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Abstract. The authors survey and comment their work on weak analysis.

They describe the basic set-up of analysis in a feasible second-order theory

and consider the impact of adding to it various forms of weak König’s lemma.
A brief discussion of the Baire categoricity theorem follows. It is then consid-

ered a strengthening of feasibility obtained (fundamentally) by the addition of

a counting axiom and showed how it is possible to develop Riemann integra-
tion in the stronger system. The paper finishes with three questions in weak

analysis.

1. Introduction

This paper is the third and last part of a triptych whose two other parts consist
of “Techniques in weak analysis for conservation results” [13] and “Interpretability
in Robinson’s Q” [20]. This triptych of papers mostly surveys the work of the
authors in weak analysis. The present paper is representative of our work in this
field and it is the way that the authors have found to jointly render homage to
Amı́lcar Sernadas on the occasion of his 64th birthday. The number sixty-four is
a round number in binary notation and appears in the title of a famous song of
the Beatles but, more prosaically, Amı́lcar’s 64th birthday was the occasion of a
deserved Festschrift in his honour. The influence and leadership of Amı́lcar on
his side of logic has been enormous at Instituto Superior Técnico and, indeed, in
Portugal. One should also mention his international collaborations, specially with
Brazilian logicians. Amı́lcar’s influence is also felt in Portugal on the other side,
namely in important matters of academic support and institutional collaboration.
The authors of this paper work on the other side of logic and are grateful for the
chance to present here the final paper of their triptych. They accepted with pleasure
the kind invitation of Francisco Diońısio and the other organizers of the Festschrift
to participate in the conference (via a presentation of Fernando Ferreira) and to
make a contribution to this volume. We must also thank them for giving us the
opportunity to render a public homage to Amı́lcar. We warmly salute Amı́lcar!

Both this paper and the Techniques paper (also written by the three of us) sur-
vey our work on the formalization of analysis in weak sub-exponential systems of
second-order arithmetic (the theme of this paper) and on the metamathematical
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2 ANTÓNIO M. FERNANDES, FERNANDO FERREIRA, AND GILDA FERREIRA

properties of these systems (the theme of the Techniques paper). This line of re-
search was inaugurated by F. Ferreira in his doctoral dissertation [14], written in
1988 in The Pennsylvania State University under the supervision of Stephen Simp-
son. Three years before, Samuel Buss had submitted to Princeton University a doc-
toral dissertation [5] studying weak systems of arithmetic connected to well-known
classes of computational complexity (polytime and polyspace computability, for in-
stance). Simpson asked F. Ferreira to look into it and see if a conservation result
regarding weak König’s lemma could be proved in the weak setting. Of course, the
project was motivated by similar results in reverse mathematics according to which
the second-order system WKL0 is Π1

1-conservative over the base system RCA0 (see
[26] for this result and for reverse mathematics in general). It was also connected
with the following challenge of Wilfried Sieg: Find a mathematically significant
subsystem of analysis whose class of provably recursive functions consists only of
the computationally “feasible” ones (see the end of [25]). In his dissertation, F.
Ferreira re-worked Buss’s arithmetical theory S1

2 in terms of a system of binary
words (finite 0-1 strings), thereby obtaining the first-order system Σb1-NIA. The
recast was done not only because the work with binary strings is more congenial
with computational complexity, but also because it made the formulation of weak
König’s lemma very transparent. The dissertation proceeded model-theoretically
and it was soon realized that, as opposed to the usual setting of reverse mathemat-
ics, weak König’s lemma has various interesting formulations in the weak setting.
It can be formulated by saying that every infinite binary set-tree (i.e., a tree in the
range of the second-order variables of the weak system) has an infinite path, but
this most natural form turns out to be insufficient for basic reversals (e.g., Theorem
7). It can also be formulated thus: For each bounded formula of arithmetic which
defines an infinite binary tree (not necessarily a set in the weak system) there is
an infinite path through the tree. The latter formulation of weak König’s lemma
is denoted by Σb∞-WKL. Intermediate formulations do exist and are important for
weak analysis (see Section 3). Stronger forms of weak König’s lemma can also be
envisaged, as it is the case with the principle of strict Π1

1-reflection discussed in
Section 6. Note that all of these different formulations of weak König’s lemma col-
lapse over RCA0. F. Ferreira was able to prove that the theory BTFA together with
Σb∞-WKL is Π0

2-conservative over Σb1-NIA. The corresponding first-order conserva-
tion result is false because BTFA + Σb∞-WKL proves bounded collection, and this
form of collection is independent from Σb1-NIA. The matter was finally clarified in
[16], where it was shown that the first-order consequences of BTFA + Σb∞-WKL are
exactly the consequences of bounded collection over Σb1-NIA. It was actually shown
that BTFA + Σb∞-WKL is first-order conservative over the theory Σb1-NIA + BΣb∞,
where BΣb∞ is the bounded collection scheme. Unsurprisingly, the proof of this
result used Harrington’s forcing argument (N.B. It is sometimes thought that Har-
rington’s conservation result can only be proved using a forcing technique whereas,
in fact, it can also be proved by pure proof-theoretic means, as it was shown in
[18] via a cut-elimination argument). Most of these matters are discussed in our
Techniques paper, but in the above we wanted to convey to the reader how the
results first appeared.

In F. Ferreira’s doctoral dissertation there is little of analysis (nevertheless, e.g.,
the dissertation considers and studies the Heine/Borel theorem for the Cantor
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space). The formalization of the real number system and of continuous real func-
tions was only worked out systematically in [11], together with António Fernandes.
Section 2 below outlines this systematization. The section finishes with the proof
of the intermediate value theorem in BTFA (Theorem 4). This result entails that
Tarski’s theory of real closed ordered fields RCOF is interpretable in BTFA. The in-
terest of this remark is that F. Ferreira showed in the last section of [11] that BTFA
is interpretable in Raphael Robinson’s theory of arithmetic Q. We have, therefore,
the following interesting relationship between the very weak arithmetical theory Q
and the geometric theory RCOF: The first is not interpretable in the second (because
Q is essentially undecidable and RCOF is a decidable theory by Tarski’s theorem of
quantifier-elimination), whereas the second is interpretable in the first. The theo-
ries Q and RCOF could not be more different from the metamathematical point of
view, and this issue was the theme of the talk of F. Ferreira in the Festschrift (the
title of the talk was “Arithmetic and geometry from the formal point of view: some
notes, some lessons”). The fact that BTFA is interpretable in Q is prima facie quite
amazing. It rests on the work of people like Edward Nelson, Alex Wilkie, Robert
Solovay, Petr Hájek and others on interpretability in Q. This work was surveyed by
F. Ferreira and G. Ferreira in the triptych paper “Interpretability in Robinson’s Q,”
where an old unpublished argument of Solovay appeared for the first time. From
this body of work it transpires that the interpretability of BTFA in Q is far from
being a strange and isolated phenomena. It is a practical application of the rule of
thumb according to which a bounded theory of arithmetic, short of proving the to-
tality of exponentiation (actually, for the knowledgeable, short of I∆0 + Ω∞), must
be interpretable in Q. (Alex Wilkie proved that I∆0 + exp is not interpretable in Q,
a result discussed in [20], but as far as we know it is still an open question whether
I∆0 + Ω∞ is interpretable in Q.) For instance, the Interpretability paper shows that
a weak theory of analysis associated with polyspace computability (which contains
the counting theory of Section 5, where Riemann integration can be developed) is
interpretable in Q.

We have already disclosed a bit of the structure of this paper. In the next section,
we show how to develop the basic notions of analysis in a weak base second-order
theory. Section 3 considers various formulations of weak König’s lemma and their
relationships with basic theorems of analysis. In Section 4 we briefly discuss the
Baire category theorem in the feasible setting. We answer a question of [9] and
remark that Cohen’s forcing does not preserve bounded collection in the absence of
the totality of exponentiation. The following section strengthens the base theory to
a theory in which counting is possible. We sketch how Riemann integration can be
developed in this strengthened theory. The material of this section comes mainly
from the doctoral dissertation of Gilda Ferreira [21] and the paper [19]. It is perhaps
worth remarking at this point that recently Stephen Cook and Akitoshi Kawamura
considered a polytime version of Weihrauch reducibility with the view of classifying
the computational complexity of problems in analysis (cf. [7]). Even more recently,
in the executive summary [3] of a conference on Weihrauch reducibility, the following
passage can be read: “one could expect relations between weak complexity theoretic
versions of arithmetic as studied by Fernando Ferreira et al., on the one hand, and
the polynomial-analogue of Weihrauch reducibility studied by Cook, Kawamura et
al., on the other hand.” The relationships are certainly there, but they are perhaps
more subtle than the known relationships between plain Weihrauch reducibility and
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ordinary reverse mathematics. We close the paper with a section where we pose
three questions in weak analysis.

