London, UK, 1996. Springer-Verlag.

[140] Nicola Leone, Francesco Scarcello, and V. S. Subrahmanian. Optimal models of
disjunctive logic programs: Semantics, complexity, and computation. IEEE Trans.
Knowl. Data Eng., 16(4):487–503, 2004.

[141] Clarence Lewis. A Survey of Symbolic Logic. University of California Press, 1918.
Republished by Dover, 1960.

[142] Vladimir Lifschitz. Answer set planning. In Proceedings of the International Con-
ference on Logic Programming, pages 23–37, 1999.

[143] Vladimir Lifschitz. Twelve definitions of a stable model. In ICLP ’08: Proceedings
of the 24th International Conference on Logic Programming, pages 37–51, Berlin,
Heidelberg, 2008. Springer-Verlag.

[144] Vladimir Lifschitz and Thomas Y. C. Woo. Answer sets in general nonmonotonic
reasoning (preliminary report). In KR, pages 603–614, 1992.

[145] Fangzhen Lin and Xishun Zhao. On odd and even cycles in normal logic programs.
In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI–
2004), pages 80–85. The AAAI Press, 2004.

[146] Fangzhen Lin and Yuting Zhao. ASSAT: Computing Answer Sets of a Logic Pro-
gram by SAT solvers. In Artificial Intelligence, pages 112–117, 2002.

[147] Thomas Linke, Hans Tompits, and Stefan Woltran. On acyclic and head-cycle free
nested logic programs. In Proceedings of 19th International Conference on Logic
Programming (ICLP04), volume 3132 of Lecture Notes in Computer Science, pages
225–239. Springer-Verlag, 2004.

[148] Julie Yuchih Liu, Leroy Adams, and Weidong Chen. Constructive negation under
the well-founded semantics. Journal of Logic Programming, 38(3):295–330, 1999.

[149] J. W. Lloyd. Foundations of logic programming; (2nd extended ed.). Springer-Verlag
New York, Inc., New York, NY, USA, 1987.

[150] John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau,
Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey,
editors. Computational Logic - CL 2000, First International Conference, London,
UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture Notes in Computer
Science. Springer, 2000.

171

[151] Zbigniew Lonc and Miroslaw Truszczynski. Computing minimal models, stable
models and answer sets. CoRR, abs/cs/0506104, 2005.

[152] Gonçalo Lopes and Luís Moniz Pereira. Prospective programming with acorda. In
Empirically Successful Computerized Reasoning (ESCoR’06) workshop at The 3rd
International Joint Conference on Automated Reasoning (IJCAR’06), Seattle, USA,
August 2006.

[153] Gonçalo Lopes and Luís Moniz Pereira. Prospective storytelling agents. In Manuel
Carro and R. Peña, editors, Procs. 12th Intl. Symp. Practical Aspects of Declarative
Languages (PADL’10), volume 5937 of LNCS, pages 294–296. Springer, January
2010. http://centria.di.fct.unl.pt/ lmp/publications/online-papers/storytelling.pdf.

[154] Thomas Lukasiewicz. Probabilistic and truth-functional many-valued logic pro-
gramming. Technical report, Institute für Informatik - Justus-Liebig-Universität
Giessen, December 1998.

[155] V. Wiktor Marek and Anil Nerode, editors. Logic Programming and Nonmonotonic
Reasoning, Third International Conference, LPNMR’95, Lexington, KY, USA, June
26-28, 1995, Proceedings, volume 928. Springer, 1995.

[156] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel. The stable models of a
predicate logic program. Journal of Logic Programming, 21:446–460, 1992.

[157] George F. McNulty. Fragments of first order logic, i: Universal horn logic. The
Journal of Symbolic Logic, 42(2):pp. 221–237, 1977.

[158] Jack Minker and Carolina Ruiz. Semantics for disjunctive logic programs with
explicit and default negation. Fundam. Inf., 20(1-3):145–192, 1994.

[159] Bamshad Mobasher, Don Pigozzi, and Giora Slutzki. Multi-valued logic program-
ming semantics: An algebraic approach. Theoretical Computer Science, 171(1–
2):77–109, 1997.

[160] Robert C. Moore. Semantical considerations on nonmonotonic logic. Artif. Intell.,
25(1):75–94, 1985.

[161] Joan Moschovakis. Intuitionistic logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2004.

[162] Stephen Muggleton. Inductive logic programming. New Generation Comput.,
8(4):295–, 1991.

[163] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and
methods. J. Log. Program., 19/20:629–679, 1994.

172

[164] Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors. Graph Drawing,
9th International Symposium, GD 2001 Vienna, Austria, September 23-26, 2001,
Revised Papers, volume 2265 of Lecture Notes in Computer Science. Springer, 2002.

[165] José Neves, Manuel Filipe Santos, and José Machado, editors. Progress in Artifi-
cial Intelligence, 13th Portuguese Conference on Aritficial Intelligence, EPIA 2007,
Workshops: GAIW, AIASTS, ALEA, AMITA, BAOSW, BI, CMBSB, IROBOT,
MASTA, STCS, and TEMA, Guimarães, Portugal, December 3-7, 2007, Proceed-
ings, volume 4874. Springer, 2007.

[166] Ilkka Niemelä and P. Simons. Smodels - an implementation of the stable model and
well-founded semantics for normal logic programs. In Proceedings of the 4th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning, volume
1265 of Lecture Notes in Artificial Intelligence, pages 420–429, July 1997.

[167] Juan Carlos Nieves. Modeling arguments and uncertain information — A non-
monotonic reasoning approach. PhD thesis, Technical University of Catalonia, 2008.

[168] Stanford Encyclopedia of Philosophy http://plato.stanford.edu/entries/logic
modal/. Modal logic, October 2009.

[169] Artificial Intelligence Centre of the Computer Science Department at Universi-
dade Nova de Lisboa. CENTRIA — Artificial Intelligence Centre Web Site —
http://centria.fct.unl.pt/.

[170] Mauricio Osorio and Juan Carlos Nieves. Pstable semantics for possibilistic logic
programs. In MICAI, pages 294–304, 2007.

[171] Mauricio Osorio and Alessandro Provetti, editors. Latin-American Workshop on
Non-Monotonic Reasoning, Proceedings of the 1st Intl. LA-NMR04 Workshop, An-
tiguo Colegio de San Ildefonso, Mexico City, D.F , Mexico, April 26th 2004, vol-
ume 92. CEUR-WS.org, 2004.

[172] Charles Sanders Peirce. Collected Papers of Charles Sanders Peirce. Harvard Uni-
versity Press, 1931.

[173] Luís Moniz Pereira. Handbook of the Logic of Argument and Inference, volume 1 of
Studies in Logic and Practical Reasoning, chapter Philosophical Incidences of Logic
Programming, pages 425–448. Elsevier Science, 2002.

[174] Luís Moniz Pereira. Evolving towards an evolutionary epistemology. International
Journal of Reasoning-based Intelligent Systems (IJRIS), 1(1/2):68–76, July 2009.

173

[175] Luís Moniz Pereira. Evolutionary psychology and the unity of sciences - to-
wards an evolutionary epistemology. In O. Pombo, J. Symons, and J. M. Tor-
res, editors, New approaches to the Unity of Science - vol II: Special Sciences
and the Unity of Science, Logic, Epistemology, and the Unity of Science. Springer,
http://www.springer.com/series/6936, 2011.

