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Abstract. We present three functional interpretations of intuitionistic linear logic
and show how these correspond to well-known functional interpretations of intu-
itionistic logic via embeddings of ILω into ILLω. The main difference from previ-
ous work of the second author is that in intuitionistic linear logic the interpreta-
tions of !A are simpler (at the cost of an asymmetric interpretation of pure ILLω)
and simultaneous quantifiers are no longer needed for the characterisation of the
interpretations.

1 Introduction

This paper presents a family of functional interpretations of intuitionistic linear logic
ILLω, starting from a single functional interpretation of pure (exponential-free) ILLω,
followed by three possible interpretations of !A.

The second author [7–10] has recently shown how different functional interpreta-
tions of intuitionistic logic can be factored into a uniform family of interpretations of
classical linear logic combined with Girard’s standard embedding (·)∗ of intuitionistic
logic into linear logic. In the symmetric context of classical linear logic each formula A
is associated with a simultaneous one-move two-player game |A|xy . Intuitively, the two
players, say Eloise and Abelard, must pick their moves x and y simultaneously and
Eloise wins if and only if |A|xy holds. The symmetric nature of the game implies that
(proof-theoretically) the formula A was interpreted as the formula

Æx
y |A|xy

where

Æx
y A is a simple form of branching quantifier – termed simultaneous quantifier.

Following this game-theoretic reading, the different interpretations of the modality !A
are all of the following form: First, it (always) turns a symmetric game into an asym-
metric one, where Eloise plays first, giving Abelard the advantage of playing second.
In the symmetric context, this asymmetric game can be modelled by allowing Abelard
to play a function f which calculates his move from a given Eloise move x. But also,
the game !A gives a second (non-canonical) advantage to Abelard, by allowing him to
play a set of moves, rather than a single move. The idea being that he wins the game !A
if any move y ∈ f x is winning with respect to Eloise’s move x, i.e. ¬|A|xy . Formally

|!A|xf ≡ ∀y∈ f x |A|xy .
Therefore, the game !A always introduces a break of symmetric, but it leaves open what
kind of sets Abelard is allowed to play. What the second author has shown is that if only
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singleton sets are allowed the resulting interpretation corresponds to Gödel’s dialectica
interpretation [1, 4, 9]; if finite sets are allowed then it corresponds to the Diller-Nahm
variant of the dialectica interpretation [2, 10]; and if these sets are actually the whole
set of moves then it corresponds to Kreisel’s modified realizability interpretation [6, 8].

In this paper we show that in the context of intuitionistic linear logic every formula
can be interpreted as a game where Eloise plays first and Abelard plays second, be-
ing the branching quantifiers no longer needed. In other words, Abelard’s advantage of
playing second, which was limited to the game !A in classical linear logic, is ubiqui-
tous in intuitionistic linear logic. In this way, the game-theoretic interpretation of the
modality !A is simply to lift the moves of Abelard from a single move to a set of moves.
Formally,

|!A|xa ≡ ∀y∈ a |A|xy .
Hence, by working in the context of ILLω, we can fully separate the canonical part
of the interpretation (pure intuitionistic linear logic), where all interpretations coincide,
and the non-canonical part where each choice of “sets of moves” gives rise to a different
functional interpretation.

As we shall see, the functional interpretation of pure intuitionistic linear logic co-
incides with Gödel’s dialectica interpretation of intuitionistic logic, reading (,⊗ and
⊕ as →,∧ and ∨, respectively. This is so, because the dialectica interpretation identi-
fies the games A and !A. The connection between Gödel’s dialectica interpretation and
intuitionistic linear logic was first studied by de Paiva [11]. One can view our work
here as a proof-theoretic reading of de Paiva’s category-theoretic work, together with
an extension linking the “dialectica” interpretation of intuitionistic linear logic also with
Kreisel’s modified realizability.

The main contributions of the paper are as follows: In Section 2 we present the basic
interpretation of pure intuitionistic linear logic. In the same section we outline which
principles are needed for the characterisation of the interpretation (Subsection 2.1).
Section 3 describes three different interpretations of the modality !A. This is followed
(Section 4) by a description of how each of these choices corresponds to the three best-
known functional interpretations of intuitionistic logic.

1.1 Intuitionistic Linear Logic

Intuitionistic linear logic can be viewed as a fragment of Girard’s linear logic [3] which
is sufficient for embedding intuitionistic logic into the linear context. We will make use
of the formulation of intuitionistic linear logic shown in Tables 1 and 2. Our system is
denoted by ILLω since we work in the language of all finite types.

The finite types are inductively defined in the usual way: i is a finite type and if ρ
and σ are finite types then ρ→ σ is a finite type. Our language has a constant of type i
(to ensure that all types are inhabited by a closed term) and variables xρ for each finite
type ρ. We assume that the terms of ILLω contain all typed λ-terms, i.e. constants and
variables are terms and if tσ and sρ→σ are terms then (λxρ.tσ)ρ→σ and (sρ→σtρ)σ are also
terms.

