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Abstract

We review and describe the main techniques for setting up systems of weak
analysis, i.e. formal systems of second-order arithmetic related to subexponential
classes of computational complexity. These involve techniques of proof theory
(e.g., Herbrand’s theorem and the cut-elimination theorem) and model theoretic
techniques like forcing. The techniques are illustrated for the particular case of
polytime computability. We also include a brief section where we list the known
results in weak analysis.
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1 Introduction
Weak analysis can be described as the formalization and development of analysis in
very weak systems of second-order arithmetic. These systems, as they are ordinarily
understood, are subelementary in the sense that they do not prove the totality of the
exponential function. In addition, they are often related with well-known classes of
computational complexity, e.g. polytime or polyspace computability. This paper is
not, however, concerned with weak analysis as described in the first two lines of this
introduction (nevertheless, in Section 8, we briefly review – without proofs – the state
of the art in this respect). The aim of this paper is rather to describe and exemplify
the fundamental techniques for setting up a system of weak analysis. In the remainder
of this introductory section, we give a blueprint for defining theories of weak analysis.
We first give a general blueprint and then describe it for the particular case of polytime
computability and point to the sections of the paper where the blueprint is executed (for
the polytime case).

Systems of analysis must be able to speak about real numbers. Therefore, they are
usually framed in a second-order language and each real number is “presented” via a
set of natural numbers. It is of course important to be able to define basic real num-
bers, to show that they are closed under basic operations and, in general, to be able to
prove simple facts about the real line. This is achieved essentially by a combination
of induction and set-formation. The amount of induction present in a weak theory is
intrinsically related with its provably total functions (with appropriate graphs). Hence,
if one is given a computational complexity class C and the goal is to set up a the-
ory T whose provably total functions are exactly those of C, then one is immediately
constrained with respect to the amount of induction permitted in the system.

The situation is also tight with respect to set formation because we allow set param-
eters in the induction scheme (therefore, the more sets there are, the more induction is
available). There does exist, nevertheless, some leeway with regard to set formation.
All the systems of weak analysis considered permit forms of recursive comprehension,
i.e., a principle of the form:

∀x (∃yA(x, y)↔ ∀zB(x, z))→ ∃X∀x (x ∈ X ↔ ∃yA(x, y))

where A(x, y) and B(x, z) are appropriate formulas (possibly with first and second-order
parameters) and X does not occur in A(x, y). Typically, A(x, y) and B(x, z) are suffi-
ciently expressive so that the sets of the form {x : ∃yA(x, y)} (resp., {x : ∀zB(x, z)})
give all the recursively enumerable (resp., co-recursively enumerable) sets in the stan-
dard model. The reader who is unfamiliar with the subject can be taken aback by this
amount of comprehension. Shouldn’t the variables y and z above be restricted in some
way so that only sets in C are definable (in the standard model)? No, and this lib-
erty simplifies very much the development of analysis. The intuitive reason why the
above recursive comprehension is not a strong principle is that, in order to form the set
X = {x : ∃yA(x, y)}, one must first establish the equivalence ∀x (∃yA(x, y)↔ ∀zB(x, z)).
Note that only weak principles are available for doing this. In short, one can form a
recursive set if one can show that the set is indeed recursive. The formal reason that
makes possible the inclusion of recursive comprehension relies crucially on the avail-
ability (of forms) of bounded collection. Fortunately, it is known that under very gen-
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eral conditions, the addition of bounded collection to a bounded theory of arithmetic
results in a conservative extension with respect to Π0

2-sentences. At this juncture, a
second-order theory T2 is set-up: one that has forms of recursive comprehension and
bounded collection.

There is another reason why bounded collection is important. It is because of its
relation with weak König’s lemma. This lemma guarantees the existence of infinite
paths through an infinite binary tree (curiously enough, although the path is a set the
tree need not be a set – it only needs to be a class defined by a bounded formula).
Weak König’s lemma is a form of compactness and, e.g., is instrumental in analysis
to prove the compactness of the closed unit interval (see Section 8 for some facts).
The addition of weak König’s lemma is first-order conservative over T2. We use for
this a forcing technique originally due to unpublished work of Leo Harrington. The
proof of the density of some sets needed for the forcing argument relies crucially on
bounded collection. Weak König’s lemma can be strengthened to the so-called strict-Π1

1
reflection. Roughly, this principle differs from weak König’s lemma in that the binary
trees permitted are constituted not by binary strings but by bounded sets. Observe
that, in the absence of the totality of exponentiation, not every bounded set is given
by a binary string. Strict-Π1

1 reflection can be added to T2 without changing the Π0
2-

consequences and, again, we use a forcing argument. However, in order to show the
density of certain sets one must rely on stronger forms of bounded collection (and
stronger notions of bounded formula). The authors do not know of any uses of strict-
Π1

1 reflection for the development of analysis in weak systems.
We have described a very general blueprint for setting up a weak system of analysis

related with a given class C of computational complexity. In this paper, we illustrate
this blueprint in a simple case: when C is the class of polytime computable functions.
All the techniques needed to set up systems of weak analysis as described above are
already present in this case. Most of the results of this paper have appeared elsewhere
in several publications, but in here we conveniently integrate them and discuss their
scope and limitations. The detailed blueprint for the polytime case, with appropriate
references to the sections of the paper, is the following:

(a) We describe a universal theory (i.e., one that can be axiomatized by universal
formulas) PTCA which has function symbols for every polytime computable
function. Herbrand’s theorem guarantees that the provably total functions (with
appropriate graphs) of this theory are the polytime computable functions. PTCA
is extended in order to permit induction for formulas that, in the standard model,
define the NP sets (the Σb

1-formulas). This is done using a cut-elimination ar-
gument. We will observe in Section 4 that this extra amount of induction is
essential to introduce recursive comprehension. As a matter of fact, we actually
work with a simplified theory Σb

1-NIA (this corresponds to the theory T in the
general blueprint). These issues are treated in Section 2.

(b) In Section 3, we show that the addition of the bounded collection scheme BΣb
∞

to Σb
1-NIA yields a Π0

2-conservative extension. We use again an argument based
on cut-elimination.

(c) We introduce the second-order theory BTFA (corresponding to T2 in the general
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blueprint) enjoying a form of recursive comprehension and show that it is first-
order conservative over Σb

1-NIA + BΣb
∞. This is shown in Section 4 via a simple

model theoretic argument.

(d) In the next section, we show that the addition of weak König’s lemma to BTFA
results in a theory which is a first-order conservative extension of BTFA. We use
the forcing method to prove this result. We will point to the need of bounded
collection in the forcing argument.

(e) In Section 7, we define the scheme of strict-Π1
1 reflection and show that adding it

to BTFA does not permit proving more Π0
2-sentences. This is done via a forcing

argument similar to the one in (d) above. As discussed, for this forcing argu-
ment to be successful, one needs a stronger form of bounded collection. This
stronger form is formulated and discussed in the previous Section 6, and an ap-
propriate conservation result is proved. Cut-elimination is used in proving this
conservation result.

The paper has a further section where we present in a compact manner the state of
the art concerning the formalization of analysis in weak systems. This last section has
no proofs but provides appropriate references and mentions some open problems.

2 First-order theories for polytime computability
We start by presenting three first-order theories for polytime computability, namely
PTCA, PTCA+ and Σb

1-NIA. The former and the latter systems play, in the context
of polytime computability, the same role as (first-order) PRA and Σ0

1-IND play in the
context of primitive recursive computability. The inclusion of the intermediate theory
PTCA+ aims at making more explicit a conservation result concerning induction. We
remind that the goal of the present paper does not lie in the introduction of weak theo-
ries connected with polytime computability (already described in [11, 12, 13, 3]) but in
the survey of conservation techniques, which we try to motivate and present in a simple
and clear way.

When working in systems of bounded arithmetic, we must opt between two nota-
tions: unary or binary. Unary notation, the most commonly used in the literature, was
the choice of Samuel Buss in his seminal thesis [3], while binary notation was used by
the second author in [11]. Due to the possibility of interpreting theories in one notation
into theories in the other notation (e.g. [23]), the choice has no intrinsic significance
and is basically a question of taste and pragmatics. The authors share the opinion that
binary notation is more intuitive and convenient for describing and dealing with weak
(subexponential) systems of analysis and this explains why it is adopted in the present
paper. Therefore, the language that we use aims at describing the set of finite binary
words, denoted by {0, 1}∗ (or 2<ω). This is the domain of the intended standard model.
Let us introduce some notation: ϵ denotes the empty word; for x and y elements in
{0, 1}∗, x ˆy represents the concatenation of x by y (we usually omit the concatenation
symbol ˆ and just write xy); x ⊆ y means that x is an initial subword of y (x is a string
prefix of y); |x| denotes the length of the word x; x|y is the truncation of x by the length
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of y (x|y is x itself if |x| ≤ |y|; otherwise, it is the prefix of x with length |y|); finally, x× y
is the word x concatenated with itself length of y times (note that |x × y| = |x| · |y|).

Let L be the first-order language which has three constant symbols ϵ, 0 and 1,
two binary function symbols ˆ and × (with the standard interpretations given in the
previous paragraph) and two binary relation symbols = and ⊆ (for equality and initial
subwordness, respectively). Let LP be the extension of L by adding a function symbol
for each description (given below) of a polytime computable function.

