
Stable Model implementation of Layer Supported

Models by program transformation

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. For practical applications, the use of top-down query-driven proof-
procedures is convenient for an efficient use and computation of answers using
Logic Programs as knowledge bases. A 2-valued semantics for Normal Logic
Programs (NLPs) allowing for top-down query-solving is thus highly desirable,
but the Stable Models semantics (SM) does not allow it, for lack of the relevance
property. To overcome this limitation we introduced in [11], and summarize here,
a new 2-valued semantics for NLPs — the Layer Supported Models semantics
— which conservatively extends the SM semantics, enjoys relevance and cumu-
lativity, guarantees model existence, and respects the Well-Founded Model. In
this paper we exhibit a space and time linearly complex transformation, TR, from
one propositional NLP into another, whose Layer Supported Models are precisely
the Stable Models of the transform, which can then be computed by extant Stable
Model implementations, providing a tool for the immediate generalized use of the
new semantics and its applications. TR can be used to answer queries but is also of
theoretical interest, for it may be used to prove properties of programs.Moreover,
TR can be employed in combination with the top-down query procedure of XSB-
Prolog, and be applied just to the residual program corresponding to a query (in
compliance with the relevance property of Layer Supported Models). The XSB-
XASP interface then allows the program transform to be sent to Smodels for
2-valued evaluation.
Keywords: Stable Models, Layer Supported Models, Relevance, Layering, Pro-
gram Transformation.

1 Introduction and Motivation

The semantics of Stable Models (SM) [7] is a cornerstone for the definition of some of
the most important results in logic programming of the past two decades, providing an
increase in logic programming declarativity and a new paradigm for program evalua-
tion. When we need to know the 2-valued truth value of all the literals in a logic program
for the problem we are modeling and solving, the only solution is to produce complete
models. Depending on the intended semantics, in such cases, tools like SModels [9] or
DLV [2] may be adequate because they can indeed compute whole models according to
the SM semantics. However, the lack of some important properties of language seman-
tics, like relevance, cumulativity and guarantee of model existence (enjoyed by, say,
Well-Founded Semantics [6] (WFS)), somewhat reduces its applicability in practice,

namely regarding abduction, creating difficulties in required pre- and post-processing.
But WFS in turn does not produce 2-valued models, though these are often desired, nor
guarantees 2-valued model existence.

SM semantics does not allow for top-down query-solving precisely because it does
not enjoy the relevance property — and moreover, does not guarantee the existence
of a model. Furthermore, frequently there is no need to compute whole models, like
its implementations do, but just the partial models that sustain the answer to a query.
Relevance would ensure these could be extended to whole models.

To overcome these limitations we developed in [11] (reviewed here) a new 2-valued
semantics for NLPs — the Layer Supported Models (LSM) — which conservatively
extends the SMs, enjoys relevance and cumulativity, guarantees model existence, and
respects the Well-Founded Model (WFM) [6]. Intuitively, a program is conceptually
partitioned into “layers” which are subsets of its rules, possibly involved in mutual
loops. An atom is considered true in some layer supported model iff there is some rule
for it at some layer, where all the literals in its body which are supported by rules of
lower layers are also true. That is, a rule in a layer must, to be usable, have the support
of rules in the layers below.

1.1 Integrity Constraints and Inconsistencies

There is a generalized consensus that Integrity Constraints (ICs) are denials, i.e., rules
with ⊥ as head, e.g,

⊥ ← IC_Body

where IC_Body is the body of the IC we wish to prevent from being true. When an
NLP is enriched with such an IC, we say an interpretation containing IC_Body violates
the IC and is, thus, inconsistent.

The classical notion of support — an atom a is supported in an interpretation I iff
there is some rule in the NLP where all the literals of the body of the rule are true in
I — the one upon which the SM semantics is defined, focuses on one rule at a time.
This approach misses the global structure of the whole program. A consequence of
such strict notion of support is that, even when an NLP is not enriched with any ICs,
some particular patterns of rules might act as ICs. One of such patterns of rules is the
Odd Loop Over Negation (OLON) 1. This is, in fact, one of the reasons why the SM
semantics fails to guarantee model existence for every NLP: the stability condition it
imposes on models, stemming from the classical notion of support, is impossible to
be complied with by OLONs. Actually, under SM semantics, sometimes OLONs are
purposefully written as a means to impose ICs. Unfortunately, this confuses the two
distinct aspects of rule-writing (wether with OLONs or not) and IC-writing (as denials).