The atomic formulas of ILLω are denoted by Aat (the linear logic constant 0 is an
atomic formula) and if A and B are formulas, then A ⊗ B, A & B, A ⊕ B, A ( B, !A,
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(id)
P ` P Γ, 0 ` A

Γ ` A ∆, A ` B
(cut)

Γ, ∆ ` B

Γ ` A
(per)

π{Γ} ` A

Γ ` A ∆ ` B
(⊗R)

Γ, ∆ ` A ⊗ B

Γ, A, B ` C
(⊗L)

Γ, A ⊗ B ` C

Γ, A ` B
(( R)

Γ ` A( B

Γ ` A ∆, B ` C
(( L)

Γ, ∆, A( B ` C

Γ ` A Γ ` B
(&R)

Γ ` A & B

Γ, A ` B
(&L)

Γ, A & C ` B

Γ, B ` C
(&L)

Γ, A & B ` C

Γ ` A
(⊕R)

Γ ` A ⊕ B

Γ ` B
(⊕R)

Γ ` A ⊕ B

Γ, A ` C Γ, B ` C
(⊕L)

Γ, A ⊕ B ` C

Table 1. Intuitionistic Linear Logic (connectives)

∀xA(x) and ∃xA(x) are also formulas. In this paper we will also work with a subsystem
of ILLω, dubbed ILLωr , where a restriction is assumed on the &R-rule: it is applied just
with contexts of the form !Γ. In subsequent chapters we will see the necessity of this
technical restriction. Note, however, that both systems ILLω and ILLωr are strong enough
to capture intuitionistic logic ILω into the linear context, as precised in the following
proposition.

Proposition 1 ([3]). Define two translations of ILω into ILLω inductively as follows:

A∗at :≡ Aat A◦at :≡ !Aat, if Aat . ⊥
⊥∗ :≡ 0 ⊥◦ :≡ 0

(A ∧ B)∗ :≡ A∗& B∗ (A ∧ B)◦ :≡ A◦ ⊗ B◦

(A ∨ B)∗ :≡ !A∗⊕ !B∗ (A ∨ B)◦ :≡ A◦ ⊕ B◦

(A→ B)∗ :≡ !A∗ ( B∗ (A→ B)◦ :≡ !(A◦ ( B◦)

(∀xA)∗ :≡ ∀xA∗ (∀xA)◦ :≡ !∀xA◦

(∃xA)∗ :≡ ∃x!A∗ (∃xA)◦ :≡ ∃xA◦

If A is provable in ILω then A∗ and A◦ are provable in ILLωr (and hence also in ILLω).
Moreover, it is easy to check that A◦ � !A∗.

Proof. It is already known that if Γ `ILω A then !Γ∗ `ILLω A∗. The result with ILLω

replaced by ILLωr just require our attention in the rule &R. The result for A◦ follows
immediately from the fact that in ILLωr we can prove A◦ � !A∗. �
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Γ ` A
(∀R)

Γ ` ∀xA

Γ, A[t/x] ` B
(∀L)

Γ,∀xA ` B

Γ ` A[t/x]
(∃R)

Γ ` ∃xA

Γ, A ` B
(∃L)

Γ,∃xA ` B

Γ, !A, !A ` B
(con)

Γ, !A ` B

Γ ` B
(wkn)

Γ, !A ` B

!Γ ` A
(!R)

!Γ `!A
Γ, A ` B

(!L)
Γ, !A ` B

Table 2. Intuitionistic Linear Logic (quantifiers and modality)

1.2 Verifying system

As we will show in the next sections, the three functional interpretations we present
interpret the formula A ⊕ B via a sort of flagged disjoint union, i.e. a boolean and a
witness for either A or B. Therefore, in the verifying system, which we shall denote
by ILLωb , we consider that the language also contains the booleans b as base type, with
two boolean constants true and false (T, F), boolean variables, an equality relation =b

between two terms of boolean type and a constant of type b → ρ → ρ → ρ that should
be seen as a conditional λ-term z(t, q) that reduces to t or q depending on whether zb

reduces to true or false. ILLωb is assumed to contain the following axioms for equality:

1. !(x =b x)

2. !(x =b y)( !(y =b x)

3. !(x =b y) ⊗ !(y =b z)( !(x =b z)

4. !(x =b y) ⊗ A[x/w]( A[y/w].

We would also like to ensure that true and false are distinct and that there are no other
elements of boolean type

5. !(T =b F)( 0

6. !(z =b T)⊕ !(z =b F).

The axioms for the conditional λ-term are as follows

7. A[T(t, q)/w] � A[t/w] and A[F(t, q)/w] � A[q/w].

For simplicity, we use the following abbreviation:

A ^z B :≡ (!(z =b T)( A) & (!(z =b F)( B).

Lemma 1. The following are derivable in ILLωb
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(i)
` A[T] ` A[F]

` A[z]

(ii) !(T =b T)( A ` A and !(F =b F)( A ` A

(iii) A ` !(T =b F)( B

(iv) A ^T B � A and A ^F B � B

(v) !A ^z !B � !(!A ^z !B).

Proof. Assertion (i) can be derived from axioms 4. and 6.; (ii) follows easily from
axiom 1.; (iii) can be deduced from axiom 5. and the forward implications in (iv) follow
immediately from item (ii) and the inverse implications can easily be deduced using
(iii). The direct implication in assertion (v) can be derived using assertions (i) and (iv),
being the other implication trivial. �

2 A Basic Interpretation of Pure ILLω

In this section we present a basic functional interpretation of pure (without the expo-
nential !A) intuitionistic linear logic, and prove its soundness. In the next section we
then consider different extensions of this interpretation to full intuitionistic linear logic,
ILLω.