[176] Luís Moniz Pereira and José Júlio Alferes. Well founded semantics for logic pro-
grams with explicit negation. In B. Neumann, editor, European Conf. on Artificial
Intelligence, pages 102–106. John Wiley & Sons, 1992.

[177] Luís Moniz Pereira, José Júlio Alferes, and J. N. Aparício. Adding closed world
assumptions to well founded semantics (extended improved version). Theoretical
Computer Science (Special issue on selected papers from FGCS’92), 122:49–68, 1993.

[178] Luís Moniz Pereira and Han The Anh. Evolution prospection. In K. Nakamatsu,
editor, Procs. First KES Intl. Symp. on Intelligent Decision Technologies - KES-
IDT’09, Engineering Series, Himeji, Japan, April 2009. Springer.

[179] Luís Moniz Pereira and Han The Anh. Evolution prospection in decision making.
Intelligent Decision Technologies (IDT), 3(3):157–171, October 2009.

[180] Luís Moniz Pereira, Pierangelo Dell’Acqua, and Gonçalo Lopes. Prospective updat-
ing of theories with preferences. In O. Pombo and A. Gerner, editors, Abduction and
the Process of Scientific Discovery, Colecção Documenta, pages 65–96. Publidisa,
September 2007.

[181] Luís Moniz Pereira, Pierangelo Dell’Aqua, and Gonçalo Lopes. On preferring and
inspecting abductive models. In Procs. 11th Intl. Symp. Practical Aspects of Declar-
ative Languages (PADL’09), LNCS. Springer, January 2009.

[182] Luís Moniz Pereira, Pierangelo Dell’Aqua, Alexandre Miguel Pinto, and Gonçalo
Lopes. Inspecting and preferring abductive models. In K. Nakamatsu and L. Jain,
editors, Handbook on Reasoning-based Intelligent Systems. World Scientific, 2011.

[183] Luís Moniz Pereira and Gonçalo Lopes. Prospective logic agents. In Neves et al.
[165], pages 73–86.

[184] Luís Moniz Pereira and Gonçalo Lopes. Prospective logic agents. International
Journal of Reasoning-based Intelligent Systems (IJRIS), 1(3/4):200–208, October
2009.

[185] Luís Moniz Pereira, Gonçalo Lopes, and Pierangelo Dell’Acqua. Pre and post pref-
erences over abductive models. In James P. Delgrande and W. Kießling, editors,
Multidisciplinary Workshop on Advances in Preference Handling (M-Pref’07) at
33rd Intl. Conf. on Very Large Data Bases (VLDB’07). VLDB, 2007.

174

[186] Luís Moniz Pereira and Alexandre Miguel Pinto. Revised stable models - a new se-
mantics for logic programs. In In Procs. Convegno Italiano di Logica Computazionale
(CILC’04). Convegno Italiano di Logica Computazionale (CILC’04), July 2004.

[187] Luís Moniz Pereira and Alexandre Miguel Pinto. Revised stable models - a semantics
for logic programs. In Carlos Bento, A. Cardoso, and G. Dias, editors, Procs.
12th Portuguese Intl.Conf. on Artificial Intelligence (EPIA’05), LNAI, pages 29–
42, Covilhã, Portugal, December 2005. Springer.

[188] Luís Moniz Pereira and Alexandre Miguel Pinto. Approved models for normal
logic programs. In Nachum Dershowitz and Andrei Voronkov, editors, Procs. 14th
Intl. Conf. on Logic for Programming Artificial Intelligence and Reasoning, LPAR
- LNAI, Yerevan, Armenia, October 2007. Springer.

[189] Luís Moniz Pereira and Alexandre Miguel Pinto. Reductio ad absurdum argumen-
tation in normal logic programs. In Chitta Baral, G. Brewka, and John S. Schlipf,
editors, Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR, pages 96–113, Tempe, AZ, USA, May 2007. Springer.

[190] Luís Moniz Pereira and Alexandre Miguel Pinto. Oppositional Concepts in Compu-
tational Intelligence, chapter Collaborative vs. Conflicting Learning, Evolution and
Argumentation. Studies in Computational Intelligence. Springer, 2008.

[191] Luís Moniz Pereira and Alexandre Miguel Pinto. Adaptive reasoning for cooper-
ative agents. In Salvador Abreu and Dietmar Siepel, editors, 18th Intl. Conf. on
Applications of Declarative Programming and Knowledge Management (INAP’09),
Évora, Portugal, November 2009.

[192] Luís Moniz Pereira and Alexandre Miguel Pinto. Inspection points and meta-
abduction in logic programs. In Salvador Abreu and Dietmar Siepel, editors, 18th
Intl. Conf. on Applications of Declarative Programming and Knowledge Management
(INAP’09), November 2009.

[193] Luís Moniz Pereira and Alexandre Miguel Pinto. Layer supported models of logic
programs. In Procs. 10th LPNMR, LNCS. Springer, September 2009.

[194] Luís Moniz Pereira and Alexandre Miguel Pinto. Layered models top-down querying
of normal logic programs. In Proceedings of the Practical Aspects of Declarative
Languages (PADL’09), volume 5418 of LNCS, pages 254–268. Springer, January
2009.

[195] Luís Moniz Pereira and Alexandre Miguel Pinto. Side-effect inspection for decision
making. In K. Nakamatsu, editor, Procs. First KES Intl. Symp. on Intelligent
Decision Technologies - KES-IDT’09, volume 199 of Engineering Series, pages 139–
150, Himeji, Japan, April 2009. Springer.

175

[196] Luís Moniz Pereira and Alexandre Miguel Pinto. Stable model implementation of
layer supported models by program transformation. In Salvador Abreu and Dietmar
Siepel, editors, 18th Intl. Conf. on Applications of Declarative Programming and
Knowledge Management (INAP’09), Évora, Portugal, November 2009.

[197] Luís Moniz Pereira and Alexandre Miguel Pinto. Stable versus layered logic
program semantics. In Fifth Latin American Workshop on Non-Monotonic
Reasoning 2009, Apizaco, Tlaxcala, México, November 2009. Proceedings at
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/.

[198] Luís Moniz Pereira and Alexandre Miguel Pinto. Inductive tight semantics for
logic programs. In Liber Amicorum in honour of Maurice Bruynooghe, pages 17–31.
K.U.Leuven, July 2010. invited paper.

[199] Luís Moniz Pereira and Carroline D. P. Kencana Ramli. Modelling probabilistic cau-
sation in decision making. In K. Nakamatsu, editor, Procs. First KES Intl. Symp. on
Intelligent Decision Technologies - KES-IDT’09, Engineering Series, Himeji, Japan,
April 2009. Springer.

[200] Luís Moniz Pereira and Carroline D. P. Kencana Ramli. Modelling decision mak-
ing with probabilistic causation. Intelligent Decision Technologies, 4(2):133–148,
February 2010. http://centria.di.fct.unl.pt/∼lmp/publications/online-papers/IDT-
Probabilistic-Causation.pdf.