Definition 1. PTCA (acronym for Polynomial Time Computable Arithmetic) is the
first-order theory, in the language LP, which has the following axioms:

• Basic axioms

xϵ = x, x(y0) = (xy)0 and x(y1) = (xy)1;

x × ϵ = ϵ, x × y0 = (x × y)x and x × y1 = (x × y)x;

x ⊆ ϵ ↔ x = ϵ, x ⊆ y0↔ x ⊆ y ∨ x = y0 and x ⊆ y1↔ x ⊆ y ∨ x = y1;

x0 = y0→ x = y and x1 = y1→ x = y;

x0 , y1, x0 , ϵ and x1 , ϵ;

• Defining axioms

(a) Initial functions

C0(x) = x0
C1(x) = x1
Pn

i (x1, ..., xn) = xi, for 1 ≤ i ≤ n
Q(x, y) = 1↔ x ⊆ y; Q(x, y) = 0 ∨ Q(x, y) = 1

(b) Derived functions

1. Composition:
f (x̄) = g(h1(x̄), ..., hk(x̄)),
if f is the description of the composition from g, h1, . . . , hk

2. Bounded recursion on notation:
f (x̄, ϵ) = g(x̄)
f (x̄, y0) = h0(x̄, y, f (x̄, y))|t(x̄,y)

f (x̄, y1) = h1(x̄, y, f (x̄, y))|t(x̄,y) ,
where t is a term of the language L and f is the description of the
bounded recursion on notation defined from g, h0, h1 and t;

• Scheme of induction on notation

A(ϵ) ∧ ∀x (A(x)→ A(x0) ∧ A(x1))→ ∀xA(x),

where A is a polytime decidable matrix, possibly with parameters. The class of
polytime decidable matrices is the smallest class of formulas of LP containing
the atomic formulas and closed under Boolean operations and quantifications of
the form ∀x (x ⊆ t → . . .) or ∃x (x ⊆ t ∧ . . .) (usually abbreviated by ∀x ⊆ t (. . .)
and ∃x ⊆ t (. . .) respectively).
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The above definition gives simultaneously the theory PTCA and the language LP
in which it is formulated: the descriptions of the polytime computable functions are
given by (a) and (b) above. The proof that these schemes generate exactly the poly-
time computable functions can be found in [11]. Note that the polytime decidable
matrices define exactly the polytime predicates in the standard model (initial subword
quantification can be decided in polytime because it only needs a polytime computable
search).

We argue that PTCA is a universal theory. This is not immediate because the in-
duction scheme is not constituted by universal formulas. We rely on a well-known
result of Łoś and Tarski that states that it is enough to prove that PTCA is preserved by
substructures. LetM be a model of PTCA and let N be a substructure ofM. As we
have pointed, we only need to argue that induction on notation also holds in N . Note
that the scheme of induction can be reformulated thus:

A(ϵ) ∧ ∀y ⊆ a(A(y)→ A(y0) ∧ A(y1))→ A(a).

Therefore, the result follows if it is shown that polytime decidable matrices are absolute
betweenM and N . This is a consequence of the following result:

Lemma 1. For each polytime decidable matrix A(z̄, x) there is a function symbol g in
LP such that PTCA ⊢ ∃y ⊆ xA(z̄, y)→ g(z̄, x) ⊆ x ∧ A(z̄, g(z̄, x)).

It is not difficult to define by bounded recursion on notation a function g whose
value is the prefix y of x of smallest length such that A(z̄, y), if there is one such value.
(The search argument should be clear, but details can be found in [12], page 141-143.)
Note that, if we wanted to search along all words with length less than or equal to |x|,
bounded recursion on notation would not be enough. Such a (exponential) search goes
beyond polytime computability.

We need two auxiliary results. The first says that polytime decidable matrices can
be expressed in PTCA by means of quantifier-free formulas. The second states that
PTCA allows the definition of functions by cases. (These results are easy to prove; see
[12].)

Lemma 2. For each polytime decidable matrix A, there is a function symbol KA in
LP such that PTCA ⊢ (A(x̄) → KA(x̄) = 1) ∧ (¬A(x̄) → KA(x̄) = 0), where the free
variables of A are among x̄.

Lemma 3. Given polytime decidable matrices A1(x̄), . . . , An(x̄) and function symbols
f1(x̄), . . . , fn(x̄), fn+1(x̄) there is a function symbol f (x̄) such that the theory PTCA
proves

(A1(x̄) ∧ f (x̄) = f1(x̄)) ∨ (¬A1(x̄) ∧ A2(x̄) ∧ f (x̄) = f2(x̄)) ∨ . . .
∨(¬A1(x̄) ∧ . . . ∧ ¬An(x̄) ∧ f (x̄) = fn+1(x̄)).

By the previous lemmas and the universal axiomatizability of PTCA, the following
is immediate by Herbrand’s theorem:

Theorem 1. If PTCA ⊢ ∀x̄∃yA(x̄, y), where A is a polytime decidable matrix and x̄
and y are the only free variables of A, then there is a function symbol f in LP such that
PTCA ⊢ ∀x̄ A(x̄, f (x̄)).
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We denote by x ≼ y (respectively, x ≡ y) the formula 1 × x ⊆ 1 × y (respectively,
1 × x = 1 × y). In the standard model x ≼ y (respectively, x ≡ y) says that the length
of x is less than or equal (respectively, equal) to the length of y. Quantifications of the
form ∀x (x ≼ t → . . .) and ∃x (x ≼ t ∧ . . .) (usually abbreviated by ∀x ≼ t (. . .) and
∃x ≼ t (. . .)) are called bounded quantifications.

Let us now introduce the auxiliary theory PTCA+:

Definition 2. PTCA+ is the first-order theory whose axioms are those of PTCA plus
the following scheme of induction on notation:

B(ϵ) ∧ ∀x (B(x)→ B(x0) ∧ B(x1))→ ∀xB(x),

where B(x) is of the form ∃y ≼ t A(y, x), where A(y, x) is quantifier-free (possibly with
parameters), and t is a term in which y does not occur.

The formulas of the form B above define exactly the NP-sets in the standard model
(see [11]). The increase in induction (from polytime to non-deterministic polytime)
does not change the provably total functions (with polytime graphs) of the theory. The
result below should be compared with the classic result of Charles Parsons (indepen-
dently obtained by Gaisi Takeuti and Grigori Mints) that says that the provably total
functions of Σ0

1-IND are the primitive recursive functions. For appropriate references
to this classical result and a new proof of it, see [15].

Theorem 2. If PTCA+ ⊢ ∀x̄∃yA(x̄, y), where A is a polytime decidable matrix and x̄
and y are the only free variables of A, then PTCA ⊢ ∀x̄∃yA(x̄, y).

Proof. Let us consider the theory PTCA+ given by a universal axiomatization A of
PTCA (we take the formulas in A to be quantifier-free), together with the induction
scheme of Definition 2. Now, let us formulate PTCA+ in Gentzen’s sequent calculus
by adding to the usual initial sequents and rules for predicate logic with equality, the
following initial sequents and rule:
• the initial sequents of the form→A, with A inA;
• the induction rule

Γ, B(x)→∆, B(x0) Γ, B(x)→∆, B(x1)
Γ, B(ϵ)→∆, B(s)

where B(x) is of the form ∃w ≼ t A(w, x), with A(w, x) a quantifier-free formula (pos-
sibly with parameters), t is a term in which w does not occur, s is any term, and the
variable x does not occur free in Γ or ∆ (it is an eigenvariable).

Suppose that PTCA+ ⊢ ∀x̄∃yA(x̄, y), where (w.l.o.g.) A is quantifier-free. Our goal
is to prove that PTCA ⊢ ∀x̄∃yA(x̄, y). Take P a proof of→∃yA(x̄, y) in the sequent
calculus described above. By Gentzen’s cut elimination theorem adapted to our setting
(more precisely partial cut elimination, also called the free-cut elimination theorem) we
know that there is a proof P′ of→∃yA(x̄, y), in the sequent calculus above, in which
every cut formula comes from an initial sequent or from a principal formula in the
induction rule. Therefore, by the subformula property of the calculus, every formula in
the proof P′ is a subformula of the conclusion or of a cut formula. In both cases, it is a
quantifier-free formula or an existential formula.
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The result follows if we manage to prove that, for every sequent Γ→∆ in the proof
P′, we have PTCA ⊢ ∧Γ → ∨∆ (where ∧Γ, respectively ∨∆, denotes the conjunc-
tion, respectively disjunction, of the formulas in Γ, respectively in ∆). The proof is by
induction on the number of lines of P′. The only case requiring attention is the induc-
tion rule. Suppose that the result holds for the two premisses of the induction rule, i.e.
PTCA ⊢ ∧Γ ∧ B(x) → ∨∆ ∨ B(xi), for i = 0, 1. We want to prove that it also holds for
the conclusion of the rule, i.e. PTCA ⊢ ∧Γ ∧ B(ϵ)→ ∨∆ ∨ B(s).

By Theorem 1, it is possible to show that there are function symbols h0 and h1 such
that PTCA proves:

(∧Γ∧¬∨∆)→ ∃ȳi∀x∀w (w ≼ t(x)∧A(w, x)→ hi(ȳi, x,w) ≼ t(xi)∧A(hi(ȳi, x,w), xi)),

for i = 0, 1. Of course, this fact relies crucially on the fact that the formulas in Γ and ∆
are either quantifier-free or existential (see [12], pages 144-147, for details).