Definition 1 (Basic functional interpretation of pure ILLω). For each formula A of
pure ILLω, let us associate a new formula |A|xy , with two fresh sets of free-variables x
and y, inductively as follows: For atomic formula Aat we let |Aat| :≡ Aat. Assume the
interpretations of A and B have already been defined as |A|xy and |B|vw, we then define

|A( B| f ,gx,w :≡ |A|xf xw ( |B|gx
w

|A ⊗ B|x,vy,w :≡ |A|xy ⊗ |B|vw
|A & B|x,vy,w,z :≡ |A|xy ^z |B|vw
|A ⊕ B|x,v,zy,w :≡ |A|xy ^z |B|vw
|∃zA(z)|x,zy :≡ |A(z)|xy
|∀zA(z)| fy,z :≡ |A(z)| fz

y .

Intuitively, the meaning of A is reduced to the existence of an object x such that
∀y|A|xy . The x’s are called witnesses and the y’s challenges. Note that, contrary to the
interpretation of classical linear logic [7, 10], the functional interpretation of intuition-
istic linear logic is no longer symmetric. In terms of games, the interpretation above can
be seen as associating to each formula A a one-move two-player sequential game |A|xy .
In this game, Eloise starts by playing a move x followed by Abelard playing a move y.
Eloise wins if |A|xy holds, otherwise Abelard wins.

Those familiar with the dialectica interpretation might find it puzzling that linear
implication A ( B is interpreted above precisely as the intuitionistic implication in
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Gödel’s dialectica interpretation, even though we claim this is the canonical part of the
interpretation, which, depending on the interpretation of !A, can correspond to modified
realizability as well. Again, in terms of games, this is explained by the fact that in the
game A ( B Eloise plays first in the game B, but she plays second in the game A.
In order to circumvent this discrepancy with our general rule that Eloise always plays
first, we allow Eloise’s move f in game A to depend on Abelard’s move x. In this way,
although she plays first in both games, it is as if she is playing second in game A, since
her move is a function which might depend on Abelard’s move.

Theorem 1 (Soundness). Let A0, . . . , An, B be formulas of pure ILLω, with z as the only
free-variables. If

A0(z), . . . , An(z) ` B(z)

is provable in pure ILLω then terms a0, . . . , an, b can be extracted from this proof such
that

|A0(z)|x0
a0 , . . . , |An(z)|xn

an ` |B(z)|bw
is provable in ILLωb , where FV(ai) ⊆ {z, x0, . . . , xn,w} and FV(b) ⊆ {z, x0, . . . , xn}.
Proof. By induction on the derivation of A0(z), . . . , An(z) ` B. The axioms are trivial
since the interpretation does not change atomic formulas and every type is inhabited.
The permutation rule is also immediate. Let us consider a few cases:

Cut
|Γ|uγ ` |A|a0

y
[ a1[a0]

y ]
|Γ|uγ′ ` |A|a0

a1[a0]

|∆|vδ, |A|xa1[x] ` |B|bw [ a0
x ]

|∆|vδ′ , |A|a0
a1[a0] ` |B|b

′
w

(cut)
|Γ|uγ′ , |∆|vδ′ ` |B|b

′
w

where γ′ and δ′, b′ are obtained from γ and δ, b via the substitutions [a1[a0]/y] and
[a0/x], respectively.

Tensor
|Γ|uγ ` |A|ay |∆|vδ ` |B|bw (⊗R)
|Γ|uγ, |∆|vδ ` |A|ay ⊗ |B|bw (D1)
|Γ|uγ, |∆|vδ ` |A ⊗ B|a,by,w

|Γ|uγ, |A|xa, |B|vb ` |C|cw (⊗L)
|Γ|uγ, |A|xa ⊗ |B|vb ` |C|cw (D1)
|Γ|uγ, |A ⊗ B|x,va,b ` |C|cw

Linear implication - left introduction

|Γ|uγ[y] ` |A|ay [ f a(b[ga])
y ]

|Γ|uγ[ f a(b[ga])] ` |A|af a(b[ga])

|∆|wδ[v], |B|vb[v] ` |C|c[v]
z

[ ga
v ]

|∆|wδ[ga], |B|ga
b[ga] ` |C|c[ga]

z
(( L)

|Γ|uγ[ f a(b[ga])], |∆|wδ[ga], |A|af a(b[ga]) ( |B|ga
b[ga] ` |C|c[ga]

z
(D1)

|Γ|uγ[ f a(b[ga])], |∆|wδ[ga], |A( B| f ,ga,b[ga] ` |C|c[ga]
z

Universal quantifier

|Γ|uγ[z] ` |A(z)|a[z]
y

|Γ|uγ[z] ` |A(z)|(λz.a[z])z
y

(D1)
|Γ|uγ[z] ` |∀zA(z)|λz.a[z]

y,z

|Γ|uγ[x], |A(t)|xa[x] ` |B|b[x]
w

[ f t
x ]

|Γ|uγ[ f t], |A(t)| f t
a[ f t] ` |B|b[ f t]

w
(D1)

