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Abstract. A central and much debated topic in the Knowledge Representation
and Reasoning community is how to combine open-world with closed-world for-
malisms, such as Description Logics (DLs) with Logic Programming. We pro-
pose an approach to defining the semantics of hybrid theories, composed of a DL
and a Normal Logic Program (NLP) parts, which employs standard open-world
semantics for the former and Pinto and Pereira’s Minimal Hypotheses semantics
(MHs) for the latter. As opposed to the currently employed semantics for hy-
brid DL-NLP KBs based on Stable Model (SM) semantics, our hybrid semantics
guarantees the existence of models for any hybrid DL-NLP theory with consistent
DL fragment and consistent DL-NLP ensemble. Because MHs features beneficial
theoretical properties, like relevance and cumulativity, existential query answer-
ing tasks may not need to consider the whole hybrid KB, as it is necessarily the
case with current state-of-the-art approaches based on the SM semantics.

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that are
decidable fragments of first-order logic [2], where decidability is ensured via several
syntactic restrictions. These restrictions lead to problems when expressing some non-
tree like relationships. Such relations can easily be expressed using logic programming
rules. Nevertheless, rule-based formalisms have their own shortcomings because typi-
cally they do not allow reasoning with unbounded infinite domains and hence cannot
be used in many scenarios where modeling incomplete information is required.

A hybrid knowledge base (KB) has two components: a DL-KB1 and a Logic Pro-
gram (LP). In this work we focus on the same direction as, say, [8] and present a new
approach of integrating DLs with normal Logic Programs (NLPs). Unlike the SM [3]
based approaches like [8,6], in our approach, odd loops over negation2 in the rule part of
! Supported by the DFG project ExpresST.
1 DL-KBs are usually called ontologies in the Semantic Web community. In this paper, we use

these two terms interchangeably.
2 When two rules depend on each other we say they form a loop. When such a loop is formed

through default negated literals (DNLs) in the bodies of rules, we dub it loop over negation
(LON). When there is an even (odd) number of DNLs through which the LON is formed we
dub it even (odd) loop over negation (ELON/OLON).
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a hybrid KB are not treated as modeling errors and hence not every hybrid KB contain-
ing OLONs needs to be inconsistent. Approaches based on Well-Founded Semantics
(WFS) like [5] are three-valued and handle OLONs via the third undefined truth value.

Example 1. The affordable car problem.
Consider an online recommendation system for selling vehicles. The knowledge of the
car sales company is described by the following ontology and NLP rule:

Vehicle ≡ Car " Van " Truck (1)
Car ≡ ABS " Airbagged " Automatic (2)

AffordableCar ≡ Car # ¬(ABS # Airbagged # Automatic) # StandardSeats (3)
LuxuryCar ≡ Car # ABS # Airbagged # Automatic # LeatherSeats (4)

StandardSeats(C) ← not LeatherSeats(C) (5)

Vehicles for sale are cars, vans, or trucks (Axiom (1)); all cars always come with at
least one additional feature (Axiom (2)); an affordable car misses at least one these
features (Axiom (3)) and has standard seats; luxury cars have all three features and
special leather seats (Axiom (4)). By default, a car is sold with standard seats, unless it
is explicitly demanded by the customer that the car must have leather seats – Rule (5).

Suppose now there is a customer who will be happy if she gets an affordable car c,
and her preferences regarding car systems are given as in the following rules:

Automatic(c) ← not ABS(c) (6) ABS(c) ← not Airbagged(c) (7)
Airbagged(c) ← not Automatic(c) (8) Happy ← AffordableCar(c) (9)

We need to find an affordable car while satisfying her preferences. Using the stable
models as the semantic basis for the NLP part leads to no solution because the SMs are
unable to assign models to the OLON formed by the rules (6), (7) and (8). However,
such a system is easily realizable in our approach. ♦

LONs in NLPs can be used to represent alternative choices, not unlike SAT problems,
and in these cases the existence of a solution is guaranteed as long as no Integrity
Constraints3 (ICs) are added to the program. The Closed World Assumption (CWA)
principle associated with the not operator is intended to enforce a skeptical stance, i.e.,
holding minimal beliefs. Although with LPs with no LONs we can always apply the
CWA, with LPs with LONs there are several alternative minimal sets of beliefs one can
assume — in this case we no longer use the CWA, but instead a Alternative World As-
sumption (AWA). The approach taken by the Minimal Hypotheses (MH) semantics [9],
upon which our current work is based, considers its models to be the consequences of
(set-inclusion) minimally assumed hypotheses, where the assumable hypotheses come
from the atoms of DNLs in LONs. In the example the NLP part is used to represent

3 An IC is a special kind of logic rule where the head is ⊥. ICs are not part of NLPs, but (non-
Normal) LPs are unions of “normal” rules with ICs. This way, a generate-and-test problem can
be modeled by a LP using the normal rules as generators of candidate solutions (the models),
and using the ICs as filters to discard unsatisfying candidate solutions.
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a customer’s preferences which we want to satisfy in a 2-valued fashion: a SM-based
approach provides no solution, whereas a MH-based one does.