We now reason in PTCA. Assume that we have ∧Γ, ¬ ∨ ∆ and B(ϵ). We want to
prove B(s). By the property above, we know that there are ā0 and ā1 satisfying

(∧Γ ∧ ¬ ∨ ∆)→ ∀x∀w (w ≼ t(x) ∧ A(w, x)→ hi(āi, x,w) ≼ t(xi) ∧ A(hi(āi, x,w), xi)),

for i = 0, 1. It is not difficult to define a function f , by bounded recursion on notation,
such that: f (ȳ0, ȳ1, u, ϵ) = u and f (ȳ0, ȳ1, u, xi) = hi(ȳi, x, f (ȳ0, ȳ1, u, x)), i = 0, 1. Since
B(ϵ) holds, take c such that c ≼ t(ϵ) and A(c, ϵ). By induction on notation on x it
is possible to argue that, for all x, f (ā1, ā2, c, x) ≼ t(x) and A( f (ā1, ā2, c, x), x). In
particular we have f (ā1, ā2, c, s) ≼ t(s) and A( f (ā1, ā2, c, s), s), i.e. B(s). �

As it is well-known, it is possible to introduce in the theory Σ0
1-IND all primi-

tive recursive functions (this is essentially done in the famous incompleteness paper
of Gödel) and, therefore, PRA can be considered a subtheory of Σ0

1-IND. Of course,
given the paucity of primitive function symbols in the language of Peano arithmetic, the
availability of induction for Σ0

1-formulas is crucial in this regard (mere bounded quan-
tification in the language of Peano arithmetic obviously does not suffice). A similar
phenomenon takes place in our setting. Let us look at the situation.

Let x ⊆∗ y abbreviate the formula ∃w ⊆ y (wx ⊆ y). The meaning of this relation
is clear: x is a subword (not necessarily an initial subword) of y. The class of subword
quantification formulas, abbreviated sw.q.-formulas, is the smallest class of formulas of
L containing the atomic formulas and closed under Boolean operations and subword
quantifications, i.e. of the form ∀x (x ⊆∗ t → . . .) or ∃x (x ⊆∗ t ∧ . . .), where t is a
term in which x does not occur. As usual, subword quantifications can be abbreviated
by ∀x ⊆∗ t (. . .) and ∃x ⊆∗ t (. . .), respectively. The reader should note that the sets
of the standard model defined by sw.q.-formulas are polytime computable (but by no
means exhaust this class). This is clear because the number of subwords of a word is
quadratic in the length of the given word (therefore, the needed searches are polytime
computable). The following definition is important:

Definition 3. A Σb
1-formula is a formula of the form ∃x (x ≼ t(z̄) ∧ A(z̄, x)), usually

written as ∃x ≼ t(z̄) A(z̄, x), where A is a sw.q.-formula and x does not occur in the
term t. Πb

1-formulas are defined dually.
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It is possible to show that the Σb
1-formulas define exactly the NP-sets in the stan-

dard model. (This is somewhat reminiscent of the fact that the Σ0
1-formulas define the

recursively enumerable sets.) The reason for this lies in the fact that sw.q.-formulas are
expressive enough to describe computations of Turing machines (see [11] for details).

Definition 4. Σb
1-NIA is the first-order theory,1,2 formulated in the language L, which

has the following axioms:

• The basic axioms of Definition 1.

• The scheme of induction on notation

A(ϵ) ∧ ∀x (A(x)→ A(x0) ∧ A(x1))→ ∀xA(x),

where A is a Σb
1-formula, possibly with other free variables besides x.

In [11], it was shown that the class of polytime decidable matrices is closed under
subword quantification (modulo equivalence in PTCA). Hence Σb

1-NIA is a subtheory
of PTCA+. On the other hand, it is possible (and relatively easy) to present for each
f (x) ∈ LP a Σb

1-formula F f (x, y) in the language L such that Σb
1-NIA ⊢ ∀x∃1y F f (x, y)

and which has the defining properties of f (as given by the axioms in Definition 1).
The proof is by induction on the complexity of the description of f (the details can be
found in [12]). We can subsume the above discussion by the following result:

Proposition 1. Every model of Σb
1-NIA can be extended to a model of PTCA+ by defin-

ing the interpretation of each function symbol f ∈ LP via F f .

3 Adding bounded collection
In this section we are going to enrich the theory Σb

1-NIA with a bounded collection
scheme. As already discussed, this principle plays a pivotal role in setting up systems
of weak analysis. Once more, we are going to use a cut-elimination technique to prove
that the enriched theory is conservative over Σb

1-NIA concerning Π0
2-formulas.

The bounded formulas of L consist of the smallest class of formulas containing the
atomic formulas and closed under Boolean connectives and bounded quantifications.
The principle of bounded collection, denoted by BΣb

∞, is the following scheme:

∀x ≼ a∃yA(x, y)→ ∃z∀x ≼ a∃y ≼ zA(x, y),

where A is a bounded formula (possibly with parameters) and z is a new variable.
For technical reasons pertaining to the formulation of an efficient calculus of se-

quents, in this section (and in Section 6) we consider that the language L has primitive
bounded quantifiers. I.e., if A is a formula of L, we introduce the formulas ∀x ≼ t A
and ∃x ≼ t A (with t a term where x does not occur) as new formulas, instead of mere
abbreviations of ∀x (x ≼ t → A) and ∃x (x ≼ t ∧ A), respectively.

1This theory was originally named Σb
1-PIND (see [11, 12]). The current denomination stands for Notation

Induction Axiom and follows the terminology in [2].
2This theory is defined in the spirit of Buss’s seminal theory S1

2 ([3]).
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In analogy with the formulation of PTCA+ given in the proof of Theorem 2, we for-
mulate Σb

1-NIA in Gentzen’s sequent calculus with the corresponding rule for induction
on notation (for Σb

1-formulas). We add the following rules for the bounded quantifiers:

Γ, A(t)→∆ ∀≼ : l
Γ, t ≼ s,∀x ≼ sA(x)→∆

Γ, b ≼ t→∆, A(b) ∀≼ : r
Γ→∆,∀x ≼ tA(x)

Γ, b ≼ t, A(b)→∆ ∃≼ : l
Γ,∃x ≼ tA(x)→∆

Γ→∆, A(t) ∃≼ : r
Γ, t ≼ s→∆,∃x ≼ sA(x)

where b is an eigenvariable (it is not free in either Γ, ∆ or t). Of course, with these rules
it is possible to prove the equivalences ∀x ≼ tA ↔ ∀x (x ≼ t → A) and ∃x ≼ tA(x) ↔
∃x (x ≼ t ∧ A).

Theorem 3. The theory Σb
1-NIA + BΣb

∞ is Π0
2- conservative over the theory Σb

1-NIA.

Proof. The theory Σb
1-NIA + BΣb

∞ can be formulated in the sequent calculus described
above together with the following rule for bounded collection:

Γ→∆,∀x ≼ t∃yA(x, y)
Γ→∆,∃z∀x ≼ t∃y ≼ zA(x, y)

where A is a bounded formula.
Suppose that Σb

1-NIA+BΣb
∞ ⊢ ∀x∃yA(x, y) with A a bounded formula. Then, there is

a proof of→∃yA(x, y) in the sequent calculus above. The free-cut elimination theorem
ensures that there is a proof P of→∃yA(x, y) without free cuts. As a consequence,
all formulas occurring in the sequents Γ→∆ in P are Σ0

1-formulas, i.e. of the form
∃yB(x, y), with B a bounded formula.

Let Γ→∆ be a sequent in P, where Γ is ∃x1B1(x1, x), . . . ,∃xnBn(xn, x) and ∆ is
∃y1C1(y1, x), . . . ,∃ykCk(yk, x), with B1, . . . , Bn,C1, . . . ,Ck bounded formulas (we ad-
mit the absence of existential quantifiers to accommodate bounded formulas in the
sequent). It can be proved, by induction on the number of lines of the proof P, that
from bounds of the antecedents we can get (in Σb

1-NIA) bounds for the consequents in
the following way:

Σb
1-NIA ⊢ ∀u∃v∀x ≼ u (Γ≼u → ∆≼v),

where Γ≼u abbreviates ∃x1 ≼ uB1(x1, x) ∧ . . . ∧ ∃xn ≼ uBn(xn, x) and ∆≼v abbreviates
∃y1 ≼ vC1(y1, x) ∨ . . . ∨ ∃yk ≼ vCk(yk, x). The proof of this is not difficult. We do not
give a proof because the situation will reappear in a stronger context in Section 6.

If we apply the above result to the last sequent of P, we get

Σb
1-NIA ⊢ ∀u∃v∀x ≼ u∃y ≼ vA(x, y).

It follows that Σb
1-NIA ⊢ ∀x∃yA(x, y). �

The above result (and proof-technique) is due to Samuel Buss [4]. For model-
theoretic proofs see also [4] and [14]. This latter paper has a very general formulation
of the above theorem. For a proof using the bounded functional interpretations see
[19].

