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Abstract. In the context of abduction in Logic Programs, when finding an abduc-
tive solution for a query, one may want to check too whether some other literals
become true (or false) as a consequence, strictly within the abductive solution
found, that is without performing additional abductions, and without having to
produce a complete model to do so. That is, such consequence literals may con-
sume, but not produce, the abduced literals of the solution. We show how this type
of reasoning requires a new mechanism, not provided by others already available.
To achieve it, we present the concept of Inspection Point in Abductive Logic Pro-
grams, and show, by means of examples, how one can employ it to investigate
side-effects of interest (the inspection points) in order to help choose among ab-
ductive solutions. We show how to implement inspection points on top of already
existing abduction solving systems — ABDUAL and XSB-XASP — in a way
that can be adopted by other systems too.
Keywords: Logic Programs, Abduction, Side-Effects.

1 Introduction

Abductive logic programming offers a formalism to declaratively express and solve
problems in areas such as decision-making, diagnosis, planning, belief revision and hy-
pothetical reasoning.
When finding an abductive solution for a query, one may want to check too whether
some other literals become true (or false) as a consequence, strictly within the abduc-
tive solution found, i.e. without performing additional abductions, and without having
to produce a complete model to do so. That is, such consequence literals may consume,
but not produce, the abduced literals of the solution. We show how this type of reason-
ing requires a new abduction mechanism, that of Inspection Points (IPs).
Electing a specific abducible occurrence as an inspection point can be afforded by using
an intentional abduction device, for convenience dubbed “meta-abduction" or “condi-
tional abduction”; that is, in lieu of abducing that occurrence, one instead (meta-) ab-
duces just the intent to simply check that the abducible’s actual abduction occurs some-
where in the abductive solution, by virtue of some other occurrence of it. Consequently,
as we shall see, inspecting the side-effects of abduction is achievable by using abduction
itself.

We begin by presenting the motivation, plus some background notation and defi-
nitions follow. Then issues of reasoning with logic programs are addressed in section



2, in particular, we take a look at abductive reasoning and the nature of backward and
forward chaining and their relationship to query answering in an abductive framework.
In section 3 we introduce inspection points, illustrate their need and their use with
examples, and provide a declarative semantics. In section 4 we describe in detail our
implementation of inspection points and illustrate its workings with an example. We
close with conclusions, comparisons, and future work.

1.1 Motivation
Often, besides needing to abductively discover which hypotheses to assume in order
to satisfy some condition, we may also want to know some of the side-effects of those
assumptions; in fact, this is rather a rational thing to do. But, most of the time, we do
not wish to know all possible side-effects of our assumptions, as some of them may be
irrelevant to our concern, e.g. in decision-making. Likewise, the side-effects inherent in
abductive explanations might not all be of interest, e.g. in model-based fault-diagnosis.
Another common application of abductive reasoning is that of finding which actions
to perform, action names being coded as abducibles; again, only some of an action’s
side-effects may be of interest. A simple example will help bring out the abduction
side-effect issue and our approach to it.

Example 1. Relevant and irrelevant side-effects. Consider this logic program where
drink_water and drink_beer are abducibles. Suppose we want to satisfy the Integrity
Constraint (IC), and also to check if we get drunk or not. However, we do not care about
the glass becoming wet — that being completely irrelevant to our current concern. Thus,
in general, computation of whole models can be a waste of time since we are normally
only interested, as for side-effects, in some subset of the program’s literals.

← thirsty, not drink. % this is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.
unsafe_drive← drunk.

Moreover, in this example, we may wish to decide a possible action (whether to
drive or not) only after we know which side-effects are true. In such cases, we do
not want simply to introduce an extra IC expressed as← not unsafe_drive, because
that would always impose abducing not drink_beer, irrespective of whether we are
not even considering to drive. We want to allow all possible abductive solutions for
the single IC ← thirsty, not drink and only then check for the side-effects of each
solution, in order to then decide the driving action.
What we need is an inspection mechanism that permits checking the truth value of
given side-effect literals (like drunk) as a consequence of abductions made to satisfy a
given query and the program’s ICs, but without further abducing whilst checking. This
is achieved simply via our inspect/1 meta-predicate, by introducing instead the extra
IC ← inspect(not unsafe_drive), rather than just ← not unsafe_drive. The so-
formulated (passive) IC is not allowed to be met by actively introducing abductions to
that effect, but only by consuming abductions introduced to satisfy the query and other
(active) ICs, like← thirsty, not drink.



1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule has the general form

H ← B1, . . . , Bn, not C1, . . . , not Cm

where H is an atom, and the Bi and Cj are atoms.

H is the head of the rule, and B1, . . . , Bn, not C1, . . . , not Cm is its body, where any
rule variables are deemed universally quantified. Throughout, we use ‘not ’ to denote
default negation. When the body is empty, we say its head is a fact and write the rule just
as H . If the head is empty, the rule is said to be an Integrity Constraint (IC). The atoms
true and false are by definition respectively true and false in every interpretation.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)

set of Logic Rules, where non-ground rules stand for all their ground instances.

