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Abstract Leo Harrington showed that the second-order theory of arithmetic
WKL0 is Π1

1 -conservative over the theory RCA0. Harrington’s proof is model-
theoretic, making use of a forcing argument. A purely proof-theoretic proof,
avoiding forcing, has been eluding the efforts of researchers. In this short paper,
we present a proof of Harrington’s result using a cut-elimination argument.
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1 Introduction

The language of second-order arithmetic is a two-sorted language, with a
numerical sort whose terms are intended to denote natural numbers, and a
second-order sort whose variables are intended to range over subsets of the
natural numbers. Numerical terms are built up as usual from first-order vari-
ables and from function symbols for the primitive recursive functions. The
atomic formulas are of the form t = q, t ≤ q and t ∈ X, where t and q are
numerical terms, and X is a second-order variable. RCA0 denotes the clas-
sical theory consisting of quantifier-free axioms regulating the function and
relation symbols, the induction scheme restricted to Σ0

1 -formulas and the re-
cursive comprehension scheme:
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∀x(F (x) ↔ ¬G(x)) → ∃X∀x(x ∈ X ↔ F (x)),

where F and G are Σ0
1 -formulas (Σ0

1 -formulas are either bounded formulas
or formulas of the form ∃xF0, where F0 is a bounded formula, and in which
parameters of both sorts may occur). This theory, a variation of which is de-
scribed in detail in [19], plays a prominent role in the studies of Reverse Math-
ematics where it is usually taken as the base theory over which the strength of
ordinary theorems of mathematics is gauged. It has also the following conspic-
uous property: It is Π0

2 -conservative over (the first-order version of) Skolem’s
primitive recursive arithmetic. This result is originally due to Charles Parsons
(see [16]; more information on this matter can be found in [9]). The theory
WKL0 is obtained from RCA0 by adjoining weak König’s lemma:

∀T (T is an infinite binary tree → ∃X(X is an infinite path through T )).

Even though the above axiom is non-constructive in character (e.g., there
are recursive infinite binary trees with no recursive infinite paths through
them), Harvey Friedman reported in [12] that WKL0 is still Π0

2 -conservative
over primitive recursive arithmetic. Nowadays there are several proofs of this
result in the literature: e.g., [17], [18], [14] (also in [2]), [19] and [10]. Leo
Harrington (unpublished result) strengthened Friedman’s conservation result
by showing that WKL0 is, in fact, Π1

1 -conservative over RCA0:

Theorem 1 (Harrington) Suppose that WKL0 proves the sentence ∀XF (X),
where F is a first-order formula. Then RCA0 already proves ∀XF (X).

Harrington’s proof is model-theoretic, using a forcing construction (the
proof has now been published in Simpson’s book [19]). A purely proof-theoretic
proof of Harrington’s result has been actively sought and, in the process, some
subtle proof-theoretic matters have been clarified (see [15]). One such proof
has indeed been found, namely Avigad’s proof in [1] where he is able to for-
malize Harrington’s forcing argument within RCA0 (obtaining, as a result, nice
non speed-up results). Our paper presents a proof that bypasses the forcing
argument and which is based on a direct analysis of suitable normal proofs of
Π1

1 -sentences in WKL0. It is a subsidy in showing that proof-theoretic meth-
ods are a flexible and powerful lot and, also, in fostering an appreciation of
Harrington’s conservation result for those not familiar with forcing arguments.