10



4 A theory of analysis for polytime computability
In this section we define the basic second-order theory for polytime computability. Let
L2 be the second-order language (a two-sorted language) which is the result of adding
to L second-order variables X, Y , Z, . . . (intended to vary over subsets of {0, 1}∗) and
a binary relation symbol ∈ which infixes between a term of L and a second-order
variable. The terms ofL2 are the same as the terms ofL and we have similar definitions
of bounded, Σb

1, and Πb
1-formulas: we just have to take into account that in the present

setting we have new atomic formulas of the form t ∈ X (set parameters are permitted).
One needs to be clear about the semantics for second-order theories. The semantics

of this paper (as well as of the ordinary studies of subsystems of analysis, weak or
strong) is the so-called Henkin semantics. This means that a structure for L2 consists
of a first-order structure M for the first-order part of the language and a subset S of
the power set of the domain of M for the range of the second-order variables. Note
that S need not be the full power set of the domain of M. As it is well-known, the
semantics with the full power set is not axiomatizable whereas Henkin semantics is
essentially a first-order semantics (enjoying a completeness and compactness theorem,
for instance).

The theory defined below was introduced by the second author in [13], where some
conservation results were proved (like the theorem of this section). The system can play
the role of a feasible base theory for reverse mathematics in analogy with RCA0 which
is commonly chosen as the base system for reverse mathematics [26] in the primitive
recursive environment. (At this point, we must refer to the system RCA∗0 studied in the
paper [27] which has some similitudes to weak systems with regard to the treatment of
bounded quantifications. It is, however, a system with exponentiation.) In Section 8,
we briefly discuss these matters.

Definition 5. BTFA (acronym for Base Theory for Feasible Analysis) is the second-
order theory, in the language L2, whose axioms are those of Σb

1-NIA + BΣb
∞ plus the

following comprehension scheme:

∀x (∃yA(x, y)↔ ∀zB(x, z))→ ∃X∀x (x ∈ X ↔ ∃yA(x, y))

where A is a Σb
1-formula and B is a Πb

1-formula, possibly with first and second-order
parameters, and X does not occur in A or B.

In the definition above, we could have required that the formulas A and B be sw.q.-
formulas because first-order bounded quantifications can be absorbed into (plain un-
bounded) first-order quantifications of the same type. We choose the definition above
for conceptual clarity since the simplified situation is peculiar to polytime computabil-
ity (nevertheless, we work with the simplified version in the proof of the theorem be-
low). For systems related to stronger complexity classes (e.g., polyspace computabil-
ity) one must also work with second-order bounded quantifications (see Section 6) and
these cannot be absorbed into first-order quantifications.

We will need the following technical lemma. It states that subword quantifications
do not lead to formulas outside the Σb

1-class. The result is similar to other cases in logic
and the proof does not present difficulties (see [12]). Therefore, we omit it.
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Lemma 4. Let F(x, y) be a Σb
1-formula, possibly with (first or second-order) parame-

ters. Then the theory BTFA proves

∀x ⊆∗ a∃y ≼ w F(x, y)→ ∃u ≼ w × a1 × a1∀x ⊆∗ a∃y ⊆∗ u (y ≼ w ∧ F(x, y)).

The proof of the next result follows familiar lines. Its idea is the same as when
one proves model-theoretically that the theory RCA0 is first-order conservative over
Σ0

1-IND: one can always enrich a given first-order model of the latter theory by declar-
ing that the second-order domain consists of all its recursive sets (i.e., simultaneously
defined by Σ0

1 and Π0
1-formulas). The resulting second-order structure is a model of

RCA0. Therefore, if a first-order sentence fails in some model of Σ0
1-IND it also fails

in some model of RCA0. By the completeness theorem, this shows that RCA0 is a
first-order conservative extension of Σ0

1-IND. For a reference, see [26]. In the proof
below, we focus on the role of bounded collection and on the need for Σb

1-induction on
notation (as opposed to mere induction on notation for polytime decidable matrices).

Theorem 4. BTFA is first-order conservative over Σb
1-NIA + BΣb

∞.

Proof. LetM be a model of Σb
1-NIA + BΣb

∞. Denote by M the domain ofM. Let S be
the class of all subsets X of M which can be defined inM simultaneously by formulas
of the form ∃yA(x, y) and ∀zB(x, z), with A(x, y) and B(x, z) sw.q-formulas (possibly
with parameters from M). We show that the second-order structure (M, S ), obtained
from M by adjoining S as the second-order domain, is a model of BTFA. We first
argue that, to each sw.q.-formula C(x) of L2 with designated free first-order variables
x (possibly with parameters from M and S ), we can associate two formulas CΣ(x)
and CΠ(x) of L of the form ∃yA(x, y) and ∀zB(x, z) (respectively), with A(x, y) and
B(x, y) sw.q.-formulas (possibly with parameters from M), such thatM |= ∀x (CΣ(x)↔
CΠ(x)) and (M, S ) |= ∀x (C(x)↔ CΣ(x)). It is clear that the existence of these formulas
implies that the scheme of comprehension holds in (M, S ). The construction of CΣ and
CΠ is by induction on the complexity of C. For example, in the simple atomic case
C :≡ x ∈ X, we take CΣ(x) and CΠ(x) as being, respectively, the formulas ∃y A(x, y)
and ∀z B(x, z), where A(x, y) and B(x, y) are as in the defining formulas of the parameter
X of S . The Boolean cases are not difficult to deal and subword quantification only
poses a difficulty in the two cases of unmatching types of quantification. So, let us
consider the case C(x, v) :≡ ∀u ⊆∗ v D(x, u). The construction of CΣ(x, v) relies on the
previous lemma and on BΣb

∞. Let us analyze the situation. By induction hypothesis, let
DΣ(x, u) be ∃y A(x, u, y), with A(x, u, y) a sw.q.-formula. A simple application of BΣb

∞
shows the following equivalence: C(x, v) ↔ ∃w∀u ⊆∗ v∃y ≼ w A(x, u, y). By Lemma
4, the right-hand side of the above equivalence can be put in the form of an existential
quantification followed by a sw.q.-formula. This gives our formula CΣ(x, v).

Let us now argue that induction on notation for Σb
1-formulas holds in (M, S ). Sup-

pose that (M, S ) |= A(ϵ) ∧ ¬A(a), with a ∈ M and A(x) a Σb
1-formula. We want to

find a c ∈ M such that (M, S ) |= A(c) ∧ ¬A(ci) (i=0 or i=1) and ci ⊆ a. Let A(x)
be ∃w ≼ t B(x,w), with B(x,w) a sw.q.-formula. Let BΣ(x,w) :≡ ∃yB1(x,w, y) and
BΠ(x,w) :≡ ∀zB2(x,w, y) as above, with B1(x,w, y) and B2(x,w, z) sw.q.-formulas sat-
isfying the expected conditions. In particular, we have

M |= ∀x ⊆ a∀w ≼ t (∃yB1(x,w, y)↔ ∀zB2(x,w, z)).
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We claim that there is b ∈ M such that

M |= ∀x ⊆ a∀w ≼ t (∃yB1(x,w, y)↔ ∃y ≼ bB1(x,w, y)).

The argument is easy and uses BΣb
∞. It follows from what we have that

M |= ∀x ⊆ a∀w ≼ t ∃y, z (B2(x,w, z)→ B1(x,w, y)).

Hence, by BΣb
∞, there is b such that

M |= ∀x ⊆ a∀w ≼ t ∃y, z ≼ b (B2(x,w, z)→ B1(x,w, y)).

The reader can argue that this b does the job.
It follows from the claim above that, for x a subword of a, ∃w ≼ t BΣ(x,w) is

equivalent to a Σb
1-formula. (Note that a bounded quantifier “∃y ≼ b” intrudes at this

point even if we were only considering induction for polytime decidable matrices.) It is
now clear that we can get the witness c to the failure of the hypothesis of the (notation)
induction principle by applying induction on notation for Σb

1-formulas in M. (Given
the intrusion of the bounded existential quantification discussed above, the extension
from induction on notation for polytime decidable matrices to Σb

1-formulas, given by
Theorem 2, is necessary for this part of the argument.)

It remains to see that BΣb
∞ holds in (M, S ). The proof follows easily from an

extension of the construction of CΣ and CΠ to bounded formulas C (now with bounded
formulas A and B). The extension uses heavily the BΣb

∞ scheme available inM. �

5 Adding weak König’s lemma
In this section, we are going to add a nonconstructive scheme to BTFA, namely (a ver-
sion) of weak König’s lemma. Given A a formula of L2 and x a (first-order) designated
variable, we denote by Tree(Ax) the formula:

∀x∀y (A(x) ∧ y ⊆ x→ A(y)) ∧ ∀u∃x ≡ uA(x).

The second condition is the so-called infinity or limitless condition. Given X a second-
order variable, we denote by Path(X) the formula:

Tree((x ∈ X)x) ∧ ∀x∀y (x ∈ X ∧ y ∈ X → x ⊆ y ∨ y ⊆ x).

Weak König’s lemma for trees defined by bounded formulas, denoted by Σb
∞-WKL, is

the following scheme:

Tree(Ax)→ ∃X (Path(X) ∧ ∀x (x ∈ X → A(x))),

where A is a bounded formula and X is a new variable.
The aim of this section is to prove the following theorem:

Theorem 5. BTFA + Σb
∞-WKL is first-order conservative over BTFA.
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We use the method of forcing to prove this theorem. The argument, in the tradi-
tional context of RCA0, is due to unpublished work of Leo Harrington (recently, [17]
presented a proof-theoretic proof of this conservation result in the traditional context).
The main lemma is the following:

Lemma 5. Let (M, S ) be a countable model of BTFA and let A be a bounded formula
(possibly with parameters in the domain of M and in S ) with a designated variable
x such that (M, S ) |= Tree(Ax). There is a subset G of the domain of M such that
(M, S ∪ {G}) is a model of Σb

1-NIA + BΣb
∞ and

(M, S ∪ {G}) |= Path(G) ∧ ∀x (x ∈ G → A(x)).