Example 1. OLON as IC. Using SMs, one can write an IC, in order to prevent IC_Body

from being in any model, with the single rule for some atom ‘a’:

a ← not a, IC_Body

1 OLON is a loop with an odd number of default negations in its circular call dependency path.

Since the SM semantics cannot provide a semantics to this rule whenever IC_Body

holds, this type of OLON is used as IC. When writing such ICs under SMs one must
be careful and make sure there are no other rules for a. But the really unintuitive thing
about this kind of IC used under SM semantics is the meaning of the atom a. What does
a represent?

The LSM semantics instead provides a semantics to all NLPs (OLONs included)
thereby separating OLON semantics from IC compliance. In a practical implementa-
tion allowing top-down querying, the latter can be enforced by top-down checking that
not ⊥ is also part of the answer to the query.

After notation and background definitions, we summarize the formal definition of
LSM semantics and its properties. Thereafter, we present a program transformation, TR,
from one propositional (or ground) NLP into another, whose Layer Supported Models
are precisely the Stable Models of the transform, which can be computed by extant
Stable Model implementations, which also require grounding of programs. TR’s linear
space and time complexities are then examined. The transformation can be used to
answer queries but is also of theoretical interest, for it may be used to prove properties
of programs, say. In the Implementation section we show how TR can be employed, in
combination with the top-down query procedure of XSB-Prolog, it being sufficient to
apply it solely to the residual program corresponding to a query (in compliance with
the relevance property of Layer Supported Model). The XSB-XASP interface allows
the program transform to be sent for Smodels for 2-valued evaluation. Conclusions and
future work close the paper.

2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule r has the general form

H ← B1, . . . , Bn, not C1, . . . , not Cm

where H , the Bi and the Cj are atoms.

We call H the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout
this paper we will use ‘not ’ to denote default negation. When the body of the rule is
empty, we say the head of rule is a fact and we write the rule just as H .

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)

set of ground Logic Rules of the form in Definition 1.

In this paper we focus only on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean an NLP.

We write heads(P) to denote the set of heads of rules of P , i.e., heads(P) =
{head(r) : r ∈ P}. Abusing the default negation notation we write not S, where S is
a set of literals, to denote {not s : s ∈ S}, and confound not not s ≡ s.

The shifting rule [5, 8] may be used to reduce disjunctive programs into NLPs, as
may other known transformations, say from Extended LPs into NLPs ([3]).

3 Layering of Logic Programs

The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified. The usual syntactic notions of dependency are mainly
focused on atoms. They are based on a dependency graph induced by the rules of the
program. Useful as these notions might be, for our purposes they are insufficient since
they leave out important structural information about the call-graph of P . To encompass
that information we define below the notion of a rule’s dependency. Indeed, layering
puts rules, not atoms, in layers.

Rules that depend on no other rule (except, possibly, itself) are placed in layer 1.
Two rules are in the same layer if they depend on each other. The dependency relation
between two rules is the transitive closure of the direct dependency relation, where
rule r directly depends on rule r

� (denoted as r ← r
�) iff head(r�) ∈ body(r) or

not head(r�) ∈ body(r). Moreover, a rule r is in a layer strictly above that of r
� if

r depends on r
� but not vice-versa. We write r � r

� to denote r depends (possibly
indirectly) on r

�.
The relevant part of P for some atom A, represented by RelP (A), is the subset of

rules of P with head A plus the set of rules of P whose heads the atom A depends on,
cf. [4]. The relevant part of P for rule r, represented by RelP (r), is the set containing
the rule r itself plus the set of rules relevant for each atom r depends on.

Definition 3. Rule Layering of a Normal Logic Program P . Let P be an NLP. A rule

layering function Lf/1 is any function defined over the rules of P , assigning each rule

r ∈ P an ordinal, such that the following holds:

∀r1,r2∈P

Lf(r1) = 1 ⇐ ¬ (r1 � r2) ∧ r2 �= r1

Lf(r1) = Lf(r2) ⇐ (r1 � r2) ∧ (r2 � r1)
Lf(r1) > Lf(r2) ⇐ (r1 � r2) ∧ ¬ (r2 � r1)

The three cases above, which are patently mutually exclusive, leave out indepen-

dent rules, i.e., rules that have no dependencies amongst themselves. According to this

definition there is no restriction on which ordinal to assign to each independent rule in

what the other rules’ assignations are concerned.

A rule layering of program P is a partition . . . , P
i
, P

j
, . . . of P such that P

i
con-

tains all rules r having Lf(r) = i. We write P
<α

as an abbreviation of
�

β<α
P

β
,

P
≤α

as an abbreviation of P
<α ∪ P

α
, and define P

0 = P
≤0 = ∅. It follows imme-

diately that P =
�

α
P

α =
�

α
P
≤α

, and also that the ≤ relation between layers is a

total-order.

Amongst the several possible layerings of a program P we can always find the

least one, i.e., the layering with least number of layers and where the ordinals of the

layers are smallest, whilst respecting the rule layering function assignments. This least

layering is easily seen to be unique. In the following, when referring to the program’s

“layering”, we mean just such least layering.

