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Abstract 
This paper introduces an original 2-valued semantics for Normal Logic 
Programs (NLP), which conservatively extends the Stable Model semantics 
(SM) to all normal programs. The distinction consists in the revision of one 
feature of SM, namely its treatment of odd loops, and of infinitely long 
support chains, over default negation. This single revised aspect, addressed 
by means of a Reductio ad Absurdum approach, affords a number of fruitful 
consequences, namely regarding existence, relevance and top-down querying, 
cumulativity, and implementation.  
The paper motivates and defines the Revised Stable Models semantics (rSM), 
justifying and exemplifying it. Properties of rSM are given and contrasted 
with those of SM. Furthermore, these results apply to SM whenever odd 
loops and infinitely long chains over negation are absent, thereby establishing 
significant, not previously known, properties of SM. Conclusions, further 
work, terminate the paper. 
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Introduction 
 
The paper introduces a new 2-valued semantics for Normal Logic Programs (NLP), called 
Revised Stable Models semantics (rSM), cogent in the properties it enjoys. Its name 
intends to draw attention to being inspired by, and actually revising, Stable Model 
semantics (SM) [2]. Indeed SMs are just particular rSM models, and the definition of the 
SM is a specific instance or specialization of the rSM one. But its name also draws 
attention to that the definitional distinction between the two consists in the revision of one 
feature of SM, namely its treatment of odd loops over negation, as well as of infinite 
support chains over negation. Finally, this single revised aspect is addressed by means of a 
Reductio ad Absurdum approach, a form of belief revision, and affords a number of 
fruitful consequences, not shared by SM, the present ‘de facto’ standard for 2-valued 
semantics for NLP. 
 
For one, rSM are guaranteed to exist for all NLP. The concrete examples below show that 
odd loops may be required to model knowledge. Moreover, this guarantee is crucial in 
program composition (say from knowledge originating in divers sources) so that the result 
has a semantics. It is also important to warrant the existence of semantics after external 
updating, or even SM based self-updating languages [1]. Two, rSM is relevant, meaning 
that there may exist purely top-down, program call-graph based, query driven methods to 
determine whether a literal belongs to some model or other. These methods can thus 
simply return a partial model, guaranteed extendable to a complete one, there existing no 



need to compute all models or even to complete models in order to answer a query. 
Relevance is also crucial for modelling abduction, it being query driven. Three, rSM is 
cumulative (and two kinds of cumulativity will be considered), so that lemmas may be 
stored and reused. These and other properties shall be examined in the sequel. These 
results apply to SM whenever odd loops over negation (OLONs) and infinitely long 
chains over default negation (ICONs), are absent, thereby establishing significant, not 
previously known, properties of SM. 
 
Odd Loops Over Negation (OLONs) 
In SM, programs such as a  ~a, where ‘~’ stands for default negation, do not have a 
model. One can easily perceive that the Odd Loop Over Negation is the trouble-maker. 
The single rSM model however is {a}. The reason is that if assuming ‘~a’ leads to an 
inconsistency, namely by implying ‘a’, then in a 2-valued semantics ‘a’ should be true 
instead by Reductio ad Absurdum. 
 
Example 1: The president of Morelandia is considering invading another country. He 
reasons thus: if I do not invade them now they are sure to deploy Weapons of Mass 
Destruction (WMD) sometime; on the other hand, if they shall deploy WMD I should 
invade them now. This is coded by his analysts as: 

deploy_WMD  ~ invade_now  invade_now  deploy_WMD 
 
Under the SM semantics this program has no models. Under the rSM semantics invasion 
is warranted by the single model M={invade_now}, and no WMD will be deployed. 
 
It is an apparently counter-intuitive idea to permit such loops to support a literal’s truth 
value, because it means the truth of the literal is being supported on its own negation, and 
this seems self-inconsistent. SM does not go a long way in treating such OLON. It simply 
decrees there is no model (throwing out the baby along with the bath water), instead of 
opting for taking the next logical step: reasoning by absurdity or Reductio ad Absurdum 
(RAA). That is, if assuming a literal false (i.e. its default negation is true) leads to an 
inconsistency, then, in a 2-valued semantics, the literal must be true if that’s consistent. 
SM does not do this – it requires a true literal to be supported by its rules, i.e. by a rule 
with true body. The solution proffered by rSM is to extend the notion of support to 
include reasoning by absurdity, i.e. one supported indeed by those rules creating the odd 
loop. That is why the single rSM of  a  ~a  is {a}. 
 
Example 2: During elections, the prime minister of Italisconia promises to lower taxes as 
soon as possible, justifying it as inevitable. Indeed, if taxes are not lowered the rich do not 
invest, the economy cools down, and the country is all the poorer. People thus cannot 
afford to pay taxes, and these must be lowered anyway: 
      no_investment  ~ lower_taxes    cool_economy  no_investment  
      unaffordable_taxes  cool_economy         lower_taxes  unaffordable_taxes 
 
Under SM this program has no models. Under rSM lowering taxes is warranted by the 
single model M={lower_taxes}, and the economy does not cool, etc. These two examples 
are typical of political reductio ad absurdum inevitability arguments. 
 