|Γ|uγ[ f t], |∀zA(z)| fa[ f t],t ` |B|b[ f t]
w
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Existential quantifier

|Γ|uγ ` |A(t)|ay
(D1)

|Γ|uγ ` |∃zA(z)|a,ty

|Γ|uγ[z], |A(z)|xa[z] ` |B|b[z]
y

(D1)
|Γ|uγ[z], |∃zA(z)|x,za[z] ` |B|b[z]

y

With - right introduction

|Γ|uγ0
` |A|ay

(Ax. 7/ L1(iv))
|Γ|uT(γ0,γ1) ` |A|ay ^T |B|bw

|Γ|uγ1
` |B|bw

|Γ|uF(γ0,γ1) ` |A|ay ^F |B|bw
(L1(i))

|Γ|uz(γ0,γ1) ` |A|ay ^z |B|bw
(D1)

|Γ|uz(γ0,γ1) ` |A & B|a,by,w,z

With - left introduction and Plus - right introduction

|Γ|uγ, |A|xa ` |B|bw
(L1(iv))

|Γ|uγ, |A|xa ^T |C|vc ` |B|bw
(D1)

|Γ|uγ, |A & C|x,va,c,T ` |B|bw

|Γ|uγ ` |A|ay
(L1(iv))

|Γ|uγ ` |A|ay ^T |B|bw
(D1)

|Γ|uγ ` |A ⊕ B|a,b,Ty,w

The other &-L and ⊕-R are similar.

Plus - left introduction

|Γ|uγ0
, |A|xa ` |C|c1

w

|Γ|uT(γ0,γ1), |A|xa ^T |B|vb ` |C|T(c1,c2)
w

|Γ|uγ1
, |B|vb ` |C|c2

w
(Ax. 7/ L1(iv))

|Γ|uF(γ0,γ1), |A|xa ^F |B|vb ` |C|F(c1,c2)
w

(L1(i))
|Γ|uz(γ0,γ1), |A|xa ^z |B|vb ` |C|z(c1,c2)

w
(D1)

|Γ|uz(γ0,γ1), |A ⊕ B|x,v,za,b ` |C|z(c1,c2)
w

The other cases are treated similary. �

2.1 Characterisation

As described in the introduction, one of the main advantages of working in the con-
text of intuitionistic linear logic is that we no longer need (non-standard) branching
quantifiers. The asymmetry introduced in ILLω turns the symmetric games of classical
linear logic into games where Eloise always plays first, so formulas A are interpreted as
∃x∀y|A|xy .

Proposition 2. The following principles characterise the basic interpretation presented
above

ACl : ∀x∃yA∀(y)( ∃ f∀xA∀( f x)

MPl : (∀xAqf ( Bqf)( ∃x(Aqf ( Bqf)

IPl : (A∀ ( ∃yB∀)( ∃y(A∀ ( B∀)

EP : ∀x, v(Aqf ⊗ Bqf)( (∀xAqf ⊗ ∀vBqf)
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where Aqf, Bqf and A∀, B∀ are quantifier-free formulas and purely universal formulas of
ILLωb respectively. Formally,

ILLωb + ACl + MPl + IPl + EP ` A � ∃x∀y|A|xy .
Proof. By induction on the logical structure of A. Let us consider a few cases:

Tensor.

A ⊗ B
(IH)
� ∃x∀y|A|xy ⊗ ∃v∀w|B|vw
(EP)
� ∃x, v∀y,w(|A|xy ⊗ |B|vw)

≡ ∃x, v∀y,w|A ⊗ B|x,vy,w.

With.

A & B
(IH)
� ∃x∀y|A|xy &∃v∀w|B|vw
� ∀z(∃x∀y|A|xy ^z ∃v∀w|B|vw)

� ∀z∃x, v(∀y|A|xy ^z ∀w|B|vw)

� ∀z∃x, v∀y,w(|A|xy ^z |B|vw)

(ACl)� ∃ f , g∀z, y,w(|A| fz
y ^z |B|gz

w )

� ∃x, v∀z, y,w(|A|xy ^z |B|vw)

≡ ∃x, v∀y,w, z|A & B|x,vy,w,z.

Linear implication.

A( B
(IH)
� ∃x∀y|A|xy ( ∃v∀w|B|vw

(IPl,MPl)� ∀x∃v∀w∃y(|A|xy ( |B|vw)

(ACl)� ∃ f , g∀x,w(|A|xf xw ( |B|gx
w ) ≡ ∃ f , g∀x,w|A( B| f ,gx,w.

Universal quantifier.

∀zA
(IH)
� ∀z∃x∀y|A|xy

(ACl)� ∃ f∀y, z|A| fz
y ≡ ∃ f∀y, z|∀zA| fy,z.

The other cases are treated similarly. In fact, for the remaining cases (once the induction
hypothesis is assumed) the equivalence can be proved in ILLωb alone. �

Remark 1. Note that if we are embedding ILω via the standard embedding (·)∗ then the
connective A ⊗ B is not needed, and hence the extra principle EP is not needed either.