In this paper, we consider solely so-called Normal LPs (NLPs), those whose heads
of rules are positive literals, i.e. positive atoms, or empty, as per the above definition
of rules. We focus furthermore on abductive logic programs, i.e. NLPs allowing for
abducibles—user-specified positive literals without rules, whose truth-value is not as-
sumed initially. Abducible instances or their default negations may appear in bodies of
rules, like any other literal. They stand for hypotheses, each of which may indepen-
dently be assumed true, in positive literal or default negation form, as the case may be,
in order to produce an abductive solution to a query.

Definition 3. Abductive Solution. An abductive solution is a consistent set of ab-

ducible instances or their negations that, when replaced by true everywhere in P , or

equivalently simply omitted, affords a (Herbrand) model of P that satisfies the query

and (of course) the ICs—a so-called abductive model, for the specific semantics being

used on P .

We replace abducibles or their negations into P—instead of the more standard adding
of abducibles as facts to P—because we also may abduce negations of abducibles, since
the latter are not assumed false by default to begin with.

2 Abductive Reasoning with Logic Programs

Logic Programs have been used for a few decades now in knowledge representation
and reasoning. Amongst the most common kinds of reasoning performed using them,
one can find deduction, induction and abduction. Abduction, or inference to the best ex-
planation, is a reasoning method whereby one chooses those hypotheses that would, if
true, best explain the observed evidence—by meeting the corresponding ICs—and sat-
isfy some query. Within deduction, and its abduction counterpart, so-named “brave” and
“cautious" reasoning varieties are distinguished. “Brave” reasoning consists in finding
if there exists at least one consistent model of the program—according to some pre-
established semantics—which entails the query. “Cautious” reasoning demands that
every model of the program entail the query.
In LPs, abductive hypotheses (or abducibles) are named literals of the program which



have no rules. They can be considered true or false for the purpose of answering a query.
Abduction in LPs ([1, 5, 6, 10, 11]) can naturally be used in top-down query-oriented
proof-procedures to find an (abductive) solution to a query, where the abducibles in the
solution are leaves in the procedure’s query-rooted call-graph—that is the graph recur-
sively engendered by the procedure calls from literals in bodies of rules to heads of
rules, and thence from the literals in a rule’s body.
When query-answering, wherein abduction is enjoined as needed, if we know the un-
derlying semantics is relevant, i.e. guarantees it is enough to use only the rules relevant
to the query (those in its call-graph) to assess its truthfulness, then we need not compute
a whole model in order to find an answer to a query: it suffices just to use the call-graph
or relevant part of the program and determine the truth of a subset of the program’s
literals, those in the query’s call-graph. Thus, top-down finding a solution to a query,
dubbed “backward chaining”, is possible only when the underlying semantics is rele-
vant, in the above sense, because then the extension of that subset to a full model is
guaranteed.

When performing abductive reasoning, we typically wish to find by need only—via
backward chaining—the abductive solutions to a query. However, sometimes we also
want to know which are some of the consequences (or side-effects) of such abductive
solutions. I.e., we desire to know the truth value of some other literals, not part of the
query’s call-graph, whose truth-value may be determined by a found abductive solu-
tion. In some cases, we might be interested in knowing every possible side-effect—the
truth-value of every literal in a complete model satisfying the query. In other situations
though, our focus is frequently just on some specific side-effects.
In our approach, the side-effects of interest are explicitly indicated by the user, by wrap-
ping the corresponding goals within the reserved construct inspect/1.

2.1 Abductive Logic Program Procedures

Currently, the standard 2-valued semantics used by the logic programming community
is Stable Model (SM) semantics [9]. Its properties are well known and there are efficient
implementations (such as DLV and SModels [4, 12]). However, SM misses out on some
important properties, both from the theoretical and practical perspectives: guarantee
of model existence for every NLP, relevance and cumulativity—though the latter will
not be of concern in the present context. Most importantly, since SM do not enjoy
relevance they cannot just use backward chaining for query answering, irrespective of
whether abduction is involved— indeed, odd-loops over default negation, outside the
query’s call-graph, may prevent model existence. This means SM implementations need
to compute whole models, and so one will waste computational resources, because extra
time and memory are required to compute parts of the model which are irrelevant to
the query and ICs, i.e. outside their call-graph. The problem becomes compounded in
abductive reasoning, because then the truth-value combinations of every abducible must
be considered in order to provide complete models, even where abducibles are irrelevant
to the query at hand. Moreover, such irrelevant abducibles and their combinations must
subsequently be weeded out from the abductive models, at additional computational
cost. On the other hand, because whole models are computed side-effects of abductive
choices are computed too.