[201] Luís Moniz Pereira and Ari Saptawijaya. Modelling morality with prospective logic.
In J. Maia Neves, M. F. Santos, and J. M. Machado, editors, Progress in Artificial
Intelligence, Procs. 13th Portuguese Intl.Conf. on Artificial Intelligence (EPIA’07),
LNAI 4874, pages 99–111, Guimarães, December 2007. Springer.

[202] Luís Moniz Pereira and Ari Saptawijaya. Modelling morality with prospective logic.
International Journal of Reasoning-based Intelligent Systems (IJRIS), 1(3/4):209–
221, October 2009.

[203] Luís Moniz Pereira and Ari Saptawijaya. Modelling morality with prospective logic.
Machine Ethics, (ISBN: 978-0521112352), July 2011.

[204] Alexandre Miguel Pinto. Explorations in revised stable models - a new semantics for
logic programs. Master’s thesis, Faculdade de Ciências e Tecnologia - Universidade
Nova de Lisboa, June 2005. Luís Moniz Pereira (superv.).

[205] Alessandro Provetti and Tran Cao Son, editors. Answer Set Programming, Towards
Efficient and Scalable Knowledge Representation and Reasoning, Proceedings of the
1st Intl. ASP’01 Workshop, Stanford, March 26-28, 2001, 2001.

176

[206] H. Przymusinska and T. Przymusinski. Semantic issues in deductive databases and
logic programs. In R. Banerji, editor, Formal Techniques in Artificial Intelligence,
a Sourcebook, pages 321–367. North Holland, 1990.

[207] T. C. Przymusinski. On the declarative semantics of deductive databases and logic
programs, pages 193–216. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1988.

[208] T.C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–1096, 1988.

[209] Teodor C. Przymusinski. Every logic program has a natural stratification and an
iterated least fixed point model. In PODS [3], pages 11–21.

[210] Teodor C. Przymusinski. On the declarative and procedural semantics of logic
programs. J. Autom. Reasoning, 5(2):167–205, 1989.

[211] Teodor C. Przymusinski. Well-founded and stationary models of logic programs.
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 12:141–187,
1994.

[212] R. Ramesh and W. Chen. A portable method of integrating SLG resolution into
Prolog systems. In Proc. of the Symposium on Logic Programming, 1994.

[213] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

[214] Abhik Roychoudhury, K. Narayan Kumar, C.R.Ramakrishnan, and I.V. Ramakr-
ishnan. A parametrized unfold/fold transformation framework for definite logic
programs. In Proceedings of PPDP’99, volume 1702 of LNCS. Springer-Verlag,
1999.

[215] Fariba Sadri and Francesca Toni. Abduction with negation as failure for active and
reactive rules. In Lamma and Mello [134], pages 49–60.

[216] K. Sagonas. The SLG-WAM: A Search-Efficient Engine for Well-Founded Evalua-
tion of Normal Logic Programs. PhD thesis, SUNY at Stony Brook, 1996.

[217] K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM Transactions on Programming Languages and Sys-
tems, 20(3):586 – 635, May 1998.

[218] K. Sagonas, T. Swift, and D. S. Warren. The limits of fixed-order computation.
Theoretical Computer Science, 254(1-2):465–499, 2000.

177

[219] Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren. The xsb pro-
gramming system. In Workshop on Programming with Logic Databases (Informal
Proceedings), ILPS, page 164, 1993.

[220] T. Sato. On consistency of first-order logic programs. Technical report, Electrotech-
nical Laboratory, University of Ibaraki, 1987.

[221] M. Schirn, editor. Philosophy of Mathematics Today: Proceedings of an Interna-
tional Conference in Munich. Oxford University Press, Oxford, 1998.

[222] Anthony Karel Seda and Pascal Hitzler. Topology and iterates in computational
logic. In Proceedings of the 12th Summer Conference on Topology and its Applica-
tions: Special Session on Topology in Computer Science, pages 427–469, 1997.

[223] Anthony Karel Seda and Pascal Hitzler. Strictly level-decreasing logic programs.
In Proceedings of the Second Irish Workshop on Formal Methods (IWFM’98, pages
1–18, 1998.

[224] Ján Sefránek. Updates of logic programs. Computing and Informatics, 26(3):225–
238, 2007.

[225] Stewart Shapiro. Logical consequence: Models and modality. In Schirn [221], pages
131–156.

[226] Yi-Dong Shen, Li yan Yuan, and Jia huai You. Slt-resolution for the well-founded
semantics. Journal of Automated Reasoning, 28:53–97, 2002.

[227] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under-
standing of hierarchical system structures. Systems, Man and Cybernetics, IEEE
Transactions on, 11(2):109 –125, 1981.

[228] T. Swift. Tabling for non-monotonic programming. Annals of Mathematics and
Artificial Intelligence, 25(3-4):201–240, 1999.

[229] T. Swift and D. S. Warren. Performance of sequential SLG evaluation. Technical
report, SUNY at Stony Brook, 1993.

[230] T. Swift and D. S. Warren. An abstract machine for SLG resolution: definite
programs. In Proceedings of the Symposium on Logic Programming, pages 633–654,
1994.

[231] T. Swift and D. S. Warren. Analysis of sequential SLG evaluation. In Proceedings
of the Symposium on Logic Programming, pages 219–238, 1994.

178

[232] Terrance Swift, Alexandre Miguel Pinto, and Luís Moniz Pereira. Incremental an-
swer completion in xsb-prolog. In Procs. 25th ICLP, LNCS. Springer-Verlag, July
2009.

[233] Tommi Syrjänen. Lparse 1.0 user’s manual.

[234] Takushi Tanaka, Setsuo Ohsuga, and Moonis Ali, editors. Industrial and Engi-
neering Applications of Artificial Intelligence and Expert Systems, Proceedings of
the Ninth International Conference, Fukuoka, Japan, June 4-7, 1996. Gordon and
Breach Science Publishers, 1996.

[235] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[236] The REWERSE Team. Rewerse - reasoning on the web with rules and semantics.
WWW.

[237] WASP Team. Working group on answer set programming. WWW.

[238] Francesca Toni and Robert A. Kowalski. Reduction of abductive logic programs to
normal logic programs. In Proc. 12th ICLP, pages 367–381. MIT Press, 1994.

[239] Manuela M. Veloso and Subbarao Kambhampati, editors. Proceedings, The Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Penn-
sylvania, USA. AAAI Press / The MIT Press, 2005.

[240] Yde Venema, Lou Goble (ed, Blackwell Guide, Philosophical Logic, and Blackwell
Publishers. Temporal logic. In The Blackwell Guide to Philosophical Logic. Black-
well Philosophy Guides (2001. Basil Blackwell Publishers, 1998.

[241] W3C. World wide web consortium. WWW.

[242] Edward O. Wilson. Consilience : the unity of knowledge. Knopf : Distributed by
Random House, New York, 1998.

[243] Armin Wolf, Thom W. Frühwirth, and Marc Meister, editors. 19th Workshop on
(Constraint) Logic Programming, Ulm, Germany, February 21-23, 2005, volume
2005-01 of Ulmer Informatik-Berichte. Universität Ulm, Germany, 2005.

[244] Jia-Huai You, , Jia huai You, and Li Yan Yuan. On the equivalence of semantics
for normal logic programs. Journal of Logic Programming, 22:211–222, 1995.