Example 3:  A murder suspect not preventively detained is likely to destroy evidence, and 
in that case the suspect shall be preventively detained: 
 



likely_to_destroy_evidence(murder_suspect)   ~ preventively_detain(murder_suspect) 
   preventively_detain(murder_suspect)   likely_to_destroy_evidence(murder _suspect) 
 
There is no SM, and a single rSM={ preventively_detain(murder_suspect) }. This 
jurisprudential reasoning is carried out without need for a murder_suspect to exist now.  
Should we wish, rSM’s cumulativity (cf. below) allows adding the model literal as a fact.  
 
Example 4:  Some friends are planning their joint vacation. They separately express 
preference rules Q  ~R, meaning “I want to go to Q if I cannot go to R”, resulting in 
program P={mountain   ~beach;  beach   ~travel; travel   ~mountain}. P has no 
SMs, but affords three rSMs: {mountain, beach}, {beach, travel}, {travel, mountain}, so 
all of the friends will be happy if they jointly go on any of these three combination trips. 
 
In a NLP, we say we have a loop when there is a rule dependency call-graph path that has 
the same literal in two different positions along the path – meaning that the literal depends 
on itself. An OLON is a loop such that the number of default negations in the rule 
dependency graph path connecting the same literal at both ends is odd. 
 
It may be argued that SM employs OLON as integrity constraints (ICs), and so they 
should not be resolved; and moreover that the problem remains, in program composition 
or updating, that unforeseen OLON may appear. We will see below how ICs are dealt 
with under rSM, separated from the OLONs issue, and so having it both ways, i.e. dealing 
with OLON and ICs. 
 
SM envisages default literals as assumptions that should be maximally true (the Closed 
World Assumption – CWA), on the proviso of stability, that is, that the conclusions 
following from the assumptions do not go against these. To the contrary, the whole model 
is confirmed by them, through its support by program rules. rSM takes this reasoning all 
the way, but relies on RAA to lend support to the model atoms (minimally) introduced to 
resolve odd loops and infinitely long support chains. 
 
Whereas in the Well-Founded Semantics (WFS) the truth of literals, be they positive or 
default, may be interpreted as provability justified by a well-founded derivation, the lack 
of provability does not result in their falsity, since a third logical value is available: 
‘undefined’. In SM, though it’s 2-valued, no notion of provability is used, and one resorts 
to interpreting default negations as assumptions. The rSM view is that assumptions be 
revised (and hence its name too), in a 2-valued way, if they would otherwise lead to self-
inconsistency through odd loops or infinitely long chains. 
 
That rSM resolves the inconsistencies of odd loops of SM (and note these are not 
contradictions, for there is no explicit negation) does not mean rSM should resolve 
contradictions. That’s an orthogonal problem, whose solutions can be added to different 
semantics, including rSM.  
 
Infinite chains over negation (ICONs) 
It is well-known [5] that SM does not assign semantics either to programs with infinite 
chains over default negation. We illustrate next that rSM does so. 
 
 
 



Example 5:  Let P be  p(X)  p(s(X))  p(X)  ~p(s(X)) 
P has no SM, but there is one rSM, consisting of p(X) for every X. To see this assume, 
reasoning by absurd, that p(X) was false for some X; then the two bodies of each clause 
above would have to be false, meaning that p(s(X)) would be true by the second one; but 
then, by the first one, p(X) would be true as well, thereby contradicting the default 
assumption. Hence, by Reductio ad Absurdum reasoning, p(X) must be true, for arbitrary 
X. 
 
The paper’s remaining structure: a section on the definition of Revised Stable Models, 
justification and examples; forthwith, a section on properties of rSM and their contrast 
with SM’s; the last section addresses conclusions, future work, and potential use.  

Revised Stable Models 
 
A Normal Logic Program (NLP) is a finite set of rules of the form H B1, B2, ..., Bn, not 
C1, not C2, …, not Cm (n, m ≥ 0) comprising positive literals H, and Bi, and default 
literals not Cj. Often we use ‘~’ for ‘not’. 
 
Models are 2-valued and represented as sets of those positive literals which hold in the 
model. The set inclusion and set difference mentioned below are with respect to these 
positive literals. Minimality and maximality too refer to this set inclusion. We will often 
write   S – T   to represent the set difference between sets S and T, i.e., S \ T. 
 
Definition 1 (Gelfond-Lifschitz ΓP operator [2]): Let P be a NLP and I a 2-valued 
interpretation. The GL-transformation of P modulo I is the program P/I, obtained from P 
by performing the following operations: 
• remove from P all rules which contain a default literal not A such that A ∈ I 
• remove from the remaining rules all default literals 

Since P/I is a definite program, it has a unique least model J: Define ΓP(I) = J. Stable 
Models are the fixpoints of ΓP, and they do not always exist. 
 
As a shorthand notation, let WFM(P) denote the positive atoms of the Well-Founded 
Model of P, that is WFM(P) is the least fixpoint of operator ΓP

2  [6], ie. ΓP applied twice. 
 
