
1

Collaborative vs. Conflicting Learning,
Evolution and Argumentation

Lúıs Moniz Pereira and Alexandre Miguel Pinto
(lmp|amp)@di.fct.unl.pt

Centro de Inteligência Artificial - CENTRIA
Universidade Nova de Lisboa

Summary. We discuss the adoption of a three-valued setting for inductive concept
learning. Distinguishing between what is true, what is false and what is unknown
can be useful in situations where decisions have to be taken on the basis of scarce,
ambiguous, or downright contradictory information. In a three-valued setting, we
learn a definition for both the target concept and its opposite, considering positive
and negative examples as instances of two disjoint classes. Explicit negation is used to
represent the opposite concept, while default negation is used to ensure consistency
and to handle exceptions to general rules. Exceptions are represented by examples
covered by the definition for a concept that belong to the training set for the opposite
concept.

After obtaining the knowledge resulting from this learning process, an agent can
then interact with the environment by perceiving it and acting upon it. However,
in order to know what is the best course of action to take the agent must know the
causes or explanations of the observed phenomena.

Abduction, or abductive reasoning, is the process of reasoning to the best ex-
planations. It is the reasoning process that starts from a set of observations or
conclusions and derives their most likely explanations. The term abduction is some-
times used to mean just the generation of hypotheses to explain observations or
conclusions, given a theory. Upon observing changes in the environment or in some
artifact of which we have a theory, several possible explanations (abductive ones)
might come to mind. We say we have several alternative arguments to explain the
observations.

One single agent exploring an environment may gather only so much information
about it and that may not suffice to find the right explanations. In such case, a col-
laborative multi-agent strategy, where each agent explores a part of the environment
and shares with the others its findings, might provide better results. We describe one
such framework based on a distributed genetic algorithm enhanced by a Lamarckian
operator for belief revision. The agents communicate their candidate explanations
— coded as chromosomes of beliefs — by sharing them in a common pool. Another
way of interpreting this communication is in the context of argumentation.

We often encounter situations in which someone is trying to persuade us of
a point of view by presenting reasons for it. This is called “arguing a case” or
“presenting an argument”. We can also argue with ourselves. Sometimes it is easy



2 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

to see what the issues and conclusions are, and the reasons presented, but sometimes
not. In the process of taking all the arguments and trying to find a common ground
or consensus we might have to change, or review, some of assumptions of each
argument. Belief revision is the process of changing beliefs to take into account a
new piece of information. The logical formalization of belief revision is researched
in philosophy, in databases, and in artificial intelligence for the design of rational
agents.

The resulting framework we present is a collaborative perspective of argumenta-
tion where arguments are put together at work in order to find the possible 2-valued
consensus of opposing positions of learnt concepts.

1.1 Introduction

The scientific approach is the most skeptical one towards finding the explana-
tions to natural phenomena. Such skeptical stance leads to a pre-disposition
to continuous knowledge revision and refinement based on observations —
the solid foundations for any reasonable theory. The endless scientific cycle of
theory building and refinement consists of 1) the environment; 2) producing
candidate theories that best cover the observations; 3) create and exploit the
experiences that will best test and stress the theories; and 4) going back to
step 1) by collecting new observations from the environment resulting from
the experiences. This cycle is depicted in figure 1.1.

After some iterations along this theory building/refinement cycle the the-
ory built is “good enough” in the sense that the predictions it makes are
accurate “enough” concerning the environment observations resulting from
experiences. At this point the theory can be used both to provide explana-
tions to observations as well as to produce new predictions.

Fig. 1.1. Knowledge Model refinement cycle through Diagnosis



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 3

Throughout the years, scientists from every area of knowledge have relied
upon logic to develop and refine theories and to argue about them. Logic
has been an indispensable tool to build theories from observations, to use the
theories to make predictions, and to revise theories when observational data
contradicts the predicted results.

Expressing theories as Logic Programs has become more natural and com-
mon as the field of Computational Logic has grown mature and other fields
started to use its tools and results. Theories are usually expressed as a set of
‘if-then’ rules and facts which allow for the derivation, through the use of logic
inference, of non-obvious results. When writing such rules and facts, explicit
negation, just like explicit affirmation, can be used to formalize sure knowl-
edge which provides inevitable results. Not only has formal argumentation
been characterized in terms of Logic Programs, but the various semantics of
Logic Programs themselves have been characterized as the result of argumen-
tation between competing program interpretations.

Theories can be further refined by adding special rules taking the form
of Integrity Constraints (ICs). These impose that, whatever the assumptions
might be, some conditions must be met. One implicit constraint on every
reasonable theory is overall consistency, i.e, it must not be possible to derive
one conclusion and its opposition.

Since in the real world the most common situation is one where there is
incomplete and updatable information, any system making a serious attempt
at dealing with real situations must cope with such complexities. To deal
with this issue, the field of Computational Logic has also formalized another
form of negation, Default Negation, used to express uncertain knowledge and
exceptions, and used to derive results in the absence of complete information.
When new information updates the theory, old conclusions might no longer be
available (because they were relying on assumptions that become false with
the new information), and further new conclusions might now be derived (for
an analogous reasons).

The principle we use is thus the Unknown World Assumption (UWA)
where everything is unknown or undefined until we have some solid evidence
of its truthfulness or falseness. This principle differs from the more usual
Closed World Assumption (CWA) where everything is assumed false until
there is solid evidence of its truthfulness. We believe the UWA stance is more
skeptical, cautious, and even more realistic than the CWA. We do not choose
a fuzzy logic approach due to its necessity of specific threshold values. For
such an approach we would need to compute those values a priori, possibly
recurring to a probabilistic frequency-based calculation. Accordingly, we use
a 3-valued logic (with the undefined truth value besides the true and false
ones) instead of a more classical 2-valued logic.

We start by presenting the method for theory building from observations
we use — a 3-valued logic rule learning method, and in the following section
we focus on a method to analyze observations and to provide explanations for
them given the learned theory. We show how the possible alternative explana-



4 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

tions can be viewed as arguments for and against some hypotheses, and how
we can use these arguments in a collaborative way to find better consensual
explanations. Conclusions and outlined future work close this chapter.

1.2 Theory building and refinement

In real-world problems, complete information about the world is impossible
to achieve and it is necessary to reason and act on the basis of the available
partial information. In situations of incomplete knowledge, it is important
to distinguish between what is true, what is false, and what is unknown or
undefined.

Such a situation occurs, for example, when an agent incrementally gathers
information from the surrounding world and has to select its own actions on
the basis of acquired knowledge. If the agent learns in a two-valued setting, it
can encounter the problems that have been highlighted in [22]. When learning
in a specific to general way, it will learn a cautious definition for the target
concept and it will not be able to distinguish what is false from what is not
yet known (see Figure 1.2a) . Supposing the target predicate represents the
allowed actions, then the agent will not distinguish forbidden actions from
actions with an outcome and this can restrict the agent’s acting power. If
the agent learns in a general to specific way (i.e., the agent starts with a
most general concept and progressively restricts it by adding exceptions as
he learns), instead, it will not know the difference between what is true and
what is unknown (Figure 1.2b) and, therefore, it can try actions with an
unknown outcome. Rather, by learning in a three-valued setting, it will be
able to distinguish between allowed actions, forbidden actions, and actions
with an unknown outcome (Figure 1.2c) . In this way, the agent will know
which part of the domain needs to be further explored and will not try actions
with an unknown outcome unless it is trying to expand its knowledge.

Fig. 1.2. (a,b) two-valued setting, (c) three-valued setting (Taken from [22])

In [47] the authors showed that various approaches and strategies can be
adopted in Inductive Logic Programming (ILP, henceforth) for learning with
Extended Logic Programs (ELP) — including explicit negation — under an



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 5

extension of well-founded semantics. As in [37, 38], where answer-sets seman-
tics is used, the learning process starts from a set of positive and negative
examples plus some background knowledge in the form of an extended logic
program. Positive and negative information in the training set are treated
equally, by learning a definition for both a positive concept p and its (ex-
plicitly) negated concept ¬p. Coverage of examples is tested by adopting the
SLX [3] interpreter for ELP under the Well-Founded Semantics with explicit
negation (WFSX ) defined in [5, 25], and valid for its paraconsistent version
[17].

Example 1. Explicit negation
Consider a person who just moved to another city. He has just arrived and

so he does not know yet if the neighborhood he is going to live in is dangerous
or not.

dangerous neighborhood ← not ¬dangerous neighborhood
¬dangerous neighborhood← not dangerous neighborhood

Suppose now that he learns for sure that the neighborhood is not dangerous
at all. In such case the program has another rule (which is actually a fact):

¬dangerous neighborhood

Default negation is used in the learning process to handle exceptions to gen-
eral rules. Exceptions are examples covered by the definition for the positive
concept that belong to the training set for the negative concept or examples
covered by the definition for the negative concept that belong to the training
set for the positive concept.

