On the Relation Between Various Negative Trans-
lations
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Several proof translations of classical mathematics into intuitionistic (or even
minimal) mathematics have been proposed in the literature over the past cen-
tury. These are normally referred to as negative translations or double-negation
translations. Amongst those, the most commonly cited are translations due to
Kolmogorov, Godel, Gentzen, Kuroda and Krivine (in chronological order).
In this paper we propose a framework for explaining how these different trans-
lations are related to each other. More precisely, we define a notion of a (mod-
ular) simplification starting from Kolmogorov translation, which leads to a
partial order between different negative translations. In this derived ordering,
Kuroda, Krivine and Godel-Gentzen are minimal elements. A new minimal
translation is introduced.

1 Introduction

Several proof translations of classical mathematics into intuitionistic (or even mini-
mal) mathematics have been proposed in the literature over the past century. These
are normally referred to as negative translations or double-negation translations.
The first such translation is due to Kolmogorov [21] in 1925. He observed that
placing a double negation —— in front of every subformula turns a classically valid
formula into an intuitionistically valid one. Formally, defining

(AABXo = —=(AKo A BK9) pKo ;= =P, for P atomic
(AvB¥ = —=(AK v BK) (VxA)X = ~=VxAKe
A-Bf = =@k - Br)y @A = ~-3xaAke,
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one can show that A is provable classically if and only if AX° is provable intuition-
istically. Kolmogorov’s translation, however, was apparently not known to Godel
and Gentzen who both came up with similar translations [9, 10, 12] a few years
later. Gentzen’s translation (nowadays known as Godel-Gentzen negative trans-
lation [4, 18, 29]) simply places a double negation in front of atomic formulas,
disjunctions, and existential quantifiers, i.e.

(AABYC .= AGG A BGG PGG := =P, for P atomic
(AV B¢ = —=(AY% v BOO) (VxA)°C = VxASC
(A— B .= AGG - BGC (AxA)C = —-TxA%C,

As with Kolmogorov’s translation, we also have that CL + A if and only if IL +
AYC, where CL and IL stand for classical and intuitionistic logic, respectively.
Godel’s suggested translation was in fact somewhere in between Kolmogorov’s and
Gentzen’s, as it also placed a double negation in front of the clause for implication,
ie.

(A — B)%C = ~(A%F A -B9C) o) —=(A% — B9O).

In the 1950’s, Kuroda revisited the issue of negative translations [23], and proposed
a different (somewhat simpler) translation:

(AAB)g, = Agu/NBgy Pk, := P, for P atomic
(A \ B)Ku = AKu \% BKu (V'XA)KM = vx—'_‘AKu
(A= By, = Agu— Bru @xA)g, = AxAgu.

Let AK* := ==Ag,. Similarly to Kolmogorov, Godel and Gentzen, Kuroda showed
that CL + A if and only if IL + AX“, In particular, if A does not contain universal
quantifiers then CL + A if and only if IL + —=—A, since (-), is the identity mapping
on formulas not containing universal quantifiers. Finally, relatively recently, fol-
lowing the work of Krivine [22], yet another different translation was developed’,
namely

(AANB), := AgrV Bk, Pk, = =P, for P atomic
(A 4 B)Kr = AKr A BKr (VXA)Kr = 3xAKr
(A - B)Kr = _'Al(r A Bg, (HXA)Kr = _'HxﬂAKW

Letting AK" := Ak, we also have that CL + A if and only if IL + AX". This negative
translation in fact already appears implicitly in Shoenfield’s classical variant [30]
of Godel’s dialectica interpretation [13], as recently observed in [3, 31].

Throughout the paper this translation is going to be called “Krivine negative translation” as cur-
rently done in the literature (see [20, 31]) even though it should be better called Streicher-Reus transla-
tion. Although inspired by the Krivine’s work in [22] it is the syntactical translation studied by Streicher
and Reus [32] in a version presented in [3, 31] we are using here.
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More than translating CL into IL, it is well known that some negative transla-
tions produce embeddings of CL into minimal logic ML (i.e. intuitionistic logic
without ex-falso-quodlibet). More precisely

CLrA iff ML*r A%,

where * € {Ko,GG, Kr}, for instance. For Kuroda negative translation, however,
we only have CL + A iff IL v AX" (see [34]). Nevertheless, we observe that a
small change in Kuroda negative translation produces an embedding in ML. More
precisely, defining

(ANAB)ku = Auku N Buku Pk = P, for P atomic
(A 4 B)mKu = AmKu V Buku (va)mKu = vxﬁ_‘AmKu
(A - B)mKu = _'AmKu \4 BmKu (BXA)mKu = EIXAmKu

and letting A”K* := ——A,,x, we have CL + A if and only if ML + A"k We call the
translation (-)"X*, minimal Kuroda negative translation.

It is also known that all these translations into IL (or ML respectively) lead to
intuitionistically (or minimally) equivalent formulas, in the sense that, for instance,
AKo AGG AKu and A" are all provably intuitionistically equivalent. As such, one
could say that they are all essentially the same. On the other hand, it is obvious
that they are intrinsically different, some being much more expensive in terms of
negations than others. The goal of the present paper is to explain the precise sense
in which Godel-Gentzen, Kuroda (or minimal Kuroda) and Krivine translations
are systematic simplifications of Kolmogorov’s original translation, and show that,
in a precise sense, they are optimal (modular) translations of classical logic into
intuitionistic (or minimal) logic. A new optimal variant is discussed in Section 5
below.

Till Section 5 we develop our study in the more restricted framework of ML.
In Section 6, we show how our analysis can easily be adapted to the framework of
IL. Finally on Section 7, we discuss non-modular negative translations and some
future and related work.

For more comprehensive surveys on the different negative translations, with
more historical background, see [19, 20, 24, 33, 34].

Note. This is an extended version of our Classical Logic and Computation (CL&C)
workshop 2010 paper, which appeared in [6]. The main differences to the work-
shop version are that here all proofs are included, and the analysis of the negative
translations is first done over the weaker setting of minimal logic (rather than intu-
itionistic logic). Moreover, following a suggestion of Ulrich Kohlenbach, we judge
the optimality of the translations not just by the number of negations it introduces,
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but rather by the number of implications introduced (counting a negation as a par-
ticular form of implication).

1.1 Some useful results

Our considerations on the different negative translations is based on the fact that
formulas with various implications (note that negations are a particular kind of
implications) can be simplified to equivalent formulas with fewer implications. The
cases when this is (or is not) possible are outlined in the following lemma.

Lemma 1. The following equivalences are provable in ML:

1. ==(==AA-=B) e -—~(AAB) 9. ==(==A A ==B) & (=—A A ==B)
2. —==(=—=AV -==B) < ——~(AV B) 10. -—=(==A - —=B) & (=—A — —==B)
3. ==(==A > -=B) o -=(-AVB) 11. —=Vx-—-A & Vx--A

4. —=dx——-A & ——dxA

5. ==(=AA-B)e =(AV B) 12. =(==A A -=-B) & (-—A > =B)

6. —=—(=AV -B) e =(AAB) 13. —=(==AV —-=B) & (-A A =B)

7. —-—(=A > =B) o —~(-AAB) 14. —=(=—A — —=B) & (=—A A =B)

8. —Vx-A & -dxA 15. —3Jdx——A & Vx-A.