The Well-Founded Semantics (WFS) [8]—which enjoys model existence, relevance,
and cumulativity—allows for top-down abductive query answering. Whole models need
not to be computed, but then testing for side-effects involves extra querying about side-
effected literals. One important issue we address with the introduction of inspection
points is how to query the side-effects of a given abductive solution without performing
additional abductions in the process. In so doing we avoid producing whole models still.
We used WFS in the specific implementation described in section 4 based on ABDUAL
[1]. Though WFS is 3-valued, the abduction mechanism it employs can be, and in our
case is, 2-valued.

Because they do not depend on any other literal in the program, abducibles can be
modeled in a LP system without specific abduction mechanisms by automatically in-
cluding for each abducible an even loop over default negation, e.g.,

abducible← not neg_abducible. neg_abducible← not abducible.

where neg_abducible is a new abducible atom, representing the (abducible) negation
of the abducible. This way, under the SM semantics, a program may have models where
some abducible is true and another where it is false, i.e. neg_abducible is true. If there
are n abducibles in the program, there will be 2n models corresponding to all the possi-
ble combinations of true and false for each. Under the WFS without a specific abduction
mechanism, both abducible and neg_abducible remain undefined in the Well-Founded
Model (WFM), but may hold (as alternatives) in Partial Stable Models. In ABDUAL,
however, a specific distinct mechanism is employed: abducibles and their negations are
explicitly collected during search.

Using the SM semantics, unless the program is stratified, abduction must be done
by guessing the truth-value of each abducible, providing the whole model and testing
it for stability; whereas using WFS, even for non-stratified programs, abduction can
be performed by need, induced by the top-down query solving procedure, solely for
the relevant abducibles—i.e., irrelevant abducibles are left unconsidered. Thus, top-
down abductive query answering is a means of finding those abducible values one might
commit to in order to satisfy a query.

A new additional procedural preoccupation, addressed in this paper, is when one
wishes to only passively determine which abducibles would be sufficient to satisfy some
goal but without actually abducing them, just consuming other goals’ needed and pro-
duced abductions. The difference is subtle but of importance, and it requires a new
construct. Its mechanism, of inspecting without abducing, can be conceived and imple-
mented through meta-abduction, or conditional abduction, as discussed in detail in the
sequel.

3 Inspection Points

When faced with some situation where several alternative courses of actions are avail-
able a rational agent must decide and choose which action to take. A priori preferences
can be applied before choosing in order to reduce the number of considerable possible
actions curtailing the explosion of irrelevant combinations of choices, but still several



(possibly exclusive) may remain available.
To make the best possible informed decision, and commit to a course of action, the
agent must be enabled to foresee the consequences of its actions and then prefer on
the basis of those consequences (with a posteriori preferences). Choosing which set of
consequences is most preferred corresponds to an implicit choice on restricting which
course of action to take. But only consequences relevant to the a posteriori preferences
should be calculated: there are virtually infinitely many consequences of a given ac-
tion, most of which are completely irrelevant to the preference-based decision making.
Other consequences may be just predictions about the present state of the world, and
observing whether they are verified can eliminate hypothetical scenarios where certain
decisions would appear to make sense.
Not all consequences are experimentally observable though, hence Inspection Points
(IPs) may serve to focus on the ones that are, and thus guide the experimentation re-
quired to decide among competing hypotheses. That is, IPs can be put to the service
of sifting through competing explanations. In science, such decisive consequences are
known as "crucial" side-effects, because they exclude untoward hypotheses. However,
this is not the place to discuss the varied uses of abduction and its pragmatics. Instead,
we direct the reader to Robert Kowalski’s online book draft, available at his home page.

3.1 Backward and Forward Chaining

Abductive query-answering is intrinsically a backward-chaining process, a top-down
dependency-graph oriented proof-procedure. Finding the side-effects of a set of abduc-
tive assumptions may be conceptually envisaged as forward-chaining, as it consists of
progressively deriving consequences from the assumptions until the truth value of the
chosen side-effect literals is determined.
The problem with full-fledged forward-chaining is that too many (often irrelevant) con-
clusions of a model are derived. Wasting time and resources deriving them only to
be discarded afterwards is a flagrant setback. Even worse, in combinatorial problems,
there may be many alternative solutions whose differences repose just on irrelevant
conclusions. So, the unnecessary computation of irrelevant conclusions in full forward-
chaining may be multiplied, leading to immense waste.

A more rational solution, when one is focused on some specific conclusions from a
set of premises, is afforded by a selective top-down ersatz forward-chaining. In this set-
ting, the user can specify the conclusions she is focused on, and only those are computed
in a backward-chaining fashion, checking whether they are consequences of desired ab-
ductions, but without further abducing. Combining backward-chaining with such ersatz
forward-chaining allows for a greater precision in specifying what we wish to know,
and altogether improve efficient use of computational resources, because focusing on
the points of interest.
Crucially, if abduction is enabled, the computation of side-effects should take place
without further abduction, passively —but not destructively— just “consuming” ab-
ducibles “produced” elsewhere by abduction, for the top query.
In the sequel, we show how such ersatz forward-chaining from a set of hypotheses can
be achieved by backward chaining from the consequences focused on—the inspection
points—by virtue of a controlled form of abduction.