Definition 2 (Sustainable Set): Intuitively, we say a set S is sustainable in P iff any atom 
‘a’ in S does not go against the well-founded consequences of the remaining atoms in S, 
whenever, S\{a} itself is a sustainable set. The empty set by definition is sustainable . Not 
going against means that atom {a} cannot be false in the WFM of P∪S\{a}, i.e., ‘a’ is 
either true or undefined. That is, it belongs to set ΓP∪S\{a}(WFM(P ∪ S\{a})). Formally, we 
say S is sustainable iff 
  ∀a∈S S\{a} is sustainable ⇒ a∈ΓP∪S\{a}(WFM(P ∪ S\{a} )) 
 
If S is empty the condition is trivially true. 
 
Definition 3 (Revised Stable Models and Semantics): Let RAAP(M) ≡ M – ΓP(M). M is a 
Revised Stable Model of a NLP P, iff: 
• M is a minimal classical model, with ‘~’ interpreted as classical negation 
• ∃ α ≥ 2 such that ΓP

α(M) ⊇ RAAP(M) 
• RAAP(M) is sustainable 



The Revised Stable Models semantics is the intersection of its models, just as the SM 
semantics is. Next we explain the function of, and justify, each condition above. 
 
First Condition: M is a minimal classical model – A classical model of a NLP is one that 
satisfies all its rules, where ‘~’ is seen as classical negation and ‘ ’ as material 
implication. Satisfaction means that for every rule body true in the model its head must be 
true in the model too. Minimality of classical models is required to ensure maximal 
supportedness (i.e., any true head is supported on a necessarily true body), compatible 
with model existence. 
 
SMs are supported minimal classical models, and we keep them as a specific case of 
rSMs. In fact SMs are the special case when there are no inconsistent OLON or ICON. 
However, not all rSMs are SMs since inconsistent OLON or ICON of an atom are allowed 
in rSM to be resolved for the positive value of the atom. Nevertheless, this is to be 
achieved in a minimal way, i.e. resolving a minimal set of such atoms, and justified 
through the logical “support” on a specific application of Reductio Ad Absurdum (RAA) 
to that effect.  
 
Example 6: Let P be {a  ~a ; b  ~a}. The only candidate minimal model is {a}, since 
{} and {b} are not models in the classical sense and {a, b} is not minimal. The need for 
RAA reasoning comes from the requirement to resolve OLON – an issue not dealt with in 
the traditional SM semantics. In P, ΓP({a}) = {} and so RAAP({a}) = {a} – {} = {a}. The 
truth-value of ‘a’ is supported by a specific RAA on ‘~a’ just in case it leads inexorably to 
‘a’. The first rule forces ‘a’ to be in any possible model under the new semantics. I.e., 
assuming ‘a’ is not in a model, i.e. ‘~a’ is true, then the first rule insists that ‘a’ is in the 
model – an inconsistency. But if ‘~a’ cannot be true, and since the semantics is 2-valued, 
then ‘~a’ must be false, and therefore ‘a’ must be true. So, the only model of this program 
must be {a}, since {b} is not a model, and {a, b} is not a minimal classical model with 
respect to model {a}. 
 
The second condition, explained below, aims at testing the inexorability of a default literal 
implying its positive counterpart, given the context of the remaining default literals 
assumed in the candidate model. The ΓP(M) ⊆ M proviso, verified by all minimal models, 
allows atoms to be minimally added to M over and above those of SMs, since these are 
defined as ΓP(SM) = SM. The additional candidate model atoms are specified by the next 
condition, i.e. those in RAAP(M) = M – ΓP(M). 
 
Second Condition: ∃ α≥2 ΓP

α(M) ⊇ RAAP(M) – For the sake of explanation, let us first 
start with a more verbose, but also more intuitive version of this condition: 
 

∃ α≥0 ΓP
α(ΓP(M-RAAP(M))) ⊇ RAAP(M)     where ΓP

0(X) = X for any X 
 
Since RAAP(M)=M–ΓP(M), the RAAP(M) set can be understood as the subset of literals 
of M whose defaults are self-inconsistent, given the rule-supported literals in ΓP(M), the 
SM part of M. The RAAP(M) atoms are not obtainable by ΓP(M). The condition states that 
successively applying the ΓP operator to M-RAAP(M), i.e. to ΓP(M), which is the “non-
inconsistent” part of the model or ΓP rule-supported context of M, we will get a set of 
literals which, after α iterations of ΓP, if needed, will get us the RAAP(M). RAAP(M) is 



thus verified as the set of self-inconsistent literals, whose defaults actually RAA-support 
their positive counterparts, given the ΓP(M) context. 
 
This is intuitively correct: by assuming the self-inconsistent literals as false, they later 
appear as true ΓP consequences. We can simplify this expression to ∃ α≥0 ΓP

α(ΓP(ΓP(M))) 
⊇ RAAP(M). And then to ∃ α≥2 ΓP

α(M) ⊇ RAAP(M), to obtain the original one. Of 
course, all SMs comply with this condition because in their case RAAP(SM)={}. So, for 
SMs all three rSM conditions particularize to the usual definition of ΓP(SM)=SM. 
The approach to this condition has been inspired by the use of ΓP and ΓP

2, in one 
definition of the Well-Founded Semantics (WFS) [4], to determine the undefined literals. 
We want to test that the atoms in RAAP(M) introduced to resolve odd loops and infinite 
chains, actually lead to themselves through repeated (at least 2) applications of ΓP, noting 
that ΓP

2 is the consequences operator appropriate for odd loop detection (as seen in the 
WFS), whereas ΓP is appropriate for even loop SM stability. Since odd loops can have an 
arbitrary length, repeated (ordinal) applications may be required. Because even loops are 
stable in just one application of ΓP, they do not need iteration, which is the case with SMs. 
 