2. Groundwork for weak analysis

The theory BTFA (an acronym for ‘Base Theory for Feasible Analysis’) is a
second-order theory of 0-1 strings. Its language directly describes finite binary
words. The intended standard model has first-order domain <ω2 (the set of finite
sequences of zeros and ones). Let L be the first-order language with three constant
symbols ε (for the empty word), 0 and 1, two binary function symbols ˆ (for con-
catenation, usually omitted) and × (the intended interpretation of x × y is that
of the word x concatenated with itself length of y times) and two binary relation
symbols = and ⊆ (for equality and initial subwordness, respectively).
L2, the second-order language of BTFA, extends the language L with:

- second-order set variables X, Y , Z, . . . (we reserve lower-case roman vari-
ables x, y, z, . . . for first-order variables).

- a binary relation symbol ∈ which infixes between a term t of L and a
second-order variable.

A structure for L2 has domain (M,S) with M the domain of a structure for
L and S ⊆ P(M). The first-order variables range over M and the second-order
variables range over S. Note that we are allowing Henkin models, i.e., S need not be
P(M). As it is well-known, second-order logic with Henkin semantics is essentially
first-order. The full standard model for L2 has domain (<ω2,P(<ω2)).

We denote by x � y (respectively, x ≡ y) the formula 1×x ⊆ 1×y (respectively,
1×x = 1×y). In the standard model x � y (respectively, x ≡ y) expresses that the
length of x is less than or equal (respectively, equal) to the length of y. By l(x) we
denote 1 × x (the tally length of x). Quantifications of the form ∀x (x � t → . . .)
and ∃x (x � t∧ . . .), usually abbreviated by ∀x � t (. . .) and ∃x � t (. . .), are called
bounded quantifications. A subword quantification formula is a formula where all
quantifications appear in the form ∀x (x ⊆∗ t→ A) or in the form ∃x (x ⊆∗ t ∧A),
where ⊆∗ stands for subwordness, i.e., x ⊆∗ t abbreviates ∃z(zˆx ⊆ t). A subword
quantification can be seen as a very particular type of bounded quantification. Note
also that a bounded quantification, over elements x such that x � t, ranges over
exponential many elements in the length of t, whereas a subword quantification
over elements x such that x ⊆∗ t, ranges over polynomial many elements in the
length of t.

Let us introduce some important classes of formulas. The Σb1-formulas (respec-
tively Πb

1-formulas) are the formulas of the form ∃y � t A, (respectively ∀y � t A)
where A is a subword quantification formula, possibly with parameters, and t is a
term in which y does not occur. The bounded formulas (also known as the class of
Σb∞-formulas) are the formulas where all the quantifications are bounded (i.e., there
are no second-order quantifications and all first-order quantifications are bounded).
It is well-known that in the first-order language, the Σb1-formulas define exactly the
NP-predicates in the standard model of domain <ω2 (a detailed proof of this fact
can be found in [14]); that, dually, the Πb

1-formulas define the co-NP predicates;
and that the Σb∞-formulas define the predicates in the polytime hierarchy.

Definition 1. BTFA is the second-order theory, in the language L2, which has the
following axioms:
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• Basic axioms
xε = x, x(y0) = (xy)0 and x(y1) = (xy)1;
x× ε = ε, x× y0 = (x× y)x and x× y1 = (x× y)x;
x ⊆ ε↔ x = ε, x ⊆ y0↔ x ⊆ y∨x = y0 and x ⊆ y1↔ x ⊆ y∨x = y1;
x0 = y0→ x = y and x1 = y1→ x = y;
x0 6= y1, x0 6= ε and x1 6= ε;

• Induction on notation scheme

A(ε) ∧ ∀x (A(x)→ A(x0) ∧A(x1))→ ∀xA(x),

where A is a Σb1-formula (possibly with first and second-order parameters);
• Bounded collection scheme (BΣb∞)

∀x � w∃yA(x, y)→ ∃z∀x � w∃y � zA(x, y),

where A is a bounded formula (possibly with first and second-order param-
eters) and z is a new variable;

• Comprehension scheme

∀x (∃yA(x, y)↔ ∀zB(x, z))→ ∃X∀x (x ∈ X ↔ ∃yA(x, y))

where A is a Σb1-formula and B is a Πb
1-formula (possibly with first and

second-order parameters) and X does not occur in A nor in B.

If, instead of L2, we take the language L, the basic axioms together with the
above scheme of induction on notation form the first-order theory Σb1-NIA. It is
well-known that Σb1-NIA is equivalent to Buss’s theory S1

2 defined in his doctoral
dissertation (see [23] for a formal interpretation of S1

2 in Σb1-NIA). Thus, by the cele-
brated witnessing theorem of Buss in his dissertation, the provably total functions of
Σb1-NIA (with Σb1-graphs) are the polytime computable functions. The theory BTFA
is Π0

2-conservative over Σb1-NIA and, therefore, these two theories are of the same
proof-theoretic strength. It also follows that whenever BTFA ` ∀x∃yA(x, y), where
A is a Σb1-formula, then there exists a polytime computable function f :<ω 2→<ω 2
such that A(x, f(x)), for all x ∈<ω 2. The reader can consult our Techniques paper
for these and related results and for pointers to the original papers.

The structure (<ω2,Recursive Sets) is the smallest model of BTFA with the first-
order part <ω2, and this fact may give the impression that the comprehension
scheme is stronger than in fact is. The comprehension scheme states that recur-
sive sets exist under the condition that their recursiveness is shown. In a weak
theory like BTFA, this condition may be impossible to show. In any case, the
unbounded quantifications in the antecedent of the comprehension scheme are ex-
tremely convenient for the development of analysis within BTFA. Since in this weak
base system functions are formalized as sets of codes of ordered pairs, to show the
existence of the composition of two functions f : X → Y and g : Y → Z we just
need to write (g ◦ f)(x) = z in the following two ∃/∀ forms: (g ◦ f)(x) = z iff
x ∈ X ∧ ∃y ((x, y) ∈ f ∧ (y, z) ∈ g) iff x ∈ X ∧ ∀y ((x, y) ∈ f → (y, z) ∈ g). A
similar observation ensures the existence of the inverse image: f(x) ∈ Z can be
stated by x ∈ X ∧ ∃y ((x, y) ∈ f ∧ y ∈ Z) or by x ∈ X ∧ ∀y ((x, y) ∈ f → y ∈ Z).

In the remainder of this section we formalize the basics of real analysis (e.g.
the real number system, the notion of continuous function on the reals, etc.) in
BTFA. This material is taken from [11], where more details can be found. We start
by considering two sorts of natural numbers in BTFA: the tally numbers and the
dyadic natural numbers.
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The tally numbers, denoted by N1, are the binary words satisfying x = 1 × x.
These numbers are concatenations of 1s (tallies). We can define 0N1 , ≤N1 , +N1 and
·N1 as ε, ⊆, ˆ and × respectively. BTFA proves that N1 is an ordered semi-ring.

The dyadic natural numbers, denoted by N2, are the binary words satisfying
x = ε∨x = 1ˆy (with y a word). The idea is that the dyadic number 1x1x2 · · ·xn−1,

where each xi is 0 or 1, represents the number 2n−1 +
∑n−1
i=1 xi2

n−i−1. The empty
string ε represents the number zero. We can define 0N2 , ≤N2 , +N2 and ·N2 in order
to reproduce the usual operations of the natural numbers and show in BTFA that
N2 is an ordered semi-ring.

The dyadic rational numbers, denoted by D, are the triples (i, x, y) (coded as
strings in a smooth way), with i = 0 or i = 1, x ∈ N2 and y = ε ∨ y = zˆ1
(with z a word). The idea is that the triple (s, x0 . . . xn−1, y0 . . . ym−1) represents

the rational number (−1)s(
∑n−1
i=0 xi2

n−i−1 +
∑m−1
j=0

yj
2j+1 ). We denote such dyadic

rational number by ±x0x1 . . . xn−1 · y0 . . . ym−1. By x∗ we denote the binary word
x with its rightmost zeros chopped off. Thus ·x∗ is a (positive) dyadic rational
number. We define 0D, ≤D, +D and ·D extending, to the dyadic rational numbers,
the operations already mentioned in the dyadic natural numbers. Such operations
reproduce the usual operations in the rational numbers and turn D in an ordered
ring. The dyadic rational numbers do not form a field, but divisions by 2 are
possible. We can also introduce in D the operations −D and |.|D with the expected
meaning of subtraction and absolute value function, respectively.