In this work, we consider standard ILP techniques to learn a concept and
its opposite. Indeed, separately learned positive and negative concepts may
conflict and, in order to handle possible contradiction, contradictory learned
rules are made defeatable by making the learned definition for a positive
concept p depend on the default negation of the negative concept ¬p, and
vice-versa, i.e., each definition is introduced as an exception to the other.
This way of coping with contradiction can be even generalized for learning n
disjoint classes, or modified in order to take into account preferences among
multiple learning agents or information sources (see [45]).
In the learning problem we consider we want to learn an ELP from a back-
ground knowledge that is itself an ELP and from a set of positive and a set
of negative examples in the form of ground facts for the target predicates.

A learning problem for ELP’s was first introduced in [38] where the no-
tion of coverage was defined by means of truth in the answer-set semantics.
Here the problem definition is modified to consider coverage as truth in the
preferred WFSX.

Definition 1 (Learning Extended Logic Programs).
Given:



6 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

• a set P of possible (extended logic) programs

• a set E+ of positive examples (ground facts)

• a set E− of negative examples (ground facts)

• a non-contradictory extended logic program B (background knowledge 1)

Find:

• an extended logic program P ∈ P such that
• ∀e ∈ E+ ∪ ¬E−, B ∪ P |=WFSX e (completeness)
• ∀e ∈ ¬E+ ∪ E−, B ∪ P 6|=WFSX e (consistency)

where ¬E = {¬e|e ∈ E}.

We suppose that the training sets E+ and E− are disjoint. However, the
system is also able to work with overlapping training sets.

The learned theory will contain rules of the form:

p(X)← Body+(X)
¬p(X)← Body−(X)

for every target predicate p, where X stands for a tuple of arguments. In
order to satisfy the completeness requirement, the rules for p will entail all
positive examples while the rules for ¬p will entail all (explicitly negated)
negative examples. The consistency requirement is satisfied by ensuring that
both sets of rules do not entail instances of the opposite element in either of
the training sets.

Note that, in the case of extended logic programs, the consistency with
respect to the training set is equivalent to the requirement that the program
is non-contradictory on the examples. This requirement is enlarged to require
that the program be non-contradictory also for unseen atoms, i.e., B ∪ P 6|=
L ∧ ¬L for every atom L of the target predicates.

We say that an example e is covered by program P if P |=WFSX e. Since
the SLX procedure is correct with respect to WFSX, even for contradictory
programs, coverage of examples is tested by verifying whether P `SLX e.

The approach to learning with extended logic programs considered consists
in initially applying conventional ILP techniques to learn a positive definition
from E+ and E− and a negative definition from E− and E+. In these tech-
niques, the SLX procedure substitutes the standard Logic Programming proof
procedure to test the coverage of examples.

The ILP techniques to be used depend on the level of generality that we
want to have for the two definitions: we can look for the Least General Solution
(LGS) or the Most General Solution (MGS) of the problem of learning each

1 By non-contradictory program we mean a program which admits at least one
WFSX model.



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 7

concept and its complement. In practice, LGS and MGS are not unique and
real systems usually learn theories that are not the least nor most general,
but closely approximate one of the two. In the following, these concepts will
be used to signify approximations to the theoretical concepts.

LGSs can be found by adopting one of the bottom-up methods such as
relative least general generalization (rlgg) [66] and the GOLEM system [57]
2 , inverse resolution [56] or inverse entailment [48]. Conversely, MGSs can be
found by adopting a top-down refining method (cf. [49]) and a system such
as FOIL [68] or Progol [55].

1.2.1 Strategies for Combining Different Generalizations

The generality of concepts to be learned is an important issue when learning
in a three-valued setting. In a two-valued setting, once the generality of the
definition is chosen, the extension (i.e., the generality) of the set of false atoms
is automatically decided, because it is the complement of the true atoms set. In
a three-valued setting, rather, the extension of the set of false atoms depends
on the generality of the definition learned for the negative concept. Therefore,
the corresponding level of generality may be chosen independently for the two
definitions, thus affording four epistemological cases. The adoption of ELP
allows case combination to be expressed in a declarative and smooth way.

Furthermore, the generality of the solutions learned for the positive and
negative concepts clearly influences the interaction between the definitions. If
we learn the MGS for both a concept and its opposite, the probability that
their intersection is non-empty is higher than if we learn the LGS for both.
Intuitively, this happens because, as explained above, when learning the MGS
for a concept we begin with a most permissive definition for that concept
and progressively refine it by adding exceptions. It is easy to see that at the
very beginning of the learning process, if the MGS is used for both a concept
and its opposite, these coincide. As the process of refinement goes on, the
intersection of the MGS of the concept and the MGS of its opposite diminishes.
Accordingly, the decision as to which type of solution to learn should take
into account the possibility of interaction as well: if we want to reduce this
possibility, we have to learn two LGS, if we do not care about interaction,
we can learn two MGS. In general, we may learn different generalizations and
combine them in distinct ways for different strategic purposes within the same
application problem.

The choice of the level of generality should be made on the basis of avail-
able knowledge about the domain. Two of the criteria that can be taken into
account are the damage or risk that may arise from an erroneous classification
of an unseen object, and the confidence we have in the training set as to its
correctness and representativeness.
2 For a recent implementation see http://www.doc.ic.ac.uk/∼shm/Software/golem/



8 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

When classifying an as yet unseen object as belonging to a concept, we may
later discover that the object belongs to the opposite concept. The more we
generalize a concept, the higher is the number of unseen atoms covered by the
definition and the higher is the risk of an erroneous classification. Depending
on the damage that may derive from such a mistake, we may decide to take
a more cautious or a more confident approach. If the possible damage from
an over extensive concept is high, then one should learn the LGS for that
concept, if the possible damage is low then one can generalize the most and
learn the MGS. The overall risk will depend also on the use of the learned
concepts within other rules: we need to take into account the damage that
may derive from mistakes made on concepts depending on the target one.

The problem of selecting a solution of an inductive problem according to
the cost of misclassifying examples has been studied in a number of works.
PREDICTOR [34] is able to select the cautiousness of its learning operators
by means of meta-heuristics. These meta-heuristics make the selection based
on a user-input penalty for prediction error. In [67] Provost provides a method
to select classifiers given the cost of misclassifications and the prior distribu-
tion of positive and negative instances. The method is based on the Receiver
Operating Characteristic (ROC) [35] graph from signal theory that depicts
classifiers as points in a graph with the number of false positives on the X
axis and the number of true positive on the Y axis. In [59] it is discussed how
the different costs of misclassifying examples can be taken into account into a
number of algorithms: decision tree learners, Bayesian classifiers and decision
list learners.

As regards the confidence in the training set, we can prefer to learn the
MGS for a concept if we are confident that examples for the opposite concept
are correct and representative of the concept. In fact, in top-down methods,
negative examples are used in order to delimit the generality of the solution.
Otherwise, if we think that examples for the opposite concept are not reliable,
then we should learn the LGS.

In the following, we present a realistic example of the kind of reasoning
that can be used to choose and specify the preferred level of generality, and
discuss how to strategically combine the different levels by employing ELP
tools to learning.

Example 2. Consider now a person living in a bad neighborhood in Los Ange-
les. He is an honest man and to survive he needs two concepts, one about who
is likely to attack him, on the basis of appearance, gang membership, age,
past dealings, etc. Since he wants to take a cautious approach, he maximizes
attacker and minimizes ¬attacker, so that his attacker1 concept allows him
to avoid dangerous situations.

attacker1(X) ← attackerMGS(X)
¬attacker1(X) ← ¬attackerLGS(X)

Another concept he needs is the type of beggars he should give money to
(he is a good man) that actually seem to deserve it, on the basis of appearance,



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 9

health, age, etc. Since he is not rich and does not like to be tricked, he learns
a beggar1 concept by minimizing beggar and maximizing ¬beggar, so that his
beggar concept allows him to give money strictly to those appearing to need
it without faking.

beggar1(X) ← beggarLGS(X)
¬beggar1(X)← ¬beggarMGS(X)

However, rejected beggars, especially malicious ones, may turn into at-
tackers, in this very bad neighborhood. Consequently, if he thinks a beggar
might attack him, he had better be more permissive about who is a beggar
and placate him with money. In other words, he should maximize beggar and
minimize ¬beggar in a beggar2 concept.

beggar2(X) ← beggarMGS(X)
¬beggar2(X) ← ¬beggarLGS(X)

These concepts can be used in order to minimize his risk taking when he
carries, by his standards, a lot of money and meets someone who is likely to
be an attacker, with the following kind of reasoning:

run(X) ← lot of money(X),meets(X,Y ), attacker1(Y ),
not beggar2(Y )

¬run(X) ← lot of money(X), give money(X,Y )
give money(X,Y )← meets(X,Y ), beggar1(Y )
give money(X,Y )← meets(X,Y ), attacker1(Y ), beggar2(Y )

If he does not have a lot of money on him, he may prefer not to run as he
risks being beaten up. In this case he has to relax his attacker concept into
attacker2, but not relax it so much that he would use ¬attackerMGS .

¬run(X) ← little money(X),meets(X,Y ), attacker2(Y )
attacker2(X) ← attackerLGS(X)
¬attacker2(X)← ¬attackerLGS(X)

The various notions of attacker and beggar are then learned on the basis of
previous experience the man has had (see [47]).