The non-monotonic character of ΓP, when coupled with the existence of odd loops, may 
produce temporary spurious elements not in M in the second application of ΓP in ΓP

2, and 
hence the use of set inclusion in the condition. No matter, because the test is just to detect 
that introduced atoms additional to ΓP(M) actually are supported by RAA on themselves, 
given the initial ΓP(M) context. On the other hand, such spurious atoms do not persist: 
they disappear in the next ΓP application. 
 
Example 7:  a  ~a, ~b d  ~a  b  d, ~b 
 
M1={a}, ΓP(M1)={}, RAAP(M1)={a}, and M2={b, d}, ΓP(M2)={d}, RAAP(M2)={b} are 
the rSMs. Let us see why. ΓP

2(M1) =  ΓP(ΓP(M1)) = ΓP({}) = {a,b,d} ⊇ {a} = RAAP(M1). 
Also, ΓP

2(M2) =  ΓP(ΓP(M2)) = ΓP({d}) = {a,b,d} ⊇ {b} = RAAP(M2); so, both M1 and M2 
respect the second condition. Since both Models have RAA sets with just one atom and 
both are undefined in the WFM of the program, the third condition is trivially satisfied for 
both M1 and  M2. 
 
Example 8:    a  ~b    t  a, b  k  ~t 

   b  ~a    i  ~k 
 
  M1={a,k}, ΓP(M1)= {a,k}, RAAP(M1)={}, ΓP(M1)⊇RAAP(M1).  M1 is a rSM and a SM. 
  M2={b,k}, ΓP(M2)= {b,k}, RAAP(M2)={}, ΓP(M2)⊇RAAP(M2).  M2 is a rSM and a SM. 
  M3={a,t,i}, ΓP(M3)= {a,i}, RAAP(M3)={t}, ∄ α≥2 ΓP

α(M3) ⊇ RAAP(M3). M3 is no rSM. 
  M4={b,t,i}, ΓP(M4)= {b,i}, RAAP(M4)={t}, ∄ α≥2 ΓP

α(M4) ⊇ RAAP(M4). M4 is no rSM. 
 
Although M3 and M4 are minimal models, the ‘t’ atom in their respective RAA sets is not 
obtainable by iterations of ΓP. Simply because ‘~t’, implicit in both ΓP(M3) and ΓP(M4), is 
not conducive to ‘t’ through ΓP. This is the purpose of the second condition. The attempt 
to introduce ‘t’ into RAAP(M) fails because RAA cannot be employed to justify ‘t’. 
Indeed, the second condition of the rSM definition is intended to detect negative self-
dependencies of atoms in the RAA set. This is clearly not the case of atom ‘t’: it does not 
depend on itself, let alone on its own negation. For this reason ‘t’ is not a “legitimate” 
atom to appear in any RAA set. 



 
Example 9: a  ~b  b  ~a  c  a, ~c 

x  ~y  y  ~x  z  x, ~z     
 

M1 = {b, y}, M2 = {a, c, y}, M3 = {b, x, z}, M4 = {a, c, x, z}, are its rSMs. 
ΓP(M1) = {b, y}, ΓP(M2) = {a, y}, ΓP(M3) = {b, x}, ΓP(M4) = {a, x}. 
RAAP(M1) = {}, RAAP(M2) = {c}, RAAP(M3) = {z}, RAAP(M4) = {c, z}. 

 
In this program we have two even loops (one over ‘a’ and ‘b’, and the other over ‘x’ and 
‘y’), creating the four possible combinations {a,x}, {a,y}, {b,x}, and {b,y}. Moreover, 
whenever ‘a’ is present in a model, the odd loop over ‘c’ becomes ‘active’ and so, by 
RAA we need ‘c’ to be also present in that model. The same happens for ‘x’ and ‘z’. So 
the four Minimal Models are {a,c,x,z}, {a,c,y}, {b,x,z}, {b,y}. Since ‘c’ and ‘z’ are 
involved in odd loops, their negations lead to their positive conclusions. It is easy to see 
that these are the rSMs of P, satisfying the third condition too – there is no dependency on 
‘z’ nor on ‘c’ and so each of them remains undefined in the Well-Founded Model of P 
even when the other atom (‘c’ or ‘z’) is added as a fact. Note that RAAP(M4) is a proper 
superset of RAAP(M2) and of RAAP(M3); hence, minimality of RAA sets is not a 
requirement for a rSM. 
 
Example 10: a  ~b  b  ~c  c  ~a 
 
M1={a,b}, ΓP(M1)={b}, RAAP(M1)={a}, ΓP

2(M1) = {b,c}, ΓP
3(M1) = {c}, ΓP

4(M1)={a,c} 
⊇ RAAP(M1). Since M1 has an RAA set with just one atom and all of ‘a’, ‘b’, and ‘c’ are 
undefined in the WFM, the third condition is trivially satisfied. The remaining rSMs, 
{a,c} and {b,c}, are similar, by symmetry.  
 