The following equivalences are provable in CL but not in IL (and hence not in ML):

16. —=Yx——A & —=VYxA 20. —=dx—--A & dx—-A

17. —=dx-A & —VxA 21. =Yx—-A & dx-A

18. —==(=-—=AV ==B) & (=—=AV ==B) 22. =(==A A—-=B) & (mAV =B)
19. —==(==A - —=B) & (=——=A V —=B).

The following equivalence is provable in IL but not in ML:
23, —|—|(—|—|A 4 —|—|B) Cd —|—|(A Ed B),

Proof. The fact that 1 — 15 are valid in ML are easy to show directly. Equiva-
lences 4, 8, 11, 15, which involve quantifiers, are in fact discussed in [16]. It is also
easy to see that 16 — 22 are classically valid. That 16 — 22 are not valid intuitionis-
tically can be shown by constructing different appropriate Kripke models or using
statements already known not to be provable in IL (see [33] pages 324 — 328 and
[35] pages 12, 75 — 86). 23 is shown to be provable in IL in [33] (page 9). See also
[34, 35]. Finally, we claim that =—(-—-A — —==B) — ==(A — B) is not provable
in ML. If it was we could replace falsity L by the formula A and the premise would
be ML-provable, whereas the conclusion would not as it becomes an instance of
Peirce’s law. O
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1.2 Logical framework

In the language of classical logic and minimal logic ML, we consider as primitive
the constants L, T, the connectives A, V, — and the quantifiers ¥ and 4. We write
—A as an abbreviation for A — L. Note that CL can be formulated using a proper
subset of the symbols we consider as primitive. It would be sufficient, for instance,
to consider the fragment {L,—,V, 3} or {L, —, A, V} (as adopted by Schwichten-
berg in [28]). Our choice of dealing directly with the full set {L, T, —, A, V,V,3}in
the classical framework has two main reasons: First, it emphasises which symbols
are treated in a similar or different manner in classical and minimal logic. Second,
in some embeddings of CL into ML we are going to analyse, the translations of cer-
tain formulas are syntactically different to the derived translations we would obtain
considering just a subset of primitive symbols. In fact, usually when we choose to
work with a subset of the logical connectives in classical logic, we are implicitly
committing ourselves to one of the particular negative translations.

2 Modular Translations

Let us first observe that all negative translations mentioned above are in general
not optimal — in the sense of introducing the least number of implications (count-
ing negations as implications) in order to turn a classically valid formula into a
minimally valid one. For instance, minimal Kuroda translation of a purely uni-
versal formula YxP(x) is =—~Vx——P(x), whereas Godel-Gentzen would give the
optimal translation Yx——P(x). On the other hand, for purely existential formulas
dxP(x) we have that Kuroda gives the optimal translation, whereas Godel-Gentzen
introduces unnecessary negations. The important property of all these translations,
however, is that they are modular, i.e. except for a single non-modular step applied
to the whole formula, the translation of a formula is based on the translation of its
immediate subformulas. The following definition makes this precise.

Definition 1 (Modular negative translations). We say that a translation (-)'" from
CL to ML is modular if there are formula constructors IL"(-,-) for O € {A,V, >},
Ig(‘, ) for Q € {V¥,3}, I£’(~) and IZ’(‘) called translation of connectives, quan-
tifiers, atomic formulas and the provability sign, respectively, such that for each
formula A of CL:

ATT = T (Ar))



6 G. FERREIRA AND P. OLIva

where (-)r, is defined inductively as:

(AAB), := I'"(Ar,,Br)) Pr, = II"(P), for P atomic
(A N B)Tr = I\I;V(ATr’ BTr) (va)Tr = I\Z;r(vaTr)
(A= B)y, := IY(Ar,Bry) @xA)r, = I(x,Ar).

A modular translation is called a negative translation if (i) A <¢L IZ "(Ar,) and (ii)
ML + I'"(Az,) whenever CL + A.2

For instance, Krivine negative translation is a modular translation with

I"(A,B) = AVB I8"(Py  := =P, for P atomic
IKrA,B) = AAB IKr(x,A) = IxA
IX"(A,B) = -AAB IKr(x,A) = -Vx-A

and IX7(A) := -A. Similarly, one can easily see how Kolmogorov, Godel-Gentzen,
and minimal Kuroda translations are also modular translations.

Definition 2 (Relating modular translations). We define a relation ~ between mod-
ular translations as follows: Given translations Ty and T, we define T\ ~ T, if the
following equivalences are valid in minimal logic:

IL'(A,B) ow 1A B) P ouw LXP)
Ij(cA)  om 13(xA) A ow 1P,

for all formulas A, B, and atomic formulas P, O € {A,V,—}and Q € {V,3}.

In other words, two modular translations are related via ~ if the corresponding
translations of connectives, quantifiers, atoms and provability are equivalent for-
mulas in ML. It is immediate that ~ is an equivalence relation. In what follows we
say that two modular translations are the same if they are in the same equivalence
class for the relation ~ (i.e. they are the same mod ~). When two translations
are not the same (in the previous sense), we say they are different. Two different
translations 7'} and 7, from CL to ML are said to be equivalent if for each for-
mula A, the two translations of A, namely ATt and ATz, are equivalent formulas
in ML. For instance, changing the clause for dxA in the Godel-Gentzen transla-
tion to (AxA)°C := =Vx-A%C does not change the interpretation, since we have
that =Vx—A is equivalent (in ML) to =—3xA. So, these would be just two ways
of writing the same translation. On the other hand, minimal Kuroda translation is
different from Godel-Gentzen’s since, for instance, we do not normally have that
15%(x,A) = VxA is equivalent, in minimal logic, to I;/X“(x, A) = Vx-=A.

2 A negative translation is usually assumed to satisfy a third condition (iii) IT"(A1,) e>mL B for some
B constructed from doubly negated atomic formulas by means of V, A, —, L; ensuring that all negative
translations are equivalent (see [33] for negative translations into IL).
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3 Simplifications

Noticing that the Godel-Gentzen negative translation could be reached (in a mod-
ular way) from Kolmogorov translation via equivalences in ML, arose the idea of
looking for a general strategy covering the standard negative translations.

Thus, our goal is to show that the different negative translations are obtained
via a systematic simplification of Kolmogorov translation. For that, we need the
concept of “simplification” we define below. Intuitively, the idea of a simplifica-
tion is to transform formulas into equivalent formulas in minimal logic with fewer
implications (counting negations also as implications) preserving the modularity of
the translation. The reason why our “metric of simplification” counts implications
instead of just negations is because the logical complexity of a formula increases
with the introduction of implications, as we view a negation as a particular form of
implication.