3.2 Meta-Abduction for Side-Effects Inspection

“Meta-abduction” is used in abduction inhibited inspection. Intuitively, when an ab-
ducible is considered under mere inspection, meta-abduction abduces only the intention
to a posteriori check for its abduction elsewhere, i.e. it abduces the intention of verify-
ing that the abducible is indeed adopted—that is, it abduces on condition. In practice,
when we want to meta-abduce some abducible ‘X’, we abduce a literal ‘consume(X)’
(or ‘abduced(X)’), which represents the intention that ‘X’ is eventually abduced else-
where in the process of finding an abductive solution. The pairing check is performed
after a complete abductive answer to the top query is found. Meta-abduction, by its very
nature, can be supported by any abduction capable system.
In the examples below, we are not propounding a methodology for using abduction, but
simply illustrating the concepts we have introduced.

Example 2. Police and Tear Gas Issue. Consider this NLP, where ‘tear_gas’, ‘fire’,
and ‘water_cannon’ are the only abducibles. Notice the two rules for ‘smoke’. The
first states that one explanation for smoke is fire, when assuming the hypothesis ‘fire’.
The second states ‘tear_gas’ is also a possible explanation for smoke. However, the
presence of tear gas is a much more unlikely situation than the presence of fire; after
all, tear gas is only used by police to contain riots and that is truly an exceptional
situation. Fires are much more common and spontaneous than riots. For this reason,
‘fire’ is a much more plausible explanation for ‘smoke’ and, therefore, in order to let
the explanation for ‘smoke’ be ‘tear_gas’, there must be a plausible reason—imposed
by some other likely phenomenon. This is represented by inspect(tear_gas) instead
of simply ‘tear_gas’.

← police, riot, not contain. % this is an Integrity Constraint
contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

The ‘inspect’ construct disallows regular abduction—allowing only a conditional
meta-abduction to be performed whilst trying to solve ‘tear_gas’. I.e., if we take tear
gas as an abductive solution for smoke, this rule imposes that the step where we abduce
‘tear_gas’ is performed elsewhere, not under the derivation tree for ‘smoke’. Thus,
‘tear_gas’ is an inspection point. The IC, because there is ‘police’ and a ‘riot’, forces
‘contain’ to be true, and hence, ‘tear_gas’ or ‘water_cannon’ or both must be ab-
duced. ‘smoke’ is only explained if, at the end of the day, ‘tear_gas’ is abduced to
enact containment. Abductive solutions should be plausible, and ‘smoke’ is plausibly
explained by ‘tear_gas’ if there is a reason, a best explanation, that makes the presence
of tear gas plausible; in this case the riot and the police. Crucially, if the police were
not around, or there was no riot, ‘tear_gas’ could not be abduced to explain ‘smoke’.
Plausibility is an important concept in science, for lending credibility to hypotheses.
Assigning plausibility measures to situations is an orthogonal issue though.

Example 3. Nuclear Power Plant Decision Problem. This example was extracted
from [13] and adapted to our current designs, and its abducibles do not represent ac-
tions. In a nuclear power plant there is decision problem: cleaning staff will dust the



power plant on cleaning days, but only if there is no alarm sounding. The alarm sounds
when the temperature in the main reactor rises above a certain threshold, or if the alarm
itself is faulty. When the alarm sounds everybody must evacuate the power plant imme-
diately! Abducible literals are cleaning_day, temperature_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
sound_alarm← temperature_rise
sound_alarm← faulty_alarm
evacuate ← sound_alarm

← not cleaning_day

Satisfying the unique IC imposes cleaning_day true (we may not employ a fact as
cleaning_day is an abducible and these may not have rules), and that gives us three
minimal abductive solutions to what happens on a cleaning day:

S1 = {dust, cleaning_day},
S2 = {cleaning_day, sound_alarm, temperature_rise, evacuate}, and
S3 = {cleaning_day, sound_alarm, faulty_alarm, evacuate}.

If we pose the query ?− not dust we want to know what could justify the cleaners
dusting not to occur given that it is a cleaning day (enforced by the IC). However, we
do not want to abduce the rise in temperature of the reactor nor to abduce the alarm
to be faulty in order to prove not dust. Any of these justifying two abductions must
result as a side-effect of the need to explain something else, for instance the observa-
tion of the sounding of the alarm, expressible by adding the IC← not sound_alarm,
which would then abduce one or both of those two abducibles as plausible explana-
tions. Hence S2 and S3 are not solutions to the query, as intended in [13]. They would
be, however, if the query were ? − not dust, evacuate. The inspect/1 in the body
of the rule for dust prevents any abduction below sound_alarm to be made just to
make not dust true. One other possibility would be for two observations, coded by
ICs ← not temperature_rise or ← not faulty_alarm, to be present in order for
not dust to be true as a side-effect. A similar argument can be made about evacuating:
one thing is to explain why evacuation takes place, another altogether is to justify it
as necessary side-effect of root explanations for the alarm to go off. These two prag-
matic uses correspond to different queries: ? − evacuate and ? − inspect(evacuate),
respectively.