Note: In Example 10, it took us 4 iterations of ΓP to get a superset of RAAP(M) in a 
program with an OLON of length 3. In general, a NLP with an OLON of length α will 
require α+1 iterations of the ΓP operator. Let us see why. First we need to obtain the 
supported subset of M, which is ΓP(M). The RAAP(M) set is precisely the subset of M that 
does not intersect ΓP(M), so under ΓP(M) all literals in RAAP(M) have truth-value ‘false’. 
Now we start iterating the ΓP operator over ΓP(M). Since the odd loop has length α, we 
need α iterations of ΓP to finally make arise the set RAAP(M). Hence we need the first 
iteration of ΓP to get ΓP(M) and then α iterations over ΓP(M) to get RAAP(M) leading us to 
α+1. In general, if the odd loop lengths can be decomposed into the primes {N1,…,Nm}, 
then the required number of iterations, besides the initial one, is the product of all the Ni. 
 
The other possible way for a NLP to have no SMs is by having an infinitely long support 
chain over negation (ICON) even without having any OLONs. An example of such a 
program first appeared in [5]. It illustrates well the general case for such chains. 
 
Example 11 (François Fage’s [5]):   p(X)  p(s(X))  p(X)  ~p(s(X)) 
     The grounded version of this program is: 

p(0)  p(s(0)) 
              p(0)  ~ p(s(0)) 
              p(s(0))  p(s(s(0))) 
              p(s(0))  ~ p(s(s(0))) 
 ... 



Although P has no Odd-Loop Over Negation, its unique Minimal Classical Model is M = 
{p(0), p(s(0)), p(s(s(0))), ...}, and complies with the second condition of the definition of 
rSM. In fact, ΓP(M) = {}, and ΓP

2
 (M) = ΓP(ΓP(M)) = ΓP({}) = M ⊇ RAAP(M). So, M = 

RAAP(M). Also, M also complies with the third rSM condition for as soon as one atom 
p(si(0)) of RAAP(M)=M is added as a fact, all the other p(0), p(s(0)), …, p(si-1(0)) become 
true in the Well-Founded Model of the resulting program due to the ‘p(X)  p(s(X))’ 
rules. Moreover, all the other p(sj(0)) – where j>i – atoms remain undefined in the WFM 
of the resulting program. Hence all atoms in RAAP(M)=M will be elements of ΓP∪R 
(WFM(P∪R)), for every R⊆RAAP(M), and RAAP(M) turns out to be sustainable. 
 
Third Condition: RAAP(M) is sustainable 
 
Let us explain this condition in detail. In a Stable Model there are no elements in the RAA 
set. This is because there are no actual active OLON or ICON in the program. The only 
elements we want to admit in any RAA set are those strictly necessary to resolve some 
actual active OLON or ICON. 
 
The first two conditions of the rSM definition cope with the guarantee that every atom in a 
rSM is supported, according to a generalized conception of support. There is, however, 
one additional necessary third condition: the elements in RAAP(M) must be compatible 
with each other for RAAP(M) to be sustainable, in the sense that each of its elements 
respects the well-founded model obtained by adding to P the remaining elements as facts. 
That is, every element ‘a’ of the RAAP(M) is either true or undefined in the context of all 
the other atoms of RAAP(M), but only if the RAAP(M)\{a} set, in turn, verifies the same 
sustainability condition.   
 
Intuitively, an RAAP(rSM) set can be incrementally constructed by means of a sequence 
of sets as follows: 

• The first element E1 in the sequence of sets contains the intersection (which may 
be empty) of all RAAP of Minimal Models which respect the second condition of 
the definition. These are the inevitable and deterministically necessary atoms in 
any RAAP(rSM). 

• The second element E2 of the sequence is a singleton set containing one RAAP 
atom not in E1, non-deterministically chosen from some RAAP of the step before, 
and which respects all the atoms in the previous set E1 – i.e., the atom in this 
singleton set is either true or undefined in the Well-Founded Model of the 
program in the context of the atoms of the first set (when we add the atoms of the 
first set to the program as facts). 

• The third element E3 of the sequence contains the intersection of all RAAP of 
Minimal Models of P ∪ S which respect the second condition of the RSM 
definition – where P stands for the original program, and S = E1 ∪ E2. E3 
contains the inevitable and deterministically necessary atoms in any RAAP(rSM), 
given the choice in E2. 

• The fourth element E4 of the sequence is again a singleton set with another non-
deterministically chosen atom which, as for the second set, respects the Well-
Founded Model of the program in the context of S = E1 ∪ E2 ∪ E3 

• Etc. 
 



The sequence construction continues until a Minimal Model is achieved. The RAAP(rSM) 
obtained by such sequences comply with the sustainability condition. 
 