Definition 3 (Simplification from inside/outside). A simplification r from inside
is a set of transformations (at most one for each connective and quantifier) of the
following form:

~~(NAoNB) = N(N,AO'N,B)
—~0xNA = N(Q'xN,A),

where 0,0 € {A,V, =}, and Q, Q" € {VY, A}, N stands for a single or a double nega-
tion (same choice in all the set of transformations), and Ny and N, are negations
(possible none and not necessarily the same in all transformations) such that

(i) both sides are equivalent formulas in ML and

(ii) the number of implications (counting negations as implications) on the right
side is strictly smaller than on the left side.

A simplification r from outside is defined in a similar way replacing the shape of
the transformation before by

N(--Ao-—-B) = N;NAO'N,NB
NQx--A = (Q'xN,NA.

Intuitively, in the first case we are moving negations N outwards over the outer
double negation ——, whereas in the second case we are moving N inwards over
the inner ——. The moving of negations is done so that we reduce the number of
negations and implications on total while keeping the modularity of the translation.

Definition 4 (Maximal simplification). A simplification is maximal if
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(i) it is not properly included in any other simplification, i.e. including new
transformations for other connectives prevents the new set of being a simpli-
fication, and

(ii) it is not possible to replace O'", Q", Ny and N, so as to reduce the number
of implications (counting negations as implications) on the right side of any
transformation.

Intuitively, a simplification being maximal means that we can not get ride of
more negations/implications.

Proposition 1. Let ry and r, be the set of transformations:

~~(~—AA--B) S -—-(AAB) ~~(-AA-B) S =(AVB)
~~(-~AV-=B) = -—=(AVB) ~~(-AV-B) 3 —(AAB)
~~(=~A > --~B) B -=(=AVB) -=(-A—>-B) = =(=AAB)
~—~dx--A S oA, -V x-A 5 A,

respectively. The sets r| and r, are maximal simplifications from inside.

Proof. The transformations in | have the shape of transformations in a simpli-
fication from inside. Just take N := ==, N; := = in the third transformation, the
other N; and the N, as being the zero negations, and A™ = A, V1 := Vv, 5=V
and 3" := 1. Moreover they satisfy the conditions of decreasing the number of
implications (counting negations as implications) and of equivalence in ML (see
Lemma 1). Therefore r; is a simplification from inside. To see that r; is a max-
imal simplification note first that no two transformations for the same connective
are allowed in a simplification. Hence, any new transformation would have to have
——¥x--A on the left-hand side. Neither of the possible formulas for the right-hand
side (that we know have at most three negations): =—=VxA, -—¥Yx-A, -—3xA and
—-dx-A is equivalent in ML to the left-hand side. For -—¥xA see Lemma 1. So,
the set r; can not be included properly in any simplification. Secondly, in the three
transformations where N and N, are already zero no other choice of Ny, N>, A",
Vv and 3" would lead to fewer implications. In the third transformation the re-
duction of implications would just be possible if we replace the right-hand side by
—-(A A B) or =—(A V B). Neither of this two possibilities is a valid option because
we lose the required equivalence in ML. Therefore r; is a maximal simplification.
The case of r, can be analysed in a similar way, noticing that N := -, A2 := V,
V2= A, =»"2:= A and V" := 3. In this case the transformation for implication has
again N; := -, and alternatives introducing fewer implications would be —=(A A B)
and —(A Vv B). In each of the two cases we have no simplifications since none of the
formulas is equivalent to = —(—A — —B). O
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Proposition 2. Let r3 and ry be the set of transformations:

~~(-—AA--B) B -—AA--B —(-—AA--B) = --A— -B

A(-=A = =—B) B A — =B —(-—AV--B) = -AA-B

- S Vx--A, ~(=-A > -—B) > --AA-B
~Jx--A = Vx-A,

respectively. The sets ry and r4 are maximal simplifications from outside.

Proof. Taking N := ——, A? := A, -™:=— and V" := V, we see that the
shape of the transformations in the set r3 is compatible with the shape of the trans-
formations in a simplification from outside. Again, by Lemma 1, we have the
equivalences needed and the decreasing of implications also happens. Thus, r3 is a
simplification from outside. Possible extensions of this simplification would have
to have as left-hand side the formula —=—(=—A V —==B) or the formula ——3dx——A.
But the former formula is not equivalent in ML to any of the formulas =—A A =—B,
-=A V =-=B, ==A — —--B, ===A A ==B, ==A A ===B, ===A V =-=B and
—=A V =—-B. And the latter formula is not equivalent in ML to Yx——A, Vx——-A,
dx—-A, neither to Ax——-A (see Lemma 1). So the simplification can not be ex-
tended. In terms of introducing fewer implications the only transformation to anal-
yse is the one concerning implication. The two possible cases =—A A —=—B and
—=A V ==B are not equivalent to =—(——A — —==B). So r;3 is a maximal simplifica-
tion. The set r4 can be analysed in a similar way, this time taking N := -, A™* :=—
(Ny := ), V* := A, »™:= A (N] := —) and 3™ := V. Concerning maximality, by
Lemma 1, we know that =Vx——A is not equivalent in minimal logic to dx—A, so
we can not extend the simplification. And it is not possible to reduce the number
of implications because neither =(=—A A ==B) nor =(-—A — —-B) is equivalent
in ML to a formula with two implications, i.e. of the shape ~AO—-B with O equal
to A or V and —~(—-—A A —-B) is also not equivalent to any formulas with three
implications: -—=AV -=B,-AV -=B, =-=A A =B, -A A ==Band -A — —=B. O

Proposition 3. The simplifications ry, r», r3 and ry4 are the only maximal simplifi-
cations.

Proof. Considering the potential simplifications from outside that are maxi-
mal, we can have two cases N := —— or N := —. In the first case, as can be
noticed from the proof of Proposition 2, transformations with left-hand side equal
to =—=(—=—A V ==B) or ~—3Jx--A can never appear in the simplification. Since in
r3 we have Ny = N, = no negations, for A, — and V, other maximal simplification
would have to have other choices for O, Ny, N, for those transformations keeping
the number of implications. Obviously changing the connectives in A and V we
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lose the equivalences. In the transformation for —, all the other possible formulas
with five implications on the right-hand side are not equivalent in ML to the for-
mula =—(=—=A — —-B) (see Lemma 1). So r3 is the only maximal simplification
from outside with N := ——. In the second case (N := —) we already know that a
transformation with left-hand side of the form —Vx——A never occurs. We can also
check that the only possibilities for the transformations of A, vV, — and 3 giving
rise to equivalences in ML (with a minimum number of implications) are the ones
in r4. So ry4 is the only maximal simplification from outside when N := —.

Similarly, considering the potential simplifications from inside that are maxi-
mal, we can also divide them into two cases: N := ——- or N := -. In the case
N := —--, as showed in the proof of Proposition 1, no transformation with left-
hand side of the form —-—Vx——A can appear. For A, V, and 3 any transformation
in a maximal simplification has to have N, N,’s introducing no negations. Note
that this happens with r;. With this restriction on negations, we can check that
the transformations for these connectives presented in r; are the only possibilities
for a maximal simplification. For —, we already know that any transformation
in a maximal simplification should have three implications. The alternatives are
-=(A = B), ==(-A V B), ==(=A A B), =—=(A A =B) and =—=(A V =B). Obviously,
the last three formulas are not equivalent in ML to =—=(=—=A — —-B) and since the
first one is equivalent to =—(—=—A — —=B) in IL but not in ML (see Lemma 1), we
conclude that the only possible choice is the one in r;. Thus 7 is the only maximal
simplification from inside with N := —-.