We use the notations 2n and 2−n, with n a tally number, to stand for the dyadic
rational numbers

+1 00 . . . 0︸ ︷︷ ︸
n zeros

·ε and + ε · 00 . . . 0︸ ︷︷ ︸
n−1 zeros

1

respectively. Note that this exponential notation makes sense, even though BTFA
does not prove the totality of exponentiation.

Definition 2. A function α : N1 → D is a real number if |α(n)− α(m)| ≤ 2−n for
all tallies n and m with n ≤ m. Two real numbers α and β are said to be equal
(written α = β) if ∀n ∈ N1 |α(n)− β(n)| ≤ 2−n+1.

The above definition resembles the definition of real number in RCA0. The point
in need of attention is that in the feasible context the domain of the function α
is N1. In systems in which the totality of exponentiation is provable, there is no
difference between N1 and N2. More precisely, in BTFA it is possible to define (in a
natural way) an embedding of N1 into N2, and the totality of exponentiation may
be taken to affirm that this embedding is surjective. In short, in a system where
the totality of exponentiation is not provable (like BTFA), N1 and N2 are essentially
different entities.

A particular real numbers is a set (of ordered pairs) whose existence needs to
be shown by the comprehension available in BTFA. The relation of real equality is
defined by a formula of the form ∀xA, with A a Πb

1-formula (it is a ∀Πb
1-formula). A

dyadic real number is a triple (i, x,X) with i = 0 or i = 1, x ∈ N2 and X an infinite
binary sequence. Informally, the idea is that the triple (s, x0 . . . xn−1, X) gives the

real number (−1)s(
∑n−1
i=0 xi2

n−i−1 +
∑∞
i=0

X(i)
2i+1 ), where X(i) is the (i+1)-th bit of

X (i ∈ N1). We denote dyadic real numbers by ±x0x1 . . . xn−1 · X. Dyadic real
numbers are a natural generalization of the dyadic rational numbers. It is shown in
[12] that, over BTFA, the two alternative definitions of real numbers give the same
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numbers (this is far from straightforward, and in [11] it is deduced as a consequence
of the definition of the value of a continuous function at a point of its domain: see
a later comment on this issue). More precisely, to a dyadic real number ±x ·X we
can associate the real number αX : N1 → D given by αX(n) := ±x · X[n]∗ (X[n]
denotes the first n bits of X), and BTFA is able to prove that every real number α
(according to Definition 2) is equal, as a real number, to a dyadic real number αX
(this is the hard part).

The arithmetical operations on the real numbers can be defined as follows:

- α+ β is the real number n α(n+ 1) + β(n+ 1)
- α− β is the real number n α(n+ 1)− β(n+ 1)
- α · β is the real number n α(n+ k) · β(n+ k), where k is the least tally

such that |α(0)|+ |β(0)|+ 2 ≤ 2k (the symbol · is usually omitted)
- α ≤ β is defined by the ∀Πb

1-formula ∀n(α(n) ≤ β(n) + 2−n+1)
- α < β is defined by the formula α ≤ β ∧ α 6= β (which is equivalent to a
∃Σb1-formula)

- |α| is the real number n |α(n)|,
and it is possible to prove (in BTFA) that the real numbers form an ordered field.

By ∀α ∈ R (. . .) or α ∈ [β, γ] we abbreviate ∀α (if α is a real number then . . . )
or α is a real number and β ≤ α ≤ γ, respectively. Note that the language of BTFA
does not allow for the formation of sets of sets, and so R does not make literal sense
in BTFA. With this proviso, there plainly exists a natural embedding of D into R,
by identifying each dyadic rational number x with the real number αx defined by
the constant function αx(n) = x, for all n ∈ N1.

In the following definition (x, n)Φ(y, k) can informally be seen as stating that
the elements in the interval ]x− 2−n, x+ 2−n[ are applied under Φ into elements of
the interval [y − 2−k, y + 2−k].

Definition 3. A continuous partial function from R to R is a set Φ of codes of
quintuples (denoted by 〈w, x, n, y, k〉) satisfying:

- if 〈w, x, n, y, k〉 ∈ Φ then w is a first-order element, x, y ∈ D, n, k ∈ N1

- if (x, n)Φ(y, k) and (x, n)Φ(y′, k′) then |y − y′| ≤ 2−k + 2−k
′

- if (x, n)Φ(y, k) and (x′, n′) < (x, n) then (x′, n′)Φ(y, k)
- if (x, n)Φ(y, k) and (y, k) < (y′, k′) then (x, n)Φ(y′, k′),

where (x, n)Φ(y, k) stands for ∃w 〈w, x, n, y, k〉 ∈ Φ and (x′, n′) < (x, n) abbreviates

|x− x′|+ 2−n
′
< 2−n.

The above definition follows closely Simpson’s definition of continuous function
in the context of reverse mathematics. Simple examples of continuous functions (as
sets of quintuples) can be given, like the constant functions, the identity function,
the modulus of a function, and the sum and product of two functions (cf. [11] for
details). Now we present some standard definitions:

- Let Φ be a continuous partial function from R to R. A real number α is in
the domain of Φ, denoted by α ∈ dom(Φ), if

∀k ∈ N1∃n ∈ N1∃x, y ∈ D (|α− x| < 2−n ∧ (x, n)Φ(y, k)).
- Let Φ be a continuous partial function from R to R, and let α be a real

number in the domain of Φ. We say that a real number β is the value of α
under the function Φ, denoted by Φ(α) = β, if

∀x, y ∈ D ∀n, k ∈ N1((x, n)Φ(y, k) ∧ |α− x| < 1
2n → |β − y| ≤

1
2k

).
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In BTFA it is possible to prove that if Φ is a continuous partial function from R
into R and α ∈ dom(Φ), then there is a unique real number β satisfying Φ(α) = β
(the uniqueness condition is easy to check and, of course, it refers to uniqueness
with respect to equality of reals). The proof of this fact (see [11] pages 569-572)
is very detailed and sensitive, making a strong use of classical logic. It is worth
remarking that the real-number theoretic relations Φ(α) = β and Φ(α) ≤ β are
given by ∀Πb

1-formulas, while the relation Φ(α) < β is given by a ∃Σb1-formula.

Theorem 4. Let Φ be a continuous function total in the interval [0, 1] such that
Φ(0) < 0 < Φ(1). Then there is a real number α ∈ [0, 1] such that Φ(α) = 0.

Proof. If there is a dyadic rational number x ∈ [0, 1] such that Φ(αx) = 0, the
proof is done. Suppose this is not the case. Thus, the value of a dyadic rational
number in the interval [0, 1] under Φ is strictly positive or strictly negative. With
the comprehension available in BTFA it is possible to form the sets

X1 = {x : x ∈ D ∩ [0, 1] ∧ Φ(αx) < 0} and X2 = {x : x ∈ D ∩ [0, 1] ∧ Φ(αx) > 0}
Note that the formulas defining the sets above, say A1(x) and A2(x) respectively,
are both ∃Σb1-formulas and are such that ¬A1(x) is equivalent to A2(x)∨x /∈ D∩[0, 1]
and ¬A2(x) is equivalent to A1(x) ∨ x /∈ D ∩ [0, 1].

We now use a divide and conquer argument to construct a real number α such
that Φ(α) = 0. Let

f : N1 → D× D
n 7→ 〈f0(n), f1(n)〉

be the function, defined by bounded recursion along the tally part, by f(0) = 〈0, 1〉
and:

f(n+ 1) =

{
〈(f0(n) + f1(n))/2, f1(n)〉, if (f0(n) + f1(n))/2 ∈ X1;
〈f0(n), (f0(n) + f1(n))/2〉, otherwise.

By the induction on notation (for Σb1-formulas) available in BTFA, it is possible
to prove that, for all tally n, f0(n) ∈ X1, f1(n) ∈ X2, f0(n) ≤ f0(n + 1), f1(n) ≥
f1(n + 1), f0(n) < f1(n) and f1(n) − f0(n) = 2−n. But, then, f0 and f1 are real
numbers such that f0 = f1. With α = f0 = f1, we have that Φ(α) = 0. �

Within BTFA, we can speak of polynomials of tally degree. Given d ∈ N1, a
sequence (γ)i≤d of real numbers of length d+ 1 is a function

F : {i ∈ N1 : i ≤ d} × N1 → D

such that, for every i ≤ d, the function γi defined by γi(n) = F (i, n) is a real
number. A real polynomial P (X) of (tally) degree d is just such a sequence with
the proviso that γd 6= 0. As usual, we write P (X) = γdX

d+ · · ·+γ1X+γ0. It is not
difficult to define smoothly P (α), for each real number α. (Note that if d was not
tally then ad, for a ∈ N2, would not make sense in general because BTFA does not
prove that exponentiation is total. On the other hand ad, with a ∈ N2 and d ∈ N1,
is always a well-defined dyadic number.) It is even possible to show in BTFA that to
each tally polynomial P as described, we can associate a total continuous function
ΦP such that, for each real number α, ΦP (α) = P (α). As a very particular case of
this discussion, it makes sense to speak in BTFA of polynomials of standard degree
and to see that they are given by continuous functions in the sense of Definition 3.
It should now be clear, using the intermediate value theorem, that – as observed in
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the introduction – Tarski’s theory of real closed ordered fields RCOF is interpretable
in BTFA.