Proof. Let T be the set of all (limitless) subtrees of A defined by a bounded formula
(possibly with parameters in the domain M ofM and in S ). The elements of T are our
forcing conditions. We order T by inclusion. If T,Q ∈ T we write T 6 Q instead of
T ⊆ Q. Let G ⊆ T be a generic filter for a sufficiently rich countable class of dense
sets.3 We put G :=

∩
G and claim that G is indeed a path throught the tree given by A

(a so-called generic path).

Fact 1. Let n be a tally element of the domain ofM. The set

Dn = {T ∈ T : (M, S ) |= ∃1x (x ≡ n ∧ x ∈ T )}

is dense.

Proof of fact 1. Let n be a tally sequence and T ∈ T. We have to show that some subtree
of T is a member of Dn. The following cannot happen:

(M, S ) |= ∀x ≡ n∃m (n ≼ m ∧ ∀z ≡ m (x ⊆ z ∧ z ≡ m→ z < T )).

Otherwise, by bounded collection, there is a tally m such that all elements of T have
length smaller than m, contradicting the limitlessness of T . It easily follows that there
is x, with x ≡ n, such that {z ∈ T : z ⊆ x ∨ x ⊆ z} is limitless. This set is obviously a
subtree of T and is clearly in Dn. � (of fact 1)

Given a tally n, since G is generic, G ∩ Dn , ∅. Take T ∈ G ∩ Dn and let σn be
the unique element of T of length n. Using the fact that G is a filter, it is now clear that
σn ∈

∩
G. By the arbitrariness of n, this entails that G is indeed a (limitless) path.

It is not difficult to argue that Σb
1-NIA holds in the generic extension (M, S ∪ {G}).

Actually, this does not depend on the genericity of G. We use the following simple ob-
servation (which will be used frequently in the sequel). Let B(x, p, P,G) be a bounded
formula with parameters p ∈ M, P ∈ S (to ease the notation we only consider one
parameter of each type) and the generic set G. There is a term tB(x, p) such that, for

3A set D of forcing conditions is called dense if, for each forcing condition T , there is a forcing condition
Q with Q ∈ D and Q 6 T . The sufficiently rich countable class of dense sets is usually given by the definable
sets in an extension of the language of set theory containing the forcing language (defined later in the proof)
and constants for each forcing condition. A filter of forcing conditions contains the tree given by A, is closed
upwards and, if T and Q are in the filter then there is a forcing condition R in the filter with R 6 T and R 6 Q.
A filter is called generic if it intersects all the given dense sets. Since the class of dense sets is countable, it
is a known fact that for any forcing condition T there is always a generic filter G such that T ∈ G.
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any element a ∈ M, we have the following equivalence: For all elements x ≼ a and for
all y ∈ G with tB(a, p) ≼ y,

(M, S ∪ {G}) |= B(x, p, P,G) if, and only if, (M, S ) |= B∗(x, p, P, y),

where B∗(x, p, P, y) is the bounded formula obtained from B(x, p, P,G) by replacing
every atomic formula of the form q ∈ G by q ⊆ y. The observation is correct because,
to decide a bounded formula, one only has to check below a certain point (the formal
proof is straightforward, by induction on the complexity of the formula B). Note that
the term tB does not depend on G.

In order to check that Σb
1-NIA holds in the generic extension, take B(x,G) (we omit

the parameters of the ground model) a Σb
1-formula and a ∈ M such that B(a,G) is false

in (M, S ∪ {G}). Take y ∈ G with tB(a) ≼ y. By the above claim, (M, S ) |= ¬B∗(a, y).
Since Σb

1-NIA holds in the ground model, either (M, S ) |= ¬B∗(ϵ, y) or there is x ⊂ a
such that (M, S ) |= B∗(x, y) ∧ ¬B∗(xi, y), where i ∈ {0, 1} is such that xi ⊆ a. It is clear
that either counterexample lifts to the generic extension.

It remains to check that BΣb
∞ holds in (M, S ∪ {G}). It is at this stage that we use

the forcing theorem. Let us briefly review the basic facts of forcing in our setting. The
forcing language is the extension of the language of L2 by addition of new constants
for the elements of M and of S together with a constant C (for the generic path). We
identify the former constants with the elements themselves. The forcing relation is
a relation involving forcing conditions and sentences of the forcing language. The
definition of the forcing relation (at the atomic level) is as follows:

1. T 
 x = y iff x = y;

2. T 
 x ∈ X iff x ∈ X;

3. T 
 x ∈ C iff (M, S ) |= ∃m∀w ≡ m (w ∈ T ⇒ x ⊆ w);

for x, y in the domain M, X ∈ S and T a forcing condition.

Fact 2. If F is an atomic sentence of the forcing language and T is a forcing condition
then T 
 F if, and only if, ∀Q 6 T ∃R 6 Q (R 
 F).

Proof of fact 2. We need only discuss the case of atomic sentences x ∈ C. The left
to right direction is clear. Assume that T 1 x ∈ C. Then, Q := {y ∈ T : x * y} is a
limitless subtree of T , i.e., Q 6 T . Obviously, for no R 6 Q one has R 
 x ∈ C.

� (of fact 2)

The above fact shows that we are in the presence of a weak forcing notion. The def-
inition of the forcing relation to arbitrary sentences is done according to the following
recursive scheme:

4. T 
 F ∧G if T 
 F and T 
 G;

5. T 
 ¬F if, for all conditions Q with Q 6 P, Q 1 F;

6. T 
 ∀x F(x) if, for all elements p ∈ M, T 
 F(p);
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7. T 
 ∀X F(X) if T 
 F(C) and, for all P ∈ S , T 
 F(P).

As it is well-known, all logical axioms are generically forced (i.e., forced by every
condition) and the rules of logical inference are preserved by forcing (in the sense that
if a condition forces the premisses then it forces the conclusion). We state this fact just
by saying that “weak forcing preserves classical logic”. In the remainder of the proof of
the lemma, we will use the forcing theorem. It says that, for every formula F(V) of the
language (possibly with parameters in the ground model) and every forcing condition
T , the condition T 
 F(C) holds if, and only if, for every generic filter H such that
T ∈ H, (M, S ∪ {H}) |= F(H), where H =

∩
H.

Fact 3. Let B(x, X) be a bounded formula, possibly with parameters in the ground
model, and consider a forcing condition T . The condition T 
 ∃xB(x,C) holds if, and
only if,

(M, S ) |= ∃m∀y ≡ m (y ∈ T → ∃x ≼ m (tB(x) ≼ m ∧ B∗(x, y))).

Proof of fact 3. Assume that the latter condition holds. Let H be an arbitrary generic
filter such that T ∈ H. By the forcing theorem, we only need to show that the existential
statement ∃xB(x,H) holds in (M, S ∪ {H}). By hypothesis, there is a (tally) element m
in M and x ≼ m such that

(M, S ) |= tB(x) ≼ m ∧ B∗(x, y0),

where y0 is the truncation of the path H at length m. Of course, this x witnesses the
existential statement.

Suppose, now, that the latter condition fails. Let

Q = {y ∈ T : (M, S ) |= ∀x ≼ y (tB(x) ≼ y→ ¬B∗(x, y))}.

It is clear that Q is a tree (it is a limitless one by the assumption). Hence Q is a forcing
condition with Q 6 T . Take a generic filter H such that Q ∈ H and put H =

∩
H. We

claim that
(M, S ∪ {H}) |= ∀x¬B(x,H).

Note that, by the forcing theorem, this fact entails T 1 ∃xB(x,C). To show the claim,
consider an arbitrary x ∈ M. Take y ∈ H with tB(x) ≼ y and x ≼ y. Since H ⊆ Q, by
definition of Q, (M, S ) |= ¬B∗(x, y). The claim follows. � (of fact 3)

We can now prove that BΣb
∞ is forced by every condition T and, as a consequence

(forcing theorem), that BΣb
∞ holds in every generic extension. An instance of BΣb

∞ is
a conditional statement. To see that a condition T forces a conditional statement, one
must show that if a stronger condition Q 6 T forces the antecedent then there is a yet
stronger condition R 6 Q which forces the consequent. Hence, suppose that Q 6 T
and Q 
 ∀w ≼ a∃x B(w, x), where B is a bounded formula of the forcing language (and
a comes from M). Then, for every w with w ≼ a, Q 
 ∃x B(w, x). According to Fact 3,
for every w with w ≼ a, we have

(M, S ) |= ∃m∀y ≡ m (y ∈ Q→ ∃x ≼ m (tB(x) ≼ m ∧ B∗(w, x, y))).
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Therefore, (M, S ) |= ∀w ≼ a∃m∀y ≡ m (y ∈ Q → ∃x ≼ m (tB(x) ≼ m ∧ B∗(w, x, y))).
Since BΣb

∞ holds in the ground model, there is a (tally) element m0 in M such that

(M, S ) |= ∀w ≼ a∀y ≡ m0 (y ∈ Q→ ∃x ≼ m0 (tB(x) ≼ m0 ∧ B∗(w, x, y))).