1.2.2 Strategies for Eliminating Learned Contradictions

The learned definitions of the positive and negative concepts may overlap. In
this case, we have a contradictory classification for the objective literals3 in
the intersection. In order to resolve the conflict, we must distinguish two types
3 An ‘objective literal’ in a Logic Program is just an atom, possibly explicitly

negated. E.g., ‘attacker2(X)’ and ‘¬attacker2(X)’ in example 2 are objective
literals.



10 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

of literals in the intersection: those that belong to the training set and those
that do not, also dubbed unseen atoms (see Figure 1.3).

In the following we discuss how to resolve the conflict in the case of unseen
literals and of literals in the training set. We first consider the case in which
the training sets are disjoint, and we later extend the scope to the case where
there is a non-empty intersection of the training sets, when they are less than
perfect. From now onwards, X stands for a tuple of arguments.

For unseen literals, the conflict is resolved by classifying them as undefined,
since the arguments supporting the two classifications are equally strong. In-
stead, for literals in the training set, the conflict is resolved by giving priority
to the classification stipulated by the training set. In other words, literals in
a training set that are covered by the opposite definition are considered as
exceptions to that definition.

Fig. 1.3. Interaction of the positive and negative definitions on exceptions

Contradiction on Unseen Literals

For unseen literals in the intersection, the undefined classification is obtained
by making opposite rules mutually defeasible, or “non-deterministic” (see [10,
5]). The target theory is consequently expressed in the following way:

p(X)← p+(X), not ¬p(X)
¬p(X)← p−(X), not p(X)

where p+(X) and p−(X) are, respectively, the definitions learned for the pos-
itive and the negative concept, obtained by renaming the positive predicate



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 11

by p+ and its explicit negation by p−. From now onwards, we will indicate
with these superscripts the definitions learned separately for the positive and
negative concepts.

We want both p(X) and ¬p(X) to act as an exception to the other. In
case of contradiction, this will introduce mutual circularity, and hence unde-
finedness according to WFSX. For each literal in the intersection of p+ and
p−, there are two stable models, one containing the literal, the other con-
taining the opposite literal. According to WFSX, there is a third (partial)
stable model where both literals are undefined, i.e., no literal p(X), ¬p(X),
not p(X) or not ¬p(X) belongs to the well-founded (or least partial stable)
model. The resulting program contains a recursion through negation (i.e., it
is non-stratified) but the top-down SLX procedure does not go into a loop
because it comprises mechanisms for loop detection and treatment, which are
implemented by XSB Prolog through tabling.

Example 3. Let us consider the Example of Section 1.2.1. In order to avoid
contradictions on unseen atoms, the learned definitions must be:

attacker1(X) ← attacker+MGS(X), not ¬attacker1(X)
¬attacker1(X)← attacker−LGS(X), not attacker1(X)
beggar1(X) ← beggar+LGS(X), not ¬beggar1(X)
¬beggar1(X) ← beggar−MGS(X), not beggar1(X)
beggar2(X) ← beggar+MGS(X), not ¬beggar2(X)
¬beggar2(X) ← beggar−LGS(X), not beggar2(X)
attacker2(X) ← attacker+LGS(X), not ¬attacker2(X)
¬attacker2(X)← attacker−LGS(X), not attacker2(X)

Note that p+(X) and p−(X) can display as well the undefined truth value,
either because the original background is non-stratified or because they rely
on some definition learned for another target predicate, which is of the form
above and therefore non-stratified. In this case, three-valued semantics can
produce literals with the value “undefined”, and one or both of p+(X) and
p−(X) may be undefined. If one is undefined and the other is true, then the
rules above make both p and ¬p undefined, since the negation by default of an
undefined literal is still undefined. However, this is counter-intuitive: a defined
value should prevail over an undefined one.

In order to handle this case, we suppose that a system predicate
undefined(X) is available4, that succeeds if and only if the literal X is unde-
fined. So we add the following two rules to the definitions for p and ¬p:

p(X)← p+(X), undefined(p−(X))
¬p(X)← p−(X), undefined(p+(X))

4 The undefined predicate can be implemented through negation NOT under CWA
(NOT P means that P is false whereas not means that P is false or undefined),
i.e., undefined(P )← NOT P, NOT (not P ).



12 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

According to these clauses, p(X) is true when p+(X) is true and p−(X) is
undefined, and conversely.

Contradiction on Examples

Theories are tested for consistency on all the literals of the training set, so
we should not have a conflict on them. However, in some cases, it is useful
to relax the consistency requirement and learn clauses that cover a small
amount of counterexamples. This is advantageous when it would be otherwise
impossible to learn a definition for the concept, because no clause is contained
in the language bias that is consistent, or when an overspecific definition
would be learned, composed of many specific clauses instead of a few general
ones. In such cases, the definitions of the positive and negative concepts may
cover examples of the opposite training set. These must then be considered
exceptions, which are then due to abnormalities in the opposite concept.

Let us start with the case where some literals covered by a definition belong
to the opposite training set. We want of course to classify these according to
the classification given by the training set, by making such literals exceptions.
To handle exceptions to classification rules, we add a negative default literal
of the form not abnormp(X) (resp. not abnorm¬p(X)) to the rule for p(X)
(resp. ¬p(X)), to express possible abnormalities arising from exceptions. Then,
for every exception p(t), an individual fact of the form abnormp(t) (resp.
abnorm¬p(t)) is asserted so that the rule for p(X) (resp. ¬p(X)) does not
cover the exception, while the opposite definition still covers it. In this way,
exceptions will figure in the model of the theory with the correct truth value.
The learned theory thus takes the form:

p(X)← p+(X), not abnormp(X), not ¬p(X) (1.1)
¬p(X)← p−(X), not abnorm¬p(X), not p(X) (1.2)
p(X)← p+(X), undefined(p−(X)) (1.3)
¬p(X)← p−(X), undefined(p+(X)) (1.4)

Abnormality literals have not been added to the rules for the undefined
case because a literal which is an exception is also an example, and so must
be covered by its respective definition; therefore it cannot be undefined.

Notice that if E+ and E− overlap for some example p(t), then p(t) is
classified false by the learned theory. A different behavior would be obtained
by slightly changing the form of learned rules, in order to adopt, for atoms of
the training set, one classification as default and thus give preference to false
(negative training set) or true (positive training set).

Individual facts of the form abnormp(X) might be then used as examples
for learning a definition for abnormp and abnorm¬p, as in [30, 38]. In turn,
exceptions to the definitions of abnormp and abnorm¬p might be found and
so on, thus leading to a hierarchy of exceptions (for our hierarchical learning
of exceptions, see [44, 74]).



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 13

Example 4. Consider a domain containing entities a, b, c, d, e, f and suppose
the target concept is flies. Let the background knowledge be:

bird(a) has wings(a)
jet(b) has wings(b)
angel(c) has wings(c) has limbs(c)
penguin(d) has wings(d) has limbs(d)
dog(e) has limbs(e)
cat(f) has limbs(f)

and let the training set be:

E+ = {flies(a)} E− = {flies(d), f lies(e)}

A possible learned theory is:

flies(X)← flies+(X), not abnormalflies(X), not ¬flies(X)
¬flies(X)← flies−(X), not flies(X)
flies(X)← flies+(X), undefined(flies−(X))
¬flies(X)← flies−(X), undefined(flies+(X))

abnormalflies(d)← true

where flies+(X)← has wings(X) and flies(X)− ← has limbs(X).

Fig. 1.4. Coverage of definitions for opposite concepts

The example above and Figure 1.4 show all the possible cases for a literal
when learning in a three-valued setting. a and e are examples that are consis-
tently covered by the definitions. b and f are unseen literals on which there
is no contradiction. c and d are literals where there is contradiction, but c is
classified as undefined whereas d is considered as an exception to the positive
definition and is classified as negative.



14 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

Identifying contradictions on unseen literals is useful in interactive theory
revision, where the system can ask an oracle to classify the literal(s) leading
to contradiction, and accordingly revise the least or most general solutions for
p and for ¬p using a theory revision system such as REVISE [15] or CLINT
[21, 23]. Detecting uncovered literals points to theory extension.

Extended logic programs can be used as well to represent n disjoint classes
p1, . . . , pn. When one has to learn n disjoint classes, the training set contains
a number of facts for a number of predicates p1, . . . , pn. Let p+

i be a definition
learned by using, as positive examples, the literals in the training set classified
as belonging to pi and, as negative examples, all the literals for the other
classes. Then the following rules ensure consistency on unseen literals and on
exceptions regardless of the algorithm used for learning the p+

i .

p1(X) ← p+
1 (X), not abnormalp1(X), not p1(X), not p2(X), . . . , not pn(X)

p1(X) ← p+
1 (X), not abnormalp1(X), not p2(X), . . . , not pn(X)

p2(X) ← p+
2 (X), not abnormalp2(X), not p1(X), not p3(X), . . . , not pn(X)

· · · ← · · ·
pn(X)← p+

n (X), not abnormalpn
(X), not p1(X), . . . , not pn−1(X)

p1(X) ← p+
1 (X), undefined(p+

2 (X)), . . . , undefined(p+
n (X))

p2(X) ← p+
2 (X), undefined(p+

1 (X)), undefined(p+
3 (X)), . . . ,

undefined(p+
n (X))

· · · ← · · ·
pn(X)← p+

n (X), undefined(p+
1 (X)), . . . , undefined(p+

n−1(X))

1.3 Observation Analysis and Explanation

After a theory is built it can now be used to analyze observations and to pro-
vide explanations for them. Such explanations are sets of abductive hypotheses
which, when assumed true under the theory at hand, yield the observations
as conclusions. We can also understand each such set of hypotheses as an ar-
gument explaining why the observations hold. There can be, of course, many
different possible explanations, or arguments. In the end, most of the times, we
want to find the single “best” explanation for the observations, and hence we
must have some mechanism to identify the “best” solution among the several
alternative ones.