The proof of Harrington’s conservation result given below uses the Free-
Cut Elimination Theorem for an appropriate sequent calculus. In Section 2,
we reformulate the theory WKL0 in the sequent calculus and, conspicuously,
state weak König’s lemma by way of its contrapositive: the so-called FAN0

theorem. This is the FAN theorem of intuitionistic mathematics stated in the
context of second-order arithmetic for bounded matrices:

∀X∃xF0(X,x) → ∃w∀X∃x ≤ wF0(X,x),

where F0 is a bounded formula (possibly with parameters of both sorts). Notice
two things. Firstly, the FAN theorem is intuitionistically acceptable (at least
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for Brouwerian intuitionists) while weak König’s lemma is not (in our setting
we may replace one by the other because our logic is classic). Secondly, even
though the general FAN theorem is not classically true, the above restricted
version (where the matrix F0 is bounded) is classically valid, being classically
equivalent (as we pointed) to weak König’s lemma. In Section 3, we present
the proof of Harrington’s result. Finally, in the last section we comment on
the role of the general FAN theorem in the intuitionistic setting. The upshot is
that a natural formulation of Harrington’s theorem in the intuitionistic setting
does not hold.

2 The framework of the sequent calculus

The aim of this section is to reformulate the theory WKL0 in the sequent calcu-
lus. We bypass fine points regarding the precise set-up of the sequent calculus
and, rather, direct the reader to [6], [5] and [20] concerning these matters.
Following [5], we adopt bounded quantifications as a primitive syntactic device
and, concurrently, uphold the bounded quantifier rules of the sequent calculus.
The non-logical initial sequents consist of the usual (closed under term sub-
stitution) quantifier-free sequents regulating the relation ≤ and the function
symbols associated with the (descriptions of the) primitive recursive functions.
Instead of the axioms for Σ0

1 -induction we have the rule:

Γ, F (a)→F (a + 1)
Ind

Γ, F (0)→F (t)

where F is a Σ0
1 -formula, a is an Eigenvariable, and t is a term (see [5] and

[20] for the notion of ‘Eigenvariable’). In the standard formulation of the above
rule, side formulas Δ are also permitted in the right-hand side of the sequents,
but it is easy to see that we can do without them (this observation also applies
to the formulation of the FAN rule below). Concerning the second-order part
of the language, we have the following rules:

Γ, F (V )→Δ
∀2left

Γ,∀XF (X)→Δ

Γ→Δ,F (A) ∀2right
Γ→Δ,∀XF (X)

where V is a (set) abstract for a bounded formula and A is a (second-order)
Eigenvariable. (See Takeuti’s book [20] for the notion of ‘abstract’; NB: there
are notational differences between our setting and Takeuti’s). The sequent cal-
culus also includes similar (dual) rules for the existential second-order quanti-
fier. Since we permit abstracts for bounded formulas in the (∃2right) rule, it is
straightforward to see that sequents of the form →∃X∀x(x ∈ X ↔ F (x)), for
F a bounded formula, are derivable. In other words, our rules for second-order
quantification allow us to prove comprehension for bounded formulas. Thus,
the above sequent calculus is a reformulation of the theory RCA−

0 , obtained
from RCA0 by replacing the Δ0

1-comprehension scheme by the weaker scheme
of bounded comprehension.
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The following proposition is clear. It is easily proved by induction on the
complexity of the formula F0:

Proposition 1 Let F0(A, b) be a bounded formula with a distinguished second-
order parameter A and with the first-order parameters b as shown. We can
effectively associate a term tF0(b), with its free variables as shown, such that
the theory RCA−

0 proves:

∀s ∈ {0, 1}tF0 (b)
(∀x < tF0(b)(x ∈ A ↔ sx = 0) → (F0(A, b) ↔ F ∗

0 (s, b))
)
,

where s ∈ {0, 1}tF0 (b) means that s is a binary sequence of length tF0(b), sx

is the value of the sequence s at point x (having default value 0 if x is not
less than the length of s), and F ∗

0 is obtained from F0 by replacing its atomic
subformulas of the form q ∈ A by the expression sq = 0.