In the case N := -, and since r, is a maximal simplification, we know that no
transformation with left-hand side of the form ——3x—A can appear. For A, V and ¥
since the transformation in r, add no negations nor implication (apart from the one
corresponding to N), any other transformation in a maximal simplification has to
add no negations or implications either. Because the two sides of a transformation
have to be equivalent over ML, the only possibilities are, in fact, the ones in r,. The
transformation that has left-hand side of the form -—(—A — —B), as we proved in
Proposition 1, has to have a right-hand side with exactly two implications. Easily
we can see that the only possible choice for Ni, N, and O is =(N{AQ N,B) :=
—(=A A B), which is exactly the transformation for — in r,. Thus r; is the only
maximal simplification from inside when N := . O

4 Kolmogorov Simplified
Definition 3 identifies a class of transformations which can be applied to Kol-

mogorov negative translation without spoiling the modularity property of the trans-
lation. We now present standard ways of simplifying Kolmogorov translation via

10
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the maximal (or proper subsets of the maximal) simplifications introduced above.

Definition 5 (Simplification path). Applying a simplification to a formula A con-
sists in changing the formula through successive steps, applying in each step a
transformation allowed by the simplification (i.e. transforming a subformula hav-
ing the shape of the left-hand side of the transformation by the corresponding right-
hand side), till no longer be possible to simplify the expression via that simplifica-
tion. We call the path of formulas starting in A we obtain this way a simplification
path.

Note that every step in a simplification path acts over a particular connective
or quantifier and all formulas in a simplification path are equivalent formulas in
ML. The process of applying a simplification is not unique and can lead to different
formulas. Nevertheless, all simplification paths are obviously finite since in each
step the number of implications is decreasing. From now on, we consider that all
simplification paths start with formulas in Kolmogorov form (i.e. formulas of the
form AX?).

Definition 6 (Length of simplification path). The length of a simplification path P,
denoted s(P), is the number of steps in P, or equivalently the number of nodes in P
minus one, where by node we refer to each formula in P.

Clearly, it is not true that two simplification paths with the same length lead to
the same formula, i.e. have the same final node. For instance, consider applying
simplification r; to the formula below in two different ways:

—|ﬁ(—|—|(—|—|A A —|ﬁB) A —|ﬁ3x—|ﬂA)

7 N

—|—|(—|—|(—|—\A A —|—|B) A —|—|E|_XA) —|—|(—|—|(A A B) A —|—|E|x—|—|A)

~~((==A A ==B) A 3xA) ~~((A A B) A Jx—-A)

Nevertheless, we prove that if a simplification is maximal or is a subset of a max-
imal simplification then the length of the longest paths is determined by the initial
formula and, moreover, all the paths with longest length lead to the same formula.
In other words, we have a kind of confluence property for longest paths. First some
definitions and auxiliary results.

Notation. In order to simplify the formulation of Lemmas 2 and 3 we use the
following abbreviations:

11
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e Removing the double negation from outside over O or Q, with 0 € {A, —} and
Q € {V¥, 3} consists in replacing the formula ~—(—-—-A0--B) by -—~AO0--B,
or replacing == Qx——A by Qx——A.

e Removing the double negations from inside over O € {A, V} or Q, stands for
replacing —|ﬂ(—|ﬁA[]—|ﬂB) by ﬂﬂ(ADB), or —|—|Qx—|—|A by —mQxA.

e Removing the double negation from inside over — consists in replacing the
formula =—(=—=A — —=B) by ==(=A V B).

e Removing single negations (from inside or outside) over O € {V, —} in the
formula =—(——=AO--B) consists in transforming the double negations in sin-
gle negations, replacing O by A and in the case O =— adding a negation
before A. Removing a single negation (from inside or outside) over a quan-
tifier symbol Q in the formula =——Qx——A consists in replacing the double
negations by single negations and replacing Q by its dual.

e Removing a single negation from inside (respectively outside) over A in the
formula =—=(=—A A == B) consists in replacing this formula by —(=A vV =B)
(or replacing this formula by —(=—A — -B) respectively).

We denote by #2 and #‘é the number of symbols O and Q respectively, occur-
ring in the formula A. For the sake of counting symbols, the negation symbols —
introduced by the translations are considered as primitive, and hence do not change
the value of #4,. For example (#,) = (#2.").

Lemma 2. For the simplification ri and for any formula AX° there is a simplifica-
tion path P,, from AX° such that

S(Py) = ) + #) + #0) + #°)

and the formula in the last node can be obtained from AX° locating in this for-
mula all the occurrences of conjunctions, disjunctions, implications and existential
quantifications and removing at once all the double negations from inside these
connectives and quantifiers.

Any simplification r| obtained from r\ by removing one or more transformations
admits a similar result discounting and disregarding the logical symbols in the left-
hand side of the transformations removed.

Proof. The proof is by induction on the complexity of the formula A, simpli-
fying first the subformulas and later the more external connectives and quantifiers
whenever possible. If A is an atomic formula then AX° := —=—A and we can apply
no steps. So, the only simplification path is the path with a single node -—A which

12
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satisfies the lemma.
For A := B A C, we know that by induction hypothesis there is a simplification path

P, from BX? := == B’ such that
s(Py) = (#5°) + (#E) + (HE) + (#5°)

and the last node of P can be obtained from BX° removing the double negations
from inside all the conjunctions, disjunctions, implications and existential quantifi-
cations. We denote that formula by —=—B’. Also, by induction hypothesis, there is
a path P, from CX° := =—C’ such that

s(P2) = (#S™) + (#S™) + (#9) + #5™)

and the last node of P, can be obtained from CX? removing the double negations
from inside all the conjunctions, disjunctions, implications and existential quantifi-
cations. We denote that formula by =—C”. Consider the following simplification
path from AX? = (B A C)X° = ==(BX° A CK°) = ==(==B’ A =—C"), which incor-
porates the two paths P; and P:

—|—|(—|—|Bl A —|—|C')

Py
—|—|(—|—|B/_ A —|—|C/)

P,
—|—|(—|—|B: A —|—|Ci)

-=(B_ AC’)

This path has length

S(PO+ 5P+ 1 = #8% +#C% 4 14 #8" 440" 1487 40" 448" 43¢ =
)+ @+ D + ).
And, by induction hypothesis, easily we can see that the formula in the last node

coincide with the formula A% after removing the double negations from inside the
conjunctions, disjunctions, implications and existential quantifications.