Example 12:  a  ~a          b  ~a          c  ~b          d  ~c          e  ~e 
 
With this example we will show how the sequence process can be used to calculate the 
RAA sets. This program has two Minimal Models: M1={a,c,e} and M2={a,b,d,e}. It is 
easy to verify that both M1 and M2 comply with the second condition of the rSM 
definition. ΓP(M1)={c}, RAAP(M1)={a,e}; and ΓP(M2)={d}, RAAP(M2)={a,b,e}. So now 
we will start the process of creating the acceptable RAA sets. The first element E1 of the 
sequence is the intersection of RAAP(M1) and RAAP(M2) which is {a,e}. Now we add the 
atoms in E1={a,e} to the program as facts and calculate the WFM of the resulting 
program: WFM(P∪{a,e})={a,c,e}. The resulting program P∪{a,e} has two Minimal 
Models which coincide with M1 and M2, but now, under P∪{a,e}, M2 no longer satisfies 
the second condition of the rSM definition. In fact, both ‘b’ and ‘d’ now become ‘false’ in 
the WFM(P∪{a,e}). So the only Minimal Model respecting the second condition, after 
adding ‘a’ and ‘e’ as facts to P is just M1. RAAP(M1) is the only acceptable RAA set 
(which is sustainable by construction) and hence the unique rSM is M1. 
 
Example 13:  a  ~b  b  ~c,e c  ~a  e  ~e, a 
 
We saw that in a rSM, every atom ‘a’ in RAA must be either true of undefined in the 
context of RAAP(M)\{a} if RAAP(M)\{a} in turn complies with the same requirement. 
This happens for any atom ‘a’ when it does not have only negative dependencies on other 
RAAP(M) atoms. Let us see this example in detail. This program has three Minimal 
Models M1 = {b,c}, and M2 = {a,c,e}, and M3 = {a,b,e}. ‘a’, ‘b’, and ‘c’ and involved in 
an OLON; and so is ‘e’. But the OLON in ‘e’ is only active when we also have ‘a’. So, if 
we do not have ‘a’ in a Model we also do not need ‘e’; hence the Minimal Model 
M1={b,c}. ΓP(M1)={c}, RAAP(M1)={b}, and ΓP

4(M1)={a,b,e}⊇{b}=RAAP(M1), so M1 
respects the second condition. Since all the atoms of the program are undefined in the 
Well-Founded Model, {b} is sustainable. 
 
M2={a,c,e}, ΓP(M2)={a}, RAAP(M2)={c,e}, ΓP

4(M2)={a,b,c,e}⊇{c,e}=RAAP(M2). {c} 
and {e} are sustainable because both ‘c’ and ‘e’ are undefined in the WFM of the 
program. Since ‘e’∈ΓP∪{c}(WFM(P∪{c})) and ‘c’∈ΓP∪{e}(WFM(P∪{e})) we conclude 
that {c,e} is sustainable and M2 is also a rSM. 
 
M3={a,b,e}, ΓP(M3)={}, RAAP(M3)={a,b,e}, ΓP

2(M3)={a,b,c,e}⊇{a,b,e}=RAAP(M3). 
In this example, the atom ‘a’ depends just on ‘~b’, and ‘b’ is also an element of 
RAAP(M3). This means that if RAAP(M3)\{a} is sustainable then RAAP(M3) is not 
sustainable and, therefore, M3 is not a rSM. However, RAAP(M3)\{a}={b,e} is not a 
sustainable set, and this does not imply RAAP(M3) non-sustainability. On the other hand,  
we have one atom ‘b’ which is in the RAAP(M3) set because it has only positive 
dependencies on atoms of the RAAP(M3) set. 
 
M3 is a more complex example concerning the third condition. But a quick way of finding 
out that it also complies with the sustainability requisite is by checking that since ‘a’ 
depends negatively on ‘b’, as soon as we add ‘b’ as a fact to the program both ‘a’ and ‘e’ 
become immediately false in the WFM(P∪{b}). Hence neither {b,e} nor {a,b} are 



sustainable. Since {a,e} is sustainable and ‘b’∈ΓP∪{a,e}(WFM(P∪{a,e})) we conclude 
{a,b,e}=RAAP(M3) is sustainable. 
 
Example 14:  c  a, ~c      a  ~b  b  ~a 
 
M1={b} is a minimal model. ΓP(M1)=M1, and RAAP(M1)={}. M2={a,c} is a minimal 
model. ΓP(M2)={a}, and RAAP(M2)={c}. We have as rSMs {b}, the only SM, but also 
M2. In fact, ‘c’ is involved in an odd loop which becomes active when ‘a’ is true. ΓP

2(M2) 
= ΓP(ΓP(M2)) = ΓP({a}) = {a,c} ⊇ RAAP(M2) = {c}. So M2 respects the second condition. 
Since the RAAP(M2) set consists of just one atom which is undefined in the WFM of the 
program, and there are no other atoms depending on ‘c’, adding it to the program as a fact 
cannot produce any impact one any other atoms of the RAAP(M2) set – there are none – 
and so RAAP(M2) is sustainable. 
 