1.3.1 Abduction

Deduction and abduction differ in the direction in which a rule like “a entails
b” is used for inference. Deduction allows deriving b as a consequence of a ;
i.e., deduction is the process of deriving the consequences of what is known.
Abduction allows deriving a as a hypothetical explanation of b. Abduction
works in reverse to deduction, by allowing the precondition a of “a entails b” to



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 15

be derived from the consequence b, i.e., abduction is the process of explaining
what is known. Charles Saunders Peirce [60] introduced abduction into logic,
to mean the use of a rule or hypothetical fact to explain an observation, e.g.
“if it rains the grass is wet” is used to explain why the grass is wet, given
that it has rained, or vice-versa. In logic, abduction is done from a logical
theory T representing a domain and a set of observations O. Abduction is the
process of deriving a set of explanations of O according to T . For E to be an
explanation of O according to T , it should satisfy two conditions:

• O follows from E and T ;
• E is consistent with T .

In formal logic, O and E are assumed to be sets of literals. The two con-
ditions for E being an explanation of O according to theory T are:

• T ∪ E |= O;
• T ∪ E is consistent.

Among the possible explanations E satisfying these two conditions, a con-
dition of minimality is usually imposed to avoid irrelevant facts (i.e. not con-
tributing to the entailment of O) to be included in the explanations. An
application of abduction is that of detecting faults in systems: given a theory
relating faults with their effects and a set of observed effects, abduction can
be used to derive sets of faults that are likely to be the cause of the problem.
Belief revision, the process of adapting beliefs in view of new information, is
another field in which abduction has been applied. The main problem of belief
revision is that the new information may be inconsistent with the corpus of
beliefs, while the result of the incorporation must not be inconsistent.

1.3.2 An Argumentation Perspective

When different alternative explanations arise, people argue for and against
their theories and others’. For a long time, because of its origins in rhetoric
and the law, argumentation has been thought of as a kind of a battle where
two (or more) opposing opinions are formalized into arguments, and logic is
used for the framing rules for the battle and to decide the outcome. At the
end of the battle one of the arguers will be ‘right’ and the other(s) ‘wrong’.
The ‘winner’ is the one whose argument, attacking others’ arguments, cannot
be counter-attacked. The problem of argumentation becomes more complex
when all arguments successfully attack each other’s corresponding to different
possible opinions, not inevitable conclusions. In this case, argumentation could
take a new flavor, one of Collaboration besides Conflict.

1.3.3 Finding alternative explanations for observations

Trying to find explanations for observations can be implemented by simply
finding the alternative abductive models that satisfy both the theory’s rules



16 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

and the observations. The latter can be coded as Integrity Constraints (ICs)
which are added to the theory thereby imposing the truthfulness of the ob-
servations they describe.

Example 5. Running example
We will use this running example throughout the rest of the chapter.
Consider the following Logic Program consisting of four rules. According to

this program a ‘professional’ is someone who is a regular employee or someone
who is a boss in some company. Also, a non-employee is assumed to be a
student as well as all those who are junior (all children should go to school!).

professional(X)← employee(X)
professional(X)← boss(X)

student(X) ← not employee(X)
student(X) ← junior(X)

For now keep this example in mind as we will use it to illustrate the
concepts and methods we are about to describe. Assume that ‘employee/1’,
‘boss/1’, and ‘junior/1’ are abducible hypotheses.

Adding one single IC to the theory might yield several alternative 2-valued
models (sets of abductive hypotheses) satisfying it, let alone adding several
ICs.

In the example above, adding just the Integrity Constraint
‘⊥ ← not professional(john)’ — coding the fact that John is a professional
— would yield two alternative abductive solutions: {employee(john)} and
{boss(john)}.

When the information from several observations comes in at one single
time, several ICs must be added to the theory in order to be possible to
obtain the right explanations for the corresponding observations.

In a fairly complex knowledge domain coded in a complex and lengthy
theory, finding each one alternative explanation for a given observation can
be quite hard and time consuming, let alone finding the “best” explanation.
In general, following Occam’s principle, the “best” explanation for any given
observation is usually the simplest one, i.e., the one recurring to the fewest
number of hypotheses — the minimal set of hypotheses.

In [46] the authors presented a method for finding the minimal belief revi-
sion solution for a set of observations. Therein, each belief corresponds to an
abducible hypothesis and the belief revision is the process of finding the set
of hypotheses that conforms to the observations by revising their truth value
from true to false or vice-versa. Minimality is required for compliance with
the Occam’s principle.

In [46] the authors also code observations as ICs added to the theory, but
they recur to finding the support sets for falsum (⊥)— the special reserved
atom for the heads of the rules coding ICs, in order to find the belief revisions
necessary to comply to the ICs. After finding such support sets they can
identify the minimal sets of hypotheses that need to be revised in order to
prevent falsum from being derived.



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 17

Here we are also concerned with finding explanations to observations, but
the method used is quite different. In a nutshell, we split the set of observations
into several smaller subsets; then we create several agents and give each agent
the same base theory and a subset of the observations coded as ICs. We then
allow each agent to come up with several alternative explanations to its ICs;
the explanations need not be minimal sets of hypotheses.

Going back again to our running example, if we also know that John is a
student, besides adding the ‘⊥ ← not professional(john)’ IC we must also
add the ‘⊥ ← not student(john)’ IC.

Finding possible alternative explanations is one problem; finding which
one(s) is(are) the “best” is another issue. In the next section we assume “best”
means minimal set of hypotheses and we describe the method we use to find
such best. Another interpretation of “best” could be “most probable” and in
this case the theory inside the agents must contain the adequate probabilistic
information. One such possibility would be the one described in [9]. We do not
pursue this approach yet, but we consider it for future work, namely following
the principles in [9].

1.3.4 Choosing the best explanation

Ex contradictione quodlibet. This well-known Latin saying means “Anything
follows from contradiction”. But contradictory, oppositional ideas and argu-
ments can be combined together in different ways to produce new ideas. Since
“anything follows from contradiction” one of the things that might follow from
it is a solution to a problem to which several alternative positions contribute.

One well known method for solving complex problems widely used by cre-
ative teams is that of ‘brainstorming’. In a nutshell, every agent participating
in the ‘brainstorm’ contributes by adding one of his/her ideas to the common
idea-pool shared by all the agents. All the ideas, sometimes clashing and oppo-
sitional among each other, are then mixed, crossed and mutated. The solution
to the problem arises from the pool after a few iterations of this evolutionary
process.

The evolution of alternative ideas and arguments in order to find a col-
laborative solution to a group problem is the underlying inspiration of this
work.

Evolutionary Inspiration

Darwin’s theory is based on the concept of natural selection: only those indi-
viduals that are most fit for their environment survive, and are thus able to
generate new individuals by means of reproduction. Moreover, during their
lifetime, individuals may be subject to random mutations of their genes that
they can transmit to offspring. Lamarck’s [42] theory, instead, states that
evolution is due to the process of adaptation to the environment that an



18 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

individual performs in his/her life. The results of this process are then auto-
matically transmitted to his/her offspring, via its genes. In other words, the
abilities learned during the life of an individual can modify his/her genes.

Experimental evidence in the biological kingdom has shown Darwin’s the-
ory to be correct and Lamarck’s to be wrong. However, this does not mean that
the process of adaptation (or learning) does not influence evolution. Baldwin
[8] showed how learning could influence evolution: if the learned adaptations
improve the organism’s chance of survival then the chances for reproduction
are also improved. Therefore there is selective advantage for genetically de-
termined traits that predisposes the learning of specific behaviors. Baldwin
moreover suggests that selective pressure could result in new individuals to be
born with the learned behavior already encoded in their genes. This is known
as the Baldwin effect. Even if there is still debate about it, it is accepted by
most evolutionary biologists.

Lamarckian evolution [43] has recently received a renewed attention be-
cause it can model cultural evolution. In this context, the concept of “meme”
has been developed. A meme is the cognitive equivalent of a gene and it
stores abilities learned by an individual during his lifetime, so that they can
be transmitted to his offspring.

In the field of genetic programming [41], Lamarckian evolution has proven
to be a powerful concept and various authors have investigated the combina-
tion of Darwinian and Lamarckian evolution.

In [46] the authors propose a genetic algorithm for belief revision that in-
cludes, besides Darwin’s operators of selection, mutation and crossover, a logic
based Lamarckian operator as well. This operator differs from Darwinian ones
precisely because it modifies a chromosome coding beliefs so that its fitness
is improved by experience rather than in a random way. There, the authors
showed that the combination of Darwinian and Lamarckian operators are use-
ful not only for standard belief revision problems, but especially for problems
where different chromosomes may be exposed to different constraints, as in the
case of a multi-agent system. In these cases, the Lamarckian and Darwinian
operators play different roles: the Lamarckian one is employed to bring a given
chromosome closer to a solution (or even find an exact one) to the current be-
lief revision problem, whereas the Darwinian ones exert the role of randomly
producing alternative belief chromosomes so as to deal with unencountered
situations, by means of exchanging genes amongst them.