By the density of Dm0 , take a forcing condition R with R 6 Q and R ∈ Dm0 . We get

(M, S ) |= ∀w ≼ a∃x ≼ m0 (tB(x) ≼ m0 ∧ B∗(w, x, y0)),

where y0 is the unique element of R of length m0. It easily follows from the forcing
theorem that R 
 ∃m∀w ≼ a∃x ≼ m B(w, x). �

The above lemma does not provide a model of BTFA because the recursive com-
prehension scheme is missing. However, as in the proof of Theorem 4, it is possible to
close the given model of Σb

1-NIA+BΣb
∞ under this comprehension scheme. In sum, we

have accomplished the following: Given a countable model (M, S ) of BTFA and given
a bounded formula A (possibly with first and second-order parameters) with designated
variable x such that (M, S ) |= Tree(Ax), there is a countable S ′ with S ⊆ S ′ ⊆ P(M)
such that (M, S ′) is a model of BTFA and

(M, S ′) |= ∃X (Path(X) ∧ ∀x (x ∈ X → A(x))).

There are only countably many trees of (M, S ) defined by bounded formulas (pos-
sibly with parameters in the domain M ofM and in S ). We can enumerate all these
formulas A1, A2, . . . and get, successively, countable models (M, S 1), (M, S 2), . . . (with
S 1 ⊆ S 2 ⊆ . . .) of BTFA such that, for each positive natural number i, (M, S i) has paths
through the trees given by A1, . . . Ai. Let S ω =

∪
i S i. It is easy to argue that (M, S ω)

is still a (countable) model of BTFA and that it has paths through all the trees given
by bounded formulas with parameters in M or S . Of course, there may be other trees:
those defined by bounded formulas with second-order parameters in S ω. However, we
can repeat the above operation with ground model (M, S ω) and get a countable model
(M, S ω+ω) which has paths for all trees defined by bounded formulas with parameters
in M or in S ω. After repeating this process ω-times, we end up with a model (M, S ω·ω),
where S ω·ω =

∪
k S ω·k. This is easily seen to be a model of BTFA + Σb

∞-WKL.
We have shown that, given a countable model (M, S ) of BTFA, it is possible to find

S ω·ω with S ⊆ S ω·ω ⊆ P(M) such that (M, S ω·ω) is a model of BTFA+ Σb
∞-WKL. Note

that the first-order part remains the same. By an easy application of the completeness
theorem, it follows that the theory BTFA + Σb

∞-WKL is first-order conservative over
BTFA.

6 On second-order bounded theories of arithmetic
In this section, we make a detour through a setting where the second-order part of
the language has a severe restriction: the set variables denote sets which are always
bounded by a term of the language. The reason for this diversion is twofold. In the
next section, when studying a conservation result concerning a scheme of strict Π1

1-
reflection, we need a stronger form of collection (we need collection for formulas with
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first and second-order bounded quantifiers). More importantly, when working in theo-
ries of bounded arithmetic connected with computational complexity classes stronger
than polytime computability, e.g. polyspace computability, FCH or EXPTIME, it is
convenient to work with bounded second-order variables. For polyspace computability
and exponential time computability, see the theories U1

2 and V1
2 (respectively) defined

by Buss in [3]. The class FCH is related with the hierarchy of counting functions, a
class defined by Klaus Wagner in [28] based on an iteration procedure that stems from
Leslie Valiant’s well-known counting class ♯P. The functions of this hierarchy are all
polynomial space computable and the theory related to this class, the so-called theory
TCA (theory for counting arithmetic), is contained in U1

2. See [21] and [22].
Let Lb

2 be the second-order language obtained by adding second-order bounded
variables to L and the relation symbol ∈ which infixes between a term of L and a
second-order bounded variable.4 The second-order bounded variables are complexes
of the form Xt where X is a (second-order) variable and t is a (first-order) term. As far
as the authors are aware, second-order bounded variables were introduced by Buss in
his thesis [3]. The intuitive idea is that Xt has only elements x such that x ≼ t. For ease
of reading, often we write ∀X ≼ t (...) and ∃X ≼ t (...) instead of the official notation
∀Xt (...) and ∃Xt (...) (respectively). These quantifiers are called bounded second-order
quantifiers.

In the following definition, we introduce an auxiliary theory Aux:

Definition 6. Aux is the theory formulated in the languageLb
2, whose axioms are those

of Σb
1-NIA + BΣb

∞,
∀x∀Xt(x ∈ Xt → x ≼ t)

for any term t, and the following comprehension scheme

∀x ≼ t (A(x)↔ B(x))→ ∃Xt∀x ≼ t (x ∈ Xt ↔ A(x))

where A is a Σb
1-formula, B is a Πb

1-formula, possibly with first and second-order pa-
rameters, Xt does not occur in A or B and x does not occur in the term t.

It is clear that the theory Aux can be seen as a subtheory of BTFA in a natural
manner. Therefore, its provably total functions (with appropriate graphs) are still the
polytime computable functions.

The theory Aux can be formulated in Gentzen’s sequent calculus by adding to the
corresponding formulation of Σb

1-NIA + BΣb
∞ presented in the proof of Theorem 3 two

new kinds of initial sequents:

s ∈ Xt→s ≼ t

where s and t are terms, and

∀x ≼ t (A(x)↔ B(x))→∃Xt∀x ≼ t (x ∈ Xt ↔ A(x))

where A is a Σb
1-formula, B is a Πb

1-formula, possibly with first and second-order pa-
rameters, Xt does not occur in A or B and x does not occur in t. We also add four new
rules for the second-order quantifiers:

4In this definition, L is the language of Section 3 with primitive bounded first-order quantifiers.
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Γ, A(F t)→∆ ∀2nd : l
Γ,∀XtA(Xt)→∆

Γ→∆, A(Ct) ∀2nd : r
Γ→∆,∀XtA(Xt)

Γ, A(Ct)→∆ ∃2nd : l
Γ,∃XtA(Xt)→∆

Γ→∆, A(F t) ∃2nd : r
Γ→∆,∃XtA(Xt)

with F t a second-order variable and Ct a second-order eigenvariable.
We say that a formula is in the class Σ1,b

∞ if it belongs to the smallest class of for-
mulas containing the atomic formulas and closed under Boolean operations, bounded
first-order quantifications and second-order (bounded) quantifications. These are also
known as the bounded formulas in the language of Lb

2. The principle of bounded col-
lection for the language Lb

2, denoted by B1Σ1,b
∞ , is the following scheme:

∀X ≼ t∃yA(Xt, y)→ ∃z∀X ≼ t∃y ≼ zA(Xt, y),

where A is a Σ1,b
∞ -formula (possibly with other first and second-order free variables). It

is easy to argue that this form of bounded collection implies the principle BΣb
∞.

Proposition 2. Aux + B1Σ1,b
∞ ⊢ BΣb

∞.

Proof. Suppose that ∀x ≼ t∃yA(x, y), with A a bounded formula. We want to prove
that ∃z∀x ≼ t∃y ≼ zA(x, y). Let B(y, Xt) be the Σ1,b

∞ -formula, expressing that when Xt

is empty or has more than one element then y = ϵ, and when Xt has a unique element,
say x, then y satisfies A(x, y). Formally, B(y, Xt) is

(y = ϵ ∧ ∀x ≼ t x < Xt) ∨ (y = ϵ ∧ ∃x, x′ ≼ t (x , x′ ∧ x, x′ ∈ Xt))∨

∃x ≼ t (A(x, y) ∧ x ∈ Xt ∧ ∀x′ ≼ t (x , x′ → x′ < Xt)).

By definition of B(y, Xt), we have ∀Xt∃yB(y, Xt). Applying B1Σ1,b
∞ , we conclude

that ∃z∀Xt∃y ≼ zB(y, Xt). Fix such a z. But then ∀x ≼ t∃y ≼ zA(x, y). Just think of the
y which corresponds to the singleton set Xt :≡ {x}. �

Theorem 6. The theory Aux + B1Σ1,b
∞ is conservative over the theory Aux with respect

to formulas of the form ∀x∃yA(x, y), with A a Σ1,b
∞ -formula.

Proof. The theory Aux + B1Σ1,b
∞ can be formulated in Gentzen’s sequent calculus (as

above), making use of the following new inference rule, we call B1Σ1,b
∞ -rule:

Γ→∆,∃yA(y,Ct)
Γ→∆,∃z∀X ≼ t∃y ≼ zA(y, Xt)

where A is a Σ1,b
∞ -formula (possibly with other free variables), Ct is a second-order

eigenvariable, and y does not occur in the term t.
Suppose that Aux + B1Σ1,b

∞ ⊢ ∀x∃yA(x, y), with A a Σ1,b
∞ -formula. Then, there is a

proof of→∃yA(x, y) in the sequent calculus above. Applying the free-cut elimination
theorem, we know that there is a proof P of→∃yA(x, y) without free cuts. Therefore

19



all formulas occurring in the sequents Γ→∆ in P are of the form ∃yB(y, x, Xp), with
B a Σ1,b

∞ -formula. As usual, the existential quantifier can be absent.
Let Γ→∆ be a sequent in P, where Γ is ∃x1B1(x1, x, Xp(x)), . . . ,∃xnBn(xn, x, Xp(x))

and ∆ is ∃y1C1(y1, x, Xp(x)), . . . ,∃ykCk(yk, x, Xp(x)), where B1, . . . , Bn,C1, . . . ,Ck are
Σ1,b
∞ -formulas. To ease reading, we show only a first-order free variable x and a second-

order bounded variable Xp(x), instead of tuples of such. Also, we have the same term
p(x) for every formula (this can be assumed without loss of generality). We are also
only displaying the variable x in the term p(x).