Example 15:  a  ~b       b  ~a       c   a, ~ c       c  b, ~ c       d  b, ~d 
 
There are two Minimal Models for this NLP: M1 = {a, c} and M2 = {b, c, d}. They both 
are Revised Stable Models. Let us see why. 
M1 = {a, c}, ΓP(M1) = ΓP({a, c}) = {a}, RAAP(M1) = M1 - ΓP(M1) = {a,c} - {a} = {c} 
ΓP

2(M1) = ΓP(ΓP(M1)) = ΓP({a}) = {a,c}, so ΓP
2(M1) ⊇ RAAP(M1). The second condition is 

satisfied by M1. The only atoms involved in odd loops are ‘c’ and ‘d’. There are no atoms 
depending on ‘c’, so, adding ‘c’ as a fact to the program will not produce any impact on 
any other atom of RAAP(M1), also because RAAP(M1) has just one atom. Let us look now 
into M2: 
M2 = {b, c, d}, ΓP(M2) = ΓP({b, c, d}) = {b} 
RAAP(M2) = M2 - ΓP(M2) = {b, c, d} - {b} = {c, d} 
ΓP

2(M2) = ΓP(ΓP(M2)) = ΓP({b}) = {b, c, d}, so ΓP
2(M2) ⊇ RAA(M2). The second 

condition is satisfied by M2. Similarly to as explained for M1, no atoms depend on ‘c’ nor 
on ‘d’; so we conclude that adding any of ‘c’ or ‘d’ to the program as a fact will have no 
impact on the other atom of the RAA set. But let us see it thoroughly. Since both ‘c’ and 
‘d’ are undefined in the WFM of the program, both {c} and {d} are sustainable. Consider 
now R = {c} ⊂ RAAP(M2) = {c,d}. The set of positive atoms of P ∪ R is WFM(P∪R) = 
{c}, and ΓP∪R (WFM(P∪R)) = ΓP∪R({c}) = {a,b,c,d}, and ‘d’∈{a,b,c,d}. Which means 
that adding ‘c’ as a fact to the program does not render ‘d’ as ‘false’ in the Well-Founded 
Model of the resulting program. Doing the same with R={d} we will get the same result 
for ‘c’, i.e., ‘c’∈ΓP∪R(WFM(P∪R))={a,b,c,d}. Hence {c,d} is sustainable and M2 is a 
rSM. 
 
Integrity Constraints (ICs) 
 
It may be argued that SM needs to employ OLON for expressing denial ICs, but the 
problem remains that in program composition unforeseen odd loops may appear, so that 
not all OLON refer to ICs. rSM can mimic the SM denial ICs by means of OLON 
involving a programmer chosen reserved literal such as ‘falsum’, or simply by means of 
adding a rule of the form ‘falsum  IC’. One can then prefer only those rSMs without the 
‘falsum’ atom. Thus, rSM semantics separates the two issues, having it both ways (cf. 
Example 13, where one can substitute ‘c’ for ‘falsum’). 
 
Definition 3 (Integrity Constraints) Incorporating denial ICs in a NLP under the Revised 
Stable Models semantics consists in adding, similarly to SM, a rule in the OLON form 



falsum  an_IC, ~falsum  or, more simply,  falsum  an_IC 
 
for each IC, where ‘falsum’ is a reserved atom chosen by the programmer. The ‘an_IC’ in 
the rule stands for a conjunction of literals, which must not be true, and form the IC. 
 
In the case of the OLON introduced this way it results that, whenever ‘an_IC’ is true, 
‘falsum’ must be in the model. Consequently one can retain only models where ‘an_IC’ is 
false, that is those without ‘falsum’. Whereas in SM odd loops are used to express ICs, in 
rSM they can too, but by using the reserved ‘falsum’ predicate. Or, more simply, by just 
having the ‘an_IC’ implying ‘falsum’. The OLON form is used by the SMs community to 
prevent ‘an_IC’ becoming true, due to the Γ-‘instability’ of the OLON. 
 
Example 16: In a Middle Region two factions are at odds, and use two sets of reasoning 
rules. One believes that if terrorism does not stop then oppression will do it and hence 
become unnecessary. The other believes that if oppression does not stop then terror will 
do it and hence become unnecessary. Combining them requires two integrity constraints. 
            oppression_on  ~ terror_off           terror_on  ~ oppression_off 

  terror_off  oppression_on           oppression_off  terror_on 
 

falsum  oppression_on, oppression_off, ~falsum 
falsum  terror_on, terror_off, ~falsum 

 
So far so good, there is a single joint rSM={oppression_off, terror_off}, and no SM. But 
introducing either or both of the next two rules, makes it impossible to satisfy the ICs: 

oppression_on  ~ terror_on terror_on  ~ oppression_on 
 
In this case all the rSMs will contain the atom ‘falsum’. Note the difference between rSM 
and SM semantics concerning this case: under rSM there are still models, they just do not 
comply with our requirements of not having ‘falsum’; whereas under SM semantics there 
are no models. 

Properties of the Revised Stable Models semantics 
 
Theorem 3 – Existence:  Every NLP has at least one Revised Stable Model. 
 
Theorem 4 – Stable Models extension:  Every Stable Model of an NLP is also a Revised 
Stable Model of it.  
 
SM does not deal with Odd Loops Over Negation nor ICONs, except to prohibit them, 
and that unfortunately ensures it does not enjoy desirable properties such as Relevance. 
For example, take a program such as: 

c  a, ~c a  ~b  b  ~a 
 
Although it has a SM={b} it is non-relevant, e.g. in order to find out the truth-value of 
literal ‘a’ we cannot just look below the rule dependency call-graph for ‘a’, but need also  
to look at all other rules that depend on ‘a’, namely the first rule for ‘c’. This rule in effect 
prohibits any SM containing ‘a’ because of the odd loop in ‘c’ arising when ‘a’ is true, i.e. 
‘c  ~c’. Hence, as the example illustrates, no top down call-graph based query method 
can exist for SM, because the truth of a literal potentially depends on all of a program’s 
rules. 