Definition 4. Part of the body of a rule in loop. Let P be an NLP, and r a rule of P
i
.

r
l

is the subset of literals in the body of r in loop with r, i.e., their corresponding atoms

have rules in the same layer as r.

Formally, r
l = body(r) ∩ (heads(P i) ∪ not heads(P i)).

Theorem 1. The literals in r
l

are in loop with r. All the atoms of the literals in r
l

have at least one rule in loop with r.

Proof. Clearly, r depends on rules for all literals in r
l because this is, by definition, a

subset of body(r). If it were true for any atom a of some literal A ∈ r
l that it had no

rule in loop with r, then, by definition 3, that all rules for a would be in layers strictly
below that of r. In that case a would not be in heads(P i) (nor not a in not heads(P i))
since P

i is the layer where r is placed. Thus, a would not be in r
l contradicting the

initial assumption “for any atom a of some literal A ∈ r
l”. ��

Example 2. Layering example. Consider the following program P , depicted along
with the layer numbers for its least layering:

c ← not d, not y, not a Layer 3
d ← not c

y ← not x b ← not x Layer 2
x ← not x b Layer 1

Atom b has a fact rule: its body is empty, and therefore it is placed in Layer 1. The
unique rule for x is also placed in Layer 1 in the least layering of P , because this rule
only depends on itself. Both b ← not x and y ← not x are placed in Layer 2 because
they depend on not x, and the unique rule for x is in Layer 1. The unique rule for c

is placed in Layer 3 because it depends on not y. The rule for d is also placed in the
same Layer 3 because it is in a loop with the rule for c. This program has two LSMs:
{b, c, x}, and {b, d, x}.

4 Layer Supported Models Semantics

The Layer Supported Models semantics we now present is the result of the two new
notions we introduced: the layering, formally introduced in section 3, which is a gener-
alization of stratification; and the layered support, as a generalization of classical sup-
port. These two notions are the means to provide the 2-valued Layer Supported Models
semantics.

Definition 5. Classically Supported interpretation. An interpretation M of P is clas-

sically supported iff every atom a of M is classically supported in M , and this holds iff

a has a rule r where all the literals in body(r) are true in M .

Definition 6. Layer Supported interpretation. An interpretation M of P is layer sup-

ported iff every atom a of M is layer supported in M , and this holds iff a has a rule r

where all the literals in (body(r) \ r
l) are true in M .

Theorem 2. Classical Support implies Layered Support. Given an NLP P , an inter-

pretation M , and an atom a such that a ∈ M , if a is classically supported in M then a

is also layer supported in M .

Proof. Trivial from definitions 5 and 6. ��
In programs without odd loops layered supported models are classically supported too.

Intuitively, the minimal layer supported models up to and including a given layer,
respect the minimal layer supported models up to the layers preceding it. It follows triv-
ially that layer supported models are minimal models, by definition. This ensures the
truth assignment to atoms in loops in higher layers is consistent with the truth assign-
ments in loops in lower layers and that these take precedence in their truth labeling. As
a consequence of the layered support requirement, layer supported models of each layer
comply with the WFM of the layers equal to or below it. Combination of the (merely
syntactic) notion of layering and the (semantic) notion of layered support makes the
LSM semantics.

Definition 7. Layer Supported Model of P . Let P be an NLP. A layer supported in-

terpretation M is a Layer Supported Model of P iff

∀αM≤α is a minimal layer supported model of P
≤α

where M≤α denotes the restriction of M to heads of rules in layers less or equal to α:

M≤α ⊆ M ∩ {head(r) : Lf(r) ≤ α}
The Layer Supported semantics of a program is just the intersection of all of its

Layer Supported Models.

Example 3. Layer Supported Models semantics. Consider again the program from
example 2. Its LS models are {b, c, x}, and {b, d, x}. According to LSM semantics b

and x are true because they are in the intersection of all models. c and d are undefined,
and a and y are false.

Layered support is a more general notion than that of perfect models [12], with sim-
ilar structure. Perfect model semantics talks about “least models” rather than “minimal
models” because in strata there can be no loops and so there is always a unique least
model which is also the minimal one. Layers, as opposed to strata, may contain loops
and thus there is not always a least model, so layers resort to minimal models, and these
are guaranteed to exist (it is well known every NLP has minimal models).

The arguments in favor of the LSM semantics are presented in [10, 11], and are
not detailed here. This paper assumes the LSM semantics and focuses on a program
transformation.