Let us prove, by induction on the number of lines of P, that from bounds of the
antecedents we can get (in Aux) bounds for the consequents in the following way:

Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v),

where Γ≼u abbreviates ∃x1 ≼ uB1(x1, x, Xp(x)) ∧ . . . ∧ ∃xn ≼ uBn(xn, x, Xp(x)) and ∆≼v

abbreviates ∃y1 ≼ vC1(y1, x, Xp(x))∨. . .∨∃yk ≼ vCk(yk, x, Xp(x)). Note that applying this
result to the last sequent of P, we conclude that Aux proves ∀u∃v∀x ≼ u∃y ≼ vA(x, y).
Thus Aux ⊢ ∀x∃yA(x, y).

The proof above is going to be illustrated by considering the cut-rule, the ∃ :r-rule,
the ∀≼ : r-rule and the B1Σ1,b

∞ -rule. The other cases are trivial (including the initial
sequents and the rules for the second-order bounded quantifiers) or similar to the ones
presented; the rules for ∀ :e and ∀ :d do not occur in P and there is no need to analyze
the rule for BΣb

∞ because we have shown that this principle is derivable from B1Σ1,b
∞ .

Cut-rule:

Γ→∆, A A,Γ→∆
Γ→∆

If A is a Σ1,b
∞ -formula the result is immediate taking v :≡ v1 ˆv2, where v1 and v2 the

bounds that exist by induction hypothesis.
Suppose that A is of the form ∃zD(z, x, Xp(x)) with D a Σ1,b

∞ -formula. By induction
hypothesis we have:

1) Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v ∨ ∃z ≼ vD(z, x, Xp(x)))

2) Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)(∃z ≼ uD(z, x, Xp(x)) ∧ Γ≼u → ∆≼v).

We want to prove that Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v).
Fix u. By 1) there is v1 such that ∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v1 ∨∃z ≼ v1D(z, x, Xp(x))).

Assume that u ≼ v1 (if not just replace v1 by v1 ˆu that the assertion above remains
valid). By 2), there is v2 such that ∀x ≼ v1∀Xp(x)(∃z ≼ v1D(z, x, Xp(x)) ∧ Γ≼v1 → ∆≼v2 ).
We get ∀x ≼ u∀Xp(x)(∃z ≼ v1D(z, x, Xp(x)) ∧ Γ≼u → ∆≼v2 ), using the fact that if u ≼ u′

then Γ≼u → Γ≼u′ . Let v :≡ v1 ˆv2. We conclude that ∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v).
∃ :r-rule:

Γ→∆, A(t)
Γ→∆,∃xA(x)
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Fix u. By induction hypothesis, there is v1 so that ∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v1∨A(t)).
Note that by the construction of P, A is a Σ1,b

∞ -formula. We want to prove that there is
v such that ∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v ∨ ∃x ≼ vA(x)). Just take v as being v1 ˆ t(u).
∀≼ :r-rule:

a ≼ t,Γ→∆, A(a)
Γ→∆,∀y ≼ tA(y)

with a an eigenvariable and A a Σ1,b
∞ -formula.

We want to prove that Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v ∨ ∀y ≼ tA(y)). Fix u.
Let u′ :≡ t(u) ˆu. By induction hypothesis, there is v′ such that

∀x ≼ u′∀Xp(x)∀y ≼ u′(y ≼ t ∧ Γ≼u′ → ∆≼v′ ∨ A(y)).

Thus, ∀x ≼ u∀Xp(x)∀y ≼ u′(y ≼ t ∧ Γ≼u → ∆≼v′ ∨ A(y)). Just let v be v′.
B1Σ1,b

∞ -rule:

Γ→∆,∃yA(y,Ct)
Γ→∆,∃z∀Y ≼ t∃y ≼ zA(y, Y t)

By induction hypothesis we know that

Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)∀Y t(x)(Γ≼u → ∆≼v ∨ ∃y ≼ vA(y,Y t(x))).

To prove, as we want, that

Aux ⊢ ∀u∃v∀x ≼ u∀Xp(x)(Γ≼u → ∆≼v ∨ ∃z ≼ v∀Y t(x)∃y ≼ zA(y,Y t(x))),

consider an arbitrary u, take v as the element that exists by induction hypothesis, and
let z :≡ v.

The complete proof, in a slightly different context, is given in [20]. �

Theorem 7. The theory BTFA + B1Σ1,b
∞ is conservative over the theory Aux + B1Σ1,b

∞
with respect to sentences of the form ∀x∃yA(x, y), where A ∈ Σ1,b

∞ .

Proof. The proof uses a strategy similar to the one applied in Theorem 4 for dealing
with the comprehension scheme. LetM be a model of Aux + B1Σ1,b

∞ with first-order
domain M and second-order domain Sb. Let S be the class of all subsets X ⊆ M
which can be defined in M simultaneously by formulas of the form ∃yA(x, y) and
∀yB(x, y), with A a Σb

1-formula and B a Πb
1-formula (possibly with first and second-

order parameters fromM). Using BΣb
∞, it can be proved that Sb = {Xa : X ∈ S∧ a ∈ M}

(where Xa = {x ∈ X : x ≼ a}). It can also be argued that the second-order structureM∗,
obtained from M by keeping the same first-order domain and replacing the second-
order domain Sb by S , is a model of BTFA + B1Σ1,b

∞ . The argument uses the following
fact: if F(x, X) is a Σ1,b

∞ -formula, there is a term t(x) such that, for c ∈ M and C ∈ S ,
we haveM∗ |= F(c,C) if and only ifM |= F(c,Cb), whenever t(c) ≼ b.5 �

5For the details (in a slightly different context, but easily adapted to the present case), see [20], pp 65-70.
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7 Adding strict Π1
1-reflection

In this section, we go back to the (unbounded) second-order setting and add to BTFA a
principle that, in the presence of the totality of the exponential function, is equivalent to
weak König’s lemma. The principle in question, called strict Π1

1-reflection, is defined
by the following scheme:

∀X∃xA(x, X)→ ∃u∀X∃x ≼ uA(x, X),

with A a Σ1,b
∞ -formula (possibly with parameters) in which u does not occur. It is

sometimes convenient to present the strict Π1
1-reflection scheme in its contrapositive

form:
∀u∃X∀x ≼ u A(x, X)→ ∃X∀x A(x, X),

with A in the conditions above.
The original version of strict Π1

1-reflection was introduced by Jon Barwise in the
context of admissible set theory (see chapter VIII of [1]). This is perhaps a good place
to remark that fragments of arithmetic (weak arithmetic) have similarities with admis-
sibility (the preface of [24] calls attention to these similarities). StrictΠ1

1-reflection was
first considered in the weak context by Andrea Cantini in [5]. In this paper, Cantini asks
whether strict Π1

1-reflection is equivalent to weak König’s lemma (Cantini shows that
the former implies the latter).6 We conjecture that it is not. The following observation
is (essentially) due to Cantini [5]:

Proposition 3. The theory BTFA + strict Π1
1-reflection proves B1Σ1,b

∞ .

Proof. Let us reason in BTFA + strict Π1
1-reflection. Suppose that ∀X ≼ t∃yA(X, y),

with A a Σ1,b
∞ -formula (possibly with parameters). Of course, ∀X∃yÃ(X, y), where

Ã(X, y) is the Σ1,b
∞ -formula A(Xt, y). By strict Π1

1-reflection, ∃z∀X∃y ≼ zÃ(X, y). Such
a z satisfies ∀X ≼ t∃y ≼ zA(X, y). �

So, B1Σ1,b
∞ is a consequence of BTFA + strict Π1

1-reflection. The next theorem says
that, in a sense, the formulas of B1Σ1,b

∞ are the only non-trivial consequences of strict
Π1

1-reflection which do not have second-order unbounded quantifiers.

Theorem 8. The theory BTFA+strict Π1
1-reflection is conservative over BTFA+B1Σ1,b

∞
with respect to formulas without second-order unbounded quantifiers.

Proof sketch. Let (M, S ) be a countable model of BTFA + B1Σ1,b
∞ and A(x, X) be a

Σ1,b
∞ -formula (possibly with first and second-order parameters) such that

(M, S ) |= ∀u∃X∀x ≼ u A(x, X).
6Our formulation of strict Π1

1-reflection is incomparable with Cantini’s formulation. On the one hand,
it admits a matrix of Σ1,b

∞ -formulas, instead of just Σb
∞-formulas. On the other hand, the form of Cantini’s

formulation is more general. With his formulation of strict Π1
1-reflection, Cantini shows that this principle

is a Π0
2-conservative extension of BTFA. For a detailed analysis of a generalization of Cantini’s reflection

scheme see [8].
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We are going to show that there is a subset G of the domain M of M such that the
structure (M, S ∪ {G}) is a model of Σb

1-NIA + B1Σ1,b
∞ in which ∀x A(x,G) holds. It is

possible to close S ∪{G} under our form of recursive comprehension by the argument of
the proof of Theorem 7. Let us denote this closure structure by (M, S 1): this structure
is again a model of BTFA+B1Σ1,b

∞ and, moreover, has the same bounded sets as (M, S ).
(I.e., the sets of the form Xa with a an element of M coincide for X ranging in S or
in S 1). Now, using a chain argument as in the last part of the proof of Theorem 5,
there is S ω·ω, with S 1 ⊆ S ω·ω ⊆ P(M) such that the structure (M, S ω·ω) is a model of
BTFA+B1Σ1,b

∞ +strict Π1
1-reflection with the same bounded sets as the initial structure.