The case A := BV C, is done in the same way replacing A by V.
For A := B — C the simplification path becomes:

13



14 G. FERREIRA AND P. OLIvVA

—|—|(—|—|Bl e —|—|C/)

Py

—|—|(—|—|B/_ — —|—|C/)

P,

—|—|(—|—|B’_ — —|—|C,_)

-=(=B_ Vv )
This path has length

S(P1) + 5(Po) + 1 = #58% 4 #C% 4 48" 1 4% 4 4BY 1407 11+ 487 (" =
(#ﬁ[(o) + (#e[(rr) + (#"i:(n) + (#gl(a).

For A := JxB, the strategy is similar considering, by induction hypothesis, that we
have the path P; from BK° .= == B’ in the conditions of the lemma and constructing
the simplification path:

—|—|E|_x—|—|B/
n

—|—|3x—|—|B/_

——dxB.
For A := VxB we just need to take the path P; that exists by induction hypothesis:

—|—|vx—|—|B/
n
—|—|vx—|—|B/_

That concludes the proof. O

The proof above in fact provides an algorithm to construct a simplification path
for the simplification r with » = ry or r = r|. The simplification path from AKo
constructed this way is called standard path for r.

14
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Lemma 3. For the simplifications ry, r3, r4 and for any formula AX°, there are
simplification paths P,,, P,,, P., such that

S(Pry) = 5 + #) + #0) + #),
S(Pr) = ) + (#5) + (#) and
S(Py) = 5 + #) + #5) + #°).

Moreover, in P,, the last node can be obtained from AX° removing at once the single
negations from inside all the conjunctions, disjunctions, implications and univer-
sal quantifications; the formula in the last node in P,, can be obtained from AX°
by removing at once the double negations from outside the conjunctions, implica-
tions and universal quantifications; and the formula in the last node of P,, can
be obtained from AX° by removing at once the single negations from outside the
conjunctions, disjunctions, implications and existential quantifications.

The result can be adapted in the expected way to simplifications obtained from
ry, 13 OF r4 by removing one or more transformations.

Proof. The proof is similar to the proof of the preceding lemma but, contrarily
to the simplifications from inside, the paths for r3, r4 and its subsets are obtained
transforming first the more external logical symbols and just then the symbols in
the proper subformulas. For r,, we have the following inductive path constructions:

(B A C)Ko = _'_‘(_‘_‘B, A _‘_'C’) (B il C)KO = —|—|(—|—|B’ - —|—|C’)
Pl Pl
—|—|(—|BI_ A —|—|C’) ﬂ—|(—|B/_ — —|—|C')
P2 P2
_‘_|(_|B,_ A _|C/_) —|—|(—|B’_ — —|C’_)
-(B_.vC) -(=B_ ACY)

The case of (B V C)X? is exactly as (B A C)X°, replacing A by V and V by A.

15



16 G. FERREIRA AND P. OLIvVA

(AxB)X° = =—Ax—-B’ (VxB)X° = ==V x——B’
P, ‘ P

—=3x-B. —=Vx-B.

—SXB'_

For r; we have these other path constructions:

(B A C)XO = ==(==B' A ==C") (BV C)X° = ==(==B’ v ==C")

‘ P
=B’ A ==’ —==(B" Vv ==C")
P, ‘ P,
B A==C -=(B_VvC)
P,
B.ACL

The case (B — C)X? is like the case (B A C)X?, replacing A by —.

(AxB)X° = ==Ax——-B’ (VxB)X° = ==V x——B’
P |
-—=dxB" Vx—=B’
”
VYxB’

For r4 we have:

16



ON THE RELATION BETWEEN VARI0US NEGATIVE TRANSLATIONS 17

(B A C)KO = —|—|(—|—|B, A —|—|C/) (B \Y C Ko = —|—|(—|—|Bl Vv —|—|C’)
—|(—|—|B’ g —|CI) —|(—|B, A —|C/)
P P;
—|(—|B’_ — —|Cl) —|(B’_ A —|C,)
P; P
—~(=BL - C.) ~(BLACY)

The case (B — C)X° is like the case (B A C)X?, swapping A with —.

(VxB)X? = ==Y x—=B’ AxB)X° = =—=Ax—=B’
3 |
—=VYx-B_ -Vx-B’
P,
-VYxB’_

The notation P* is used in the following sense. We know, by induction hypothesis,
that there is a path P from BX° := —=—=B’. The last node of this path results from
—=B’ removing the single negations from outside all conjunctions, disjunctions,
implications and existential quantifications occurring in BX°. We can show that the
last node has the shape =B’ , where B’ can possibly start with a negation. More-
over, it is possible to prove that every node in the path P starts with a negation and
that removing the starting negation in each step along all path we get a sequence
of formulas that can be part of a path, i.e. we get a sequence of valid steps in our
simplification. We call this sequence of steps P*. In the above we are using the fact
that, after applying a simplification to a symbol O or Q, we can no longer apply a
simplification to the symbol O™ or Q™, since at least one of the negations inside is
not a double negation and never will became (note that in r4 the number of nega-
tions in each position remains the same or decrease). O

Again, the proof above provides algorithms to construct simplification paths
for the simplifications r,, r3, r4 and its subsets. The simplification paths from AX®
constructed via these algorithms are called standard paths.

17



18 G. FERREIRA AND P. OLIvVA

Lemma 4. If the simplification is a subset of a maximal one, in each step of a
simplification path we act over a connective or a quantifier already occurring in
the initial formula, and we never act twice over the same connective or quantifier.

Proof. Let r be a subset of a maximal simplification. It is enough to prove that
in each step of a simplification path we never act over 0" or Q". By Proposition
3, we know that the transformations in » are between the ones in ry, or between
the ones in r,, or the ones in r3, or the ones in r4. In the case of r, the formulas
—=(-—AO0--B), with O € {A,V}, ==(=—=A — —-=B) and —-—dx——A are trans-
formed into =—(A 0"B), =—(=A —" B) and —-—3"xA respectively. In all the cases
we can no longer apply any transformations over 0", —” or 3" since they do not
have (and since the negations in every position are kept or reduced they will never
became till the last node with) double negations inside them. The cases of r;, r3
and r4 can be checked in a completely similar way. O

Note that, in the previous lemma, the hypothesis of considering just subsets
of maximal simplifications is essential. In the example below we present a (non
maximal) simplification from inside that contradicts the lemma. Consider the sim-
plification:

-—(=AA-B) = =(AV-=B)

-—(-AV-B) = -=(AAB).

From ——(==A A ==(==B A =—=C)) we can construct the following two paths:

— T

\ /

—|(—|A Vv —|—|(—|B \2 —|—|—|C))

~(=A V ~(B A ==C))

The two corollaries below are now immediate:

Corollary 1. For each formula AX° and each simplification that is a subset of ry,
2, 13 or ry, any simplification path from AX° has length smaller or equal to the
length of the corresponding standard path.

18
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Corollary 2. If the simplification is a subset of a maximal one, two simplification
paths with the longest length lead to the same formula.

The result above justifies the next definition:

Definition 7. Let r be a subset of a maximal simplification and AX° a formula in
Kolmogorov form. We denote by r(AX°) the formula in the last node of a simplifi-
cation path with longest length.