4.1 Respect for the Well-Founded Model

Definition 8. Interpretation M of P respects the WFM of P . An interpretation M

respects the WFM of P iff M contains the set of all the true atoms of WFM, and it is

contained by the set of true or undefined atoms of the WFM. Formally, WFM
+(P) ⊆

M ⊆ WFM
+u(P).

Theorem 3. Layer Supported Models respect the WFM. Let P be a NLP. Each sub-

LSM M≤α of LSM M respects the WFM of P
≤α

.

Proof. (The reader can skip this proof without loss for the following). By definition,
each M≤α is a full LSM of P

≤α.
Consider P

≤1. Every M≤1 contains the facts of P , and their direct positive conse-
quences, since the rules for all of these are necessarily placed in the first layer in the
least layering of P . Necessarily, M≤1 contains all the true atoms of the WFM of P

≤1.
Layer 1 also contains whichever loops that do not depend on any other atoms besides
those which are the heads of the rules forming the loop. These loops that have no nega-
tive literals in the bodies are deterministic and, therefore, the heads of the rules forming
the loop will be all true or all false in the WFM, depending if the bodies are fully sup-
ported by facts in the same layer, or not. In any case, a minimal model of this layer
will necessarily contains all the true atoms of the WFM of P

≤1, i.e., WFM
+(P≤1).

For loops involving default negation, the atoms head of rules forming such loops are
undefined in the WFM; some of them might be in M≤1 too. Assume now there is some
atom a false in the WFM of P

≤1 such that a ∈ M≤1. a can only be false in the WFM
of P

≤1 if either it has no rules or if every rule for a has a false body. In the first case,
by definition, a cannot be M≤1 because only heads of rules can be part of LSMs. In the
second case, since in a LSM every atom must be layer supported, if all the bodies of
all rules for a are false, a will not be layer supported and so it will not be in any LSM,
in particular, not in M≤1. Since M≤1 contains all true atoms of WFM ofP≤1 and it
contains no false atoms, it must be contained by the true or undefined atoms of WFM
of P

≤1.
Consider now P

≤i+1, and M≤i a LSM of P
≤i. Assuming in P

i+1 all the atoms of
M≤i as true, there might be some bodies of rules of P

i+1 which are true. In such case,
a minimal model of P

i+1 will also consider the heads of such rules to be true — these
will necessarily comply with the layered support requirement, and will be true in the
WFM of P

i+1 ∪M≤i. For the same reasons indicated for layer 1, no false atom in the
WFM of P

i+1 ∪M≤i could ever be considered true in M≤i+1. ��

5 Program Transformation

The program transformation we now define provides a syntactical means of generating
a program P

� from an original program P , such that the SMs of P
� coincide with

the LSMs of P . It engenders an expedite means of computing LSMs using currently
available tools like Smodels [9] and DLV [2]. The transformation can be query driven
and performed on the fly, or previously preprocessed.

5.1 Top-down transformation

Performing the program transformation in top-down fashion assumes applying the trans-
formation to each atom in the program in the call-graph of a query. The transformation
involves traversing the call-graph for the atom, induced by its dependency rules, to de-
tect and “solve” the OLONs, via the specific LSM-enforcing method described below.
When traversing the call-graph for an atom, one given traverse branch may end by find-
ing (1) a fact literal, or (2) a literal with no rules, or (3) a loop to a literal (or its default
negation conjugate) already found earlier along that branch.

To produce P
� from P we need a means to detect OLONs. The OLON detection

mechanism we employ is a variant of Tarjan’s Strongly Connected Component (SCC)
detection algorithm [15], because OLONs are just SCCs which happen to have an odd
number of default negations along its edges. Moreover, when an OLON is detected, we
need another mechanism to change its rules, that is to produce and add new rules to the
program, which make sure the atoms a in the OLON now have “stable” rules which do
not depend on any OLON. We say such mechanism is an “OLON-solving” one. Trivial
OLONs, i.e. with length 1 like that in Example 1 (a ← not a, IC_Body), are “solved”
simply by removing the not a from the body of the rule. General OLONs, i.e. with
length ≥ 3, have more complex (non-deterministic) solutions, described below.

Minimal Models of OLONs In general, an OLON has the form
R1 = λ1 ← not λ2, ∆1

R2 = λ2 ← not λ3, ∆2
...
Rn = λn ← not λ1, ∆n

where all the λi are atoms, and the ∆j are arbitrary conjunction of literals which we
refer to as “contexts”. Assuming any λi true alone in some model suffices to satisfy any
two rules of the OLON: one by rendering the head true and the other by rendering the
body false.