3.3 Declarative Semantics of Inspection Points
A simple transformation Π maps any NLP P , with possibly nested inspection points—
that is inspection points under the scope of other ones—into a NLP TP without them.

Definition 4. Abductive Models. Abductive Models are those models obtained by the

abductive solutions—according to the base semantics which is applied to the trans-

formed program TP—in which each abduced(X) is required to be matched by the
corresponding X . Thus the transformation Π provides a definitional transformative

declarative semantics for P , no matter what the base semantics chosen and its actual

implementation



Both the Stable Models or the Well-Founded Semantics are used in this paper, cor-
responding to different implementations naturally. For instance, the Abductive Stable
Models of some TP , are the stable models for its abductive solutions, with respect to
the source abducibles for P plus those abducibles introduced by the transformation.
Likewise for the Abductive Well-Founded Models.

In essence, TP adds to P duplicates of its rules, wrapping each literal with inspect/1,
except for the abducibles, which are treated differently. Mark, below, that the abduc-
tive Stable Models of the transform TP—in which, by definition, each abduced(X)
is required to be matched by the corresponding X—clearly correspond to the intended
meaning ascribed to the inspection points of the original program, as the example illus-
trates.

Definition 5. Transforming Inspection Points. Let P be a program containing rules

whose body possibly contains inspection points. The program Π(P ) consists of:

1. all the rules obtained from the rules in P by systematically replacing:

– inspect(not L) with not inspect(L);
– inspect(L) with abduced(a)

if L is an abducible a, and keeping inspect(L) otherwise.

2. plus, for each rule A ← L1, . . . , Lt in the replaced rules of P from step 1, the

additional rule:

inspect(A)← L
�

1, . . . , L
�

t where for every 1 ≤ i ≤ t:

L
�

i =






abduced(Li) if Li is an abducible

inspect(X) if Li is inspect(X)
inspect(Li) otherwise

The semantics of the inspect/1 predicate is exclusively given by the generated rules

for inspect/1. Moreover, ‘abduced/1’ is an abducible, joining the original abducibles.

Example 4. Transforming a Program P with Nested Inspection Points.

x← a, inspect(y), b, c, not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

where the abducibles are a, b, c, d. Then, Π(P ) is:

x ← a, inspect(y), b, c, not d
inspect(x)← abduced(a), inspect(y), abduced(b), abduced(c), not abduced(d)
y ← not inspect(a)
y ← b, not inspect(z), c
inspect(y) ← not abduced(a) % by two rewrites
inspect(y) ← abduced(b), not inspect(z), abduced(c)
z ← d
inspect(z) ← abduced(d)

The single abductive stable model of Π(P )—that its stable model for its single abduc-
tive solution—respecting the meaning of the inspection points declarations in P is:

{x, a, b, c, abduced(a), abduced(b), abduced(c), inspect(y)}.
Note that indeed for each abduced(X) the corresponding X is in the model.



4 Implementation

We based our practical work on a formally defined, XSB-implemented, true and tried
abduction system—ABDUAL [1]. ABDUAL lays the foundations for efficiently com-
puting queries over ground 3-valued abductive frameworks for extended logic programs
with integrity constraints, on the well-founded semantics and its partial stable models.

The query processing technique in ABDUAL relies on an admixture of program
transformation and tabled evaluation. A transformation removes default negative literals
(by making them positive) from both the program and the integrity rules. Specifically,
a dual transformation is used, that defines for each objective literal O (i.e. an atom
or explicit negated atom) and its set of rules R, a dual set of rules whose conclusions
not (O) are true if and only if O is false in R. Tabled evaluation of the resulting program
turns out to be much simpler than for the original program, whenever abduction over
negation is needed. At the same time, termination and complexity properties of tabled
evaluation of extended programs are preserved by the transformation, when abduction is
not needed. Regarding tabled evaluation, ABDUAL is in line with SLG [15] evaluation,
which computes queries to normal programs according to the well-founded semantics.
To it, ABDUAL tabled evaluation adds mechanisms to handle abduction and deal with
the dual programs.

ABDUAL is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a query,
abducibles are dealt with by means of extra rules the preprocessor added to that effect.
These rules just add the name of the abducible (or its negation) to an ongoing list of
current abductions, unless the negation of the abducible was added before to the lists,
then failing in order to ensure abduction consistency. Our conditional meta-abduction is
implemented adroitly by means of a reserved predicate, ‘inspect/1’ taking some literal
L as its argument, which engages the abduction mechanism to try and discharge any
conditional meta-abductions performed under L by matching with the corresponding
abducibles, adopted elsewhere outside from under any ‘inspect/1’ call. The approach
taken can easily be adopted by other abductive systems, albeit in part—e.g. inspect-
ing only abducibles directly, and so omitting inspection nesting too—as we had the
occasion to check, namely with the authors of system [3]. We have also enacted an
alternative implementation, relying on XSB-XASP and the declarative semantics trans-
formation above, which is reported further below.

