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Introduction/Background: One of the most important thermal properties for developing new 
engineering fluids compatible with the sustainable chemistry is thermal conductivity. Ionic 
liquids are a class of fluids that have shown lots of possibilities for replacing existing fluids in 
chemical processing plants, and in other heat transfer applications. Current measurements of the 
thermal conductivity of ionic liquids have low to moderate uncertainties in thermal 
conductivity, a fact that recommends the development of high accuracy instrumentation, 
commensurate with what can be obtained for other fluids [1,2]. In this paper we report the 
design of new hot-strip sensors, operating in a transient regime, to determine the thermal 
conductivity of ionic liquids. The dynamic behaviour of the sensor was tested with air, water 
and [C2mim][EtOSO3]. 

Experimental: The sensors were designed to accommodate the properties of the ionic liquids, 
and were obtained by Physical Vapour Deposition (PVD) deposition of platinum on a ceramic 
substrate, using a hot-strip configuration, inspired in our previous work [3,4,5].  

The metallic platinum thin film deposited by PVD on Al2O3 and AlN substrates involves 
several operations. These are exemplified for alumina: 

a) Drawing the geometric configuration chosen – the mask drawing. 

b) Chemical etching of the alumina substrate. 

c) Printing this drawing in serigraphic plate – photolithography; the thickness of the photoresist 
layer is less than 1 mm for the spin speed used. This layer is then exposed to UV light through a 
photomask. 

d) Platinum metal deposition by PVD – This operation was performed in the PVD Evaporator 
(SESUL-FCUL). On the alumina substrates (RUBALIT, RUBALIT 708S and RUBALIT 708 
HP by CeramTec, DE), a titanium layer of 100 Å and platinum strips (Pt disc 99,99% by 
Umicore) were deposited. 

e) The deposited layer thickness is continuously measured by an oscillating quartz crystal 
monitor unit. The e-gun used in this work is an EV M-5 gun made by AP&T, with a maximum 
power of 4 kW. The evaporation rate was kept slow in order to achieve good deposition 
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resistance values of R3 and R4 were changed to accommodate the values of the current strip 
resistance values. RS and RL represent the short and long strip. 

Results	and	discussion:	For	an	infinitely	 long	and	infinitely	thin	strip,	and	assuming	that	
the	“end	effects”,	are	non‐existing,	the	main	solution	for	the	temperature	rise	in	the	hot‐strip	
T	can	be	approximated	by	Eq.	(1):	
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where	kf	is	the	thermal	diffusivity	of	the	media,	q	is	the	heat	dissipated	per	unit	length	of	the	
strip,	 l	 is	 the	 length	of	 the	strip	 (the	difference	between	 the	 lengths	of	 the	 long	and	short	
strips),			is	a	dimensionless	time,	and		the	thermal	conductivity	of	the	media	where	heat	
transfer	takes	place.	The	mathematical	functions	erf	(y)	and	Ei(z)	are,	respectively	the	error	
function	 and	 the	 exponential	 integral,	 obtainable	 from	 rational	 approximations	 and	 easily	
programmed.	We	found	that	the	function	f	()	is	a	linear	function	of	ln	(),	for	a	0	<	<	1000,	
given	by	Eq.	(2),	with	a	regression	coefficient	r2	=	1	(	<	106):	

    6835.0ln5642.0  f 	 					(2)

Figure	2	shows	the	dynamic	behaviour	of	the	sensor,	registering	the	temperature	rise	in	the	
hot	strip,	as	a	function	of	of	ln	(),	for	a	run	with	a	time	limit	of	6	s.	It	is	very	clear	that	the	
linear	 portion	 of	 the	 ideal	 model	 prediction	 only	 appears	 for	 ln	 ()	 >	 5.7,	 which	 means	
between	3	and	6	seconds.	It	is	clear	that	the	warming	feels	first	the	metal	strip	(	Pt	~	71	Wm‐

1K‐1),	 then	 the	 ceramic	 substrate	 (support	and	coat)	 (	Al2O3	~	24	Wm‐1K‐1)	and	 finally	 the	
media	(air	in	this	case.	The	application	of	equations	2	and	3	to	the	experimental	result	give		
air	~	26.7	mWm‐1K‐1,	a	value	that	can	be	compared	with	the	reference	value	at	22.03	ºC	and	
0.1	MPa	of	25.9	mWm‐1K‐1.	We	hope	to	improve	this	preliminary	data	in	a	near	future.	

These	results	will	be	complemented	by	data	on	water	and	[C2mim][EtOSO3]	between	room	
temperature	and	120ºC.		

Conclusions:	The	present	results	show	that	the	transient	hot‐strip	theory	can	be	applied	to	
the	simulation	of	the	heat	transfer	behaviour	of	the	new	hot‐strip	sensors,	both	in	air	and	an	
ionic	liquid.	Improvement	of	the	data	analysis	will	make	possible	in	the	near	future	to	obtain	
the	thermal	conductivity	of	ionic	liquids	with	an	estimated	global	uncertainty	of	2%.	
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