
TEMPERATURE DEPENDENCE OF ELECTROLYTIC CONDUCTIVITY FOR SOME ROOM TEMPERATURE IONIC LIQUIDS

Marta S. Calado¹, João C. F. Diogo¹, José L. Correia da Mata^{1,2}, Fernando J. P. Caetano^{1,3}, Zoran P. Visak¹ and João M. N. A. Fareleira^{1,*}

¹ Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal ²Academia Militar, Paco da Rainha, 29, 1150-244 Lisbon, Portugal 3 Universidade Aberta, R. da Escola Politécnica, 147, 1269-001 Lisbon, Portugal *Corresponding author: j.fareleira@ist.utl.pt

Keywords: Electrolytic conductivity, Ionic liquids, RTIL.

Introduction: Electrolytic conductivities were measured in the temperature range 288.15 K-333.15 K and at atmospheric pressure for three room temperature ionic liquids (RTIL): 1-Ethyl-3-methylimidazolium Bis (trifluorosulfonyl) imide [C2mim][NTf₂], 1-Hexyl-3-methylimidazolium Bis(trifluorosulfonyl)imide [C6mim] [NTf₂] and 1-Ethyl-3-Methylimidazolium Ethyl Sulfate [C2mim][EtSO₄] (ECOENG212[®]). The measurements were performed by means of a novel purpose-made circuitry, connecting a Schott conductivity cell to a lock-in amplifier. The complex impedance of the cell, containing the sample, was measured as a function of the frequency of the alternating current (AC) used and the operating AC voltage was controlled along the frequency sweeps.

Figure1. Modulus of complex impedance experimental data and relative deviations as a function of frequency, obtained with a sample of [C2mim][NTf2] at 298.08K and the corresponding fitting equation (solid line).

The obtained impedance data modulus were fitted using the equation $|Z| = R_{\infty} + \frac{A}{\sqrt{f}}$

where R_{∞} , f and A are the resistance at infinite frequency, frequency and the fitted empirical parameter, respectively.

Conclusions: The measurement method was validated by comparison of the electrolytic conductivity results obtained with reference $[C2mim][NTf_2]$, with some literature measurements performed in a round-robin sample promoted by IUPAC. The preliminary results obtained for all the ionic liquids studied are self-consistent and show a very good agreement with literature data, thus confirming the good working ability of our experimental set-up.

References:

- 1. Diogo, J. C. F.; Caetano, J. P. F.; Fareleira, J. M. N. A.; Wakeham, W. A.; Afonso, C A. M.; and Marques, C. S., Viscosity measurements of the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide [p6,6,6,14][dca] using the vibrating wire technique, *J. Chem. Eng. Data* 2011 (Submited).
- 2. Widegren, J. A. and Magee, J. W., Density, Viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water, *J. Chem. Eng. Data* 52 (2007) 2331-2338.
- 3. Kandil, M. E.; Marsh, K. N.; and Goodwin, A. R. H., Measurement of the viscosity, density, and electrical conductivity of 1-hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide at temperatures between (288 and 433) K and pressures below 50 MPa. *J. Chem. Eng. Data* 52 (2007) 2382-2387.
- Santos, F. J. V.; Nieto de Castro, C. A.; Mota, P, J. F.; and Ribeiro, A. P. C., Electrical conductivity and viscosity of 1-Hexyl-3-methylimidazolium Bis(trifluorosulfonyl)imide, [C6mim] [(CF3SO2)2N] (CAS-RN# 382150-50-7), *Int. J. Thermophys.* 31(2010)1869–1879.
- 5. R.A. Mantz, Electrochemical properties of ionic liquids, in *Ionic Liquids in Synthesis*, Ed., P. Wasserscheid and T. Welton, Chapter 3, pp.141-150, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, 2008.
- 6. J.A. Widegren, E.M. Saurer, K.N. Marsh, and J.W. Magee, Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity, *J. Chem. Thermodyn.* 37 (2005) 569-575.