2 Minimal Hypotheses-Based Semantics for Hybrid DL-NLP KBs

Our semantics for hybrid DL-NLP KBs is based upon a guess-and-check declarative
fixed-point definition, an approach not unlike that of SMs (which are fixed-points of the
Gelfond-Lifschitz[3] operator and are also defined via a guess-and-check).

A hybrid DL-NLP KB is a pair K = (O,P) where O is a DL-KB and P is an
NLP. ΣO denotes the signature (the set of predicate symbols and constants occurring
in) of O, ΣP denotes the signature of P , and ΣK denotes the common signature of
K — ΣK = ΣO ∩ ΣP . ABΣ denotes the set of all possible atoms over signature Σ.
Our semantics for K takes into account the semantics of both of its components O
and P , where we consider the MH semantics for P . MHs allows for several alternative
models for P , and the O has several models, thus the hybridK must have several hybrid
models. The literals of a model of each of O and P must be used by the other to allow
for the possible entailment of more consequences. Coherence is enforced: explicitly
negated literals entailed from O imply their default negated shared ΣK counterparts
in P .

Definition 2. MH-based semantics of hybrid KB.
Let O be a consistent DL theory and K = (O,P) be a hybrid DL-NLP KB. A pair
(I,M) is an MH-based hybrid model of K iff

– M is an MH model of P ∪ (I+ ∩ABΣK) with
– {not B : ¬B ∈ I− ∧B ∈ ABΣK} ⊆ M− (coherence) and
–

(
O ∪ (M+ ∩ABΣK) ∪ ({¬B : not B ∈ M− ∧B ∈ ABΣK})

)
∪ I is consistent,

where M = M+ ∪ M−, M+ ⊆ ABΣP , M− = {not B : B ∈ ABΣP \ M+}; and
I = I+ ∪ I−, I+ ⊆ ABΣO , I− = {¬B : B ∈ ABΣO \ I+}. We use the term hybrid
model instead of MH-based hybrid model whenever it is obvious from the context. ♦

In words, we define the semantics as a coupling of two different semantics via a syn-
chronizing “interface” of ground atoms. A work closely related thereto is that of the
so-called multi-context systems (MCSs): a framework that allows for combining arbi-
trary monotonic and non-monotonic logics [1]. A Hybrid KB in our approach can be
taken as a multi-context system with two contexts, an ontology context and a program
context. See [7] for a detail comparison with existing approaches.

In Example 1, a hybrid model would be (I,M) with (abbreviating predicate names)

I = {SS(c),¬LS(c), Air(c), ABS(c), AC(c),¬Aut(c),Car(c),¬LC(c), Veh(c)} and
M = {SS(c), not LS(c), Air(c), ABS(c), not Aut(c),H, AC(c)}.

Non-monotonicity in the NLP part is naturally supported by our formalism.
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3 Reasoning

Given a model (I,M) for K = (O,P) and an atom A, (I,M) |= A iff

– O ∪ (M+ ∩ABΣK) ∪ ({¬B : not B ∈ M− ∧ B ∈ ABΣK}) ∪ I |= A whenever
A ∈ ABΣO , and

– A ∈ M whenever A ∈ ABΣP

Two reasoning tasks are essential: consistency and entailment. K is consistent iff there
is at least one MH-based model for K. For a given first-order atom A we say A is cred-
ulously/skeptically entailed from K (written as K |=C A/K |= A) iff for some/every
MH-based hybrid model (I,M) of K we have (I,M) |= A. The rules never violate
the DL-safety restriction as the only way for O and P to communicate is via a finite
set of shared ground atoms. Hence, the DL-safety restriction is trivially satisfied for
all the rules. It follows from Def. 2 that both the consistency and entailment problems
require guessing sets I and M such that the conditions imposed by the definitions are
satisfied. In [7] we have shown that the complexity of these problems highly depends
on the DL in the which the ontology part of the hybrid DL-NLP KB is formulated. E.g.,
for SROIQ [4] we get:

Theorem 3. Complexity of the entailment and consistency problems.
The consistency and the entailment problems in a hybrid DL-NLP KB are both
N2EXPTIME-complete.

For the proof, we refer to [7] where we also provide a straight forward method for
checking the entailment of an atom from a hybrid DL-NLP KB.
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