3 Some Interpretations of ILLω

In this section we consider a few choices of how the basic interpretation given in Defi-
nition 1 can be extended to full intuitionistic linear logic, i.e. we give some alternative
interpretations of the modality !A. All choices considered will have the form:

|!A|xy :≡ !∀y′ @ y |A|xy′ (1)

for some notion of bounded quantified formula ∀y′ @ y A. In fact, very little structure
is required in order to obtain a sound interpretation.
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Proposition 3. Given a formula A[y], assume the formula ∀y @ a A is such that for
some terms1 η(·), (·) ⊗ (·) and (·) ◦ (·) the following are provable in ILLωb

(A1) !∀y @ η(z) A[y]( A[z]

(A2) !∀y @ y1 ⊗ y2 A[y]( !∀y @ y1 A[y]⊗ !∀y @ y2 A[y]

(A3) !∀y @ f ◦ z A[y]( !∀x @ z !∀y @ f x A[y].

The interpretation of !A as above leads to a sound functional interpretation of ILLω.

Proof. By Theorem 1 we just have to analyse the rules of contraction, weakening, !-
right introduction and !-left introduction.

Contraction
|Γ|uγ, |!A|x0

a0
, |!A|x1

a1
` |B|bw

[ x
x0
, x

x1
]

|Γ|uγ, |!A|xa0
, |!A|xa1

` |B|bw
(1)

|Γ|uγ, !∀y′ @ a0 |A|xy′ , !∀y′ @ a1 |A|xy′ ` |B|bw (⊗L)
|Γ|uγ, !∀y′ @ a0 |A|xy′ ⊗ !∀y′ @ a1 |A|xy′ ` |B|bw

(A2)
|Γ|uγ, !∀y′ @ a0 ⊗ a1 |A|xy′ ` |B|bw

(1)
|Γ|uγ, |!A|xa0⊗a1

` |B|bw
Weakening

|Γ|uγ ` |B|bw
(wkn)

|Γ|uγ, !∀y′ @ a |A|xy′ ` |B|bw
(1)

|Γ|uγ, |!A|xa ` |B|bw
Note that every type is inhabited by a closed term.

Bang - right introduction

|!Γ|uγ[y′] ` |A|ay′ (1)
!∀w′ @ γ[y′] |Γ|uw′ ` |A|ay′

!∀y′ @ y !∀w′ @ (λy′.γ[y′])y′ |Γ|uw′ ` !∀y′ @ y |A|ay′
(A3)

!∀w′ @ (λy′.γ[y′]) ◦ y |Γ|uw′ ` !∀y′ @ y |A|ay′
(1)

|!Γ|u(λy′.γ[y′])◦y ` |!A|ay
Bang - left introduction

|Γ|uγ, |A|xa ` |B|bw
(A1)

|Γ|uγ, !∀y @ η(a) |A|xy ` |B|bw
(1)

|Γ|uγ, |!A|xη(a) ` |B|bw
That concludes the proof. �

1 Note that these terms are allowed to be specific to the formula A, in particular, the free variables
of η(·), (·) ⊗ (·) and (·) ◦ (·) are assumed to be contained in the free-variables of ∀yA[y] (i.e. all
free-variables of A except y).
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Remark 2. Assume that the types of yρ and aTρ in ∀y @ a |A|xy are as shown, for a fixed
A. Then, our three families of terms have types

η : ρ→ Tρ

⊗ : Tρ × Tρ→ Tρ

◦ : (τ→ Tρ) × Tτ→ Tρ.

In category theory, one could think of (T, η, ◦) as forming a Kleisli triple (∼ monad),
with ⊗ being a commutative monoid on Tρ. This in turn extends to a comonad on
formulas as

T (A[y]) :≡ !(∀y @ a A)[a].

See e.g. the work of Valeria de Paiva [12] and Martin Hyland ([5], section 3.1) on
categorical logic for more information about the connection between functional inter-
pretations and comonads.

Proposition 4. The following are three sound interpretations of !A:

(a) |!A|x :≡ !∀y|A|xy
(b) |!A|xa :≡ !∀y∈ a |A|xy
(c) |!A|xy :≡ !|A|xy .

Proof. (a) This interpretation of !A corresponds to the choice ∀y @ t A[y] :≡ ∀yA[y]. It
is easy to check that conditions (A1), (A2) and (A3) become

!∀yA[y]( A[z]

!∀yA[y]( !∀yA[y]⊗ !∀yA[y]

!∀yA[y]( !∀x!∀yA[y]

respectively, which are trivially derivable in ILLωb .

(b) Consider that the language of ILLωb has a new finite type σ∗ for each finite type σ.
An element of type σ∗ is a finite set of elements of type σ. The extended language
has a relation symbol ∈ infixing between a term of type σ and a term of type σ∗ with
axioms to ensure that !(x ∈ y) if and only if x is an element in the set y. Consider
also the existence of three more constants of types σ → σ∗, σ∗ → σ∗ → σ∗ and
σ∗ → (σ → ρ∗) → ρ∗ that should be seen as terms such that η(t) is the singleton set
with tσ as the only element (in particular !(t ∈ η(t))), t ⊗ q is the union of two finite sets
t and q, and f ◦ q is the set that results from the union of all sets f x with x ∈ q. The
interpretation |!A|xa :≡ !∀y∈ a |A|xy corresponds to the choice ∀y @ t A[y] :≡ ∀y∈ t A[y],
which is an abbreviation for ∀y(!(y ∈ t) ( A[y]). In this context, the conditions (A1),
(A2) and (A3) become

!∀y∈η(z) A[y]( A[z]

!∀y∈ y1 ⊗ y2 A[y]( !∀y∈ y1 A[y]⊗ !∀y∈ y2 A[y]

!∀y∈ f ◦ z A[y]( !∀x∈ z !∀y∈ f xA[y],
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which are provable in the extension of ILLωb outlined above.