λi−1 ←∼ λi, ∆i−1, and
λi ←∼ λi+1, ∆i

A minimal set of such λi is what is needed to have a minimal model for the OLON.
Since the number of rules n in OLON is odd we know that n−1

2 atoms satisfy n − 1
rules of OLON. So, n−1

2 + 1 = n+1
2 atoms satisfy all n rules of OLON, and that is the

minimal number of λi atoms which are necessary to satisfy all the OLON’s rules. This
means that the remaining n− n+1

2 = n−1
2 atoms λi must be false in the model in order

for it to be minimal.
Taking a closer look at the OLON rules we see that λ2 satisfies both the first

and second rules; also λ4 satisfies the third and fourth rules, and so on. So the set
{λ2, λ4, λ6, . . . ,λn−1} satisfies all rules in OLON except the last one. Adding λ1 to
this set, since λ1 satisfies the last rule, we get one possible minimal model for OLON:
MOLON = {λ1, λ2, λ4, λ6, . . . ,λn−1}. Every atom in MOLON satisfies 2 rules of
OLON alone, except λ1, the last atom added. λ1 satisfies alone only the last rule of
OLON. The first rule of OLON — λ1 ← not λ2, ∆1 — despite being satisfied by λ1,
was already satisfied by λ2. In this case, we call λ1 the top literal of the OLON under
M . The other Minimal Models of the OLON can be found in this manner simply by
starting with λ3, or λ4, or any other λi as we did here with λ2 as an example. Con-
sider the MOLON = {λ1, λ2, λ4, λ6, . . . ,λn−1}. Since ∼ λi+1 ∈ body(Ri) for every
i < n, and ∼ λ1 ∈ body(Rn); under MOLON all the R1, R3, R5, . . . , Rn will have
their bodies false. Likewise, all the R2, R4, R6, . . . , Rn−1 will have their bodies true
under MOLON .

This means that all λ2, λ4, λ6, . . . ,λn−1 will have classically supported bodies (all
body literals true), namely via rules R2, R4, R6, . . . , Rn−1, but not λ1 — which has
only layered support (all body literals of strictly lower layers true). “Solving an OLON”

corresponds to adding a new rule which provides classical support for λ1. Since this new
rule must preserve the semantics of the rest of P , its body will contain only the con-
junction of all the “contexts” ∆j , plus the negation of the remaining λ3, λ5, λ7, . . . ,λn

which were already considered false in the minimal model at hand.
These mechanisms can be seen at work in lines 2.10, 2.15, and 2.16 of the Transform

Literal algorithm below.

Definition 9. Top-down program transformation.

input : A program P
output: A transformed program P’

context = ∅1.1

stack = empty stack1.2

P’ =P1.3

foreach atom a of P do1.4

Push (a, stack)1.5

P’ =P’ ∪Transform Literal (a)1.6

Pop (a, stack)1.7

end1.8

Algorithm 1: TR Program Transformation

The TR transformation consists in performing this literal transformation, for each

individual atom of P . The Transform Literal algorithm implements a top-down, rule-

directed, call-graph traversal variation of Tarjan’s SCC detection mechanism. More-

over, when it encounters an OLON (line 2.9 of the algorithm), it creates (lines 2.13–

2.17) and adds (line 2.18) a new rule for each literal involved in the OLON (line 2.11).

The newly created and added rule renders its head true only when the original OLON’s

context is true, but also only when that head is not classically supported, though being

layered supported under the minimal model of the OLON it is part of.

Example 4. Solving OLONs. Consider this program, coinciding with its residual:
a ← not a, b b ← c c ← not b, not a

Solving a query for a, we use its rule and immediately detect the OLON on a. The
leaf not a is removed; the rest of the body {b} is kept as the Context under which the
OLON on a is “active” — if b were to be false there would be no need to solve the
OLON on a’s rule. After all OLONs have been solved, we use the Contexts to create
new rules that preserve the meaning of the original ones, except the new ones do not
now depend on OLONs. The current Context for a is now just {b} instead of the original
{not a, b}.

Solving a query for b, we go on to solve c — {c} being b’s current Context. Solving
c we find leaf not b. We remove c from b’s Context, and add c’s body {not b, not a}
to it. The OLON on b is detected and the not b is removed from b’s Context, which
finally is just {not a}. As can be seen so far, updating Contexts is similar to performing
an unfolding plus OLON detection and resolution by removing the dependency on the

input : A literal l
output: A partial transformed program Pa’