3. The role of weak König’s lemma

Given A a formula of L2 and x a first-order variable, we denote by Tree(Ax) the
formula:

∀x∀y (A(x) ∧ y ⊆ x→ A(y)) ∧ ∀n ∈ N1∃x (l(x) = n ∧A(x)).

The first condition expresses that initial subwords of words satisfying A still satisfy
A, and the second condition says that there are binary sequences that satisfy A of
arbitrarily large tally length (the tree given by the formula A(x) is infinite). Given
X a second-order variable, we denote by Path(X) the formula:

Tree((x ∈ X)x) ∧ ∀x∀y (x ∈ X ∧ y ∈ X → x ⊆ y ∨ y ⊆ x).

Weak König’s lemma for trees defined by bounded formulas, denoted by Σb∞-WKL,
is the following scheme:

Tree(Ax)→ ∃X (Path(X) ∧ ∀x (x ∈ X → A(x))),

where A is a bounded formula and X is a fresh variable. Informally it says that
every infinite binary tree (defined by a bounded formula) has an infinite path. Note
that, while the tree needs not to be a set in the system, the path is a set.

Theorem 5. BTFA + Σb∞-WKL is Π1
1-conservative over BTFA.

A consequence of this theorem is that the class of provably total functions (with
Σb1-graphs) of BTFA + Σb∞-WKL is still the class of polytime computable functions.
Even though BTFA + Σb∞-WKL has the same proof-theoretic strength as BTFA,
weak König’s lemma is a useful form of a compactness principle that increases the
demonstrative power of BTFA. In what follows, we denote by Πb

1-WKL the Σb∞-WKL
scheme restricted to Πb

1-formulas. By WKL we denote the Σb∞-WKL scheme above
restricted to sets i.e., to formulas A(x) of the form x ∈ X.

Definition 6 (BTFA). An open set of R is a set U of codes of triples of the form
〈w, z, n〉 such that w is a first-order element, z ∈ D and n ∈ N1. We say that a real
number α is an element of U , and we write α ∈ U , if

∃z ∈ D ∃n ∈ N1 (|α− z| < 1

2n
∧ ∃w 〈w, z, n〉 ∈ U).

The formulation of open set may appear unfamiliar at first sight, but it merely
says that the open sets of R are given by countable unions of the form⋃

w

⋃
z,n

〈w,z,n〉∈U

]z − 1

2n
, z +

1

2n
[.

The Heine/Borel theorem for the closed unit interval says that if U is an open
set such that [0, 1] ⊆ U (i.e., every real number in the closed unit interval is an
element of U), then there is k ∈ N1 such that: For all α ∈ [0, 1], there are w, z ∈ D,
n ∈ N1, all of length less than k, such that |α− z| < 1

2n and 〈w, z, n〉 ∈ U .

Theorem 7 (BTFA). The Heine/Borel theorem for [0, 1] is equivalent to Πb
1-WKL.
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We are not going to prove this result here. The proof adapts well-known ar-
guments of reverse mathematics and the details can be found in [12]. Instead, we
will try to convey to the reader the need of Πb

1-WKL instead of just plain WKL.
How does the argument from the right side to the left side goes? It hinges on
considering a tree given by a formula T (x) of the form ∀y (〈x, y〉 ∈ X), for a certain
set X. The tree is proven to be bounded by contradiction. If it were infinite, it
would have an infinite path and this gives rise to absurdity. Now, and this is the
critical point, how can we conclude from the infinitude of the tree that it has an
infinite path? It is well-known that we can associate to the above tree T (x) the
tree T ′(x) :≡ ∀w ⊆ x∀y � x (〈w, y〉 ∈ X). Moreover, T ′ is infinite if T is, and any
path through T ′ is also a path through T . We apply weak König’s lemma to T ′.
This tree is defined by a Πb

1-formula, and this is why plain WKL is not enough in
the feasible setting. Over RCA0 the problem does not arise because the formulas in
the comprehension scheme of RCA0 are closed under bounded quantifications.

The above result shows the need for fine-tuned versions of weak König’s lemma
when doing reverse mathematics over a feasible base theory.

Definition 8. Let Φ : [0, 1]→ R be a continuous total function. We say that Φ is
uniformly continuous if

∀k ∈ N1∃m ∈ N1∀α, β ∈ [0, 1](|α− β| ≤ 1
2m → |Φ(α)− Φ(β)| < 1

2k
).

Proposition 9. (BTFA) Let Φ : [0, 1] 7→ R be a uniformly continuous function.
Then there is n ∈ N1 such that, for all α ∈ [0, 1], |Φ(α)| ≤ 2n.

Proof. Take m ∈ N1 such that if |α − β| ≤ 2−m then |Φ(α) − Φ(β)| < 1, for
α, β ∈ [0, 1]. It is easy to see, by bounded collection, that there is r ∈ N1 such that
∀x (`(x) = m→ |Φ(.x∗)| < 2r). Since every real in the closed unit interval is within
2−m of a certain .x∗ for x of length m, it is clear that n = r + 1 does the job. �

In the next result there is a gap that we are unable to fill.

Theorem 10 (BTFA). The principle that every total real valued continuous func-
tion defined on [0, 1] is uniformly continuous implies WKL and is implied by Πb

1-WKL.

Proof. To prove the first assertion, suppose that WKL is not valid. Take T an
infinite binary (set) tree which has no infinite paths. In BTFA it is possible to
prove that there is a total continuous function Φ, defined on [0, 1] such that, for all
end nodes x of T , we have Φ(·x∗) = 2l(x) (see [12], pages 5-6 for a proof of a more
general result). Since T has nodes of arbitrarily large length, Φ is unbounded. This
contradicts Proposition 9.

To prove the second assertion we reason within BTFA + Πb
1-WKL. Let Φ be a

(total) real valued continuous function on [0,1] and fix k ∈ N1. Let U be the open
set defined by {〈〈w, y〉, x, n+1〉 : 〈w, x, n, y, k+2〉 ∈ Φ}. Since Φ is a total function,
it can be proved that [0, 1] ⊆ U . By Theorem 7, we have the Heine/Borel theorem.
Thus, there is m ∈ N1 such that: For all α ∈ [0, 1], there are x, y ∈ D, n ∈ N1, all
of length less than m, such that |α − x| < 1

2n+1 and (x, n)Φ(y, k + 2). We claim

that, for all α, β ∈ [0, 1], if we have |α − β| ≤ 1
2m then |Φ(α) − Φ(β)| < 1

2k
. Take

α, β as in the claim. Take x, y ∈ D and n ∈ N1 with n <N1 m, |α − x| < 1
2n+1 and

(x, n)Φ(y, k + 2). By definition of continuous function, we have |Φ(α)− y| ≤ 1
2k+2 .

Now, |β−x| ≤ |β−α|+|α−x| < 1
2m + 1

2n+1 ≤ 1
2n . Hence, by definition of continuous

function again, |Φ(β)−y| ≤ 1
2k+2 . We conclude that |Φ(α)−Φ(β)| ≤ 1

2k+1 <
1
2k

. �
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Before we finish this section with a last result, we need to make some brief con-
siderations concerning induction. The induction available in BTFA is induction on
notation for Σb1-formulas. In BTFA we can introduce, in a natural way, a successor
function S defined by: S(ε) = 0, S(x0) = x1 and S(x1) = S(x)0, i.e., we order the
binary words according to length and, within the same length, lexicographically,
and S is the successor function induced by this order (usually denoted by ≤l, l for
lexicographic order).

The scheme of “slow” induction is A(ε) ∧ ∀x (A(x) → A(S(x))) → ∀xA(x),
where A is a Σb1-formula. It corresponds to the usual +1 scheme of induction in
ordinary theories of arithmetic (it gives Buss’s theory T 1

2 ). This scheme does not
seem to be available in BTFA (in [24] it is shown that if this is the case – actually if
Buss’s theories S1

2 and T 1
2 are the same – then the polytime computable hierarchy

collapses).

Theorem 11. Over BTFA + Σb∞-WKL, the following are equivalent:

(a) Every continuous real valued function defined on [0, 1] has a maximum.
(b) Every continuous real valued function defined on [0, 1] has a supremum.
(c) Slow induction for Σb1-formulas.