Evolving Beliefs

Belief revision is an important functionality that agents must exhibit: agents
should be able to modify their beliefs in order to model the outside world.
What’s more, as the world may be changing, a pool of separately and jointly
evolved chromosomes may code for a variety of distinct belief evolution po-
tentials that can respond to world changes as they occur. This dimension has
been explored in [46] with specific experiments to that effect. Mark that it is



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 19

not our purpose to propose here a competitor to extant classical belief revision
methods, in particular as they apply to diagnosis. More ambitiously, we do
propose a new and complementary methodology, which can empower belief
revision — any assumption based belief revision — to deal with time/space
distributed, and possibly intermittent or noisy laws about an albeit varying
artifact or environment, possibly by a multiplicity of agents which exchange di-
versified genetically encoded experience. We consider a definition of the belief
revision problem that consists in removing a contradiction from an extended
logic program by modifying the truth value of a selected set of literals corre-
sponding to the abducible hypotheses. The program contains as well clauses
with falsum (⊥) in the head, representing ICs. Any model of the program
must ensure the body of ICs false for the program to be non-contradictory.
Contradiction may also arise in an extended logic program when both a literal
L and its opposite ¬L are obtainable in the model of the program. Such a
problem has been widely studied in the literature, and various solutions have
been proposed that are based on abductive logic proof procedures. The prob-
lem can be modeled by means of a genetic algorithm, by assigning to each
abducible of a logic program a gene in a chromosome. In the simplest case
of a two valued revision, the gene will have the value 1 if the corresponding
abducible is true and the value 0 if the abducible is false . The fitness func-
tions that can be used in this case are based on the percentage of ICs that
are satisfied by a chromosome. This is, however, an over-simplistic approach
since it assumes every abducible is a predicate with arity 0, otherwise a chro-
mosome would have as many genes as the number of all possible combinations
of ground values for variables in all abducibles.

Specific Belief Evolution Method

In multi-agent joint belief revision problems, agents usually take advantage of
each other’s knowledge and experience by explicitly communicating messages
to that effect. In our approach, however, we introduce a new and comple-
mentary method (and some variations of it), in which we allow knowledge
and experience to be coded as genes in an agent. These genes are exchanged
with those of other agents, not by explicit message passing but through the
crossover genetic operator. Crucial to this endeavor, a logic-based technique
for modifying cultural genes, i.e. memes, on the basis of individual agent ex-
perience is used.

The technique amounts to a form of belief revision, where a meme codes
for an agent’s belief or assumptions about a piece of knowledge, and which is
then diversely modified on the basis of how the present beliefs may be contra-
dicted by laws (expressed as ICs). These mutations have the effect of attempt-
ing to reduce the number of unsatisfied constraints. Each agent possesses a
pool of chromosomes containing such diversely modified memes, or alternative
assumptions, which cross-fertilize Darwinianly amongst themselves. Such an
experience in genetic evolution mechanism is aptly called Lamarckian.



20 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

Since we will subject the sets of beliefs to an evolutionary process (both
Darwinian and Lamarckian) we will henceforth refer to this method as “Belief
Evolution” (BE) instead of the classical “Belief Revision” (BR).

General Description of the Belief Evolution Method

Each agent keeps a population of chromosomes and finds a solution to the
BE problem by means of a genetic algorithm. We consider a formulation of
the distributed BE problem where each agent has the same set of abducibles
and the same program expressed theory, but is exposed to possibly different
constraints. Constraints may vary over time, and can differ because agents
may explore different regions of the world. The genetic algorithm we employ
allows each agent to cross over its chromosomes with chromosomes from other
agents. In this way, each agent can be prepared in advance for situations that
it will encounter when moving from one place to another.

The algorithm proposed for BE extends the standard genetic algorithm in
two ways:

• crossover is performed among chromosomes belonging to different agents5,
• a Lamarckian operator called Learn is added in order to bring a chromo-

some closer to a correct revision by changing the value of abducibles

The Structure of a Chromosome

In BR and BE, each individual hypothesis is described by the truth value of
all the abducibles. Several possibilities of increasing complexity and expressive
power arise now. Concerning truth values we can have 2-valued and 3-valued
revisions — if we are not considering multi-valued logics. Orthogonally to
this criterion we can eventualy encode more information in each gene of a
chromosome. In particular, some possibilities are:

• each gene encodes a ground literal — all its variables are bound to fixed
values

• each gene encodes a literal with non-ground variables plus constraints re-
stricting the possible values for the free variables

Surely there are many other possibilities for the information each gene can
encode, but in this work we restrict ourselves to the first one above. In such
case, we represent a chromosome as a list of genes and memes, and different
chromosomes may contain information about different genes. This implies a
major difference to traditional genetic algorithms where every chromosome
refers exactly to the same genes and the crossover and mutation operations
are somewhat straightforward.

The memes in a chromosome will be just like genes — representing ab-
ducibles — but they will have extra information. Each meme has associated
5 Similarly to what happens with island models [75].



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 21

with it a counter keeping record of how many times the meme has been con-
firmed or refuted. Each time a meme is confirmed this value is increased, and
each time it is refuted the value decreases. This value provides thus a measure
of confidence in the corresponding meme.

Example 6. Running example (cont.)
Continuing with our running example, let us assume that both

professional(john) and student(john) have been observed.
We can create two agents, each with the same rule-set theory, and split

the observations among them. We would have thus

Agent 1:
← not professional(john)

professional(X)← employee(X)
professional(X)← boss(X)
student(X) ← not employee(X)
student(X) ← junior(X)

Agent 2:
← not student(john)

professional(X)← employee(X)
professional(X)← boss(X)
student(X) ← not employee(X)
student(X) ← junior(X)

In the simplest case where a gene encodes an abductive ground literal
Agent 1 would come up with two alternative abductive solutions for its IC
‘⊥ ← not professional(john)’: {employee(john)} and {boss(john)}. More-
over, Agent 2 would come up with two other alternative abductive solutions for
its IC ‘⊥ ← not student(john)’: {not employee(john)} and {junior(john)}.

Crossover

When a chromosome is a list of abducible hypotheses (with or without con-
straints over variables), as it is in the case we present here, the crossover and
mutation operations cannot fallback into the well-known versions of standard
genetic algorithms. If two different chromosomes, each encoding information
about different abducibles, are to be crossed over there are more possibilities
other than simply selecting cut points and switching genes between cut points.

As described above, each agent produces several chromosomes which are
lists of abducible hypotheses needed to respect the ICs the agent knows. Since
each agent knows only some ICs the abductive answer the algorithm seeks
should be a combination of the partial answers each agent comes up with.
In principle, the overlap on abducibles among two chromosomes coming from
different agents should be less than total — after all, each agent is taking care



22 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

of its own ICs which, in principle, do not refer to the exact same abducibles.
Therefore, crossing over such chromosomes can simply turn out to be the
merging of the chromosomes, i.e., the concatenation of the lists of abducibles.

If several ICs refer to the exact same abducibles the chromosomes from
different agents will contain either the same gene — in which case we can
see this as an ‘agreement’ between the agents as far as the corresponding
abducible is concerned — or genes stating contradictory information about
the same abducible. In this last case if the resulting concatenated chromosome
turns out to be inconsistent in itself the fitness function will filter it out by
assigning it a very low value.

Example 7. Running example (cont.)
Continuing with our running example, recall that Agent 1 would come up

with two alternative abductive solutions for its IC
‘⊥ ← not professional(john)’: {employee(john)} and {boss(john)}. More-
over, Agent 2 would come up with two other alternative abductive solutions for
its IC ‘⊥ ← not student(john)’: {not employee(john)} and {junior(john)}.

The crossing over of these chromosomes will yield the four combinations
{employee(john), not employee(john)}, {employee(john), junior(john)},
{boss(john), not employee(john)}, and {boss(john), junior(john)}.

The first resulting chromosome is contradictory so it will be filtered out
by the fitness function. The second chromosome correspond to the situation
where John is a junior employee who is still studying — a quite common
situation, actually. The third chromosome corresponds to the situation where
John is a senior member of a company — a ‘boss’ — who is taking some course
(probably a post-graduation study). The last chromosome could correspond to
the situation of a young entrepreneur who, besides owning his/hers company,
is also a student — this is probably an uncommon situation and, if necessary,
the fitness function can reflect that “unprobability”.

Mutation

When considering a list of abducible literals the mutation operation resem-
bles the standard mutation of genetic algorithms by changing one gene to its
opposite; in this case negating the truth value of the abducted literal.

Example 8. Running example (cont.)
In the example we have been using this could correspond to mutating the

chromosome {not employee(john)} to {employee(john)}, or to mutating the
chromosome {junior(john)} to {not junior(john)}.