Procedurally, in the ABDUAL implementation, the checking of an inspection point
corresponds to performing a top-down query-proof for the inspected literal, but with
the specific proviso of disabling new abductions during that proof. The proof for the
inspected literal will succeed only if the abducibles needed for it were already adopted,
or will be adopted, in the present ongoing solution search for the top query. Conse-
quently, this check is performed after a solution for the query has been found, except
for “quick-kill” cases, as when the opposite abduction has already been collected in the
ongoing solution. At “inspection-point-top-down-proof-mode”, whenever an abducible
is encountered, instead of adopting it, we simply adopt the intention to a posteriori

check if the abducible is part of the answer to the query. That is, one conditionally
(meta-) abduces the checking of some abducible A, and the check consists in confirm-



ing that A is part of the abductive solution by matching it with the object of the check.
According to our method, the side-effects of interest are explicitly indicated by the user
by wrapping the corresponding goals, those to be subject to inspection mode, with the
reserved construct ‘inspect/1’.

4.1 ABDUAL with Inspection Points—Details

Inspection points in ABDUAL function mainly by means of controlling the general
abduction step, which involves very few changes, both in the pre-processor and the
meta-interpreter, that might be imported into other abduction systems. Whenever an
‘inspect(X)’ literal is found in the body of a rule, where ‘X’ is a goal, a meta-
abduction-specific counter—the ‘inspect_counter’, initialized with zero—is increased
by one, in order to keep track of the allowed character, active or passive, of ongoing ab-
duction performing. The top-down evaluation of the query for ‘X’ then proceeds nor-
mally. Active abductions are only allowed if the counter is set to zero, otherwise only
meta-abductions are permitted. After finding an abductive solution to query ‘X’, the
counter is decreased by one, since that inspection execution of X has been completed.
Backtracking over counter assignations is duly accounted for. Of course, this way of
implementing the inspection points (with a single ‘inspect_counter’) presupposes the
abductive query answering process is carried out “depth-first”, guaranteeing that the
order of the literals in the bodies of rules actually corresponds to the order they are
processed in. For simplicity of description, we assume such a “depth-first” discipline
in the implementation of inspection points, described in detail below. We then lift this
restriction at the end of the subsection.

Changes to the pre-processor:

1. A new dynamic predicate was added: the ‘inspect_counter/1’. This is initialized
to zero (‘inspect_counter(0)’) via an assert, before a top-level query is launched.

2. The original rules for the normal abduction step are now preceded by an additional
condition checking that the ‘inspect_counter’ is indeed set to zero.

3. Extra rules for the “inspection” abduction step are added, preceded by a condition
checking the ‘inspect_counter’ is set to greater than zero. When these rules are
called, the corresponding abducible ‘A’ is not abduced as it would happen in the
original rules; instead, ‘consume(A)’ (or ‘abduced(A)’) is abduced. This corre-
sponds to the conditional meta-abduction: we abduce the need to abduce ‘A’, the
need to ‘consume’ the abduction of ‘A’, which is finally checked when derivation
for the very top goal is finished.

Changes to the meta-interpreter: The changes to the meta-interpreter include all
the remaining processing needed to correctly implement inspection points, namely the
matching of the abduction of ‘consume(X)’ against the abduction of ‘X’. If a condi-
tional meta-abduction on ‘X’ (producing ‘consume(X)’) is not matched by an actual



abduction on ‘X’ when the end of solving the top query is reached, the candidate ab-
ductive answer is considered invalid and the attempted query solving fails. On back-
tracking, an alternative abductive solution (possibly with other meta-abductions) will
be sought.

In detail, the changes to the meta-interpreter include:

1. Two “quick-kill” rules for improved efficiency that detect and immediately solve
trivial cases for conditional meta-abduction:

– When literal ‘X’ about to be meta-abduced (‘consume(X)’ about to be added
to the abductions list) has actually been abduced already (‘X’ is in the abduc-
tions list) the meta-abduction succeeds immediately and ‘consume(X)’ is not
added to the abductions list;

– When the situation in the previous point occurs, but with ‘not X’ already ab-
duced instead, the meta-abduction immediately fails.

2. Two new rules for the general case of meta-abduction, that now specifically treat
the ‘inspect(not X)’ and ‘inspect(X)’ literals. In either rule, first we increase the
‘inspect_counter’ mentioned before, then proceed with the usual meta-interpretation
for ‘not X’ (‘X’, respectively), and, when this evaluation succeeds, we then de-
crease ‘inspect_counter’.