previous context =context2.1

Pa’ =P2.2

atom =atom a of literal l; //removing the eventual not2.3

if a has been visited then2.4

if a or not a is in the stack then2.5

scc root indx =lowest stack index where a or not a can be found2.6

nots seq = sequence of neg. lits from (scc root indx +1) to top indx2.7

loop length = length of nots seq2.8

if loop length is odd then2.9

nots in body = (loop length−1)
22.10

foreach ‘not x’ in nots seq do2.11

idx = index of not x in nots seq2.12

newbody = context2.13

for i=1 to # nots in body do2.14

newbody = newbody ∪2.15

{nots seq ((idx + 2 ∗ i) mod loop length)}2.16

end2.17

newrule = x ←newbody2.18

Pa’ =Pa’ ∪{newrule }2.19

end2.20

end2.21

end2.22

else // a has not been visited yet2.23

mark a as visited2.24

foreach rule r = a ← b1, . . . , bn, not bn+1, . . . , not bm of P do2.25

foreach (not)bi do2.26

Push ((not)bi, stack)2.27

context =context ∪{b1, . . . , (not)bi−1, (not)bi+1, . . . , not bm}2.28

Transform Literal ((not)bi)2.29

Pop ((not)bi, stack)2.30

context =previous context2.31

end2.32

end2.33

end2.34

Algorithm 2: Transform Literal

OLON. The new rule for b has final Context {not a} for body. I.e., the new rule for
b is b ← not a. Next, continuing a’s final Context calculation, we remove b from a’s
Context and add {not a} to it. This additional OLON is detected and not a is removed
from a’s Context, now empty. Since we already exhausted a’s dependency call-graph,
the final body for the new rule for a is empty: a will be added as a fact. Moreover, a
new rule for b will be added: b ← not a. The final transformed program is:

a ← not a, b a b ← c b ← not a c ← not b, not a

it has only one SM = {a} the only LSM of the program. Mark layering is respected
when solving OLONs: a’s final rule depends on the answer to b’s final rule.

Example 5. Solving OLONs (2). Consider this program, coinciding with its residual:

a ← not b, x

b ← not c, y

c ← not a, z

x

y

z

Solving a query for a we push it onto the stack, and take its rule a ← not b, x. We
go on for literal not b and consider the rest of the body {x} as the current Context under
which the OLON on a is “active”. Push not b onto the stack and take the rule for b. We
go on to solve not c, and add the y to the current Context which now becomes {x, y}.
Once more, push not c onto the stack, take c’s rule c ← not a, z, go on to solve not a

and add z to the current Context which is now {x, y, z}. When we now push not a onto
the stack, the OLON is detected and it “solving” begins. Three rules are created and
added to the program a ← not c, x, y, z, b ← not a, x, y, z, and c ← not b, x, y, z. To-
gether with the original program’s rules they render “stable” the originally “non-stable”
LSM {a, b, x, y, z}, {b, c, x, y, z}, and {a, c, x, y, z}. The final transformed program is:

a ← not b, x

a ← not c, x, y, z

b ← not c, y

b ← not a, x, y, z

c ← not a, z

c ← not b, x, y, z

x

y

z

TR transformation correctness The TR transformation steps occur only when OLONs
are detected, and in those cases the transformation consists in adding extra rules. So,
when there are no OLONs, the TR transformation’s effect is P

� = P , thus preserving
the SMs of the original P . The additional Layer Supported Models of P are obtained
by “solving” OLONs (by adding new rules in P

�), so that the order of OLON solving
complies with the layers of P . This is ensured because the top-down search, by its na-
ture, solves OLONs conditional on their Context, and the latter will include same or

lower layer literals, but not above layer ones. Finally, note Stable Models evaluation of
P
� itself respects the Well-Founded Semantics and hence Contexts evaluation respects

layering, by Theorem 3.

5.2 Number of Models

Loop detection and the variety of their possible solutions concerns the number of Strongly
Connect Components (SCCs) of the residual program.

Theorem 4. Maximum number of SCCs and of LSMs of a strongly connected resid-

ual component with N nodes. They are, respectively,
N

3 and 3N
3 .

Proof. Consider a component containing N nodes. A single odd loop with N nodes,
by itself, contains N LSMs: each one obtained by minimally solving the implicit dis-
junction of the heads of the rules forming the OLON. Given only two OLONs in the
component, with N1 + N2 = N nodes, they could conceivably always be made in-
dependent of each other. Independent in the sense that each and every solution of one
OLON combines separately with each and every solution of the other. To achieve this,
iteratively duplicate as needed the rules of each OLON such that the combination of
values of literals from the other loop are irrelevant. For example, in a program like

a ← not b b ← not c c ← not a, e

e ← not d d ← not f f ← not e, c

add the new rules c ← not a, not e and f ← not e, not c so that now the loop on a, b, c

becomes independent of the truth of e, and the loop on e, d, f becomes independent of
the truth of c. So, in the worst (more complex) case of two OLONs the number of LSMs
is N1 ∗N2, in this case 3 ∗ 3 = 9.

Each loop over an even number of default negations (ELON), all by itself contains
2 LSMs, independently of the number N of its nodes. An OLON can always be made
independent of an ELON by suitably and iteratively duplicating its rules, as per above.
So an OLON with N1 nodes dependent on a single ELON will, in the worst case,
provide 2 ∗N1 LSMs.