[245] Anbu Yue, Weiru Liu, and Anthony Hunter. Approaches to constructing a stratified
merged knowledge base.

179

[246] Carlo Zaniolo. Key constraints and monotonic aggregates in deductive databases. In
Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert
A. Kowalski, Part II. Springer, 2001.

[247] Yan Zhang. Logic program-based updates. ACM Trans. Comput. Log., 7(3):421–
472, 2006.

[248] Yan Zhang and Norman Y. Foo. A unified framework for representing logic program
updates. In Veloso and Kambhampati [239], pages 707–713.

[249] Neng-Fa Zhou, Isao Nagasawa, Masanobu Umeda, Keiichi Katamine, and Toyohiko
Hirota. B-prolog: A high performance prolog compiler. In Tanaka et al. [234], page
790.

A . Proofs

A.1 Proofs from Chapter 2

Proposition 2.1. The set of modules is a partition of the vertices of the
graph. Let G= (VG,EG) be a graph and M(G) the set of modules of G. Then, M(G)
is a partition of VG. I.e.,

VG =
⋃

m∈M(G)
m

and
∀mi,mj∈M(G)mi 6=mj ⇒mi∩mj = ∅

Proof. First, by Definition 2.8, for each vertex v ∈ V there is a module m ∈M(G) such
that v ∈m; thus proving VG = ⋃

m∈M(G)m. Assume now there are two different modules
mi 6=mj in M(G) such that mi∩mj 6= ∅. If mi is the set of vertices of an SCC of G then
mj must be the same as mi because, by definition of SCC, every vertex in mi depends
on every other vertex in mi and, at least one vertex of mj is one of the vertices of mi.
This contradicts the initial assumption that mi 6=mj , thus proving that no two different
modules intersect: ∀mi,mj∈M(G)mi 6= mj ⇒mi∩mj = ∅, which concludes the proof that
M(G) is a partition of VG.

Proposition 2.2. Different modules are non-mutually-dependent. Let G be a
graph and M(G) the set of modules of G. Then,

∀mi,mj∈M(G)
mi 6=mj

¬((mi �mj)∧ (mj �mi))

I.e., all modules are pairwise not mutually dependent.

Proof. Assume there are two different modules mi 6= mj in M(G) such that mi and mj

are mutually dependent. Since mi and mj are mutually dependent, by definition 2.7, they
are the vertices of an SCC and, thus, mi = mj which contradicts the initial assumption
that mi 6=mj . It follows immediately two different modules are necessarily non-mutually-
dependent.

181

182

Proposition 2.3. The Modules Graph of a graph G is a Directed Acyclic
Graph. Let G be a graph, and MG(G) its modules graph. Then, by construction,
MG(G) is a Directed Acyclic Graph.

Proof. From Proposition 2.2 we know that every two modules mi,mj of G, with i 6= j, are
not mutually dependent. Therefore, if there is an edge from mi to mj in MG(G) then
there must not be an inverse edge, otherwise mi and mj would be mutually dependent.
Hence, there are no cycles in MG(G); i.e., MG(G) is Acyclic.

Theorem 2.2. Existence and uniqueness of least layering for a given graph
G. Let G be a graph. There is exactly one least layering of G.

Proof. It follows directly from the definition of graph layering (Definition 2.11) that it
is always possible to find a layering function for any given graph because the two cases
of a layering function are mutually exclusive (thereby ensuring each vertex is assigned,
at most, one single layer index), and they also cover all vertices, even those that do not
depend on any other vertex (thereby ensuring each vertex is assigned, at least, one layer
index). Moreover, amongst the several possible layerings there is always one with the
least number of layers, and which assigns the lowest possibles ordinals to the indices of
layers — that is the least layering.

A.2 Proofs from Chapter 3

Proposition 3.1. The least atom layering of an atom identifies the highest
layer with rules for the atom. Let P be an CNLP, Lf/1 its least rule layering
function, and ALf/1 its least atom layering function.

∀a∈HPALf(a) = α⇔
(
∀r∈P:head(r)=ar ∈ P≤α∧ (α 6= 0⇔∃r′∈Pαhead(r′)=a)

)

Proof. ⇒:

Assume a∈HP and ALf(a) = α. If a has rules then, by definition of least atom layer-
ing function, we haveALf(a) =maxr∈P:head(r)=a(Lf(r)), i.e., α=maxr∈P:head(r)=a(Lf(r)).
This means that all rules r∈P having head(r) = a have Lf(r)≤α, and there is at least one
rule r′ such that Lf(r′) = α 6= 0. I.e. ∀r∈P:head(r)=ar ∈ P≤α∧ (α 6= 0⇔∃r′∈Pαhead(r′)=a).

183

On the other hand, if a has no rules then, by definition of least atom layering function,
we have ALf(a) = 0, i.e., α = 0. Thus, ∀r∈P:head(r)=ar ∈ P≤α becomes vacuously true
because, by hypothesis, a has no rules. By knowing α = 0 and that a has no rules
(α 6= 0⇔∃r′∈Pαhead(r′)=a) immediately follows.

⇐:

Assume a ∈HP and ∀r∈P:head(r)=ar ∈ P≤α. If a has rules (∃r′∈Pαhead(r′)=a) then they
are all in layers ≤ α for some α. The layers ordinals’ maximum is thus α which is, by
Definition 3.15, non-zero, i.e., α 6= 0. In this case, maxr∈P:head(r)=a(Lf(r)) = α=ALf(a).

If a has no rules then, ∀r∈P:head(r)=ar ∈ P≤α vacuously holds for whichever ordinal.
In particular, ∀r∈P:head(r)=ar ∈ P≤0 holds, i.e., α = 0. Since a has no rules, by definition
of atom least layering ALf(a) = α = 0 also holds.

Proposition 3.2. A rule’s layer is greater than or equal to each of the body’s
literals’ atom-layering. Let P be an CNLP, Lf/1 its least rule layering function, and
ALf/1 its least atom layering function.

∀ r∈P
a∈|body(r)|

Lf(r)≥ ALf(a)

Proof. Assume P a CNLP, r a rule of P and a an atom of HP such that a ∈ |body(r)|.
If a has no rules then, by definition of atom-layering function ALf(a) = 0, and since by
definition of rule-layering function ∀r∈PLf(r)≥ 0 we conclude Lf(r)≥ ALf(a).

If a has rules then, because r depends on a we know that r depends on every rule ra
such that head(ra) = a. By definition of rule-layering it must be either the case that ra
also depends on r — in which case Lf(r) = Lf(ra) — or that ra does not depend on r
— in which case Lf(r)>Lf(ra). Either way, Lf(r)≥ Lf(ra) always holds for every rule
ra. In particular, Lf(r)≥maxra∈P:head(ra)=a(Lf(ra)), i.e., Lf(r)≥= ALf(a).

Proposition 3.3. Rules in the same SCC are in the same layer. Let P be a
CNLP.

∀r,r′∈P(r� r′∧ r′� r)⇒ Lf(r) = Lf(r′)

Proof. By Definition 2.7, two rules r and r′ are in the same SCC iff r� r′ and r′� r
hold; and by Definition 2.11, in that case, Lf(r) = Lf(r′) holds. Two rules in the same

184

SCC must also necessarily depend on each other, and, hence, be placed in the same layer.