See [12] for a detailed proof. Here we just sketch the strategy to prove that
(b) implies (c). We consider (c) in the following (BTFA equivalent) formulation:
every non-empty set of binary words of equal length has a lexicographically greatest
element. It is easy to construct a piecewise linear continuous real valued function
Φ defined on [0,1] such that, if x ∈ X then Φ(·x∗) = ·x∗, and if x /∈ X then
Φ(·x∗) = 0. By hypothesis (b), Φ has a supremum, from which we can extract
the desired maximum. The proof that (c) implies (a) is much more involved and
requires (first) the formation of an infinite tree defined by a Π0

1-formula so that an
infinite path Y through it satisfies ∀α ∈ [0, 1](Φ(α) ≤ ·Y ) and (second) to prove,
using Σb∞-WKL again, that there is α ∈ [0, 1] such that Φ(α) = ·Y .

4. A brief digression on the Baire category theorem

Let us consider in BTFA the following formulation of the Baire category theorem
for the Cantor space:

∀z∀a∃x(a ⊆ x ∧A(x, z))→ ∃X(Path(X) ∧ ∀z∃x (x ∈ X ∧A(x, z)),

where A is an arithmetical formula (possibly with first and second-order param-
eters). The above scheme says that if an arithmetical formula A(x, z) defines a
countable family DA

z := {x : A(x, z)} of dense open sets in the Cantor space, then
there is a path X intersecting all these sets. Let us call Π0

∞-BCT this form of the
Baire category theorem. It is well-known that RCA0 + Π0

∞-BCT is Π1
1-conservative

over RCA0. This was shown by Simpson and Douglas Brown in [4] using Cohen forc-
ing. Fernandes asked in [9] whether the theory BTFA +Π0

∞-BCT is Π1
1-conservative

over BTFA. The answer is negative by a wide margin:

Theorem 12. The theory BTFA + Π0
∞-BCT proves the totality of exponentiation.

Remark 1. We will use the fact that in BTFA the totality of exponentiation can
be formulated in the following manner: ∀a∃c∀z � a (z ⊆∗ c). See [15].

Proof. We reason within BTFA + Π0
∞-BCT. Clearly, ∀z∀a∃x (a ⊆ x ∧ z ⊆∗ x). By

Π0
∞-BCT, there is an infinite path X such that ∀z∃x (x ∈ X ∧ z ⊆∗ x). Let us now
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show that exponentiation is total. Consider an arbitrary element a. Since we have
∀z � a∃x (x ∈ X ∧ z ⊆∗ x), by bounded collection we know that there is b such
that ∀z � a∃x � b (x ∈ X ∧ z ⊆∗ x). Now, take c such that c ≡ b (c has the same
length as b) and c ∈ X. It is clear that ∀z � a (z ⊆∗ c). We are done. �

The above proof is implicit in the final section of [9], but it is brought here into
the open for the first time. The use of bounded collection in the above argument is
crucial. The situation seems to be different if bounded collection is not included. In
fact, Takeshi Yamazaki in [28] and Fernandes in [9] studied Π0

∞-BCT over a feasible
theory weaker than BTFA. The weaker second-order theory that they considered is
Σb1-NIA +∇b1-CA, where ∇b1-CA is the following comprehension scheme:

∀x (A(x)↔ B(x))→ ∃X∀x (x ∈ X ↔ A(x)),

where A is a Σb1-formula and B is a Πb
1-formula (possibly with first and second-order

parameters) and X is a fresh variable. This theory allows only the formation of
NP ∩ co-NP sets and does not include bounded collection. Yamazaki showed that
Σb1-NIA+∇b1-CA+Π0

∞-BCT is Π1
1-conservative over Σb1-NIA+∇b1-CA and Fernandes

improved this conservation result to include uniqueness statements of the form
∀X∃!Y A(X,Y ), for A arithmetical. Their proofs also use Cohen forcing. Brown
and Simpson showed that Cohen forcing preserves Σ0

1-induction but, as follows from
Theorem 12, Cohen forcing does not preserve bounded collection (at least in the
absence of the totality of exponentiation). On the other hand, Harrington’s forcing
preserves both bounded collection and Σ0

1-induction.

5. Riemann integration and the theory TCA2

How far can we go in the formalization of analysis in feasible systems? In [17] it
is shown that if we are able to do a minimum of integration in BTFA, then it fol-
lows that we can count. This looks unsurprising. Given X ⊆ N2, we can associate
(within BTFA) a continuous total function ΦX : [0,∞[→ R, with a modulus of uni-
form continuity (see Definition 20), in such a way that, given w ∈ N2,

∫ w
0

ΦX(x)dx
is the number of elements of X up to w. For instance, if X = {0, 2, 3} then ΦX is
the function:

-
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There are, however, some technical difficulties in pulling the above argument
through in BTFA. The difficulties can, nevertheless, be met: see [17].
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As mentioned in the introduction, in her doctoral dissertation (in Portuguese)
G. Ferreira showed in detail how Riemann integration can be developed in a theory
whose class of provably total functions is the hierarchy of counting functions (a
computational complexity class between PTIME and PSPACE). The theme is also
the subject of the paper [19]. In the rest of this section we are going to sketch
why/how such formalization is possible, focusing on the logical problems of the
formalization.

By ∃X � t A we abbreviate the formula ∃X(X � t∧A), where X � t means that
every word in X has length less than or equal to the length of t. The abbreviation
∀X � t A has the corresponding dual meaning. These are the bounded second-order

quantifiers. The Σ1,b
1 -formulas (respectively Π1,b

1 -formulas) are the formulas of the
form ∃X � t A, (respectively ∀X � t A) where A is bounded formula. A Σ1,b

∞ -
formulas is a formula of L2 where all the first and second-order quantifications are
bounded. This class of formulas constitutes a natural generalization of the bounded
formulas.

Before presenting the counting axiom, which is crucial in our theory for integra-
tion, let us motivate it. Informally, given X � w and y � w we want to be able to
count the number of elements ≤l y which are in X. Let f be such that f(ε) = ε, if
ε /∈ X, f(ε) = 0, if ε ∈ X, and

f(S(x)) =

{
f(x) if S(x) /∈ X
S(f(x)) if S(x) ∈ X

It is clear that f(y) gives the result (in the ≤`-order) of the above counting.
Formally, the counting axiom has the form:

∀X � w∃C � q(w) Count(C,X),

where q(w) is a certain term which depends on the variable w (for the record, the
term q(w) can be taken to be wwww1111, cf. [21]), and Count(C,X) is a bounded
formula (we omit it) which says the following: given y � w, 〈y, j〉 ∈ C if and only
if f(y) = j. For the formulation of the axiom, with the exact expression for Count,
see [19, 21]. It is easy to see that this counting axiom also permits to do counting
with the result given in N2. This is the usual counting and it is this counting that
we will use from now on.

Definition 13. TCA2 (acronym for Theory for Counting Arithmetic) is the second-
order theory in the language L2 which has the following axioms:

• Basic axioms (the previous 14 basic axioms of Definition 1);
• Induction on notation for bounded formulas

A(ε) ∧ ∀x (A(x)→ A(x0) ∧A(x1))→ ∀xA(x),

with A a bounded formula (first and second-order parameters are permitted);
• Substitution for bounded formulas (This is a technical axiom scheme that

permits a kind of “permutation” between a bounded first-order universal
quantification and a bounded second-order existential quantification. See

[19] for its formulation. This axiom is instrumental in showing that Σ1,b
1 -

formulas are provably closed under bounded first-order quantifications. A

dual property holds for Π1,b
1 -formulas. We use these properties without

much ado.);
• Counting axiom

∀X � w∃C � q(w) Count(C,X)
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• Extended bounded collection scheme (B1Σ1,b
∞ )

∀X � w∃yA(y,X)→ ∃z∀X � w∃y � zA(y,X),

where A is a Σ1,b
∞ -formula (possibly with first and second-order parameters)

and z is a new variable;
• Recursive comprehension scheme

∀x (∃yA(x, y)↔ ∀zB(x, z))→ ∃X∀x (x ∈ X ↔ ∃yA(x, y))

where A is a Σ1,b
1 -formula and B is a Π1,b

1 -formula (possibly with first and
second-order parameters) and X is a fresh variable.

The class of provably total functions of TCA2 with Σ1,b
1 -graphs is exactly the

computational complexity class FCH. For a proof of this result see [21, 22]. For a
general blueprint of how to construct theories for weak analysis related to concrete
computational complexity classes see [13]. (The FCH class consists of the hierarchy
of counting functions. It is a computational complexity class which lies between
PTIME and PSPACE introduced by Klaus Wagner [27] in 1986. More precisely, FCH
is
⋃
i≥0 i#P, where 0#P = P and (i + 1)#P = #Pi#P, for i ≥ 0, i.e. (i + 1)#P

is the class of functions that “count” the number of accepting computations in a
polynomial time nondeterministic Turing Machine, permitting a function in i#P
as an oracle.)