5 Standard Translations

Simplifying the Kolmogorov negative translation via the maximal simplifications
ry, rp and r3 we obtain exactly minimal Kuroda, Krivine and Gédel-Gentzen nega-
tive translations.

Proposition 4. r(AX%) = A"Ku_ 1, (AKO) = AXT and r3(AX°) = AGC,

Proof. The proof is done by induction on the complexity of the formula A and
in order to reach the formula r;(AX°) we always assume we are going through the
standard path (s.p.).

If A is an atomic formula, then r;(AX°) := r|(=-A) = =—A = AKX,
For A := B A C, writing BX° in the form ——B’ and CX° as =—C’, we know that
ri(==B') = ri(BK%) 'E B"Kt = —2B,x, and similarly ri(~=C") = r,(CK?) =
C"Ku = ——C,,xu. Therefore

rn((BACK?) = r(==(BK A CK?))
}"1(—|—|(—|—|B, A —|—|C/))

»
=

_'_‘(BmKu A CmKu)
(B A CY™Ku,

The case A := BV C can be analysed in a similar way.

For A := B — C we have:
r(B -0 = r(=(B - )
= ri(==(==-B - ==(C"))

s.p.

_‘ﬂ(_‘BmKu \4 le(u)

(B — C)mKu.

For the quantifiers we have:

19



20 G. FERREIRA AND P. OLIvVA

r1((AxB)K?) = 1) (==3xBK) = ri(==3x==B') 'L —==3AxB,x, = (AxB)"K"

and

r1((YxBYK?) = 1y (==VYxBK) = r|(==Vx==B') = —==Vx=-Byx, = (VxB)"K".

Therefore rj(AX?) = AKX«

In the case of r,, the proof is done in a similar way, by induction on the complexity
of the formula A considering standard paths.

If A is an atomic formula, then 7 (AX°) := r(——A) = =—A = Ak, = AX".

For A := B A C, we know that r(—=B’) = rp(BX°) 'L pkr = —Bg, and similarly

r(==C’) = rp(CX?) = CX" = =(Ck,. But then
(B A C)K) = ry(==(BK? A CK9)) = ry(=—~(==B' A ==C")) ‘= ~(Bk, V
Ckr) = (B A OK".

Analogously, for A := BV C and A := B — C we have the following identities:
s.p.

r((BV C)K%) = ry(=—(BK? v CK)) = ry(==(==B' V ==C")) = =(Bg, A
Cxr)=(BVOX

and
r2((B = C)X%) = ry(=—=(BK? — CK%)) = ry(==(==B' — =~C")) 2 ~(=Bx,A

Ck) = (B— OF.

For the quantifiers we have:

r2((AxBYK?) = ry(==3xBK®) = ry(~=Ax=-B') E ~=Tx-Bx, = ~(IxB)y, =

(AxB)X"

and

2 ((YxBYK?) = 1y (==Y xBK) = py(~=Vx—=B') ‘= —AxBg, = (VxB)K".

Thus r,(AX?) = AX".
We illustrate the case r3 with the conjunction, since the others are completely sim-

ilar.
rs(==(BX A CK) = ry(==(==B A ==C")

ry((B A O

@
°

r3(==B') A r3(==C") = r3(B) A r3(CK)

s

BCPCG A CSCG = (B A C)YC,

20
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[m]

This study concerning maximal simplifications led us not only to the three stan-
dard negative translations above but also to the discovery of a new minimal modular
embedding from CL to ML. Consider the translation described below:

(AANB) = -Ag — Bg P = =P, for P atomic
(AVB)y; := ApABg VxA)p = —Vx-Ag
(A—-> B = -AgABg AxA)y = VxAg

with A® := =Ag, which is similar to Krivine except that negations are introduced
in the {A, V}-clauses whereas Krivine introduces negations on the 3-clause.

Immediately as a corollary of the next proposition, we have that the transla-
tion (-)f is an embedding from CL to ML, different but equivalent to the standard
embeddings considered previously.

Proposition 5. r,(AX?) = AE,

Proof. We just sketch the case of conjunction A := B A C. The other cases can
be done using the same strategy.
Take BX? := ——B’ and CX° := ——=(C’. Consider, by induction hypothesis, that
ra(—=B) = ry(BK?) 'L BE = ~By and ry(——C") = r4(CX?) = B = ~Cp. Then

F((BACK) = ry(-=(BX A CK)) = ry(=(=-B" A ==C"))

Si}.

~(=Bg — Cg) = ~(BAC)g = (BAC)E.

That concludes the proof. O

6 Simplifications over IL

In the previous section we analysed the various negative translation of classical
logic CL into minimal logic ML. In the present section we shall also consider trans-
lations that map into intuitionistic logic. In this (less strict) framework, a negative
translation is an embedding from CL into IL (not necessarily ML) and simplifi-
cations are based on equivalences in IL (not necessarily ML). Working over the
stronger system of IL will mean that more equivalences are provable, which in turn
will mean that new maximal simplifications are possible.

Obviously, in this context, rj, r», r3 and ry4 are still simplifications because an
equivalence provable in ML is also provable in IL. Using a strategy similar to the

21



22 G. FERREIRA AND P. OLIvVA

one applied on Section 3 in the proofs of Propositions 1, 2, and 3, we can also
see that ry, r», 3 and r4 are maximal simplifications, but there is a fifth one. The
simplification 7| (that only differs from r; in the transformation for —) defined
below

—=(==A A ==B) 2> —-=(A A B)

—=(==A V —==B) 2> —-=(AV B)

—=(==A — —=B) 2> -=(A — B)
——dx--A g ——dxA

is also a maximal simplification from inside. This appears as no surprise since by
Lemma 1, we know that =——=(=—=A — ==B) < =—=(A — B) in IL but not in ML.

Mimicking Sections 4 and 5, this time in the context of IL, apart from obtaining
minimal Kuroda, Krivine, Godel-Gentzen and the new (-)E negative translation as
maximal simplifications of the Kolmogorov negative translation via ry, r,, r3 and
r4 respectively, we also have the following result:

Proposition 6. r(AX?) = AK.

Proof. As in Proposition 4, the proof is done by induction on the complexity of
the formula A considering standard paths.
Since the only case that differs is A := B — C, we sketch it below:
For A := B — C, writing BX? in the form =—B’ and CX° as ==C’, we know that
F(=—B') = F(BK) '£ BK" = 2By, and similarly |(~~C") = r(CK?) = CKv =

—-—Ck,. Therefore

ri((B = C)F)

ri(_|_|(BK0 N CK()))
}"i(—|—|(—|—|B, — —|—|C,))

»
=

_‘ﬁ(BKu - Cl(u)

(B - O)¥,

O
Hence, simplifying the Kolmogorov negative translation via the (maximal in
IL) simplification 7| we obtain exactly Kuroda negative translation.