Proposition 3.4. Layering of SCCs. Let P be a CNLP. If there is an edge from
SCC1 to SCC2, with SCC1 6= SCC2, in the SCCG(P) then ∀r1∈SCC1

r2∈SCC2

Lf(r2)>Lf(r1).

Proof. From Proposition 3.3 we know that all rules in SCC1 are in the same layer. Like-
wise, all rules in SCC2 are in the same layer. By Definition 2.10, there is an arc from
SCC1 to SCC2 in SCCG(P) iff SCC2 depends on SCC1. Since all rules of SCC2 depend
on each other, they all also depend on SCC1, i.e., all the rules of SCC2 depend on all the
rules of SCC1. Since SCC1 and SCC2 are non-mutually-dependent (cf. Proposition 2.2)
modules (cf. Definition 2.8) of P , and SCC2 depends on SCC1, it must be the case, by
Definition 2.11, that

∀r1∈SCC1
r2∈SCC2

Lf(r2)> Lf(r1)

Corollary 3.1. A rule’s layer is greater than or equal to each of the body’s
subsets index. Let P be a CNLP and r a rule of P .

∀body(r)α⊆body(r)Lf(r)≥ α

Proof. From Proposition 3.2 we know that ∀ r∈P
a∈|body(r)|

Lf(r) ≥ ALf(a). It follows imme-

diately that, for whichever subset S of body(r), ∀a∈SLf(r)≥ ALf(a). In particular, this
holds for sets S of the form body(r)α ⊆ body(r), as per Definition 3.16.

A.3 Proofs from Chapter 6

Theorem 6.1. Layered Support implies Classical Support for Locally Strat-
ified Programs. Let P be a locally stratified logic program, I an interpretation, and
a ∈ I an atom. If a is layer supported in P , then a is also classically supported.

Proof. Since a is layer supported in P , by definition, there must be some rule r ∈ P such
that head(r) = a and I |= body(r). Since P is locally stratified there are no SCCs in P

185

and, by definition, body(r) = body(r) for every rule r ∈ P . Hence, I |= body(r), i.e., a is
classically supported.

Lemma 6.2. The rules of the Remainder are “sub-rules” of the Layered
Remainder. Let P be an NLP. Then,

∀
r∈P̂∃r′∈P̊ (head(r) = head(r′)∧ body(r)⊆ body(r′))

Proof. By Definitions 6.13 and 6.14 we know that the Remainder P̂ and the Layered Re-
mainder P̊ are fixed points of, respectively, the Reduction 7→X and the Layered reduction
7→LX . From Lemma 6.1 we know that if P 7→LX PLX and P 7→X PX then PLX ⊇ PX , i.e.,
∀r∈PXr ∈ PLX . Whenever PX ⊂ PLX it may be the case that there is some atom a with
rules in PLX but with no rules in PX . In such case there might be some other individual
transformations 7→P , 7→N , 7→S , 7→F , or 7→L which are still applicable in PX but not in PLX .
These will further delete literals from bodies of rules of PX but not from PLX since they
are not applicable to the latter. Hence, some rules r ∈PX may have a counterpart r′ ∈PLX
such that body(r)⊆ body(r′). Further applications of 7→X to PX might even reduce some
rules to facts (by eventually deleting all literals in the body) which may then allow even
more 7→N transformations to be applicable. Since P̂ is the fixed point of 7→X and P̊ is
the fixed point of 7→LX it follows that ∀

r∈P̂∃r′∈P̊ (head(r) = head(r′)∧body(r)⊆ body(r′)).

Theorem 6.2. The Layered Well-Founded Model is more skeptical than the
Well-Founded Model. Let P be an NLP. Then

LWFM+(P) ⊆ WFM+(P)∧
LWFMu(P) ⊇ WFMu(P)∧
LWFM−(P) ⊆ WFM−(P)

Proof. By Definition 6.16 we know that WFM+(P) = facts(P̂), and by Definition 6.17
we know that LWFM+(P) = facts(P̊). Thus, LWFM+(P)⊆WFM+(P) iff facts(P̂)⊆
facts(P̊).

By Lemma 6.2 we know that ∀
r∈P̂∃r′∈P̊ (head(r) = head(r′) ∧ body(r) ⊆ body(r′)).

Since a ∈ facts(P̂) iff ∃
r∈P̂head(r) = a∧ body(r) = ∅, and we know that ∃r′∈P̊head(r′) =

a∧ body(r)⊆ body(r′), we conclude facts(P̂)⊆ facts(P̊).

186

Again, by Lemma 6.2 it follows that heads(P̊) ⊇ heads(P̂). Since we already know
that facts(P̊) ⊆ facts(P̂) it follows trivially that (heads(P̊) \ facts(P̊)) ⊇ (heads(P̂) \
facts(P̂)), i.e., LWFMu(P)⊇WFMu(P).

Since LWFM−(P) =HP \LWFMu(P) andWFM−(P) =HP \WFMu(P) it follows
immediately that LWFM−(P)⊆WFM−(P).

Proposition 6.4. Model Relevance implies Relevance. If a semantics Sem enjoys
Model Relevance, then it also enjoys Relevance.

Proof. Assume Sem enjoys Model Relevance, i.e.,

∀a∈HP
(
∀M∈ModelsSem(P)a ∈M ⇒ (∃Ma∈ModelsSem(RelP (a))Ma ⊆M ∧a ∈Ma)

)
∧(

∀Ma∈ModelsSem(RelP (a))a ∈Ma⇒∃M∈ModelsSem(P)Ma ⊆M
)

holds. Now we prove Sem also enjoys Relevance, i.e.,

∀a∈HP (∀M∈ModelsSem(P)a ∈M)⇔ (∀Ma∈ModelsSem(RelP (a))a ∈Ma)

holds.

⇒:

Assuming Sem enjoys Brave Relevance and also that ∀a∈HP (∀M∈ModelsSem(P)a ∈M)
we conclude that for each suchM , ∃Ma∈ModelsSem(RelP (a))Ma⊆M∧a∈Ma. Because these
are 2-valued complete models we know that there cannot be two distinct such Ma, thus
we conclude more specifically that ∃1

Ma∈ModelsSem(RelP (a))Ma ⊆M ∧a ∈Ma, i.e., there is
exactly one such modelMa of RelP (a) contained inM with a∈Ma. Since all models of P
contain a and there is at most (and at least) one such model Ma of RelP (a), we conclude
that ∀Ma∈ModelsSem(RelP (a))a ∈Ma.

⇐:

Assuming Sem enjoys Brave Relevance and also that ∀Ma∈ModelsSem(RelP (a))a ∈Ma.
Every model M of P is necessarily a superset of some model Ma of RelP (a) because
RelP (a) is itself a subset of P . The only requirement left to check is to guarantee the
existence of such an M for every such Ma. This is assured by

∀a∈HP ∀Ma∈ModelsSem(RelP (a))a ∈Ma⇒∃M∈ModelsSem(P)Ma ⊆M

because Sem is Brave Relevant. Since we assumed ∀Ma∈ModelsSem(RelP (a))a ∈ Ma, we
conclude ∀M∈ModelsSem(P)a ∈M holds.