Before we start developing Riemann integration, we need to lay out a proposition
indicating the forms of induction and minimization that are available in TCA2. We
will use them at will.

Proposition 14. The following is provable in TCA2 (cf. [21]):

• induction on notation for ∆1,b
1 -formulas,

• plain (+1) induction on N2 for ∆1,b
1 -formulas,

• the minimization scheme ∃xA(x) → ∃x (A(x) ∧ ∀y <l x¬A(y)), for ∆1,b
1 -

formulas A.

A crucial step towards integration is the ability to sum. It is not difficult to see
that the ability of counting is sufficient to perform sums. Informally, we want to
show that given f : X×N2 → D there is (in TCA2) a function

∑
f : X×N2 → D such

that
∑
f (x, n) = f(x, 0) + . . .+ f(x, n).

∑
f (x, n) will be denoted by

∑n
i=0 f(x, i).

We start with a preliminary lemma.

Lemma 15. Let f be a function from X × N2 to N2. Then there is a function
g : X × N2 → N2 such that ∀x ∈ X∀n ∈ N2∀i ≤ n (f(x, i) ≤ g(x, n)).

Proof. Let us fix x ∈ X and n ∈ N2. By bounded collection it is easy to see that
∃r∀i ≤ n (f(x, i) ≤ r). Let φ be the bounded formula ∀i ≤ n (f(x, i) ≤ r). Since
∀x ∈ X∀n ∈ N2∃r ∈ N2 φ(x, n, r), we can apply minimization and have

∀x ∈ X∀n ∈ N2∃r (φ(x, n, r) ∧ ∀r′ < r¬φ(x, n, r′)).

Thus g := {〈〈x, n〉, r〉 : x ∈ X ∧ n ∈ N2 ∧ r ∈ N2 ∧ φ(x, n, r) ∧ ∀r′ < r¬φ(x, n, r′)}
is a function from X × N2 to N2 satisfying the desired condition. �

Theorem 16. Given f : X×N2 → N2, there is a function Σf : X×N2 → N2 such
that ∀x ∈ X∀n ∈ N2 [Σf (x, 0) = f(x, 0) ∧ Σf (x, n+ 1) = Σf (x, n) + f(x, n+ 1)].
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Proof. Given x ∈ X and n ∈ N2, let Z be the set

{u : ∃i, r � u (u = 〈r, i〉 ∧ i ≤ n ∧ r < f(x, i))},
where we suppose that the pairing function (in N2) is monotone (in the sense of �)
in both arguments and is such that r, i � 〈r, i〉. Informally, the idea is that Σf (x, n)
is the number of elements in Z. Note that from Lemma 15, there is a function g
such that u ∈ Z → u � 〈g(x, n), n〉, i.e., Z is a bounded set. Let w := 〈g(x, n), n〉.
By the counting axiom in N2, for a concrete term q(w) there is C � q(w) such that
〈u, j〉 ∈ C iff there are j elements in N2 less than or equal to u in Z. Let P (Z)
abbreviate: ∀u � w (u ∈ Z ↔ ∃i, r � u (u = 〈r, i〉 ∧ i ≤ n ∧ r < f(x, i))). Take Σf
as

{〈〈x, n〉, s〉 : x ∈ X∧n ∈ N2∧∃Z � w∃C � q(w) (P (Z)∧Count(C,Z)∧〈w, s〉 ∈ C)}.

It can be seen that the set Σf exists in TCA2. This uses the counting axiom and the
recursion comprehension scheme. Note that the latter condition above is equivalent
to ∀Z � w∀C � q(w) (P (Z) ∧ Count(C,Z) → 〈w, s〉 ∈ C). Clearly, Σf defines a
function satisfying the desired conditions. �

It is not difficult to see that the above result can be extended and the following
proposition proved:

Proposition 17. Given f : X ×N2 → D, there is a function Σf : X ×N2 → D s.t.
Σf (x, 0) = f(x, 0) and Σf (x, n+ 1) = Σf (x, n) + f(x, n+ 1), ∀x ∈ X,∀n ∈ N2.

Note that the relation z =
∑n
i=0 f(x, i) is ∆1,b

1 -definable. The usual properties
of summations can be proved by plain induction on n ∈ N2. We will not make a
list of them and assume that the new notations that will occur in the computations
below can be given a straightforward sense in TCA2. All the details can be found
in G. Ferreira’s doctoral dissertation [21].

Given α a real number and n ∈ N1, the dyadic rational number α(n) is well
determined. Note that the formula α(n) =D d is a bounded formula, since it
abbreviates 〈n, d〉 ∈ α. However, given Φ a continuous partial function from R to
R and α ∈ dom(Φ), although the expression Φ(α) is well-defined, the expression
Φ(α)(n) is ambiguous. This is because Φ(α) is only defined modulo equality of
the reals. In order to control the complexity of the formula which defines the
integral, it is necessary to introduce the expression Φ(α, n) that gives a canonical
representative of Φ(α). This is possible to do in TCA2 but apparently not in BTFA
(because of lack of minimization).

Let Φ be a continuous partial function from R to R and α a real number in the
domain of Φ. Consider ϕ(n, r) the formula

∃w∃k [〈w,α(k + 1), k, r, n+ 1〉 ∈ Φ∧

∀〈r′, w′, k′〉 < 〈r, w, k〉 (〈w′, α(k′ + 1), k′, r′, n+ 1〉 /∈ Φ)].

It can be proved that, given n ∈ N1, there exists a unique r ∈ D such that
ϕ(n, r). The proof of this result (see [19], pages 926–927) uses minimization.

Definition 18. Given Φ a continuous partial function from R to R and α a real
number in the domain of Φ, we define Φ(α, n) = r :↔ ϕ(n, r).

Note that Φ(α, n) is the unique dyadic rational number such that ϕ(n,Φ(α, n))
and that {〈n, r〉 : Φ(α, n) = r} is a set in TCA2.
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Proposition 19. Let Φ be a continuous partial function from R to R and let
α ∈ dom(Φ). The function λ : N1 → D defined by λ(n) = Φ(α, n) is a real number.
Moreover, for every real number β such that Φ(α) = β, we have |Φ(α, n)−β| ≤ 1

2n .
In particular, Φ(α) = λ.

The theory TCA2 can formalize Riemann integration for functions with a mod-
ulus of uniform continuity.

Definition 20. Let Φ : [0, 1] → R be a continuous total function. A modulus
of uniform continuity (m.u.c.) for Φ is a strictly increasing function h from N1

to N1 such that for all n ∈ N1 and for all α, β ∈ [0, 1], if |α − β| < 2−h(n) then
|Φ(α)− Φ(β)| < 2−n.

In order to simplify notation, we start by introducing the notion of Riemann
integral for functions restricted to the interval [0, 1].

Definition 21. Take Φ a continuous total function in the interval [0, 1], with a
modulus of uniform continuity h in that interval. We define the definite integral

between 0 and 1 of Φ, denoted by
∫ 1

0
Φ(t) dt, in the following way:∫ 1

0

Φ(t) dt :=R limSn

where, for all n ∈ N1, Sn =
∑2h(n)−1
i=0

1
2h(n) Φ( i

2h(n) , n).

Note that, f : N1×N2 → D, defined by f(n, i) = 1
2h(n) Φ( i

2h(n) , n) is a function in

TCA2. Also observe that it is possible to consider sums of the form
∑2h(n)−1
i=0 f(n, i),

for f a function from N1 × N2 to D. In fact,
∑2h(n)−1
i=0 f(n, i) = Σf (n, 2h(n) − 1).

Of course, we need to make sense of the limit above. One way to do this is to
develop a theory of limits within TCA2 and prove that Cauchy sequences, with a
modulus of Cauchy convergence, have limits. This is done in [21]. In here we rely
on the fact (also proved in [21]) that α defined by α(n) = Sn+5 is a real number.
We just let the above limit to be α. It can be proved (see [21], pages 122–123) that
the value of the integral (as a real number) does not depend on the function chosen
as a modulus of uniform continuity.

Some of the usual properties of the integral can be established in TCA2 (see [21],
pages 123–126). For instance:

Proposition 22. Let Φ and Ψ be continuous total functions in the interval [0, 1]
with a modulus of uniform continuity in that interval and γ ∈ R:

a)
∫ 1

0
γ dt = γ

b)
∫ 1

0
t dt = 1

2

c)
∫ 1

0
(Φ + Ψ)(t) dt =

∫ 1

0
Φ(t) dt+

∫ 1

0
Ψ(t) dt

d) |
∫ 1

0
Φ(t)dt| ≤

∫ 1

0
|Φ|(t)dt

e) If Φ(t) = Ψ(t) for all t ∈ [0, 1] then
∫ 1

0
Φ(t) dt =

∫ 1

0
Ψ(t) dt

f) If Φ(t) ≤ Ψ(t) for all t ∈ [0, 1] then
∫ 1

0
Φ(t) dt ≤

∫ 1

0
Ψ(t) dt

g)
∫ 1

0
γΦ(t) dt = γ

∫ 1

0
Φ(t) dt.