As previously observed, Kuroda negative translation is a translation from CL
into IL, not into ML. But a small change in the translation of implications, namely
(A > B .= ——(=Apku V Bmku) produces a negative translation not only in IL

22
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but also in ML. Both translations (-)%* and (-)"X* are minimal elements in the partial
order induced by the simplifications (the former in IL via 7| and the latter in ML and
IL via r;). In what follows, we present another way of changing Kuroda negative
translation so as to obtain an embedding into ML. Consider that we change in r;
the clause for implication to

This way, we obtain a non-maximal simplification (in IL) which corresponds to a
modular translation (-)¥* between Kolmogorov and Kuroda negative translations.
Since ==(=—=A — —==B) oy =—(A — —-=B), F; is also a (non-maximal) simpli-
fication in ML. Therefore, the modular translation (-)* that inserts == in (i) the
beginning of the formula, (ii) after each universal quantifier, and (iii) in front of the
conclusion of each implication is such that CL + A iff ML + AX*, This is the variant
of Kuroda considered by Murthy in [25].

7 Final remarks

We conclude with a few remarks on other negative translations, some related work
and avenues for further research.

7.1 On non-modular negative translations

Working with modular translations brings various benefits. For instance, we can
prove properties of the translation by a simple induction on the structure of the
formulas, and when applying the translation to concrete proofs this can be done in
a modular fashion. On the other hand, if we allow a translation to be non-modular,
we can of course construct simpler embeddings, i.e. we can simplify Kolmogorov
negative translation even more, getting ride of more implications.

For example, consider the simplification r3 followed by one more transforma-
tion -—dx——-A = -Vx—A to be applied, whenever possible, at the end of the
simplification path. As such we could first simplify =—(=—=A A ==3Jx—-—-B) using
r3 to the formula -=A A =—=3x—-B and then apply the final simplification to ob-
tain =—A A =¥Yx—B. Although non-modular, these kind of procedures also give rise
to translations of classical into minimal or intuitionistic logic (depending on the
framework ML or IL of the simplifications).

Avigad [2] presented a more sophisticated non-modular translation of CL into IL
that results from a fragment of 7}, avoiding unnecessary negations. More precisely,
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24 G. FERREIRA AND P. OLIvVA

Avigad’s M-translation is defined as:

AABM = —(~Av~BM pM = P, for P atomic
(AVBM = AM vy BM pM = -P
VxAY = -@x~ AWM @xAM = JxAM,

where in classical logic we consider the negations of atomic formulas P as primitive
and the formula ~ A is obtained from A replacing A, V, P respectively by Vv, 3 and
P and conversely. Avigad showed that

(1) il —|AM > —|AS
(2) If koL A then k. =(~ A)M,

where AS stands for any of the standard equivalent translations from CL into IL
mentioned before such as Godel-Gentzen, Kolmogorov, Kuroda or Krivine negative
translation.

Lemma 5. —(~ A)Y &) —-AM

Proof. The proof follows from an easy analysis of all the possibilities for the
formula A. If A is an atomic formula then —=(~ A)M := =AM = =—=A = =-AM,
For A := P, we have «(~ P)" := =P := =P & ~=—P & —-PM.
If A ;== BAC then «(~ (BACM := =(~BV~OM & ——~(~Bv~C)M :
-=(BAOM.
The disjunction case =(~ (BV C))” := =(~ BA ~ C) := =—(~~ BV ~~ C)M :
-—(BVvV OM.

The quantifications are studied below:

—(~ VxBM := =(Ax ~ B & —=—~=(3x ~ B := =—(VxB)Y,
and
—(~ B := ~(¥x ~ BY := == 3x ~~ B --@xB)M.
That concludes the proof. O

Although the translation (-)™, as presented by Avigad, is not modular, notice
that it can be equivalently written in a modular way as

AABM = =AM A--BM PV = P, for P atomic
AVBM .= AM y pM PY = P
VxAM = Yx=—aAM AxAM = FxAM,
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mma 5)

since (VxAM := =(Ax ~ AM := ~Ax((~ AM) o Vaa(~ AWM TS yxanaM
and

AABM = =(~AV ~BM .= =((~AM v (~ BM)

(Lemma 5)
M Cd

o =~ AY A=(~ B) L ~=AM A =B

The translation ()" can be obtained from Kolmogorov negative translation via a
non-maximal simplification, more precisely the simplification | (corresponding to

’

Kuroda translation) without the transformation =—(=—=A A =—B) 2:» -=(A A B).

Avigad’s translation (- is a non-modular simplification of (-)" since for uni-
versal quantifications, for conjunctions and for provability we replace =—AY by
—(~ A)™ which, although equivalent, has possibly fewer negations, as we see in
the proof of Lemma 5. Moreover, as pointed by Avigad in [2], we can simplify the
translation (-) even further defining (A A B)M as being A A BM. The correspond-
ing modular version in this case is exactly Kuroda negative translation.

7.2 On Godel-Gentzen negative translation

Although nowadays it is common to name the translation (-)°“, presented in Section
1, by Godel-Gentzen negative translation, a few remarks should be made at this
point. The translations due to Godel and Gentzen ([12] and [10], respectively)
where introduced in the context of number theory translating an atomic formula P
into P itself. Later Kleene [19] considered the translation of the pure logical part,
observing that double-negating atomic formulas was necessary, since one does not
have stability =—P — P in general.

Rigorously, Gentzen’s original formulation instead of double negating disjunc-
tions and existential quantifiers used the following equivalent (in IL and ML) def-
initions (A V B)%C := =(=A%C A =B%C) and IxAC := ~¥x-A%C, since, as such,
one can then work in the {3, V}-free fragment of minimal or intuitionistic logic.

Moreover, as pointed in Section 1 already, Godel’s original double-negation
translation differs from Gentzen’s negative translation in the way implication is
treated. In the context of IL, Godel’s translation also introduces a double negation
before implications. We can easily see, that this translation can be obtained from
Kolmogorov negative translation via the non-maximal simplification consisting in
r3 without the transformation =—(-—-A — —--B) = —--A — —-B, being, there-
fore, more expensive in term of implications than Gentzen’s negative translation.
Another non-maximal simplification, more precisely r3 without the transformation
——(==A A == B) = ——=A A =—B, leads to Aczel’s ()N variant [1].

Finally, we observe that sometimes in Kolmogorov or Godel-Gentzen negative
translations, L is transformed differently from the other atomic formulas, not into
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——1 butinto L itself. This change is easily adapted to our framework, considering
in the modular definition of a translation an extra operator /7"(1) and defining
L7, := IT"(L). Note that the translations where I7(L1) := L are the same as the
ones with I77(L) := =—1, since L ¢ ==L in IL and ML.