It is apparent the highest number of LSMs in a component with N nodes can be
gotten by combining only OLONs. Moreover, we have seen, the worst case is when
these are independent.

Consider a component with N nodes and two OLONs with nodes N1 + N2 = N .
The largest value of N1 ∗ N2 is obtained when N1 = N2 = N

2 . Indeed, since N2 =
N −N1, take the derivative d(N1∗(N−N1))

dN1
= d(N∗N1)

dN1
− dN

2
1

dN1
= N − 2 ∗N1. To obtain

the highest value make the derivative N − 2 ∗N1 = 0, and hence N1 = N

2 .
Similarly, for

�
i
Ni = N , so Ni = N

i
gives the maximum value for

�
i
Ni. Thus,

the maximum number of LSMs for a component of N nodes is obtained when all its
(odd) loops have the same size.

And what is the size i that maximizes this value? Let us again use a derivative in i,

in this case di
N
i

di
as the number of LSMs is i

N
i . Now di

N
i

di
= −N ∗ i. Equating it to zero

we have i = 0. But i must be greater than zero and less than N . It is easy to see that the

i that affords the value of the derivative closest to zero is i = 1. But OLONs of length
1 afford no choices hence the least i that is meaningful is i = 3.

Hence the maximum number of LSMs of a component with N nodes is 3N
3 . ��

Theorem 5. Maximum number of ELONs and of SMs of a SCC component with N

nodes. These are, respectively,
N

2 and 2N
2 .

Proof. By the same reasoning as above, the maximum number of SMs of a component
with N nodes is 2N

2 , since there are no OLONs in SMs and so i can only be 2. ��

Corollary 1. Comparison between number of possible models of LSMs and SMs.

The highest number of models possible for LSMs, #LSMs, is larger than that for SMs,

#SMs.

Proof. By the two previous theorems, we know that for a component with N nodes,
#LSMs

#SMs
= 3

N
3

2
N
2

= 3(N∗[13−
1
2∗(log32)]). ��

6 Implementation

The XSB Prolog system2 is one of the most sophisticated, powerful, efficient and versa-
tile implementations, with a focus on execution efficiency and interaction with external
systems, implementing program evaluation following the WFS for NLPs. The XASP
interface [1] (standing for XSB Answer Set Programming), is included in XSB Prolog
as a practical programming interface to Smodels [9], one of the most successful and
efficient implementations of the SMs over generalized LPs. The XASP system allows
one not only to compute the models of a given NLP, but also to effectively combine
3-valued with 2-valued reasoning. The latter is achieved by using Smodels to compute
the SMs of the so-called residual program, the one that results from a query evaluated in
XSB using tabling [13]. A residual program is represented by delay lists, that is, the set
of undefined literals for which the program could not find a complete proof, due to mu-
tual dependencies or loops over default negation for that set of literals, detected by the
XSB tabling mechanism. This coupling allows one to obtain a two-valued semantics of
the residual, by completing the three-valued semantics the XSB system produces. The
integration also allows to make use of and benefit from the relevance property of LSM
semantics by queries.

In our implementation, detailed below, we use XASP to compute the query rele-
vant residual program on demand. When the TR transformation is applied to it, the
resulting program is sent to Smodels for computation of stable models of the relevant
sub-program provided by the residue, which are then returned to the XSB-XASP side.

2 XSB-Prolog and Smodels are freely available, at: http://xsb.sourceforge.net and
http://www.tcs.hut.fi/Software/smodels.

Residual Program After launching a query in a top-down fashion we must obtain the
relevant residual part of the program for the query. This is achieved in XSB Prolog
using the get_residual/2 predicate. According to the XSB Prolog’s manual “ the
predicate get_residual/2 unifies its first argument with a tabled subgoal and its
second argument with the (possibly empty) delay list of that subgoal. The truth of the
subgoal is taken to be conditional on the truth of the elements in the delay list”. The
delay list is the list of literals whose truth value could not be determined to be true nor
false, i.e., their truth value is undefined in the WFM of the program.

It is possible to obtain the residual clause of a solution for a query literal, and in turn
the residual clauses for the literals in its body, and so on. This way we can reconstruct
the complete relevant residual part of the KB for the literal — we call this a residual

program or reduct for that solution to the query.
More than one such residual program can be obtained for the query, on backtrack-

ing. Each reduct consists only of partially evaluated rules, with respect to the WFM,
whose heads are atoms relevant for the initial query literal, and whose bodies are just
the residual part of the bodies of the original KB’s rules. This way, not only do we get
just the relevant part of the KB for the literal, we also get precisely the part of those
rules bodies still undefined, i.e., those that are involved in Loops Over Negation.