3. After an abductive solution is found to the top query, ensure that every meta-
abduction, i.e. every ‘consume(X)’ literal abduced, is indeed matched by a corre-
sponding and consistent abduction, i.e. that it is matched by the abducible ‘X’ in
the abductions list; otherwise the tentative solution found fails.

A counter—‘inspect_counter’—is employed instead of a simple toggle because
several ‘inspect(X)’ literals may appear at different graph-depth levels under one an-
other, and resetting a toggle after solving a lower-level meta-abduction would enable
producer abductions under the higher-level meta-abduction. An example clarifies this.

Example 5. Nested Inspection Points. Consider again the program of the previous
example, where the abducibles are a, b, c, d:

x← a, inspect(y), b, c, not d. y ← inspect(not a).
z ← d. y ← b, inspect(not z), c.

When we want to find an abductive solution for x—skipping over the low-level
technical details—we proceed as follows:

1. a is an abducible and since the ‘inspect_counter’ is still set initially to 0 we can
abduce a by adding it to the running abductions list;

2. y is not an abducible and so we cannot use any “quick-kill” rule on it. We increase
the ‘inspect_counter’—which now takes the value 1—and proceed to find an ab-
ductive solution to y;

3. Since the ‘inspect_counter’ is different from 0, only meta-abductions are allowed;
4. Using the first rule for y we need to ‘inspect(not a)’, but since we have already ab-

duced a, a “quick-kill” is applicable here: we already know that this ‘inspect(not a)’
will fail. The value of the ‘inspect_counter’ will remain 1;



5. On backtracking, the second rule for y is selected, and now we meta-abduce b by
adding ‘consume(b)’ to the ongoing abductions list;

6. Increase the ‘inspect_counter’ again, making it take the value 2, and continue on
searching for an abductive solution to not z;

7. The only solution to not z is by abducing not d, but since the ‘inspect_counter’
is greater than 0, we can only meta-abduce not d, i.e.
‘consume(not d)’ is added to the running abductions list;

8. Returning to y’s rule: the meta-interpretation of ‘inspect(not z)’ succeeds and so
we decrease the ‘inspect_counter’ by one—it takes the value 1 again. Now we
proceed and attempt to solve c;

9. c is an abducible, but since the inspect_counter is set to 1, we only meta-abduce
c by adding ‘consume(c)’ to the running abductions list;

10. Returning to x’s rule: the meta-interpretation of ‘inspect(y)’ succeeds and so we
decrease the ‘inspect_counter’ once more, and it now takes the value 0. From this
point onwards regular abductions will take place instead of meta-abductions;

11. We abduce b, c, and not d by adding them to the abductions list;
12. A tentative abductive solution is found to the initial query. It consists of the abduc-

tions list: [a, consume(b), consume(not d), consume(c), b, c, not d];
13. The abductive solution is now checked for matches between meta-abductions and

producer abductions.
In this case, for every ‘consume(A)’ in the abduction list there is actually an A also
in the abduction list, i.e. each abduction intention ‘consume(A)’ is satisfied by a
producer abduction A, where the A in consume(A) is just any abducible literal a
or its default negation not a. It is irrelevant in which order a ‘consume(A)’ and
the corresponding A appear or were placed in the abductions list. Because this final
checking step succeeds, the abductive solution is actually accepted.

In this example, we can clearly see that the inspect predicate can be used on any arbi-
trary literal, and not just on abducibles.

The correctness of this implementation against the declarative semantics provided
before can be sketched by noticing that whenever the inspect_counter is set to 0 the
meta-interpreter performs actual abduction, which corresponds to the use of the original
program rules; whenever the inspect_counter is set to some value greater than 0, the
meta-interpreter just abduces consume(A)—where A is the abducible being checked
for its abduction being produced elsewhere—and that corresponds to the use of the
transformed program rules for the inspect predicate.

The implementation of ABDUAL with inspection points is available on request.

More general query solving In case the “depth-first” discipline is not followed, ei-
ther because goal delaying is taking place, or multi-threading, or co-routining, or any
other form of parallelism is being exploited, then each queried literal will need to
carry its own list of ancestors with their individual ‘inspect_counters’. This is nec-
essary so as to have a means, in each literal, to know which and how many inspects
there are between the root node and the currently being processed literal, and which
inspect_counter to update; otherwise there would be no way to know if abductions or
meta-abductions should be performed.



4.2 Alternative Implementation Method

The method presented forthwith is an avenue for the implementation of the inspection
points mechanism through a simple syntactic transformation that can readily be em-
ployed by any SMs system, like SModels or DLV. Using a SMs implementation alone,
one can get the abductive SMs of some program P by computing the SMs of P �, where
P � is obtained from P by applying the program transformation we presented before
for the declarative semantics of the inspection points, and then adding an even loop
over negation for each declared abducible—as shown in section 2.1. When using XSB-
Prolog’s XSB-XASP interface, the process method is the same as for when using a SMs
implementation alone, but instead of sending the whole P � to the SMs engine, only the
residual or remainder program [2], the one that results from a query evaluated in XSB
using tabling [14], relevant for the query at hand, is sent. This way, abductive reason-
ing may benefit from the relevance property enjoyed by the Well-Founded Semantics
implemented in XSB-Prolog’s SLG-WAM.