We now add the following FAN rule to our calculus:

Γ→∃xF0(A, x, b)
Fan0

Γ→∃v∀s ∈ {0, 1}t(v,b)∃x ≤ vF ∗
0 (s, x, b)

where F0 is a bounded formula, A is a Eigenvariable and the term t(v, b) is
the term associated (according to the previous proposition) to the bounded
formula ∃x ≤ vF0(A, x, b). Note that the formula following the quantification
∃v above is a bounded formula. The rule entails that under the supposition
that ∀X∃xF0(X,x, b) we may conclude ∃v∀X∃x ≤ vF0(X,x, b), for bounded
formulas F0. We are using the above proposition at this point. In sum, the
above rule entails FAN0.

Proposition 2 The theories RCA−
0 + FAN0 and WKL0 are the same.

Proof. It is sufficient to show that RCA−
0 +FAN0 proves the Δ0

1-comprehension
scheme because FAN0 entails (classically) weak König’s lemma (over RCA−

0 ),
and vice-versa. Suppose that ∀u(∃yF0(u, y) ↔ ∀zG0(u, z)), where F0 and G0

are bounded formulas. We claim that

∀w∃X∀x ≤ w∀u, y, z ≤ x((F0(u, y) → u ∈ X) ∧ (u ∈ X → G0(u, z))).

Given w we just take, by bounded comprehension,

X := {u : ∃y ≤ w F0(u, y)}.
Now, by FAN0, we may conclude that

∃X∀x∀u, y, z ≤ x((F0(u, y) → u ∈ X) ∧ (u ∈ X → G0(u, z))),

and this entails the desired result. 	
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3 The new proof

Suppose that WKL0 proves the sentence ∀XF (X), with F a first-order formula.
Then there is a proof of the sequent →F (X) in the sequent calculus LKFAN

described in the previous section. By the Free-Cut Elimination Theorem (see
[6], [5] and also Chapter 9 of [4] and [20] for second-order systems) there is a
free-cut free proof of →F (X) in this sequent calculus (the notion of ‘free-cut’
must be adapted by also declaring that every direct descendent of the principal
formula of a (Fan0) inference is anchored). Since the principal formulas of the
(Ind) and (Fan0) rules are Σ0

1 and since the abstracts are given by bounded
formulas, we conclude that there is a proof of →F (X) in LKFAN in which
the cut rule applies only to Σ0

1 -formulas. As a consequence, this proof has no
occurrences of second-order quantifiers. Disregarding the order of the formulas,
every sequent in the proof has the form

(�)
{

Γ,∃w1H1(w1, A), . . . ,∃wnHn(wn, A)→
Δ,∃y1G1(y1, A), . . . ,∃ymGm(ym, A)

where:

a. the Hs and the Gs are bounded formulas (we admit the absence of the
existential quantifiers ∃wi or ∃yj in order to accommodate plain bounded
formulas in the above sequent);

b. there are no Σ0
1 -formulas in Γ or Δ;

c. the tuple A displays exactly the second-order parameters which occur in
the Hs or in the Gs without occuring neither in Γ nor in Δ. These are
called the special parameters of the sequent;

d. we are not displaying other (first or second order) parameters. In particular,
we are not displaying second-order parameters that occur in Γ or in Δ (and
which may concurrently occur in the Hs or in the Gs).

If the (Fan0) rule is not applied in the normal proof then, of course,
∀XF (X) is a theorem of RCA−

0 . Otherwise, it occurs for a first time in some
branch of the proof tree. At this point we need a lemma. Let LKRCA−

0
be the

sequent calculus LKFAN minus the (Fan0) rule:

Lemma 1 Let be given a proof of a sequent of the form (�) in the sequent
calculus LKRCA−

0
. Suppose further that this proof is normal in the following

sense: every cut formula is a Σ0
1 -formula; and, no formula of the proof has

second-order quantifiers. Under these conditions, the theory RCA−
0 proves

{
Γ ∧ ¬Δ → (∀w1 . . . ∀wn∃v∀A(H1(w1, A) ∧ . . . ∧ Hn(wn, A) →

∃y1 ≤ vG1(y1, A) ∨ . . . ∨ ∃ym ≤ vGm(ym, A))
)
.