7.3 Translations from IL into ILL

In the present paper, we saw that the standard translations from CL to IL result from
systematic simplifications on Kolmogorov negative translation. Motivated by this
idea, we observe that something similar can be said about the embeddings from
intuitionistic logic to intuitionistic linear logic (ILL). In the linear framework, and
replacing the moves of the double negations from inside or outside by moves of the
exponential ! (whenever allowed by linear equivalences), we obtain the standard
Girard (-)* and (-)°-translation from a Kolmogorov-like translation from IL into ILL.
We start by reminding the reader of the Girard translations (-)* and (-)° [11]

P =P P° =P, for P atomic,P % L
L =0 L° =0

(AANB) =A"&B* (ANBY =A°QB°

(AV B)* = A"® |B” (AVBY =A°®B°

(A—> B :=!A" - B* (A—> B :=1A°—oB°

(VxA)* = VxA* (VxA)° = IVxA°

(AxA)* = dxlA* (AxA)° = dxA°

which satisfy the following: if IL + A then ILL  A* and ILL + A°. Consider also the

following translation, which we denote by (-)'X° since it mimics the Kolmogorov
approach:
piKo = |P, for P atomic
(A A B)lKo = !(A]Ko ® Bll(o)
(A v B)lKo = !(All(o ® BIK())
(A N B)IKU = !(AIK() —o BlK())
(QAYKe = 104, for Q € {Vx,x}.

One also has:
Proposition 7. IfIL r A then ILL + A,

This result, however, follows (as we are going to see throughout this section)
from the homologous results for (-)* and (-)°-translations. Not surprisingly, () is
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an unpolished translation, i.e. it is possible to simplify it by removing some bangs
while still maintaining an equivalent (over intuitionistic linear logic) embedding.
Mimicking the simplifications from outside of Sections 3 and 4, start with A’K?
and systematically remove, from outside to inside the formula, the exponential !
from all multiplicative conjunctions, disjunctions, existential quantifications and
before 0. Example: if |(!A®!B) appears in the formula we change it to !AQ!B.

Lemma 6. The following equivalences are provable in ILL:
10 0- 0
I(!A®!B) o— A®!B
1(!1A®!B) o—o A®!B
1dx!A o— dx!A.

It is easy to see that with the previous strategy we obtain exactly Girard’s em-
bedding A°. Once we notice that A’K° oo 14%? and ILL +!(!A®!B) o— !(!A & !B),
we realise that in (-)"? we can define the translation of A A B by I(AlKe & BiKoy,

On the other hand, mimicking the simplifications from inside, start with AlKo
and systematically remove, from inside to outside the formula, the exponential !
from all additive conjunctions, universal quantifications and in the consequent of
the implications. Example: if !(!A & !B) appears in the formula we change it to
(A & B). The next lemma justifies this approach:

Lemma 7. The following equivalences are provable in ILL:
1(!1A & !B) oo (A & B)
I(!A —!B) o= !(1A — B)
IVx!A oo I¥xA.
Again, it is easy to see that applying the strategy above to A’ we obtain exactly
1A%,
7.4 Other related work

Strong monads. Part of the present study could have been developed in a more
general context, as done in [5]. Let T be a (logical operator having the proper-
ties of a) strong monad and consider the translation ()" that inserts T in the be-
ginning of each subformula. Assuming that (TA)" < TAT what we obtain is a
translation of ML + (TA — A) into ML. We name such embedding Kolmogorov
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T-translation. It can be seen that all the transformations in simplifications 7, and r3
remain valid equivalences in ML when we replace —— by any strong monad T. Thus,
from Kolmogorov T-translation we can obtain, by means of the previous simplifi-
cations, the corresponding Kuroda (non-maximal ML variant) and G6del-Gentzen
T-translations. As particular cases we have

e TA := ——A (recovering the standard double-negation translations),

e TB:

(B — A) — A (corresponding to Friedman A-translations [7]),

e TA:=-A > AorTA := (A —> R) — A (Peirce translations [5]).

As references on these more general embeddings see [1, 5].

Semantical approaches. In this paper we did not discuss semantical approaches
to the negative translations. Some considerations concerning conversions between
Heyting and Boolean algebras whose valuation of formulas is related via negative
translations can be found in [14, 27] and more abstract treatment of negative trans-
lations in terms of categorical logic can be found in [17].

Other “metrics”. The key ingredient to establish a partial order between negative
translations here is the notion of a simplification. The definition of simplification
used throughout this study is based on the counting of the total number of impli-
cations involved in a formula. More sophisticated “metrics” could be tried in the
future, for instance one that instead of just counting implications could be sensible
to the “nesting” effect. For instance, an immediate consequence of considering the
“nesting” of implications would be that 4, would no longer be a simplification. No-

tice that the transformation —(——A A == B) e RN - B, would have depth three
on both the left and the right-hand sides.

Translations from CL to CLL. Although not addressed in this paper, we could try
to adapt the notion of simplification to translations from classical logic into clas-
sical linear logic. As future work we intend to focus in this question not only to
capture and motivate standard translations such as Girard ?!-translation [11], but to
see which new translations could be revealed with this approach.

CPS transformations. There is a close connection between negative translations
and continuation passing style (CPS) transformations. In the literature [8, 15, 26,
32], we can find various CPS-translations from Au-calculus into A-calculus that
correspond (at the type level) to the standard negative translations.

Note that the CPS technique captures evaluation ordering for the source lan-
guage, such as call-by-name, call-by-value or call-by-need. The two schemes be-
low sketch how Kolmogorov negative translation (-)X° simulates call-by-name in
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a call-by-value interpreter and Kuroda negative translation (~)K~” simulates call-by-
value in a call-by-name interpreter. Consider first the proof-tree of the soundness

for Kolmogorov translation of the cut rule

[AX> - BX]: 0 AKe: N

BXo: oN [-B*]: k
1: aNk
—(AXe — BKoY: ja.aNk -—(AX° — BXoy: M
1: M(Aa.aNk)

—-—B*: /lk.M(/la.aNk)

where (A — B)X? := —=(AX? — BX?) and B* is such that BX? = =—=B*. If the strat-
egy used is call-by-value the term N which proves A would be first evaluated and
then passed to the function M which proves A — B. After the Kolmogorov trans-
lation, however, N (the proof of A) is encapsulated into a A-term in head normal
form. That then forces the evaluation of M (the proof of A — B) instead, hence,
simulating call-by-name.

On the other hand, consider the proof-tree of the soundness of the Kuroda trans-
lation of the cut rule

[Ag,): a [Ag, = ——Bg,l: @
_'_'BKuu: aa [_‘BK_u]: k
L: aak
_'AKuu: Aa.aak _'_‘AK_u: N
1: N(da.aak)
-(Ag, — - Bg,): da.N(da.aak) -(Ag, > "Bg,): M

1 : M(Ada.N(da.aak))
—=Bg, : Ak.M(Ada.N(da.aak))

where (A — B)X" := =—(A = B)g, := =~(Ag, — ——Bg,) is the Kuroda neg-
ative translation presented on Section 6. In a call-by-name setting the proof of
A — B would be the first to be evaluated. In order to force the argument (the proof
of A) to be evaluated first the Kuroda translation puts N (the proof of the translation
of A) in the function position with input da.cak. That forces the evaluation of N
(the proof of A) first, hence simulating call-by-value.

For more on this subject see [26] and Chapters 9 and 10 in [25]. It would be
interesting to see if our simplifications linking the standard negative translations
can be expressed and are meaningful at the calculus reduction strategy level.
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