(c) This interpretation of !A corresponds to the choice ∀y @ t A[y] :≡ A[t/y]. Given a
formula A[y] we define η(·), as being the identity, ◦ is defined as f ◦ x :≡ f x and y1 ⊗ y2
is

y1 ⊗ y2 :=


y1 if !A[y1]( 0

y2 if !A[y1].

We are assuming that ILLωb has also an extra axiom (asserting the decidability of A)
` !A ⊕ (!A( 0). Conditions (A1), (A2) and (A3) become

!A[η(z)]( A[z]

!A[y1 ⊗ y2]( !A[y1]⊗ !A[y2]

!A[ f ◦ z]( !!A[ f z]

respectively. (A1) and (A3) are trivially derivable. In the derivation of (A2) use

` !A ⊕ (!A( 0)

!A[y1], !A[y1 ⊗ y2] ` !A[y1]⊗ !A[y2], and

!A[y1]( 0, !A[y1 ⊗ y2] ` 0. �

4 Relation to Standard Interpretations of ILω

We argued in the introduction (see Proposition 1) that for the purpose of analysing ILω

via linear logic it sufficies to work with the system ILLωr . As it turns out, in ILLωr , we can
simplify our definition of functional interpretation as follows:

Proposition 5. When interpreting the subsystem ILLωr , the interpretation of A & B pre-
sented in Definition 1 can be simplified so that the parametrised interpretation

|A( B| f ,gx,w :≡ |A|xf xw ( |B|gx
w

|A ⊗ B|x,vy,w :≡ |A|xy ⊗ |B|vw
|A & B|x,vy,w :≡ |A|xy & |B|vw
|A ⊕ B|x,v,zy,w :≡ |A|xy ^z |B|vw
|∃zA(z)|x,zy :≡ |A(z)|xy
|∀zA(z)| fy,z :≡ |A(z)| fz

y

|!A|xy :≡ !∀y′ @ y |A|xy′

is sound for ILLωr , assuming (A1), (A2), and (A3) are satisfied.
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Proof. We just have to analyse the rules for & having in mind that, in the case of the
system under interpretation, the &-right introduction is restricted of the form !Γ. The
simplified interpretation of A & B is shown sound as:

|!Γ|uγ0
` |A|ax

(P5)
!∀y′ @ γ0 |Γ|uy′ ` |A|ax

(A2)
!∀y′ @ γ0 ⊗ γ1 |Γ|uy′ ` |A|ax

|!Γ|uγ1
` |B|by

(P5)
!∀y′ @ γ1 |Γ|uy′ ` |B|by

(A2)
!∀y′ @ γ0 ⊗ γ1 |Γ|uy′ ` |B|by (&R)

!∀y′ @ γ0 ⊗ γ1 |Γ|uy′ ` |A|ax & |B|by
(P5)

|!Γ|uγ0⊗γ1
` |A & B|a,bx,y

And for the left introduction:

|Γ|uγ, |A|xa ` |C|cw
(&L)

|Γ|uγ, |A|xa & |B|vb ` |C|cw (P5)
|Γ|uγ, |A & B|x,va,b ` |C|cw

The other &-left introduction is similar. �

Since in the remaining part of this section we work with translations of intuitionistic
logic into linear logic, by |A|xy we refer to the (simplified) parametrised interpretation
described in Proposition 5. Next we prove that the three different ways of interpret-
ing !A (cf. Proposition 4) give rise to interpretations of ILLωr that correspond (via the
translations of intuitionistic logic into intuitionistic linear logic) to Kreisel’s modified
realizability, the Diller-Nahm interpretation, and Gödel’s dialectica interpretation, as:

|!A|xa Interpretation of ILω

!∀y|A|xy Kreisel modified realizability

!∀y∈ a |A|xy Diller-Nahm interpretation

!|A|xa Gödel’s dialectica interpretation.

But first a consideration concerning translation (·)∗ of ILω into ILLωr , which we will
use in the treatment of the Diller-Nahm and the dialectica interpretations (for modified
realizability we use the translation (·)◦).

Proposition 6. Consider the following simplification of Girard’s translations (·)∗ (cf.
Proposition 1)
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A+
at :≡ Aat, if Aat . ⊥
⊥+ :≡ 0

(A ∧ B)+ :≡ A+ & B+

(A ∨ B)+ :≡ A+ ⊕ B+

(A→ B)+ :≡ !A+ ( B+

(∀xA)+ :≡ ∀xA+

(∃xA)+ :≡ ∃xA+.

If A is provable in ILω then A+ is provable in ILLωr + P⊕ + P∃, where

P⊕ : !(A ⊕ B)( !A⊕ !B

P∃ : !∃xA( ∃x!A.