If this is shown then, when we arrive at the top sequent of a (first) appli-
cation of the (Fan0) rule, RCA−

0 proves

Γ (b) → ∀w∃v∀A(H1(w1, b) ∧ . . . ∧ Hn(wn, b) → ∃x ≤ vF0(A, x, b)),
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where we are not showing any special parameters besides A. Note that A is an
Eigenvariable and only shows up in the auxiliary formula of the (Fan0) rule.
Note, also, that the universal quantifications over the other special parameters
(variables) can safely cross over the quantifier ∃v. We are displaying the first-
order parameters that appear in the auxiliary formula (and which may appear
elsewhere). Hence, RCA−

0 proves

Γ (b) ∧ ∃w1H1(w1, b) ∧ . . . ∧ ∃wnHn(wn, b) → ∃v∀A∃x ≤ vF0(A, x, b).

As a consequence, the theory RCA−
0 proves the conditional whose an-

tecedent is Γ (b)∧∃w1H1(w1, b)∧ . . .∧∃wnHn(wn, b) and whose consequent is
∃v∀s ∈ {0, 1}t(v,b)∃x ≤ vF ∗

0 (s, x, b), where the term t is as in the (Fan0) rule.
We have arrived at the conclusion of a first application of the (Fan0) rule

in a normal proof in LKFAN via a proof in LKRCA−
0

(of course, we may take the
latter as a normal proof, in the sense of Lemma 1). If we repeat this procedure
enough times, we arrive at a (normal) proof of →F (X) in LKRCA−

0
. Hence,

the theory RCA0 (actually, RCA−
0 ) already proves the sentence ∀XF (X).

It remains to prove the lemma. At various points, the proof of the lemma
makes appeal to the so-called bounded collection scheme BΣ0

1 :

∀x ≤ a∃y F0(x, y) → ∃z∀x ≤ a∃y ≤ z F0(x, y),

where F0 is a bounded formula (vide comments on this issue after the proof be-
low). As it is well known, bounded collection is a consequence of Σ0

1 -induction.

Proof of the Lemma. The proof is by induction on the depth of the
sequents appearing in the given normal proof. There is nothing to prove re-
garding initial sequents, since they are quantifier-free. One must check that
the induction hypothesis is carried over by every rule of LKRCA−

0
. We will do

this for some distinguished cases, namely for the (∃≤left), (∀left), (Ind) and
the cut rules. A complete checking can be found in [11] (note that the rules
for the second-order quantifiers never show up in a normal proof).

The (∃≤left) rule has the form

Γ, a ≤ t, F (a,A),∃wH(w,A)→Δ,∃yG(y,A)
Γ,∃x ≤ t F (x,A),∃wH(w,A)→Δ,∃yG(y,A)

where, for simplicity, we consider only one (bounded) formula H and one
bounded formula G, and where a is an Eigenvariable and t is a term. The
interesting case is when F is a bounded formula. In this case, A are the special
parameters (of both sequents). By induction hypothesis, the theory RCA−

0

proves the conditional whose antecedent is Γ ∧ ¬Δ and whose consequent is

∀a∀w∃v∀A(a ≤ t ∧ F (a,A) ∧ H(w,A) → ∃y ≤ v G(y,A)).

Fix w. Then ∀x ≤ t∃v∀A(F (x,A) ∧ H(w,A) → ∃y ≤ v G(y,A)). By Proposi-
tion 1, the subformula of the previous formula that begins with ∃v is equivalent
to a Σ0

1 -formula. Hence, by bounded collection BΣ0
1 ,
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∃v∀x ≤ t∀A(F (x,A) ∧ H(w,A) → ∃y ≤ vG(y,A)).

The conclusion of the induction step is an immediate consequence of the
above.