We can (as we sketch next) introduce the notion of Riemann integral with arbi-
trary dyadic rational limits in an analogous way.
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Definition 23. Take x, y ∈ D such that x < y and Φ a continuous total function
in the interval [x, y], with a modulus of uniform continuity h in that interval. We
define the integral between x and y of Φ, we denote by

∫ y
x

Φ(t) dt, in the following
way: ∫ y

x

Φ(t) dt :=R limSn

where, for all n ∈ N1, Sn =
∑2h(n)−1
i=0

y−x
2h(n) Φ(x+ (y−x)i

2h(n) , n).

With this definition, we have similar properties to those of Proposition 22. Note
that Sn is obtained by taking a partition of [x, y] with diameter y−x

2h(n) . Such par-
titions are designated by standard partitions. The definition of integral is robust
in the following (expected) sense: it does not depend upon the choice of points in
the subintervals of the partitions nor on the adjunction of new points to the stan-
dard partitions. Such is crucial in proving the following property (see [21], pages
128–129):

Proposition 24. Take z a dyadic rational number such that x < z < y and Φ
a continuous total function in [x, y] with a modulus of uniform continuity in that
interval, then ∫ z

x

Φ(t) dt+

∫ y

z

Φ(t) dt =

∫ y

x

Φ(t) dt.

Given Φ a continuous total function in [0, 1] with a modulus of uniform continuity
h, we will define Ψ, a continuous total function in [0, 1], such that Ψ(x) =

∫ x
0

Φ(t) dt
for all dyadic rational number x ∈ [0, 1]. By Proposition 9, take m ∈ N1 such that
∀α ∈ [0, 1], |Φ|(α) ≤ 2m. Consider d : D→ D the function defined by d(x) = 0, for
x < 0; d(x) = x, for 0 ≤ x ≤ 1; and d(x) = 1, for x > 1. We define (x, n)Ψ(y, k) as:

x, y ∈ D ∧ n, k ∈ N1 ∧

∣∣∣∣∣
∫ d(x)

0

Φ(t) dt− y

∣∣∣∣∣ < 1

2k
− 1

2n−m−1
.

The formula above is equivalent to a ∃Σb∞-formula of the form ∃wθ′(w, x, n, y, k),
with θ′ bounded. The set {〈w, x, n, y, k〉 : θ′(w, x, n, y, k)} is officially the function
Ψ.

We can prove (see [21], pages 130–131) the following result:

Proposition 25. Let Ψ be the set of quintuples, as defined above. This set is a
partial continuous function from R to R. Moreover, if α ∈ [0, 1] then α ∈ dom(Ψ)
and, for all dyadic rational number r in [0, 1], Ψ(αr) =

∫ r
0

Φ(t) dt.

Given Φ a continuous total function in [0, 1] with a modulus of uniform continuity
in that interval, Ψ is the indefinite integral of Φ. Note that, although the function
Ψ, as a set, depends on the tally m chosen, the images of the reals in [0, 1] under
Ψ do not depend, as reals, on such a choice. Therefore, although rigorously the
indefinite integral of Φ may be given by different sets of quintuples, we can indeed
speak of the indefinite integral function.

The previous proposition permits to give a meaning to
∫ α

0
Φ(t)dt also for real

numbers α ∈ [0, 1]. We can easily define
∫ β
α

Φ(t)dt, for α, β ∈ [0, 1] by taking an
appropriate difference (the definite integral with real upper and lower limits can,
more generally, be defined by approximations, as it is shown in [21]). Propositions
22 and 24 extend to integrals with real limits.
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Definition 26. Let Φ be a continuous total function in [0, 1], α ∈ [0, 1] and β ∈ R.
β is the derivative of Φ at α, written Φ′(α) = β, if

∀n ∈ N1∃m ∈ N1∀h 6= 0 (0 ≤ α+h ≤ 1∧|h| < 1

2m
→ |Φ(α+ h)− Φ(α)

h
−β| ≤ 1

2n
).

Definition 27. Let Φ and Ψ be continuous total functions in [0, 1]. We say that
Φ is the derivative of Ψ if Φ(α) = Ψ′(α), ∀α ∈ [0, 1].

Theorem 28 (The fundamental theorem of calculus). If Φ is a continuous total
function in [0, 1] with a m.u.c. and Ψ is such that Ψ(α) =

∫ α
0

Φ(t) dt,∀α ∈ [0, 1],
then Φ is the derivative of Ψ.

Proof. The usual proof of the theorem goes through in TCA2. Take α ∈ [0, 1]. Let
us prove that, if Φ is a continuous total function in [0, 1] with a m.u.c. and Ψ is
a continuous total function in [0, 1] such that Ψ(α) =

∫ α
0

Φ(t) dt,∀α ∈ [0, 1], then
Φ(α) = Ψ′(α), i.e., given n ∈ N1 there is m ∈ N1 such that

∀h 6= 0
(
0 ≤ α+ h ≤ 1 ∧ |h| < 1

2m
→ |Ψ(α+ h)−Ψ(α)

h
− Φ(α)| ≤ 1

2n
)
.

Consider p a m.u.c. for Φ. Given n ∈ N1, take m := p(n). Let h 6= 0 be such that
0 ≤ α+h ≤ 1∧|h| < 1

2m . Since p is a m.u.c. for Φ, we have |Φ(α)−Φ(α+k)| < 1
2n

for all k such that |k| ≤ |h|.
If 0 < h, we have h(Φ(α)− 1

2n ) ≤
∫ α+h

0
Φ(t) dt−

∫ α
0

Φ(t) dt ≤ h(Φ(α) + 1
2n ) and

if h < 0 we know that h(Φ(α) + 1
2n ) ≤

∫ α+h

0
Φ(t) dt−

∫ α
0

Φ(t) dt ≤ h(Φ(α)− 1
2n ).

Therefore, in each case, Φ(α)− 1
2n ≤

∫ α+h
0

Φ(t) dt−
∫ α
0

Φ(t) dt

h ≤ Φ(α)+ 1
2n . We proved

that |
∫ α+h
0

Φ(t) dt−
∫ α
0

Φ(t) dt

h − Φ(α)| ≤ 1
2n , i.e., |Ψ(α+h)−Ψ(α)

h − Φ(α)| ≤ 1
2n . �

6. Three questions in weak analysis

6.1. Integration in BTFA. In weak systems of second-order arithmetic the rep-
resentation of analytic notions is of great importance. The notion of continuous
function given in Definition 3 is based on the definition which appears in ordinary
studies of reverse mathematics. We saw in Section 5 that the theory TCA2 is able
to develop a decent theory of Riemann integration for continuous functions with a
modulus of uniform continuity. As explained in the beginning of that section, the
availability of counting is also a necessary condition for this development. How-
ever, continuous functions can be represented in other ways. These different ways
coincide in set theory, but in weak systems they need not be equivalent. For in-
stance, Takeshi Yamazaki presents in [29] an alternative definition. Essentially, a
continuous function (on a closed bounded interval) for Yamazaki is defined as the
uniform limit (given by a modulus of uniform convergence) of piecewise-linear con-
tinuous functions (N.B. With this definition, he proves in the referred paper some
theorems of reverse mathematics). Another alternative would be to replace in Ya-
mazaki’s definition the piecewise-linear functions by polynomials (see the end of
Section 2). It seems to us that with this new definition one could develop a theory
of integration in BTFA that encompasses a good class of functions, including the
most important transcendental functions (like the sine and cosine functions). Since
integration of polynomials can be done via primitivations, the idea is that integra-
tion lifts to functions (suitably) approximated by polynomials. The project is clear
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but its implementation may face some technical difficulties. So, the problem is the
following:

Problem: To develop in BTFA a good theory of integration for a sufficiently
robust class of continuous functions.

6.2. Weierstrass approximation theorem. In the previous problem, we sug-
gested that continuous functions (on a closed bounded interval) could be defined
as uniform approximations of polynomials. Weierstrass approximation theorem en-
sures that we indeed obtain all the continuous functions (in ordinary set-theoretic
mathematics). Is this also the case in BTFA? In other words, can we prove Weier-
strass approximation theorem in BTFA? We do not offer a precise statement of the
question, but we insist that by a continuous function we mean a total continuous
function, as given by Definition 3, with a modulus of uniform continuity. The an-
swer should be negative because, otherwise, this would entail that we could count in
BTFA (if the previous problem has a positive solution). We actually have a stronger
conjecture:

Conjecture: Over BTFA, Weierstrass approximation theorem is equivalent to the
totality of the exponential function.