Proof. First we show that given the principles P⊕ and P∃, we have !A∗ � !A+. The
proof is done by induction on the complexity of the formula A. Conjunction, implica-
tion and universal quantification follow easily by induction hypothesis using that ILLωr
proves:

!(A & B) � !A⊗ !B

!(!A( B) � !(!A( !B)

!∀xA � !∀x!A

respectively. Disjunction and existential quantification are studied below:

!(A ∨ B)∗ ≡ !(!A∗ ⊕ !B∗) �!A∗ ⊕ !B∗

(IH)
� !A+ ⊕ !B+ (P⊕)

�!(A+ ⊕ B+) ≡ !(A ∨ B)+

and !(∃xA)∗ ≡ !∃x!A∗ � ∃x!A∗
(IH)
� ∃x!A+ (P∃)

� !∃xA+ ≡ !(∃xA)+. Applying
Proposition 1, we know that from ILω ` A we have ILLωr ` A∗. So, ILLωr `!A∗ and hence
ILLωr +P⊕+P∃ `!A∗. Using the equivalence proved before we have ILLωr +P⊕+P∃ ` !A+.
In particular, we conclude ILLωr + P⊕ + P∃ ` A+. �

The reason for assuming the principles P⊕ and P∃ is that they are validated by the
interpretations we shall consider. As such, we can make use of these to simplify the
embeddings of intuitionistic logic into (this extension of) linear logic, since the inter-
pretation of linear logic will interpret these principles taking us back to standard linear
logic, as suggested by the following diagram:

ILLωP

(·)+

-

| · |
ILLωb

(·)+ = (·)∗
6 6

ILω -
Interpretation

ILωef
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In the diagram, ILLωP abbreviates ILLωr + P⊕ + P∃. Note that all our interpretations trans-
form proofs in ILω into existential-free proofs, i.e. proofs in ILωef, where the two transla-
tions (·)∗ and (·)+ coincide.

4.1 Modified realizability

Kreisel’s modified realizability associates to each formula A of intuitionistic logic a
new formula x mr A (see [13] for the formal definition). We are going to prove that
this form of realizability once translated to the linear logic context via the (·)◦ transla-
tion corresponds (according to the theorem bellow) to the interpretation of ILLωr with
|!A|x :≡ !∀y|A|xy . First an auxiliar result:

Lemma 2. |A◦|x � !|A◦|x.

Proof. Note that, because of the way we interpret !A, it can be checked by induction on
A that the interpretation of A◦ has an empty tuple of challenge variables, i.e. we obtain a
formula of the form |A◦|x. To verify the lemma, it is enough to prove that |A◦|x � !A′,
for some formula A′, since assuming this we have !|A◦|x � !!A′ � !A′ � |A◦|x.
The proof is done by induction on the complexity of the formula A. We just sketch the
cases of conjunction and disjunction, being the other cases immediate.

|(A ∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y ≡ |A◦|x ⊗ |B◦|y (IH)
� !A′ ⊗ !B′ � !(A′& B′).

|(A ∨ B)◦|x,y,z ≡ |A◦ ⊕ B◦|x,y,z ≡ |A◦|x^z |B◦|y (IH)
� !A′ ^z !B′

(L1(v))
� !(!A′ ^z !B′). �

Theorem 2. |A◦|x � (x mr A)◦.

Proof. The proof is done by induction on the complexity of the formula A. If A is an
atomic formula, the result is trivial. Consider the case of conjunction:

|(A ∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y ≡ |A◦|x ⊗ |B◦|y
(IH)
� (x mr A)◦ ⊗ (y mr B)◦ ≡ (x mr A ∧ y mr B)◦ ≡ (x, y mr A ∧ B)◦.

The universal and existential quantifications also follow immediately from the way we
define the translation and the interpretations, applying the induction hypothesis. Impli-
cation is treated as
|(A→ B)◦|g ≡ |!(A◦ ( B◦)|g ≡ !∀x|A◦ ( B◦|gx ≡ !∀x(|A◦|x ( |B◦|gx)

(IH)
� !∀x((x mr A)◦ ( (gx mr B)◦) � !∀x!((x mr A)◦ ( (gx mr B)◦)

≡ (∀x(x mr A→ gx mr B))◦ ≡ (g mr (A→ B))◦.

whereas disjunction uses the auxiliary result above:

|(A ∨ B)◦|x,y,z (L2)
� !|(A ∨ B)◦|x,y,z ≡ !|A◦ ⊕ B◦|x,y,z ≡ !(|A◦|x ^z |B◦|y)
(IH)
� !((!(z = T)( (x mr A)◦) & (!(z = F)( (y mr B)◦))

� !(!(z = T)( (x mr A)◦)⊗ !(!(z = F)( (y mr B)◦)

≡ ((z = T→ x mr A) ∧ (z = F→ y mr B))◦

≡ (x, y, z mr A ∨ B)◦.
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That concludes the proof. �

4.2 Gödel’s dialectica interpretation

Recall that Gödel’s dialectica interpretation associates to each formula A a quantifier-
free formula AD(x; y) inductively, such that A is interpreted as ∃x∀yAD(x; y) (see [1],
section 2.3). The next result shows the correspondence between the dialectica interpre-
tation and the ILLωr interpretation with |!A|xy :≡ !|A|xy , via the simplified embedding (·)+

(cf. Proposition 6).

Theorem 3. |A+|xy � (AD(x; y))+.