Given the top-down proof procedure for abduction, implementing inspection points
for program P becomes just a matter of adapting the evaluation of derivation subtrees
falling under ‘inspect/1’ literals, at meta-interpreter level, subsequent to performing
the transformation Π(P ) presented before, which actually defines the declarative se-
mantics. Basically, any considered abducibles evaluated under ‘inspect/1’ subtrees,
say A, are codified as ‘abduced(A)’, where, as in section 2.1:

abduced(A)← not neg_abduced(A)
neg_abduced(A)← not abduced(A)

All abduced/1 literals collected during computation of the residual program are later
checked against the stable models themselves. Every ‘abduced(A)’ in a model must
pair with a corresponding abducible A for the model to be accepted.

5 Conclusions, Comparisons, and Future Work

In the context of abductive logic programs, we have presented a new mechanism of
inspecting literals that can be used to check for side-effects, by relying on conditional
meta-abduction. We have implemented the inspection mechanism within the Abdual [1]
meta-interpreter, as well as in XSB-XASP. We have further checked that our approach
can easily be adopted, in part, by other systems [3] with the help of these cited authors.

HyProlog [3] is an abduction/assumption system which allows for the user to spec-
ify if an abducible is to be consumed only once or many times. In HyProlog, as the query
solving proceeds, when abducible/assumption consumptions take place, they are exe-
cuted by storing the corresponding consumption intention in a store. After an abductive
solution for a query is found, the actual abductions/assumptions are matched against
the consumption intentions. Overall, there is not such a big gap between the operational
semantics of HyProlog and the inspection points implementation we present; however,
there is a major functional difference: in HyProlog we can only specify consumption
directly on abducibles, whereas in our more general inspection points approach we can



declare inspection of any literal (not just abducibles)—meaning any abducible found
below an inspect-wrapped literal call is automatically just inspected.

In [13], the authors detect a problem with the IFF abductive proof procedure [7] of
Fung and Kowalski, in what concerns the treatment of negated abducibles in integrity
constraints (e.g. in their examples 2 and 3). They then specialize IFF to avoid such
problems, which arise only in ICs, and prove correctness of the new procedure. The
detected problem refers to the active use of an IC comprising in its body some notA,
where A is an abducible, whereas the intended use should be a passive one, simply
checking whether some A is proved in the abductive solution found. To that effect,
by means of an inference rule used during query evaluation, it’s as if they replaced
such occurrences of notA by ‘not provable(A)’, before moving each as a disjunct
’provable(A)’ to the IC head along with other disjuncts, so as to ensure that no new
abductions are allowed during IC checking, by virtue of ’provable/1’. For a detailed
exposition the reader is referred to their section 4.2. Our own work generalizes the
scope of the problem they solved, and solves the problems arising in this wider scope.
For one, we abduce both positive and negative literals, and the latter are not true by
default. Moreover, we allow for passive checking not just of negated abducibles but
also of positive ones, as well as passive checking of any literal, whether or not abducible
and whether in ICs or other rules. Furthermore, we allow to single out which specific
occurrences are passive or active. Thus, we can cater for both passive and active ICs,
depending on the desired usage. Our solution uses abduction itself to solve the problem,
making it general for deployment in other abductive frameworks and procedures.

A future application of inspection points is planning in a multi-agent setting. An
agent may have abduced a plan and, in the course of carrying out its abduced actions, it
may find that another agent has undone some of its already executed actions. So, before
executing an action, the agent should check all necessary preconditions still hold. Note
that it should only check, thereby avoiding abducing again a plan for them: this way,
should the preconditions hold, the agent can continue and execute the planned action.
The agent should only take measures to enforce the preconditions again whenever the
check fails. Clearly, an “inspection” of the preconditions is what is needed here.

More generally, inspection points afford us with the ability to avoid having to gener-
ate complete abductive models in order to glean the consequences of interest of abduc-
tive solutions. The developed techniques can be employed too for permitting passive
ICs, which are not allowed to actively abduce but only to verify their satisfaction with
regard to given abductions, in contrast to active ICs that can further abduce in order to
be satisfied. Plus, of course, to enable ICs which contain a combination of both active
and passive literals.

Another future use concerns the computation of inspected consequences of par-
tially defined 2-valued models, obtained by top-down querying of NLPs, wherein the
abducibles are the default nots themselves, plus appropriate ICs to enforce consistency.
Once again, the computation of complete models can thus be avoided. A 2-valued se-
mantics which enjoys relevance must then be used, or otherwise a guarantee that the
NLP is stratified or does not contain loops over default negation via an odd number of
nots.
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