The Lamarckian Learn operator

The Lamarckian operator Learn can change the values of variables of an ab-
ducible in a chromosome ci so that a bigger number of constraints is satisfied,
thus bringing ci closer to a solution. Learn differs from a normal belief re-
vision operator because it does not assume that all abducibles are false by



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 23

CWA before the revision but it starts from the truth values that are given by
the chromosome ci. Therefore, it has to revise the values of variables of some
abducibles and, in the particular case of an abducible without variables, from
true to false or from false to true .

In the running example this could correspond, for example, to changing
the chromosome {junior(john)} to {junior(mary)}, where ‘mary’ is another
value in the domain range of the variable for abducible junior/1.

This Lamarckian Learn operator will introduce an extra degree of flexibil-
ity allowing for changes to a chromosome to induce the whole belief evolution
algorithm to search a solution considering new values for variables.

The Fitness Functions

Various fitness functions can be used in belief revision. The simplest fitness
function is the following

Fitness(ci) =
ni

n

1 +NC
(1.5)

where ni is the number of integrity constraints satisfied by chromosome
ci, n is the total number of integrity constraints, and NC is the number of
contradictions in chromosome ci. We will call it an accuracy fitness function.

1.4 Argumentation

In [28], the author shows that preferred maximal scenarios (with maximum
default negated literals — the hypotheses) are always guaranteed to exist
for NLPs; and that when these yield 2-valued complete (total), consistent,
admissible scenarios, they coincide with the Stable Models of the program.
However, preferred maximal scenarios are, in general, 3-valued. The problem
we address now is how to define 2-valued complete models based on preferred
maximal scenarios. In [64] the authors took a step further from what was
achieved in [28], extending its results. They did so by completing a preferred
set of hypotheses rendering it approvable, ensuring whole model consistency
and 2-valued completeness.

The resulting semantics thus defined, dubbed Approved Models [64], is a
conservative extension to the widely known Stable Models semantics [32] in
the sense that every Stable Model is also an Approved Model. The Approved
Models are guaranteed to exist for every Normal Logic Program, whereas
Stable Models are not. Concrete examples in [64] show how NLPs with no
Stable Models can usefully model knowledge, as well as produce additional
models. Moreover, this guarantee is crucial in program composition (say, from
knowledge originating in divers sources) so that the result has a semantics. It
is important too to warrant the existence of semantics after external updating,
or in Stable Models based self-updating [1].



24 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

For the formal presentation and details of the Approved Models semantics
see [64].

1.4.1 Intuition

Most of the ideas and notions of argumentation we are using here come from
the Argumentation field — mainly from the foundational work of Phan Minh
Dung in [28]. In [64] the Reductio ad Absurdum reasoning principle is also
considered. This has been studied before in [62], [63], and [65].

Definition 2. Argument. In [28] the author presents an argument as

“an abstract entity whose role is solely determined by its relations to
other arguments. No special attention is paid to the internal structure
of the arguments.”

In this paper we will pay attention to the internal structure of an argument
by considering an argument (or set of hypotheses) as a set S of abducible
literals of a NLP P .

We have seen before examples of Extended Logic Programs — with explicit
negation. In [18] the authors show that a simple syntactical program transfor-
mation applied to an ELP produces a Normal Logic Program with Integrity
Constraints which has the exact same semantics as the original ELP.

Example 9. Transforming an ELP into a NLP with ICs
Taking the program

dangerous neighborhood ← not ¬dangerous neighborhood
¬dangerous neighborhood← not dangerous neighborhood

we just transform the explicitly negated literal ¬dangerous neighborhood
into the positive literal dangerous neighborhoodn, and the original
dangerous neighborhood literal is converted into dangerous neighborhoodp

Now, in order to ensure consistency, we just need to add the IC
⊥ ← dangerous neighborhoodp, dangerous neighborhoodn. The resulting
transformed program is

dangerous neighborhoodp ← not dangerous neighborhoodn

dangerous neighborhoodn ← not dangerous neighborhoodp

⊥ ← dangerous neighborhoodp, dangerous neighborhoodn

Now know that we can just consider NLPs with ICs without loss of gen-
erality and so, henceforth, we will assume just that case. NLPs are in fact
the kind of programs most Inductive Logic Programming learning systems
produce.



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 25

1.4.2 Assumptions and Argumentation

Previously, we have seen that assumptions can be coded as abducible liter-
als in Logic Programs and that those abducibles can be packed together in
chromosomes. The evolutionary operators of genetic and memetic crossover,
mutation and fitness function applied to the chromosomes provide a means to
search for a consensus of the initial assumptions since it will be a consistent
mixture of these.

Moreover, the 2-valued contradiction removal method presented in subsec-
tion 1.2.2 is a very superficial one. That method removes the contradiction
between p(X) and ¬p(X) by forcing a 2-valued semantics for the ELP to
choose either p(X) or ¬p(X) since they now are exceptions to one another. It
is a superficial removal of the contradiction because the method does not look
into the reasons why both p(X) and ¬p(X) hold simultaneously. The method
does not go back to find the underlying assumptions supporting both p(X)
and ¬p(X) to find out which assumptions should be revised in order to restore
overall consistency. Any one such method must fall back into the principles
of argumentation: to find the arguments supporting one conclusion in order
to prevent it if it leads to contradiction.

One such ‘deeper’ method for contradiction removal is presented in [46].
In this chapter we have presented another alternative method inspired by
evolution.

1.4.3 Collaborative Opposition

In [28] the author shows that the Stable Models of a NLP coincide with the 2-
valued complete Preferred Extensions which are self-corroborating arguments.
However, as it is well known, not all NLPs have Stable Models. In fact, [31]
showed that the NLPs with Odd Loops Over Negation (OLONs) 6 are the one
who might have no Stable Models. It is always possible to argue that when an
ILP system is building the NLP it can detect if there are such OLONs and do
something about them. However, in a distributed knowledge environment, e.g.
a Semantic Web, several NLPs can be produced by several ILP systems and
the NLPs may refer to the same literals. There is a reasonable risk that when
merging the NLPs together OLONs might appear which were not present in
each NLP separately. The works in [62], [63], [64], and [65] show how to solve
OLONs.

The more challenging environment of a Semantic Web is one possible
‘place’ where the future intelligent systems will live in. Learning in 2-values or
in 3-values are open possibilities, but what is most important is that knowl-
edge and reasoning will be shared and distributed. Different opposing concepts
and arguments will come from different agents. It is necessary to know how
6 An OLON is just a loop or cycle in the program’s dependency graph for some

literal where the number of default negations along the loop is odd.



26 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

to conciliate those opposing arguments, and how to find 2-valued consensus
as much as possible instead of just keeping to the least-commitment 3-valued
consensus. In [64] the authors describe another method for finding such 2-
valued consensus in an incremental way. In a nutshell, we start by merging
together all the opposing arguments into a single one. The conclusions from
the theory plus the unique merged argument are drawn and, if there are con-
tradictions against the argument or contradictions inside the argument we
non-deterministically choose one contradicted assumption of the argument
and revise its truth value. The iterative repetition of this step eventually ends
up in a non-contradictory argument (and all possibilities are explored because
there is a non-deterministic choice).

In a way, the evolutionary method we presented in subsection 1.3.4 im-
plements a similar mechanism to find the consensus non-contradictory argu-
ments.

1.5 Conclusions

The two-valued setting that has been adopted in most work on ILP and Induc-
tive Concept Learning in general is not sufficient in many cases where we need
to represent real world data. This is for example the case of an agent that has
to learn the effect of the actions it can perform on the domain by performing
experiments. Such an agent needs to learn a definition for allowed actions, for-
bidden actions and actions with an unknown outcome, and therefore it needs
to learn in a richer three-valued setting.

The programs that are learnt will contain a definition for the concept
and its opposite, where the opposite concept is expressed by means of ex-
plicit negation. Standard ILP techniques can be adopted to separately learn
the definitions for the concept and its opposite. Depending on the adopted
technique, one can learn the most general or the least general definition.

The two definitions learned may overlap and the inconsistency is resolved
in a different way for atoms in the training set and for unseen atoms: atoms in
the training set are considered exceptions, while unseen atoms are considered
unknown. The different behavior is obtained by employing negation by default
in the definitions: default abnormality literals are used in order to consider
exceptions to rules, while non-deterministic rules are used in order to obtain
an unknown value for unseen atoms.

We have also presented an evolution-inspired algorithm for performing
belief revision in a multi-agent environment. The standard genetic algorithm
is extended in two ways: first the algorithm combines two different evolution
strategies, one based on Darwin’s and the other on Lamarck’s evolutionary
theory and, second, chromosomes from different agents can be crossed over
with each other. The Lamarckian evolution strategy is obtained be means of
an operator that changes the genes (or, better, the memes) of an agent in
order to improve their fitness.



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 27

Lamarckian and Darwinian operators have complimentary functions: Lamar-
ckian operators are used to get closer to a solution of a given belief revision
problem, while Darwinian operators are used in order to distribute the ac-
quired knowledge amongst agents. The contradictions that may arise between
chromosomes of memes from different agents are of a distinct nature from
the contradictions arising from the learning process. The former correspond
to different alternative explanations to the observations, whereas the latter
correspond to uncertainties in the learned concepts.