187

A.4 Proofs from Chapter 7

Proposition 7.1. Rules of P :: I are “sub-rules” of P : I. Let P be an NLP, and
I a set of literals of P . Then,

∀r∈P ::I∃r′∈P :Ihead(r) = head(r′)∧ body(r)⊆ body(r′)

Proof. The first step of both the Classical and the non-Classical Layer Division operations
are exactly the same — adding as facts to P the atoms in I+.

By Definitions 7.1 and 7.2 we know that

P :: I = ̂(P ∪ I+) and

P : I = ˚(P ∪ I+), and by Lemma 6.2 we conclude that

∀
r∈P̂∪I+∃r′∈ ˚P∪I+(head(r) = head(r′)∧ body(r)⊆ body(r′)), i.e.,

∀r∈P ::I∃r′∈P :Ihead(r) = head(r′)∧ body(r)⊆ body(r′).

Proposition 7.2. Models of a P :: I are Models of P : I. Let P be an NLP, and I
a set of literals of P . If some M is a model of P :: I then M is also a model of P : I.

Proof. Since by Definition 7.1 we know P :: I = P̂ ∪ I+, and by Definition 7.2 we know
P : I = ˚P ∪ I+, we show that models of P̂ ∪ I+ are models of ˚P ∪ I+.

Any model M of P̂ ∪ I+, by definition, satisfies all rules of P̂ ∪ I+. By Proposi-
tion 7.1 we thus conclude that all rules r′ ∈ ˚P ∪ I+ for which there is a rule r ∈ P̂ ∪ I+

such that head(r) = head(r′)∧ body(r) ⊆ body(r′) are already satisfied by M . Finally,
all remaining rules r′′ ∈ ˚P ∪ I+ — i.e., there is no rule r ∈ P̂ ∪ I+ such that head(r) =
head(r′)∧ body(r) ⊆ body(r′) — are also satisfied by M because those are the rules that
have been deleted by 7→N but not by 7→LN , or by subsequent applications of the other
individual transformations of the Remainder and Layered Remainder operators. This is
the case because a rule is deleted by 7→N iff there is a fact a such that not a is in the body
of the deleted rule, i.e., the rule has a false body and, therefore, is satisfied by the fact
a which is necessarily in every model of P̂ ∪ I+. That rule may not be deleted by 7→LN

but it is, nonetheless, satisfied by a and consequently by M . The other rules deleted by

188

subsequent applications of the individual transformations 7→P , 7→S , 7→F , 7→L in the Re-
mainder, that were not deleted by the same transformations in the Layered Remainder,
are nonetheless satisfied by M because their bodies became false in P̂ ∪ I+ due to still
having one positive literal in the body in ˚P ∪ I+ that has no rules in P̂ ∪ I+ and therefore
is not in M .

A.5 Proofs from Chapter 8

Theorem 8.1. Every Stable Model is a Minimal Hypotheses model. Let P
be an NLP, and M a stable model of P . Then M is also a Minimal Hypotheses model of
P .

Proof. Since M is a stable model of P we know that M+ = TωP/M (∅). It follows from this
that
M+ = TωP/M (∅) = TωP/M (∅)∪M+ = Tω(P/M)∪M+(∅) = Tω(P/M+)∪M+(∅) = Tω(P∪M+/M+)(∅)
From Definitions 6.5 (Positive Reduction), 6.6 (Negative Reduction) and 6.15 (Stable
Model) it follows that P ∪M+/M+ = PM+ where the latter is the result of
(P ∪M+)(7→P ∪ 7→N)ωPM+ . Moreover, from Definition 6.8 (Success) we know that
Tω(P∪M+/M+)(∅) = TωPM+ (∅) = facts(PSM+) where PM+ 7→ω

S P
S
M+ .

I.e., (P ∪M+)(7→P ∪ 7→N ∪ 7→S)ωPSM+ and thus Tω(P∪M+/M+)(∅) = facts(PSM+) = M+.
We know that PSM+ is necessarily a definite logic program, hence, every rule of PSM+

which does not have all of the atoms in its body dependent on facts, either depends on
atoms with no rules, or all its other dependencies are circular with other likewise circular
dependent rules. In this case, such rules will not be used by the T operator to produce
consequences. I.e., facts(PSM+) = facts(PXM+), where PSM+(7→F ∪ 7→L)ωPXM+ . This im-
mediately leads to the conclusion that since
(P ∪M+)(7→P ∪ 7→N ∪ 7→S)ωPSM+(7→F ∪ 7→L)ωPXM+ then
(P ∪M+)(7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L)ωPXM+ , i.e, (P ∪M+) 7→ω

X PXM+ , which, by Defini-
tion 6.13 (Remainder), allows us to conclude PXM+ = P̂ ∪M+. Hence,M+ = facts(PSM+) =
facts(PXM+) = facts(P̂ ∪M+) = heads(P̂ ∪M+). Now let us take the set-inclusion min-
imal subset H of M+ such that M+ = facts(P̂ ∪H) = heads(P̂ ∪H) — clearly there is
such a set H since, in extremis, H =M+.

It follows from Definition 6.13 that all rules of P̂ that are not simple facts have a
non-well-founded negative dependency, i.e., they either depend circularly on themselves
through some literal in their bodies (where at least one literal in the loop is a default
negated literal), or they have an infinite dependency chain (as in, e.g., Example 3.5).

189

Since M+ = facts(P̂ ∪H) = heads(P̂ ∪M+) and H is minimal, it follows that for any
strict subset H ′ ⊂H we have facts(P̂ ∪H ′)⊂ heads(P̂ ∪H ′), and this means that there
is at least one rule r′ ∈ P̂ ∪H ′ with some not a literal in its body. This a atom is, by
definition, an element of Hyps(P) — cf. Definition 8.1. Since H is set-inclusion minimal,
it follows that all the atoms in H must be elements of Hyps(P) — otherwise, if there
were some atom b ∈H such that b /∈Hyps(P), then b would either be a fact or have no
rules in ̂P ∪ (H \{b}), in which case H would not be minimal, but H \{b} could possibly
be. Hence, we conclude that for each stable model M of P there is some set-inclusion
minimal H ⊆ Hyps(P) such that M+ = facts(P̂ ∪H) = heads(P̂ ∪M+), i.e., M is a
Minimal Hypotheses model.

Theorem 8.2. At least one Minimal Hypotheses model of P complies with
the Well-Founded Model. Let P be an NLP. Then, there is at least one Minimal
Hypotheses model M of P such that M+ ⊇WFM+(P) and M− ⊇WFM−(P).

Proof. If facts(P̂) = heads(P̂), or equivalently, WFMu(P) = ∅, then MH is a MH model
of P given that H = ∅ because M+

H = facts(P̂ ∪H) = heads(P̂ ∪H) = facts(P̂ ∪∅) =
heads(P̂ ∪∅) = facts(P̂) = heads(P̂).

On the other hand, if facts(P̂) 6= heads(P̂), then there is at least one non-empty
set-inclusion minimal set of hypotheses H ⊆ Hyps(P) such that H ⊇ facts(P). The
corresponding MH is, by definition, a MH model of P which is guaranteed to comply
with M+

H ⊇WFM+(P) = facts(P̂) and M−H ⊇ not WFM−(P) = not (HP \M+
H).