Proof. The proof is easily done by induction on the complexity of the formula A. Again
the atomic formulas are checked trivially and the other formulas follow immediately by
induction hypothesis using the definitions of the (·)+-translation and the interpretations.
We illustrate with two cases: Conjunction

|(A ∧ B)+|x,vy,w ≡ |A+ & B+|x,vy,w ≡ |A+|xy & |B+|vw
(IH)
� (AD(x; y))+ & (BD(v; w))+

≡ (AD(x; y) ∧ BD(v; w))+ ≡ ((A ∧ B)D(x, v; y,w))+.

and disjunction:

|(A ∨ B)+|x,v,zy,w ≡ |A+ ⊕ B+|x,v,zy,w ≡ |A+|xy ^z |B+|vw
≡ (!(z = T)( |A+|xy) & (!(z = F)( |B+|vw)

(IH)
� (!(z = T)( (AD(x; y))+) & (!(z = F)( (BD(v; w))+)

≡ (z = T→ AD(x; y))+ & (z = F→ BD(v; w))+

≡ ((z = T→ AD(x; y)) ∧ (z = F→ BD(v; w)))+

≡ ((A ∨ B)D(x, v, z; y,w))+.

The other cases are treated similarly. �

Note that although (·)+ translates formulas from ILω into ILLωr + P⊕ + P∃, since these
two principles are interpretable the verifying system is still ILLωb . Let us argue that P⊕
and P∃ are interpretable, by showing that the interpretation of premise implies that of
the conclusion (hence the identity and projection functions can be taken as realisers for
the implication). It can be proved that

∀x @ a (A(x) & B)( (∀x @ a A(x) & B) and

∀x @ a (B( A(x))( (B( ∀x @ a A(x))

when the variable x does not occur free in B. Also, !(A ^b B)( !A ^b !B. So,

|!(A ⊕ B)|x,v,ba,c ≡ !∀y @ a∀w @ c (|A|xy ^b |B|vw)

( !(∀y @ a |A|xy ^b ∀w @ c |B|vw)

( !∀y @ a |A|xy ^b !∀w @ c |B|vw ≡ |!A ⊕ !B|x,v,ba,c .

Similarly, |!∃zA|x,za ≡ !∀y @ a |∃zA|x,zy ≡ !∀y @ a |A|xy ≡ |!A|xa ≡ |∃z!A|x,za .



16 Gilda Ferreira and Paulo Oliva

4.3 Diller-Nahm interpretation

The Diller-Nahm interpretation differs from Gödel’s dialectica interpretation since it
allows finite sets to witness the negative content of an implication. Formally, the Diller-
Nahm interpretation is defined inductively as

(Aat)dn(; ) :≡ Aat

(A ∧ B)dn(x, v; y,w) :≡ Adn(x; y) ∧ Bdn(v; w)

(A ∨ B)dn(x, v, z; y,w) :≡ (z = T→ Adn(x; y)) ∧ (z = F→ Bdn(v; w))

(A→ B)dn( f , g; x,w) :≡ ∀y ∈ f xwAdn(x; y)→ Bdn(gx; w)

(∀zA)dn( f ; y, z) :≡ Adn( fz; y)

(∃zA)dn(x, z; y) :≡ Adn(x; y).

Next we show that the Diller-Nahm interpretation of ILω corresponds to the inter-
pretation of ILLωr with |!A|xa :≡ !∀y∈ a |A|xy .

Theorem 4. |A+|xy � (Adn(x; y))+.

Proof. The proof, by induction on the structure of A, is almost entirely similar to the
one concerning Gödel’s interpretation. The only case which needs attention is that of
implication, which we analyse below.

|(A→ B)+| f ,gx,w ≡ |!A+ ( B+| f ,gx,w ≡ |!A+|xf xw ( |B+|gx
w

≡ !∀y ∈ f xw|A+|xy ( |B+|gx
w

(IH)
� !∀y ∈ f xw(Adn(x; y))+ ( (Bdn(gx; w))+

≡ !(∀y ∈ f xwAdn(x; y))+ ( (Bdn(gx; w))+

≡ (∀y ∈ f xwAdn(x; y)→ Bdn(gx; w))+

≡ ((A→ B)dn( f , g; x,w))+.

Note that the (·)+ translation of ∀y∈aA is ∀y∈aA+, as we can see below:

(∀y∈a A)+ ≡ (∀y(y∈a→ A))+

≡ ∀y(!(y∈a)+ ( A+) ≡ ∀y(!(y∈a)( A+) ≡ ∀y∈a A+.

That concludes the proof. �
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9. P. Oliva. An analysis of Gödel’s dialectica interpretation via linear logic. Dialectica,
62(2):269–290, 2008.

10. P. Oliva. Functional interpretations of linear and intuitionistic logic. To appear: Information
and Computation, 2009.

11. V. C. V. de Paiva. The Dialectica categories. In J. W. Gray and A. Scedrov, editors, Proc. of
Categories in Computer Science and Logic, Boulder, CO, 1987, pages 47–62. Contemporary
Mathematics, vol 92, American Mathematical Society, 1989.

12. V. C. V. de Paiva. A Dialectica-like model of linear logic. In D. Pitt, D. Rydeheard, P. Dybjer,
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