This fact, of course, entails our result.
The adjoining of G mimicks the forcing construction of the proof of Theorem 5.

However, we now use a different notion of tree. In Theorem 5, the forcing conditions
are (limitless) trees defined by bounded formulas. The elements of these trees are, of
course, the 0-1 strings of the modelM (i.e., the elements of M). Roughly, in our case,
the bounded sets of S play the role of the 0-1 strings. One should intuitively view a
bounded set as a very long 0-1 string (the “characteristic function” of the bounded set)
along the linear order ≤l defined by

x ≤l y :⇔ (x ≼ y ∧ x . y) ∨ (x ≡ y ∧ ∃z ⊆ x(z0 ⊆ x ∧ z1 ⊆ y)) ∨ (x = y).

Note that ≤l is defined first according to length and, within the same length, lexico-
graphically. (In the presence of the totality of the exponential function such “long
strings” can be obtained from the usual ones.)

After this interlude, take the given Σ1,b
∞ -formula A(x, X). In analogy to similar prop-

erties in other contexts, it is easy to show that there is a term tA(x) such that, for all a
and x ≼ a, the equivalence between A(x, X) and A(x, Xb) holds in second-order struc-
tures of Σb

1-NIA for b such that tA(a) ≼ b. For simplicity, we write t instead of tA and
we assume, without loss of generality, that x ≼ t(x).

We can now describe our forcing conditions. These are sets T of the form

{(a,Dt(a)) : a ∈ M,D ∈ S and (M, S ) |= B(a,Dt(a))},

where B(x, X) is a Σ1,b
∞ -formula (possibly with first and second-order parameters), such

that:

1. (M, S ) |= ∀x∃XB(x, Xt(x));

2. (M, S ) |= ∀X∀x (B(x, Xt(x))→ ∀y ≤l x B(y, Xt(y)));

3. (M, S ) |= ∀x∀X (B(x, Xt(x))→ ∀u ≼ x A(u, Xt(x))).

Intuitively, the first two conditions say that the formula B defines some kind of limitless
tree. The third condition just says that T is a subtree of the (limitless, by assumption!)
tree associated with the formula A.

Given conditions T and Q, we say that Q 6 T if Q ⊆ T . We can now take a generic
filter G of forcing conditions and define:

G := {x ∈ M : ∀T ∈ G∃a ∈ M,D ∈ S (x ∈ D ∧ x ≼ t(a) ∧ (M, S ) |= (a,Dt(a)) ∈ T )}.
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By the genericity of G, it can be shown that, for all x ∈ M, (M, S ) |= ∀u ≼ x A(u,Gt(x)).
We use the density of the sets Dx whose members are the forcing conditions containing
a single member of the form (x, Xt(x)). Of course, the proof of the density property of
these sets uses the scheme of B1Σ1,b

∞ .
As before, the forcing language has constants for each element of M and of S and

an extra constant C (standing for the generic set G). We define the forcing relation
for the relevant atomic sentences, i.e., for sentences of the form s ∈ C. We say that
T 
 s ∈ C if

(M, S ) |= ∃x∀Xt(x)((x, Xt(x)) ∈ T → s ∈ Xt(x)).

It is easy to verify that the above is a good weak forcing notion. The forcing relation
is extended to all sentences of the forcing language in the standard way. Note that
T 
 s ∈ C is a ∃Σ1,b

∞ -formula.
It can be shown that the structure (M, S ∪ {G}) is a model of Σb

1-NIA + B1Σ1,b
∞ in

which ∀x A(x,G) holds. The reader can check the details in [8] (there is also related
information in [6] and [21]). �

8 Weak analysis digest
In [25], Wilfried Sieg posed the following question: to find a mathematically significant
subsystem of analysis whose class of provably recursive functions consists only of
the computationally feasible ones. In the last part of his Ph.D. dissertation [11], the
second author made a first attempt at investigating mathematics in a weak setting. He
considered some basic theorems of analysis in the Cantor space setting. In fact, the
discussion of these theorems (e.g., the Heine/Borel covering theorem) is very natural in
the Cantor space setting (the case of the closed unit interval poses some minor technical
difficulties). Pursuing this line of research, in the mid-nineties the theory BTFA of
Section 4 was defined and a few years later, in collaboration with the first author, the
paper “Groundwork for weak analysis” [9] was written. As the title suggests, the paper
aims at giving the groundwork for developing analysis in a weak setting – in our case
in BTFA. The paper defines the real number system and the notion of a real-valued
continuous function of a real variable. It proves the intermediate value theorem and,
as a consequence, it is shown that the reals form a real closed ordered field. In the
last section of the paper, it is shown that BTFA is interpretable in Robinson’s theory of
arithmetic Q and, as a corollary, one obtains that Tarski’s theory of real closed ordered
fields is interpretable in Q (a result independently due to Harvey Friedman). It is an
open question whether BTFA + Σb

∞-WKL is interpretable in Q. We conjecture that it is.
The same question can be posed for the principle of strict Π1

1-reflection.
The paper [10] investigates the role of weak König’s lemma over BTFA. As dis-

cussed in Section 5, the adjunction of Σb
∞-WKL results in a theory that is a first-order

conservative extension of BTFA. In [10] it is shown that, over BTFA, the Heine/Borel
covering theorem for the closed unit interval is equivalent to weak König’s lemma for
trees defined by Πb

1-formulas. The Heine/Cantor theorem (which says that every real-
valued continuous function on the closed unit interval is uniformly continuous) was
also investigated. It was shown that the Heine/Cantor theorem implies weak König’s
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lemma for set trees and is implied by weak König’s lemma for trees defined by Πb
1-

formulas. The authors were not able to close the gap.
In reverse mathematics over RCA0, it is well known that weak König’s lemma is

sufficient to guarantee that real-valued continuous functions defined on the closed unit
interval have a supremum and attain it (see [26]). However, over BTFA, weak König’s
lemma does not seem to be sufficient to guarantee the existence of the supremum be-
cause this fact implies the so-called “slow” principle of induction for Σb

1-predicates,
where “slow” induction is the following form of induction:

A(ϵ) ∧ ∀x (A(x)→ A(S (x)))→ ∀xA(x).

Here, the “successor function” S is defined thus: S (ϵ) = 0, S (x0) = x1 and S (x1) =
S (x)0. The successor of x is the next element after x in the ordering ≤l of the previ-
ous section. In the unary framework of Buss, the above scheme of “slow” induction
corresponds to the ordinary “+1” scheme of induction for Σb

1-formulas (the mark of
Buss’ theory T1

2 of [3]). The paper [10] shows that, over BTFA + Σb
∞-WKL, the scheme

of slow induction for Σb
1-formulas is equivalent to the existence of the maximum for

real-valued continuous functions defined on the closed unit interval. In [29], Takeshi
Yamazaki considers the stronger principle (⋆): given a real-valued continuous function
F defined in [0, 1] × [0, 1], there exists a real-valued continuous function G defined on
the closed unit interval such that, for all x ∈ [0, 1], G(x) = sup0≤y≤x F(x, y). Yamazaki,
however, uses a different notion of continuous function. Our notion is an adaptation of
the usual notion given in [26] to our weak setting. Yamazaki’s notion defines a con-
tinuous function by approximations of piecewise linear functions with a modulus of
approximation (see [29] for details). This is a stronger notion than our notion and, in
particular, a continuous function in the sense of Yamazaki is automatically uniformly
continuous. With this form of continuity, Yamazaki shows that (⋆) is equivalent to
comprehension for bounded formulas.

On a different direction, the first author considers in [7] a variation of the base
theory BTFA and shows (by a forcing argument) that a version of Baire’s category
theorem is first-order conservative over the base theory considered.

The Ph.D. dissertation of the third author [21], as well as [18], studies Riemann
integration for real-valued continuous functions defined in closed bounded intervals.
It is shown that in the theory TCA2, a theory related to the computational “counting
class” FCH (see the beginning of Section 6), it is possible to define and develop Rie-
mann integration, up to the fundamental theorem of calculus, for continuous functions
with a modulus of uniform continuity. It does not seem possible to develop Riemann
integration over a weaker base (for instance, over BTFA). The reason is the following:
the existence of the Riemann integral implies the possibility of counting the number
of elements of a bounded polytime decidable set. This is shown in [16]. Note that the
possibility of this counting goes beyond polytime computability (unless certain classes
of computational complexity collapse). Nevertheless, it may be possible to define Rie-
mann integration in BTFA using Yamazaki’s definition of continuous function, or a
related definition (e.g., where the approximating functions are polynomials). It would
be nice to see if this is possible, specially if the class of continuous functions considered
is sufficiently robust (e.g., contains many analytic functions). Of course, this restricted
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class of continuous functions does not seem to coincide with the wider class (the one
based on the standard definition in [26]). We believe that this is related to the eventual
failure of Weierstrass’ approximation theorem in weak settings. Indeed, we conjecture
that this theorem is equivalent to the totality of the exponential function over BTFA.
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