Theorem 8.3. All Minimal Hypotheses models of P comply with the Layered
Well-Founded Model. Let P be an NLP, and M a Minimal Hypotheses model M of
P . Then, M is such that M+ ⊇ LWFM+(P) and M− ⊇ not LWFM−(P).

Proof. By Definition 6.17 we know that LWFM+(P) = facts(P̊) and that LWFM−(P) =
HP \heads(P̊). Since M is a MH model of P we know there is some H ⊆Hyps(P) for
which it holds that either H = ∅ or H is non-empty set-inclusion minimal such that
M+ = facts(P̂ ∪H) = heads(P̂ ∪H) and M− = not (HP \M+). We know that H is a
subset of Hyps(P) = {a : ∃r∈P̊not a ∈ body(r)} and that M is yielded by H. This also
means that M+, being equal to facts(P̂ ∪H) is necessarily a superset of facts(˚P ∪H)
and, therefore, of facts(P̊), i.e., M+ ⊇ facts(P̊) = LWFM+(P). Again, since H is a
subset of Hyps(P) we know that for each h ∈ H there is at least one rule rh in P̊ such
that head(rh) = h, i.e., h /∈ LWFM−(P). This means that no atoms of LWFM−(P) can
ever be true in the MH model M , i.e., M− ⊇ not LWFM−(P).

190

Theorem 8.4. Minimal Hypotheses models are Layer Decomposable mod-
els. Let P be an NLP, and M a Minimal Hypotheses model of P . Then, M is also
a Layer Decomposable model of P , i.e., there is a Layer Decomposition LDP (M) =
{M≤0, . . . ,M≤α, . . .} of M in P , such that M = ⋃

α≥0M≤α and

∀α≥0M≤α is a 3-valued model of Pα :M<α with M−≤α = not (A≤αP \M
+
≤α)

where M<0 =M+
≤0 = ∅.

Proof. We make this proof by induction. First we prove that M≤0 = not A0
P is a 3-valued

model of P 0 :M<0 = ∅ : ∅= ∅ withM−≤0 = not (A≤0
P \M

+
≤0) = not A0

P andM≤0⊆M . Then
we prove that M≤β is a 3-valued model of P β : M<β with M−≤β = not (A≤βP \M

+
≤β), and

M≤β ⊆M for every β > 0. Finally we prove that M = ⋃
α≥0M≤α.

By Definition 8.3, since M is an MH model of P , we know that M+ = facts(P̂ ∪H) =
heads(P̂ ∪H) where H ⊆Hyps(P) is either H = ∅ or H is non-empty set-inclusion mini-
mal. By Definition 8.1 we know that H ⊆Hyps(P)⊆ heads(P). Hence, heads(P ∪H) =
heads(P). Moreover, since M+ = facts(P̂ ∪H) = heads(P̂ ∪H) we conclude M+ ⊆
heads(P ∪H) = heads(P), i.e., M+ ⊆ heads(P). By Definition 3.15 we know that A0

P =
HP \heads(P) which, together with M+ ⊆ heads(P) leads to the conclusion that M− ⊇
not A0

P . Since P 0 = ∅, by Definition 3.14, we can make M0 = M≤0 = M+
≤0 ∪M

−
≤0 =

∅∪not A0
P , i.e., M0 = M≤0 = not A0

P . Since M− ⊇ not A0
P and M≤0 = not A0

P we con-
clude M ⊇M≤0, i.e., M≤0 = not A0

P is indeed a 3-valued model of P 0 : M<0 = ∅ : ∅ = ∅
with M−≤0 = not (A≤0

P \M
+
≤0) = not (A0

P \∅) = not A0
P , which makes it an element of the

Layer Decomposition LDP (M) = {M≤0, . . . ,M≤α, . . .} of M in P .

Now we take any β > 0, and assumeM≤β−1 is a 3-valued model of P β−1 :M<β−1 with
M−≤β−1 = not (A≤β−1

P \M+
≤β−1) i.e., M≤β−1 is an element of the Layer Decomposition

LDP (M) = {M≤0, . . . ,M≤β, . . .} of M in P and M≤β−1 ⊆M . Since P = ⋃
α≥0P

α we can
take P β : M≤β−1 = P β : M<β and find a 3-valued model M≤β of it such that M≤β ⊆M .
Let us see why we can guarantee this. Take P β : M<β. By Proposition 7.2 we know
that, taking M<β−1 = M<β ⊆M , a model of P β :: M<β is a model of P β : M<β. Since
M is a MH model of P we know that M+ = facts(P̂ ∪H), i.e., M+ = facts(P ::H) and,
therefore, M≤β is a 3-valued model of P β :: M<β, i.e., M≤β is also a 3-valued model of
P β :M<β where we can safely make M−≤β = not (A≤βP \M

+
≤β).

Finally, since M is such that M+ = facts(P̂ ∪H) we know that M+ = Tω(P∪H)/M+(∅)
because M is necessarily a Stable Model of P ∪H. I.e., M+ =⋃

α≥0T
α
(P∪H)/M+(∅) where,

necessarily, Tα(P∪H)/M+(∅) = M+
≤α, which means M+ = ⋃

α≥0M
+
≤α and therefore M− =⋃

α≥0M
−
≤α.

191

Theorem 8.5. Minimal Hypotheses semantics guarantees model existence.
Let P be an NLP. There is always, at least, one Minimal Hypotheses model of P .

Proof. The program Remainder P̂ of P is always guaranteed to exist and to be unique (cf.
[45]), therefore both P̊ and, hence, Hyps(P) (Definition 8.1) are always guaranteed to
exist and to be unique as well. One can always non-deterministically select some subset H
of Hyps(P) and add its elements as facts to P producing P ∪H, of which the Remainder
P̂ ∪H is also always guaranteed to exist and to be unique. For some such subsets H,
the P̂ ∪H will be just a set of facts — in the extreme case where H = Hyps(P), P̂ ∪H
is necessarily guaranteed to be a set of facts. So, it is always possible to find all such
subsets H of Hyps(P) that yield P̂ ∪H as a set of facts, and to select only the empty
H and the non-empty set inclusion minimal amongst those Hs. Any 2-valued model M ,
such that M+ = facts(P̂ ∪H), with such a guaranteed to exist minimal H, is a Minimal
Hypotheses model of P , consequently also guaranteed to exist.

Theorem 8.6. Minimal Hypotheses semantics enjoys Brave Relevance. Let
P be an NLP. Then, according to Definition 6.31,(

∀ a∈HP
M∈ModelsMH(P)

a ∈M ⇒ (∃Ma∈ModelsMH(RelP (a))Ma ⊆M ∧a ∈Ma)
)

∧(
∀ a∈HP
Ma∈ModelsMH(RelP (a))

a ∈Ma⇒∃M∈ModelsMH(P)Ma ⊆M
)

holds.