Moreover, we can also bring the same evolutionary algorithm to a single
agent’s mind. In such case, we can think of the agent’s mind as a pool of several
sub-agents, each considering one aspect of the environment, each acting as a
specialist in some sub-domain.

We have presented too a new and productive way to deal with opposi-
tional concepts in a collaboration perspective, in different degrees. We use
the contradictions arising from opposing arguments as hints for the possible
collaborations. In so doing, we extend the classical conflictual argumentation
giving a new treatment and new semantics to deal with the contradictions.

The direction of our future work includes three main axis: continuing the-
ory development, implementing prototypes and exploring possible applica-
tions.

Most recently, we have been exploring the constructive negation [51] rea-
soning mechanism. In a nutshell, constructive negation concerns getting an-
swers to queries by imposing inequality constraints on the values of variables
(e.g., getting an answer of the form “all birds fly, except for the penguins”).
Such mechanism is particularly well suited for the integration of answers com-
ing from different agents, e.g., one agent can learn the general rule that “all
birds fly”, and another might learn only the exceptional case that “penguins
do not fly”, and that “penguins are birds”. Constructive negation can play a
synergistic rôle in this matter by gracefully merging the knowledge of the dif-
ferent agents into a single consistent, integrated, more specialized and refined
one.

Our future efforts will therefore engage in bringing together the three
branches we described — learning, belief evolution, and argumentation —
under the scope of constructive negation. Besides the theoretical research
we have been doing, and will continue to do in this area, we have already
under way a practical implementation of this constructive negation reasoning
mechanism [58] on top of XSB Prolog [71].

Also, one application field for all this work is Ambient Intelligence [14]. In
a nutshell, Ambient Intelligence concerns intelligent software agents embed-
ded in real-world environments and that are sensitive and responsive to the
presence of people. Such environments are constantly changing as different
people come in and out of play, each of which may influence the rest of the
environment.

We envisage a framework for Ambient Intelligence where agents interact
with users



28 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

(i) with the aim of monitoring them for ensuring some degree of consistence
and coherence in user behavior and, possibly,

(ii) with the objective of training them in some particular task.
In our view, a system which is a realization of the envisaged framework

will bring to a user the following potential advantages: the user is relieved of
some of the responsibilities related to her behavior, as directions about the
“right thing” to do are constantly and punctually provided. She is assisted in
situations where she perceived herself as inadequate, in some respect, to per-
form her activities or tasks. She is possibly told how to cope with unknown,
unwanted or challenging circumstances. She interacts with a “Personal Assis-
tant” that improves in time, both in its “comprehension” of the user needs,
cultural level, preferred kinds of explanations, etc. and in its ability to cope
with the environment.

References

1. Alferes, J. J., Brogi, A., Leite, J. A., and Pereira, L. M. Evolving logic programs.
In S. Flesca et al., editor, JELIA, volume 2424 of LNCS, pages 50–61. Springer,
2002.

2. Alferes, J. J., Damásio, C. V., and Pereira, L. M. (1994). SLX - A top-down
derivation procedure for programs with explicit negation. In Bruynooghe, M.,
editor, Proc. Int. Symp. on Logic Programming. The MIT Press.

3. Alferes, J.J., and Pereira, L. M.
http://xsb.sourceforge.net/manual2/node179.html

4. Alferes, J. J., and Pereira, L. M. An argumentation theoretic semantics based on
non-refutable falsity. In J. Dix et al., editor, NMELP, pages 3–22. Springer, 1994.

5. Alferes, J. J. and Pereira, L. M. (1996). Reasoning with Logic Programming,
volume 1111 of LNAI. Springer-Verlag.

6. Alferes, J. J., Pereira, L. M., and Przymusinski, T. C. (1998). “Classical” nega-
tion in non-monotonic reasoning and logic programming. Journal of Automated
Reasoning, 20:107–142.

7. Bain, M. and Muggleton, S. (1992). Non-monotonic learning. In Muggleton, S.,
editor, Inductive Logic Programming, pages 145–161. Academic Press.

8. http://www.psych.utoronto.ca/museum/baldwin.htm
9. Baral, C., Gelfond, M., and Rushton, J. Nelson. Probabilistic reasoning with

answer sets. In Vladimir Lifschitz and Ilkka Niemelä, editors, LPNMR, volume
2923 of Lecture Notes in Computer Science, pages 21–33. Springer, 2004.

10. Baral, C. and Gelfond, M. (1994). Logic programming and knowledge represen-
tation. Journal of Logic Programming, 19/20:73–148.

11. Baral, C., and Subrahmanian, V. S. Dualities between alternative semantics for
logic programming and nonmonotonic reasoning. J. Autom. Reasoning, 10(3):399–
420, 1993.

12. Bondarenko, A., Dung, P. M., Kowalski, R. A., and Toni, F. An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell., 93:63–101,
1997.



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 29

13. Chan, P. and Stolfo, S. (1993). Meta-learning for multistrategy and paral-
lel learning. In Proceedings of the 2nd International Workshop on Multistrategy
Learning, pages 150–165.

14. Costantini S., Dell’Acqua, P., Pereira, L. M., and Toni, F., (2007) Towards a
Model of Evolving Agents for Ambient Intelligence. In Sadri, F., and Stathis,
K., editors, Procs. Symposium on Artificial Societies for Ambient Intelligence
(ASAmI’07). Extended version submited to a Journal.

15. Damásio, C. V., Nejdl, W., and Pereira, L. M. (1994). REVISE: An extended
logic programming system for revising knowledge bases. In Doyle, J., Sandewall,
E., and Torasso, P., editors, Knowledge Representation and Reasoning, pages 607–
618. Morgan Kaufmann.

16. Damásio, C. V. and Pereira, L. M. (1997). Abduction on 3-valued extended logic
programs. In Marek, V. W., Nerode, A., and Trusczynski, M., editors, Logic Pro-
gramming and Non-Monotonic Reasoning - Proc. of 3rd International Conference
LPNMR’95, volume 925 of LNAI, pages 29–42, Germany. Springer-Verlag.

17. Damásio, C. V. and Pereira, L. M. (1998). A survey on paraconsistent semantics
for extended logic programs. In Gabbay, D. and Smets, P., editors, Handbook of
Defeasible Reasoning and Uncertainty Management Systems, volume 2, pages 241–
320. Kluwer Academic Publishers.

18. Damásio, C. V. and Pereira, L. M. Default Negated Conclusions: Why Not?. In
ELP’96, pages 103–117. Springer, 1996

19. De Raedt, L. (1992). Interactive Theory Revision: An Inductive Logic Program-
ming Approach. Academic Press.

20. De Raedt, L., Bleken, E., Coget, V., Ghil, C., Swennen, B., and Bruynooghe,
M. (1993). Learning to survive. In Proceedings of the 2nd International Workshop
on Multistrategy Learning, pages 92–106.

21. De Raedt, L. and Bruynooghe, M. (1989). Towards friendly concept-learners. In
Proceedings of the 11th International Joint Conference on Artificial Intelligence,
pages 849–856. Morgan Kaufmann.

22. De Raedt, L. and Bruynooghe, M. (1990). On negation and three-valued logic
in interactive concept learning. In Proceedings of the 9th European Conference on
Artificial Intelligence.

23. De Raedt, L. and Bruynooghe, M. (1992). Interactive concept learning and
constructive induction by analogy. Machine Learning, 8(2):107–150.

24. Dix, J. A Classification-Theory of Semantics of Normal Logic Programs: I, II.
Fundamenta Informaticae, XXII(3):227–255, 257–288, 1995.

25. Dix, J., Pereira, L. M., and Przymusinski, T. (1997). Prolegomena to logic
programming and non-monotonic reasoning. In Dix, J., Pereira, L. M., and Przy-
musinski, T., editors, Non-Monotonic Extensions of Logic Programming - Selected
papers from NMELP’96, number 1216 in LNAI, pages 1–36, Germany. Springer-
Verlag.

26. Drobnic, M. and Gams, M. (1993). Multistrategy learning: An analytical ap-
proach. In Proceedings of the 2nd International Workshop on Multistrategy Learn-
ing, pages 31–41.

27. Džeroski, S. (1991). Handling noise in inductive logic programming. Mas-
ter’s thesis, Faculty of Electrical Engineering and Computer Science, University
of Ljubljana.

28. Dung, P. M. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.



30 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

29. Dung, P. M., Kowalski, R. A., and Toni, F. Dialectic proof procedures for
assumption-based, admissible argumentation. Artif. Intell., 170(2):114–159, 2006.

30. Esposito, F., Ferilli, S., Lamma, E., Mello, P., Milano, M., Riguzzi, F., and Se-
meraro, G. (1998). Cooperation of abduction and induction in logic programming.
In Flach, P. A. and Kakas, A. C., editors, Abductive and Inductive Reasoning, Pure
and Applied Logic. Kluwer.

31. Fages, F. Consistency of Clark’s completion and existence of stable models.
Methods of Logic in Computer Science, 1:51–60, 1994.

32. Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic
programming. In Kowalski, R. and Bowen, K. A., editors, Proceedings of the 5th
Int. Conf. on Logic Programming, pages 1070–1080. MIT Press.