The study of the (∀left) rule is only interesting when the auxiliary formula
is Σ0

1 . In this case we have an inference of the form:

Γ,∃wH(w,A,B),∃xF (x, t, B)→Δ,∃yG(y,A,B)
Γ,∃wH(w,A,B),∀z∃xF (x, z,B)→Δ,∃yG(y,A,B)

under the usual conditions. Here t is a term, and we are distinguishing between
the special parameters which occur in the auxiliary formula (the parameters
B) and those that do not occur there (the parameters A). Note that the former
are no longer special parameters of the lower sequent. By induction hypothesis,
the theory RCA−

0 proves the conditional whose antecedent is Γ∧¬Δ and whose
consequent is

∀w∀x∃v∀A∀B(H(w,A,B) ∧ F (x, t, B) → ∃y ≤ v G(y,A,B)).

We reason inside RCA−
0 . Fix B′ and assume the conjunction of Γ with ¬Δ

and with ∀z∃xF (x, z,B′). Take x′ such that F (x′, t, B′). Fix w. It is now clear
that there is v such that ∀A(H(w,A,B′) → ∃y ≤ v G(y,A,B′)).

Consider the (Ind) rule:

Γ,∃wH(w,A),∃xF (x, a,A)→∃x′F (x′, a + 1, A)
Γ,∃wH(w,A),∃xF (x, 0, A)→∃x′F (x′, t, A)

under the usual conditions, and where a is an Eigenvariable and t is an arbi-
trary term. By induction hypothesis, the theory RCA−

0 proves the conditional
whose antecedent is Γ and whose consequent is

($) ∀a∀w∀x∃v∀A(H(w,A) ∧ F (x, a,A) → ∃x′ ≤ v F (x′, a + 1, A)).

Let us reason inside RCA−
0 . Assume Γ . Fix elements w and x. We claim

that, for all elements a,

∃v∀A(H(w,A) ∧ F (x, 0, A) → ∃x′ ≤ vF (x′, a, A)).

This solves our problem (instantiate a by t). The claim is proved by induc-
tion on a. Note that this induction is permissible because, by Proposition 1,
the above formula is equivalent to a Σ0

1 -formula. The base case a = 0 is clear.
To argue for the induction step, assume that there is v such that

∀A(H(w,A) ∧ F (x, 0, A) → ∃x′′ ≤ v F (x′′, a, A)).

By ($) we have:

∀x′′ ≤ v∃v′∀A(H(w,A) ∧ F (x′′, a, A) → ∃x′ ≤ v′F (x′, a + 1, A)).

By bounded collection BΣ0
1 , there is v′ such that,

∀x′′ ≤ v∀A(H(w,A) ∧ F (x′′, a, A) → ∃x′ ≤ v′ F (x′, a + 1, A)).
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It clearly follows that

∀A(H(w,A) ∧ F (x, 0, A) → ∃x′ ≤ v′F (x′, a + 1, A)).

Finally, we study the cut rule (with a Σ0
1 cut-formula). This rule says that

from the two sequents

Γ,∃wH(w,A)→Δ,∃yG(y,A),∃xF (x,A,B) and

∃xF (x,A,B), Γ,∃wH(w,A)→Δ,∃yG(y,A)

one can infer the sequent Γ,∃wH(w,A)→Δ,∃yG(y,A). We are distinguishing
the special parameters which only occur in the cut-formula (the parameters
B). By induction hypothesis, the theory RCA−

0 proves that Γ ∧ ¬Δ implies
both

∀w∃v1∀A(H(w,A) → ∃y ≤ v1 G(y,A) ∨ ∀B∃x ≤ v1 F (x,A,B)) and

∀w∀x∃v2∀A∀B(F (x,A,B) ∧ H(w,A) → ∃y ≤ v2 G(y,A)).

Let us fix w. Take v1 according to the first assertion above. An application
of bounded collection BΣ0

1 to the second assertion above yields v2 such that

∀B∀x ≤ v1∀A(F (x,A,B) ∧ H(w,A) → ∃y ≤ v2 G(y,A)).