The right-to-left direction should be doable by formalizing in BTFA + exp a suit-
able proof of Weierstrass approximation theorem. Note that BTFA + exp is equiv-
alent to Elementary Arithmetic (cf. [1]). The left-to-right conjecture is based on
the following informal considerations. For each tally number n, we can consider in
BTFA the (very oscillating) continuous function (in the sense of Definition 3) de-
fined on the interval [0,1] as follows: It is the piecewise-linear (continuous) function
Φn that, on the numbers of the form x

2n+1 (with 0 ≤ x ≤ 2n+1), takes the value
0 if x ≡ 0 (mod 4), takes the value 1 if x ≡ 1 (mod 4) and takes the value −1 if
x ≡ 3 (mod 4). A polynomial Pn(X) sufficiently close to Φn must have at least 2n

roots and, hence, must be of degree at least 2n. Now, our polynomials are of tally
degree. The statement that for each tally number n, the number 2n is also tally is
equivalent to the totality of exponentiation.

6.3. Cantini’s conjecture. The scheme of strict Π1
1-reflection, denoted by sΠ1

1-ref
is

∀X∃xA(X,x)→ ∃w∀X∃x � wA(X,x),

where A(X,x) is a bounded formula, possibly with first and second-order parame-
ters. This scheme is a set-theoretic truth and is closely related with weak König’s
lemma. The beginning of chapter VIII of Jon Barwise’s book [2] is a good in-
troduction to these matters and, from the arguments in there, one can extract the
following fact: over RCA0, the principles WKL and sΠ1

1-ref are equivalent (the equiv-
alence even holds in BTFA+exp). In [6], Andrea Cantini considered the principle of
strict Π1

1-reflection over the base theory BTFA. He showed that BTFA + sΠ1
1-ref is

a Π0
2-conservative extension of Σb1-NIA (Fernandes has extended this result in [10]).

Therefore, the class of provably total functions (with Σb1-graphs) of BTFA + sΠ1
1-ref

is still the class of polytime computable functions. Cantini also showed that, over
BTFA, the principle sΠ1

1-ref implies Σb∞-WKL and conjectured the following:

Conjecture: Over BTFA, Σb∞-WKL implies sΠ1
1-ref.

Our formulation of strict Π1
1-reflection is different from the one in Cantini but,

in fact, it is an equivalent formulation in the presence of bounded collection BΣb∞.



20 ANTÓNIO M. FERNANDES, FERNANDO FERREIRA, AND GILDA FERREIRA

Still, Cantini’s conjecture as presented in [6] is not exactly the one given above.
Cantini’s original formulation is seemingly a bit stronger because it has the theory
Σb1-NIA+∇b1-CA in place of BTFA (see Section 4 for the nabla principle). Do notice,
however, that Σb1-NIA +∇b1-CA + Σb∞-WKL proves BΣb∞ (cf. [16]). In fact, there is
a close relationship between forms of weak König’s lemma and forms of bounded
collection.

Let the principle of extended strict Π1
1-reflection be the generalization of the

scheme of sΠ1
1-ref by allowing Σ1,b

∞ -formulas in the schematic position A (see Section
5 for this class of formulas). This is the scheme considered in section 7 of our tryptic
paper [13], where it is shown that BTFA together with extended strict Π1

1-reflection
proves B1Σ1,b

∞ (see Section 5 for this form of bounded collection).

Theorem 29. The theory BTFA with extended strict Π1
1-reflection is conserva-

tive over BTFA + B1Σ1,b
∞ with respect to formulas without second-order unbounded

quantifiers.

A sketch of the proof of this result appears in [13]. It uses a Harrington forcing
argument in which the forcing conditions are binary trees, taken in a certain gen-
eralized sense. This kind of forcing appeared originally in the doctoral dissertation
of Fernandes [8].

The above discussion shows that there is a tight connection between extended
strict Π1

1-reflection and B1Σ1,b
∞ . It is the same sort of connection that exists between

Σb∞-WKL and BΣb∞. The principle sΠ1
1-ref falls between Σb∞-WKL and extended

strict Π1
1-reflection. In [10], Fernandes was able to isolate a principle (implied

by B1Σ1,b
∞ ) that must be provable in BTFA if Cantini’s conjecture is true. This

principle, as opposed to sΠ1
1-ref, does not have unbounded second-order quantifiers.

The authors believe that Cantini’s conjecture is false.

References

[1] J. Avigad. Number theory and elementary arithmetic. Philosophia Mathematica, 11(3):257–

284, 2003.

[2] J. Barwise. Admissible Set Theory and Structures: An Approach to Definability Theory.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1975.

[3] V. Brattka, A. Kawamura, A. Marcone, and A. Pauly. Executive Summary of Measuring the

Complexity of Computational Content. In Dagstuhl Reports, volume 5, pages 77–78, 9 2015.
Dagstuhl Seminar 15392.

[4] D. Brown and S. Simpson. The Baire category theorem in weak subsystems of second-order

arithmetic. The Journal of Symbolic Logic, 58(2):557–578, 1993.
[5] S. R. Buss. Bounded arithmetic. PhD thesis, Princeton University, 1985. A revision of this

thesis was published by Bibliopolis (Naples) in 1986.
[6] A. Cantini. Asymmetric interpretations for bounded theories. Mathematical Logic Quarterly,

42(1):270–288, 1996.
[7] S. Cook and A. Kawamura. Complexity theory for operators in analysis. A.C.M. Transactions

on Computation Theory, 4(2):5:1–5:24, 2012.
[8] A. M. Fernandes. Investigações em sistemas de análise exeqúıvel (in Portuguese). PhD thesis,

Universidade de Lisboa, 2001.
[9] A. M. Fernandes. The Baire category theorem over a feasible base theory. In Stephen Simpson,

editor, Reverse Mathematics 2001, volume 21 of Lecture Notes in Logic, pages 164–174. A K
Peters, Massachusetts, 2005.

[10] A. M. Fernandes. Strict Π1
1-reflection in bounded arithmetic. Archive for Mathematical Logic,

49:17–34, 2010.

[11] A. M. Fernandes and F. Ferreira. Groundwork for weak analysis. The Journal of Symbolic
Logic, 67(2):557–578, 2002.



ANALYSIS IN WEAK SYSTEMS 21

[12] A. M. Fernandes and F. Ferreira. Basic applications of weak König’s lemma in feasible anal-

ysis. In Stephen Simpson, editor, Reverse Mathematics 2001, volume 21 of Lecture Notes in

Logic, pages 175–188. A K Peters, Massachusetts, 2005.
[13] A. M. Fernandes, F. Ferreira, and G. Ferreira. Techniques in weak analysis for conservation

results. In P. Cégielski, C. Cornaros, and C. Dimitracopoulos, editors, New Studies in Weak

Arithmetics, volume 211 of CSLI Lecture Notes, pages 115–147. CSLI Publications, 2013.
[14] F. Ferreira. Polynomial time computable arithmetic and conservative extensions. PhD thesis,

The Pennsylvania State University, USA, 1988.

[15] F. Ferreira. Binary models generated by their tally part. Archive for Mathematical Logic,
33:283–289, 1994.

[16] F. Ferreira. A feasible theory for analysis. The Journal of Symbolic Logic, 59(3):1001–1011,

1994.
[17] F. Ferreira and G. Ferreira. Counting as integration in feasible analysis. Mathematical Logic

Quarterly, 52(3):315–320, 2006.
[18] F. Ferreira and G. Ferreira. Harrington’s conservation theorem redone. Archive for Mathe-

matical Logic, 47(2):91–100, 2008.

[19] F. Ferreira and G. Ferreira. The Riemann integral in weak systems of analysis. Journal of
Universal Computer Science, 14(6):908–937, 2008.

[20] F. Ferreira and G. Ferreira. Interpretability in Robinson’s Q. The Bulletin of Symbolic Logic,

19:289–317, 2013.
[21] G. Ferreira. Sistemas de Análise Fraca para a Integração (in Portuguese). PhD thesis, Uni-

versidade de Lisboa, 2006.

[22] G. Ferreira. The counting hierarchy in binary notation. Portugaliae Mathematica, 66:81–94,
2009.

[23] G. Ferreira and I. Oitavem. An interpretation of S1
2 in Σb

1-NIA. Portugaliae Mathematica,

63(4):427–450, 2006.
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(F. Ferreira) Departamento de Matemática, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Ed. C6, 1749-016, Lisboa, Portugal

E-mail address: fjferreira@fc.ul.pt
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