33. Gelfond, M. and Lifschitz, V. (1990). Logic programs with classical negation. In
Proceedings of the 7th International Conference on Logic Programming ICLP90,
pages 579–597. The MIT Press.

34. Gordon, D. and Perlis, D. (1989). Explicitly biased generalization. Computa-
tional Intelligence, 5(2):67–81.

35. Green, D.M., and Swets, J.M. (1966). Signal detection theory and psy-
chophysics. New York: John Wiley and Sons Inc.. ISBN 0-471-32420-5.

36. Greiner, R., Grove, A. J., and Roth, D. (1996). Learning active classifiers.
In Proceedings of the Thirteenth International Conference on Machine Learning
(ICML96).

37. Inoue, K. (1998). Learning abductive and nonmonotonic logic programs. In
Flach, P. A. and Kakas, A. C., editors, Abductive and Inductive Reasoning, Pure
and Applied Logic. Kluwer.

38. Inoue, K. and Kudoh, Y. (1997). Learning extended logic programs. In Proceed-
ings of the 15th International Joint Conference on Artificial Intelligence, pages
176–181. Morgan Kaufmann.

39. Jenkins, W. (1993). Intelog: A framework for multistrategy learning. In Proceed-
ings of the 2nd International Workshop on Multistrategy Learning, pages 58–65.

40. Kakas, A. C. and Mancarella, P. Negation as stable hypotheses. In LPNMR,
pages 275–288. MIT Press, 1991.

41. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection MIT Press

42. Jean Baptiste Lamarck: http://www.ucmp.berkeley.edu/history/lamarck.html
43. Grefenstette, J. J., (1991). Lamarckian learning in multi-agent environments
44. Lamma, E., Riguzzi, F., and Pereira, L. M. (1988). Learning in a three-valued

setting. In Proceedings of the Fourth International Workshop on Multistrategy
Learning.

45. Lamma, E., Riguzzi, F., and Pereira, L. M. (1999a). Agents learning in a three-
valued setting. Technical report, DEIS - University of Bologna.

46. Lamma, E., Pereira, L. M., and Riguzzi, F. Belief revision via lamarckian evo-
lution. New Generation Computing, 21(3):247–275, August 2003.

47. Lamma, E., Riguzzi, F., and Pereira, L. M. Strategies in combined learning via
logic programs. Machine Learning, 38(1-2):63–87, January 2000.

48. Lapointe, S. and Matwin, S. (1992). Sub-unification: A tool for efficient induc-
tion of recursive programs. In Sleeman, D. and Edwards, P., editors, Proceedings
of the 9th International Workshop on Machine Learning, pages 273–281. Morgan
Kaufmann.

49. Lavrač, N. and Džeroski, S. (1994). Inductive Logic Programming: Techniques
and Applications. Ellis Horwood.



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 31

50. Leite, J. A. and Pereira, L. M. (1998). Generalizing updates: from models
to programs. In Dix, J., Pereira, L. M., and Przymusinski, T. C., editors, Col-
lected Papers from Workshop on Logic Programming and Knowledge Representa-
tion LPKR’97, number 1471 in LNAI. Springer-Verlag.

51. Liu, J. Y., Adams, L., and Chen, W. Constructive Negation Under the Well-
Founded Semantics J. Log. Program., volume 38, 3: 295-330, 1999.

52. Malý, M. Complexity of revised stable models. Master’s thesis, Comenius
University Bratislava, 2006.

53. Michalski, R. (1973). Discovery classification rules using variable-valued logic
system VL1. In Proceedings of the Third International Conference on Artificial
Intelligence, pages 162–172. Stanford University.

54. Michalski, R. (1984). A theory and methodology of inductive learning. In
Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine Learning - An
Artificial Intelligence Approach, volume 1, pages 83–134. Springer-Verlag.

55. Muggleton, S. (1995). Inverse entailment and Progol. New Generation Comput-
ing, Special issue on Inductive Logic Programming, 13(3-4):245–286.

56. Muggleton, S. and Buntine, W. (1992). Machine invention of first-order predi-
cates by inverting resolution. In Muggleton, S., editor, Inductive Logic Program-
ming, pages 261–280. Academic Press.

57. Muggleton, S. and Feng, C. (1990). Efficient induction of logic programs. In
Proceedings of the 1st Conference on Algorithmic Learning Theory, pages 368–381.
Ohmsma, Tokyo, Japan.

58. http://centria.di.fct.unl.pt/∼lmp/software/contrNeg.rar
59. Pazzani, M. J., Merz, C., Murphy, P., Ali, K., Hume, T., and Brunk, C. (1994).

Reducing misclassification costs. In Proceedings of the Eleventh International Con-
ference on Machine Learning (ML94), pages 217–225.

60. http://www.peirce.org/
61. Pereira, L. M. and Alferes, J. J. (1992). Well founded semantics for logic pro-

grams with explicit negation. In Proceedings of the European Conference on Arti-
ficial Intelligenece ECAI92, pages 102–106. John Wiley and Sons.

62. Pereira, L. M. and Pinto, A. M. Revised stable models - a semantics for logic
programs. In G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages
29–42. Springer, 2005.

63. Pereira, L. M. and Pinto, A. M. Reductio ad absurdum argumentation in normal
logic programs. In Argumentation and Non-monotonic Reasoning (ArgNMR’07)
workshop at LPNMR’07, pages 96–113, 2007.

64. Pereira, L. M. and Pinto, A. M. Approved Models for Normal Logic Programs.
In LPAR, pages 454–468. Springer, 2007.

65. Pinto, A. M. Explorations in revised stable models — a new semantics for logic
programs. Master’s thesis, Universidade Nova de Lisboa, February 2005.

66. Plotkin, G. (1970). A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153–163. Edinburgh University Press.

67. Provost, F. J. and Fawcett, T. (1997). Analysis and visualization of classifier
performance: Comparison under imprecise class and cost distribution. In Pro-
ceedings of the Third International Conference on Knowledge Discovery and Data
Mining (KDD97). AAAI Press.

68. Quinlan, J. (1990). Learning logical definitions from relations. Machine Learn-
ing, 5:239–266.

69. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann, San Mateo, CA.



32 Lúıs Moniz Pereira and Alexandre Miguel Pinto (lmp|amp)@di.fct.unl.pt

70. Reiter, R. (1978). On closed-word data bases. In Gallaire, H. and Minker, J.,
editors, Logic and Data Bases, pages 55–76. Plenum Press.

71. Sagonas, K. F., Swift, T., Warren, D. S., Freire, J., and Rao, P. (1997). The
XSB Programmer’s Manual Version 1.7.1.

72. Soares, L. Revising undefinedness in the well-founded semantics of logic pro-
grams. Master’s thesis, Universidade Nova de Lisboa, 2006.

73. Van Gelder, A., Ross, K. A., and Schlipf, J. S. (1991). The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620–650.

74. Vere, S. A. (1975). Induction of concepts in the predicate calculus. In Proceedings
of the Fourth International Joint Conference on Artificial Intelligence (IJCAI75),
pages 281–287.

75. Whitley, D., Rana, S., and Heckendorn, R.B. (1998) The Island Model Genetic
Algorithm: On Separability, Population Size and Convergence

A Appendix

The definition of WFSX that follows is taken from [2] and is based on the
alternating fix points of Gelfond-Lifschitz Γ -like operators.

Definition 3. The Γ -operator. Let P be an extended logic program and
let I be an interpretation of P . ΓP (I) is the program obtained from P by
performing in the sequence the following four operations:

• Remove from P all rules containing a default literal L = not A such that
A ∈ I.

• Remove from P all rules containing in the body an objective literal L such
that ¬L ∈ I.

• Remove from all remaining rules of P their default literals L = not A such
that not A ∈ I.

• Replace all the remaining default literals by proposition u.

In order to impose the coherence requirement, we need the following defi-
nition.

Definition 4. Seminormal Version of a Program.
The seminormal version of a program P is the program Ps obtained from

P by adding to the (possibly empty) Body of each rule L ← Body the de-
fault literal not ¬L, where ¬L is the complement of L with respect to explicit
negation.

In the following, we will use the following abbreviations: Γ (S) for ΓP (S)
and Γs(S) for ΓPs(S).

Definition 5. Partial Stable Model.
An interpretation T ∪ not F is called a partial stable model of P iff T =

ΓΓsT and F = HE(P )− ΓsT .
Partial stable models are an extension of stable models [32] for extended

logic programs and a three-valued semantics. Not all programs have a partial



1 Collaborative vs. Conflicting Learning, Evolution and Argumentation 33

stable model (e.g., P = {a,¬a}) and programs without a partial stable model
are called contradictory.

Theorem 1. WFSX Semantics.
Every non-contradictory program P has a least (with respect to ⊆) partial

stable model, the well-founded model of P denoted by WFM(P ).

Proof. To obtain an iterative “bottom-up” definition for WFM(P ) we define
the following transfinite sequence {Iα}:

I0 = {}; Iα+1 = ΓΓSIα ; Iδ =
⋃
{Iα|α < δ}

where δ is a limit ordinal. There exists a smallest ordinal λ for the sequence
above, such that Iλ is the smallest fix point of ΓΓS . Then, WFM(P ) =
Iλ ∪ not (HE(P )− ΓSIλ). ut