Dealing with the Query and Integrity Constraints ICs are written as just falsum ←
IC_Body. An Smodels IC preventing falsum from being true (:- falsum) is en-
forced whenever a transformed program is sent to Smodels. Another two rules are added
to the Smodels clause store through XASP: one creates an auxiliary rule for the initially
posed query; with the form: lsmGoal :- Query, where Query is the query con-
junct posed by the user. The second rule just prevents Smodels from having any model
where the lsmGoal does not hold, having the form: :- not lsmGoal.

The XSB Prolog source code for the meta-interpreter, based on this program trans-
formation, is available at http://centria.di.fct.unl.pt/∼amp/software.html

7 Conclusions and Future Work

We have recapped the LSMs semantics for all NLPs, complying with desirable require-
ments: 2-valued semantics, conservatively extending SMs, guarantee of model exis-
tence, relevance and cumulativity, plus respecting the WFM.

We have exhibited a space and time linearly complex transformation, TR, from one
propositional NLP into another, whose Layer Supported Models are precisely the Stable
Models of the transform, which can then be computed by extant Stable Model imple-
mentations. TR can be used to answer queries but is also of theoretical interest, for it
may be used to prove properties of programs. Moreover, it can be employed in com-
bination with the top-down query procedure of XSB-Prolog, and be applied solely to
the residual program corresponding to a query. The XSB-XASP interface subsequently
allows the program transform to be sent for Smodels for 2-valued evaluation.

The applications afforded by LSMs are all those of SMs, plus those where odd loops
over default negation (OLONs) are actually employed for problem domain representa-
tion, as we have shown in examples 4 and 5. The guarantee of model existence is es-

sential in applications where knowledge sources are diverse (like in the Semantic Web),
and wherever the bringing together of such knowledge (automated or not) can give rise
to OLONs that would otherwise prevent the resulting program from having a semantics,
thereby brusquely terminating the application. A similar situation can be brought about
by self- and mutually-updating programs, including in the learning setting, where un-
foreseen OLONs would stop short an ongoing process if the SM semantics were in use.
Hence, apparently there is only to gain in exploring the adept move from SM semantics
to the more general LSM one, given that the latter is readily implementable through the
program transformation TR, introduced here for the first time.

Work under way [14] concerns an XSB engine level efficient implementation of the
LSM semantics, and the exploration of its wider scope of applications with respect to
ASP, and namely in combination with abduction and constructive negation.

Finally, the concepts and techniques introduced in this paper are readily adoptable
by other logic programming systems and implementations.

References

1. L. Castro, T. Swift, and D. S. Warren. XASP: Answer Set Programming with XSB and Smod-

els, 1999. http://xsb.sourceforge.net/packages/xasp.pdf.
2. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and

F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In Workshop in Logic Programming, 1997.

3. C.V. Damásio and L. M. Pereira. Default negated conclusions: Why not? In R. Dyckhoff
et al, editor, Extensions of Logic Programming, ELP’96, volume 1050 of LNAI, pages 103–
118. Springer-Verlag, 1996.

4. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta

Informaticae, XXII(3):227–255, 257–288, 1995.
5. J. Dix, G. Gottlob, V.W. Marek, and C. Rauszer. Reducing disjunctive to non-disjunctive

semantics by shift-operations. Fundamenta Informaticae, 28:87–100, 1996.
6. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic

programs. J. of ACM, 38(3):620–650, 1991.
7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

ICLP/SLP, pages 1070–1080. MIT Press, 1988.
8. M. Gelfond, H. Przymusinska, V. Lifschitz, and M. Truszczynski. Disjunctive defaults. In

KR-91, pages 230–237, 1991.
9. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-

founded semantics for normal logic programs. In Procs. LPNMR’97, LNAI 1265, pages
420–429, 1997.

10. L.M. Pereira and A.M. Pinto. Layered models top-down querying of normal logic programs.
In Procs. PADL’09, volume 5418 of LNCS, pages 254–268. Springer, January 2009.

11. Luís Moniz Pereira and Alexandre Miguel Pinto. Layer supported models of logic programs.
In E. Erdem, F. Lin, and T. Schaub, editors, Procs. 10th LPNMR, LNAI. Springer, September
2009. http://centria.di.fct.unl.pt/∼lmp/publications/online-papers/LSMs.pdf (long version).

12. T.C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–1096, 1988.
13. T. Swift. Tabling for non-monotonic programming. AMAI, 25(3-4):201–240, 1999.
14. Terrance Swift, Alexandre Miguel Pinto, and Luís Moniz Pereira. Incremental answer com-

pletion in xsb-prolog. In Procs. 25th ICLP, LNCS. Springer-Verlag, July 2009.
15. R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2):146–160,

1972.