It is now clear that ∀A(H(w,A) → ∃y ≤ max(v1, v2)G(y,A)) follows, as
wanted. 	


Let PRA2 be the theory obtained from RCA−
0 by replacing the Σ0

1 -induction
rule by the set induction axiom:

∀X(0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X) → ∀x(x ∈ X)).

In the sequent calculus, this axiom is replaced by the rule:
Γ, a ∈ X→a + 1 ∈ X

SetInd
Γ, 0 ∈ X→t ∈ X

where a is an Eigenvariable and t is a term. An inspection on the above proof
shows that the following theorem is true (the above rule poses no difficulty):

Proposition 3 Suppose that PRA2 + FAN0 proves the sentence ∀XF (X),
where F is a first-order formula. Then PRA2 + BΣ0

1 already proves it.

The inclusion of the bounded collection principle in the second theory above
is unavoidable because the theory PRA2 +FAN0 proves BΣ0

1 . This was noticed
in [8] (the precise setting was different). Observe that it is known that BΣ0

1

is not a consequence of PRA2 (cf. [13]). For weak theories of arithmetic and
analysis (i.e., in which the totality of exponentiation is not provable) one has
to be careful in formulating weak König’s lemma (or the FAN principle), and
tight relationships emerge between these formulations and various formulations
of bounded collection. On this regard, one should pay attention to the exact
formulation of weak König’s lemma in the feasible setting (see [8]), and to the
results in [7]. We may say with confidence that Harrington type theorems for
these weaker settings can also be proved with arguments based on the one
presented in this paper.
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4 Final considerations

Let FAN be the second-order principle

∀X∃xF (X,x) → ∃w∀X∃x ≤ w F (X,x),

where F is an arbitrary second-order formula. It is easy to see that the theory
RCA−

0 +FAN is classically inconsistent. We repeat here a well known argument
to the effect that one can prove intuitionistically in RCA−

0 + FAN the negation
of the classical truth ∀X(∀y(y ∈ X)∨ ∃x(x /∈ X)). Suppose that this classical
truth holds. Then, ∀X∃x(∀y(y ∈ X) ∨ x /∈ X). By FAN, there exists w such
that ∀X∃x ≤ w(∀y(y ∈ X) ∨ x /∈ X). This is clearly a contradiction: just
consider X = {x : x ≤ w}.

The theory RCA−
0 +FAN is, nevertheless, intuitionistically consistent. As a

matter of fact, a Friedman type conservation result holds for this theory:

Theorem 2 The intuitionistic version of RCA−
0 + FAN is Π0

2 -conservative
over primitive recursive arithmetic.

This result follows directly from work on a newly found functional inter-
pretation in [10]. In fact, the work on the new interpretation shows that one
can even join to the intuitionistic version of RCA−

0 +FAN the following classical
principles: Markov’s principle, a form of independence of premises for universal
antecedents and (surprisingly) both the lesser limited principle of omniscience
(cf. [3]) and weak König’s lemma.

It is natural to ask whether a Harrington type conservation result holds
in the intuitionistic setting. More precisely: Is intuitionistic RCA−

0 + FAN a
Π1

1 -conservative theory over RCA0? The answer is negative, even when RCA0

is conceived classically. The reason is simple:

Proposition 4 Intuitionistic RCA−
0 + FAN proves bounded collection for all

formulas of the language.

Now, if intuitionistic RCA−
0 + FAN were Π1

1 -conservative over RCA0 then
the latter theory would prove bounded collection for all arithmetical for-
mulas, a well-known falsity. In order to prove the proposition, assume that
∀x ≤ a∃yF (x, y). Let F †(X, y, a) be the formula ∃x(x = card{z ∈ X : z <
a} ∧ F (x, y)). It is clear that ∀X∃yF †(X, y, a). By FAN, there is w such that
∀X∃y ≤ w F †(X, y, a). This easily entails ∀x ≤ a∃y ≤ wF (x, y).
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