Proof. Let us first prove(
∀ a∈HP
M∈ModelsMH(P)

a ∈M ⇒ (∃Ma∈ModelsMH(RelP (a))Ma ⊆M ∧a ∈Ma)
)

and then we will prove(
∀ a∈HP
Ma∈ModelsMH(RelP (a))

a ∈Ma⇒∃M∈ModelsMH(P)Ma ⊆M
)

Assume a ∈HP ∧M ∈ModelsMH(P)∧a ∈M .
Now we need to prove ∃Ma∈ModelsMH(RelP (a))Ma ⊆M ∧a ∈Ma. Since P ⊇ RelP (a) and
M ∈ModelsMH(P) there is necessarily someMa⊆M such thatMa ∈ModelsMH(RelP (a)).
What we need to prove in this case is that a ∈Ma. Assume a /∈Ma. Since Ma is a 2-
valued complete model of RelP (a) we know that |Ma| =HRelP (a) and, hence, if a /∈Ma,

192

then necessarily not a ∈M−a . Since M ⊇Ma is also a 2-valued complete model of P it
cannot be the case that a ∈M ∧not a ∈M−, otherwise M would not even be a model
(cf. Definitions 5.1,5.7). Hence, not a ∈M−, i.e., not a ∈M and therefore a /∈M which
contradicts our initial assumption a ∈M . We conclude a /∈Ma cannot hold, i.e., a ∈Ma

must hold.

Assume a ∈HP ∧Ma ∈ModelsMH(RelP (a))∧a ∈M .
Now we need to prove ∃M∈ModelsMH(P)Ma ⊆M . Let us write P)a(as an abbreviation
of P \RelP (a). We have therefore P = P)a(∪RelP (a). Let us now take P)a(∪Ma. By
Theorem 8.5 we know that every NLP as an MH model, hence every MH model M of
P)a(∪Ma is such that M ⊇ Ma. Let HMa denote the Hypotheses set of Ma — i.e.,
M+
a = facts(̂RelP (a)∪HMa) = heads(̂RelP (a)∪HMa), with HMa = ∅ or non-empty set-

inclusion minimal, as per Definition 8.3. If facts(̂P ∪HMa) = heads(̂P ∪HMa) thenM+ =
facts(P̂ ∪HM) = heads(P̂ ∪HM) is an MH model of P with HM =HMa and, necessarily,
M ⊇Ma.

If facts(̂P ∪HMa) 6= heads(̂P ∪HMa) then, by Theorem 8.5, we can always find an
MH model M of P)a(∪Ma, with H ′ ⊆ Hyps(P)a(∪Ma), where M+ = facts(P̂ ∪H ′) =
heads(P̂ ∪H ′). Such M is thus M+ = facts(P̂ ∪HM) = heads(P̂ ∪HM) where HM =
HMa ∪H ′, which means M is a MH model of P with M ⊇Ma.

Theorem 8.8. Minimal Hypotheses semantics enjoys Cumulativity. Let P be
an NLP. Then

∀a,b∈HP

(
(∀M∈ModelsMH(P)a ∈M+)⇒

(∀M∈ModelsMH(P)b ∈M+⇔∀Ma∈ModelsMH(P∪{a})b ∈M+
a)
)

Proof. Assume ∀ a∈HP
M∈ModelsMH(P)

a ∈M+.

⇒:

Assume ∀M∈ModelsMH(P)b ∈M+. Since every MH model M contains a, from Theo-
rem 8.9 we know that all suchM are also MH models of P ∪{a}. Since we assumed b∈M
as well, we know that b and M is a MH model of P ∪{a} we know b is also in those MH
modelM of P ∪{a}. By adding a as a fact we have necessarily Hyps(P ∪{a})⊆Hyps(P)
which means that there cannot be more MH models for P ∪{a} than for P . Since we
already know that for every MH model M of P , M is also a MH model of P ∪ {a}

193

we must conclude that ∀M∈ModelsMH(P)∃1
M ′∈ModelsMH(P) such that M ′+ ⊇M+. Since

∀M∈ModelsMH(P)b ∈M+ we necessarily conclude ∀Ma∈ModelsMH(P∪{a})b ∈M+
a .

⇐:

Assume ∀Ma∈ModelsMH(P∪{a})b∈M+
a . Since the MH semantics is relevant Theorem 8.7

if b does not depend on a then adding a as a fact to P or not has no impact on b’s truth-
value, and if b ∈M+

a then b ∈M+ as well.

If b does depend on a, which is true in every MH model M of P , then either 1) b
depends positively on a, and in this case since a ∈M then b ∈M as well; or 2) b depends
negatively on a, and in this case the lack of a as a fact in P can only contribute, if at all,
to make b true in M as well.

Then we conclude ∀M∈ModelsMH(P)b ∈M+.

Theorem 8.9. Minimal Hypotheses semantics enjoys Brave Cautious Monotony.
Let P be an NLP. Then

∀ a∈HP
M∈ModelsMH(P)

a ∈M ⇒M ∈ModelsMH(P ∪{a})

Proof. Assume a ∈ HP , M ∈ ModelsMH(P) and a ∈ M . Since M is a MH model of
P , by Definition 8.3 (Minimal Hypotheses model), we know there is an H ⊆ Hyps(P)
which is either empty or non-empty set-inclusion minimal such thatM+ = facts(P̂ ∪H) =
heads(P̂ ∪H). Since all MH models comply with the LWFM (Theorem 8.3 and a ∈M it
must be the case that either a ∈ facts(P̊) or a ∈ (heads(P̊)\facts(P̊)). If a ∈ facts(P̊)
holds then P̊ = ˚P ∪{a} and therefore Hyps(P) = Hyps(P ∪{a}) which implies M is a
MH model of P ∪ {a}. If a ∈ (heads(P̊) \ facts(P̊)) then it follows immediately that
a ∈ LWFMu(P) which means one of two possibilities:

1) If there are any rules in P̊ with not a in the body that are part of some SCC,
then by Definition 6.7 the 7→LN operation of the Layered Remainder does not delete any
of those rules, i.e., P̊ is also equal to ˚P ∪{a} from which M is a MH model of P ∪{a}
follows.

2) If all the rules P̊ with not a in the body are not part of any SCC then they
are necessarily part of an infinite descending chain of negative dependencies along with
another infinite descending chain of positive dependencies. In such case all the atoms ofM
that are part of the infinite chains and that depend on a become immediately determined

194

and necessarily take the same truth value as in M ; the atoms in the infinite chains that
do not depend on a are still undetermined in ˚P ∪{a}, but the Hyps(P ∪{a}) still allow
for the same H to be chosen, i.e., M is still a MH model of P ∪{a}.

Theorem 8.10. Brave Reasoning with MH semantics is ΣP
2 -complete. Let P

be an NLP, and Q a set of literals, or query. Finding an MH model such that M ⊇Q is
an ΣP

2 -complete task.

Proof. To show that finding a MH model M ⊇ Q is ΣP
2 -complete, note that a nondeter-

ministic Turing machine with access to an NP-complete oracle can solve the problem as
follows: nondeterministically guess a set H of hypotheses (i.e., a subset of Hyps(P)). It
remains to check if H is empty or non-empty minimal such that M+ = facts(P̂ ∪H) =
heads(P̂ ∪H) and M ⊇ Q. Checking that M+ = facts(P̂ ∪H) = heads(P̂ ∪H) can be
done in polynomial time (because computing P̂ ∪H can be done in polynomial time
[45] for whichever P ∪H), and checking H is empty or non-empty minimal requires
a nondeterministic guess of a strict subset H ′ of H and then a polynomial check if
facts(P̂ ∪H ′) = heads(P̂ ∪H ′).