Relevance [3] is the property that makes it possible to implement a top-down call-directed 
query-derivation proof-procedure – a highly desirable feature if one wants an efficient 
theorem-proving system that does not need to compute a whole model to answer a query. 
The non-relevance of Stable Models, however, is caused exclusively by the presence of 
OLONs or ICONs, as these are the ones that may render unacceptable a partial model 
compatible with the call-graph below a literal. In contradistinction, the even loops can 
accommodate a partial solution by veering in one direction or the other. 
 
rSM enjoys relevance, by resolving odd loops – and ICONS – in favour of their heads, 
thus effectively preventing their constraining hold on literals permitting the loop, and so it 
is potentially amenable to top-down call-graph based query methods. These methods are 
designed to try and identify whether a query literal belongs to some rSM, and to partially 
produce an rSM supporting a positive answer. The partial solution is guaranteed 
extendable to a full rSM because of relevance. 
 
Theorem 5 – Relevancy: The Revised Stable Models semantics is Relevant. 
 
Theorem 6 – Cumulativity: The Revised Stable Models semantics is Cumulative. 
 
Example 17:  a  ~b  b  ~a, c c  a 
 
The single stable model is SM1={a, c}, ΓP(SM1)=SM1, and RAAP(SM1)={}. If ‘c ’ is 
added, then there is an additional SM2={b, c}, and cumulativity for SM fails because ‘a’ 
no longer belongs to the intersection of SMs. There exists also rSM2={b}, with 
ΓP(rSM2)={} and RAAP(rSM2)={b}; so ‘c ’ cannot be added as it does not belong to the 
intersection of all rSMs. This ensures cumulativity for rSMs. 
 
To see why {b} is a rSM note that ‘c’ in the rule for ‘b’ partially evaluates into ‘~b’ 
through the rule for ‘a’, and that since ‘a’ is false the rule for ‘b’ provides an odd loop on 
‘b’. rSM2 respects the second condition. In fact, ΓP

2(rSM2) = ΓP(ΓP(rSM2)) = ΓP({}) = 
{a,b,c} ⊇ RAAP(rSM2) = {b}. Again, in RAAP(rSM2) there is no other atom besides ‘b’, 
so there are no dependencies of other atoms of RAAP(rSM2) on ‘b’. rSM2 thus respects the 
third condition since ‘b’ is undefined in the WFM(P). 
 
Cumulativity [3] pertains to the intersection of models, which formally defines the SM 
and the rSM semantics. But seldom is this intersection used in practice, and SM 
implementations are focused instead on computing the set of models. 
 
Another, but similar, second notion of cumulativity pertains to storing lemmas as a proof 
develops, giving rise to the techniques of memoizing and tabling in some Prolog and WFS 
systems. This is a nice property, which ensures one can use old computation results from 
previous steps in a query-oriented derivation to speed up the computation of the rest of the 
query by avoiding redundant computations. This type of cumulativity is common in top-
down call-graph oriented query derivation methods, which can exist for rSM because it 
enjoys relevance, but not for SM. 
 
For this second type of cumulativity, relevance is again essential because it guarantees 
that the truth of a literal depends only on the derivational context provided by the partial 
rSM supporting the derivation, namely those default literals which are true in it. 
Consequently, if a positive literal A is found true in (finite) context not_C (standing for 



the conjunction of default literals true in it), then a rule may be added to that effect, 
namely A  not_C or, better still for efficiency, entered into a table. 
 
Conclusions and future work 
 

Having defined a new 2-valued semantics for normal logic programs, and having 
proposed more general semantics for several language extensions, much remains to be 
explored, in the way of properties, complexity analysis, comparisons, implementations, 
and applications, contrasting its use to other semantics employed heretofore for 
knowledge representation and reasoning. 
 The fact that rSM includes SMs and the virtue that it always exists and admits 
top-down querying is a novelty that may make us look anew at the use of 2-valued 
semantics of normal programs for knowledge representation and reasoning. 
 Having showed that the rSM semantics is equivalent to the SM semantics for 
programs without OLONs and without ICONS, it is proven that the SM semantics, for 
these specific “well-behaved” kinds of programs exhibits the Relevancy property as well 
as guarantee of Model Existence, and Cumulativity. This is, to the best of our knowledge, 
a new important result about the Stable Models semantics which has never before 
appeared in the literature. 

Another avenue is using rSM, and its extension to default negation in heads, in 
contrast to SM based ones, as an alternative base semantics for updatable and self-
evolving programs [1] so that model inexistence after an update may be prevented in a 
variety of cases. It may be of significance to Semantic Web reasoning, a context where 
programs may be being updated and combined dynamically from a variety of sources. 

rSM implementation, in contrast to SM’s ones, because of its relevance property 
can avoid the need to compute whole models and all models, and hence the need for 
complete groundness and the difficulties it begets for problem representation.  

Finally, rSM has to be put the test of becoming a usable and useful tool. First of 
all, by persuading researchers that it is worth using, and worth pursuing its challenges. 
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