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Suppose that it is possible to integrate real functions over a weak base theory related to polynomial time com-
putability. Does it follow that we can count? The answer seems t@bepuslyyes! We try to convince the

reader that the severe restrictions on induction in feasible theories preclude a straightforward answer. Never-
theless, a more sophisticated reflection does indeed show that the answer is affirmative.
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1 Introduction

The first author defined in [3] a system of second-order arithnBieA as a groundwork for formalizing and
studying the strength of mathematical results over a weak basis related to polynomial time computability. This
study is in the spirit of work imeverse mathematidsitiated by S. Simpson and H. Friedman — see the encyclo-
pedic [12] — where the standard base theRGA, is related to the primitive recursive functions (note that the
theories of Simpson and Friedman, as well as the theories of this paper, are theories fratassidallogic).
The weakening of the base theory was motivated by a challenge of W. Sieg (cf. [11]): to find a mathematically
significant subsystem of analysis whose class of provable recursive functions consists only of the computationally
“feasible” onesBTFA is a formal system of analysis (thus, with two sorts of variables) which, however, departs
from the usual presentations of arithmetic by being based on a language that purports to describ@thé*set
of finite sequences of 0s and 1s (binary strings), instead of the natural numbers. The option for this setting is
mainly a matter of taste and convenience, where the latter lies in the fact that in the absence of (the totality) of
exponentiation a distinction must be made between nunibgi@s given by their binary notation (dyadic nat-
ural numbers) and meially numbers envisaged as being given by finite sequences of 1s. This distinction is
notationally very clear in systems based{on1}*.

The fundamental numerical systems of mathematics (up to, and including, the real numbers) were introduced
in [5] within the base theor8BTFA, as well as the notion of a continuous function of real variable. Therein, it
is proved (withinBTFA) Bolzano’s intermediate value theoremresult which shall be used below. Riemann
integration does not seem to have a decent formalization WBfFA, but the second author has recently shown
in [4] how to formalize the Riemann integral (for continuous functions with a modulus of uniform continuity)
up to thefundamental theorem of calculaser a certain weak theogxtendingBTFA. The necessity of going
to an extension oBTFA is strongly suggested by general considerations and, more specifically, by work of H.
Friedman and K. Ko in the context of the complexity theory of real functions (cf. [9], [8]), where they relate
Riemann integration with the class of the polynomial space computable functions. It must be observed that our
game, although related to the study of the complexity of real functions, is nevertheless different — namely, a game
on formalizingmathematics within weak second-order theories (in particular, induction cannot be freely used).
G. Ferreira’s extended formal theory (see also the forerunner theory [7]) lies in strength bilyeef; and S.
Buss’ theoryU3 (see [6] and [1] for these theories). The latter theory is related to polynomial space computability,
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and Riemann integration can indeed be formalized in (a suitable second-order formulation of) it (this follows from
G. Ferreira’s work). G. Ferreira’s theory is (in a precise sense) weaketthals a matter of fact, its provably
total functions are exactly those in theerarchy of counting functions class defined by K. Wagner in [13] based
on an iteration procedure which stems from L. Valiant’s well-known counting e#aBs The functions of this
hierarchy are all polynomial space computable.

The main principle of G. Ferreira’s theory is tbeunting principlethat guarantees the existence of a counting
function up toa for a given setX':

Va € NoVX3f(f(0)=0AVz <a((z ¢ X — flz+1)=fx)A(z e X — fx+1) = f(z)+1))).

In this paper we address theversequestion: does a good theory of integration for real functions imply the
counting principle? The answer seems to blviouslyyes! GivenX C Ns, it is possible to associate (within
BTFA) a continuous total functior® x, from [0, +oc[ into R, with a modulus of uniform continuity, such that:

‘bx(a):O, Ifmg_fX,
O x(a) =4a — 4m, imeX/\agm—i—%;
Px(a) =—4da+4(m+1), fmeXAm+ 3 <a
wherea > 0 is a real number anah is the dyadic natural number such that< o < m + 1.
For instance, ifX = {0, 2,3} then®x is the function:

If we have integration, the functiofi(z) =g [; ®x (t)dt does the counting. We must nevertheless be careful
because the counting functigh(which we may suppose to be defined only in the dyadic natural numbers not
exceeding a certain given valaet 1) is supposed to be a function taking valueNisy not inRR. Prima facie
this seems to be only a technical detail without any importance whatsoever. In fact, since functions are (in our
setting) given by sets of ordered pairs, we could just define:

f={{zn) :x,neNg,x<a+1, n<ux, fox O (t)dt =g nr},

where( , ) is a smooth pairing function angk is the real number (second-order entity) corresponding to the
dyadic natural number (henceforth, we will omit the subscript). Unfortunately, this “set” is givenIH}
comprehension and this much comprehension is not availaB&HA. Notwithstanding,f can be given as well
by

f={&n:z,;neNgz<a+1l, n<xz, n-— % <R fomq)X(t)dt <g N+ %},

and this definition is£?. Since comprehension fdx{-definable sets is available BTFA, the issue is apparently
disposed of. However, a more basic problem looms. How do we know, vBthiA, that the above two defini-

tions of f coincide? We are presupposing that,fo< a + 1, fO” ® x (t)dt € Ny. The reader may protest and say
this is an obvious fact which should follow from any decent theory of integration. We agree that it is obvious, but
no thankgo integration. A decent theory of integration should indeed show that

Copyright line will be provided by the publisher



mlqg header will be provided by the publisher 3

ST e (t)dt = 6 +r [y ®x(t)dt,

for ¢ the real number 1 or 0 (according to whethee X or not). In particular, the implicatiofi(z) € Ny —
f(z+1) € N2 holds. However, it isiotintegration that allows the inference from this implicatiorf{a:) € Na,
forall z < a + 1. Itis induction It is induction onx applied to the formulan < x(fog” ®x (t)dt =g n). This
amounts to induction with respect tdg-formula, and this much induction is simply not availableBifiFA.

We hope that we have convinced the reader that there is something to be said for the impli¢atiomniion —
counting over a weak base theory (ovBil FA). In the remaining part of the paper we show that, under natural
conditions, this implication does indeed hold wittdi FA.

We will not specify precisely what do we mean by integration. Instead, we just use in the proof properties that
anydecentheory of integration of real functions should have. Beyond these, we only appeal to results that stem
from the very framework in which we are working. Let us be totally clear about these latter results (details can
be found in [5]). In the framework of second-order arithmetic, we are integrating continuous functions (with a
modulus of uniform continuity) defined on closed bounded intervals of the real line. These continuous functions
are given by certaisetsof quintuples (following the standard work in reverse mathematics). We will use the fact
thatifg : [a, 6] — R is a continuous function with a modulus of uniform continuity, then the thapy, 5] — R
defined byf (v fv t) dt is also a continuous function and, hence, given by a suitable set of quintuples. This
has the consequence that relations of the fﬁmg t)dt =g b orf g(t)dt <g b between dyadic natural numbers
a andb are, respectively, given bi{ and ¢ formulas. More preC|ser, they can be given by formulas of the
formVz[(x,a,b) € Z] and3z[(z,a,b) € Z], for a suitable seZ. These facts will be used in the sequel.

2 Alemma on minimization

We need a preliminary result in order to prove the implicatiotegration — counting. We remind the reader
that the amount of induction presentBiT FA is inductionon notationfor ¥4 -formulas. However, in the presence
of integration, stronger forms of induction are available. For instance, prainction for>%-formulas

Lemma 2.1 BTFA + integration = ¢(0) AVz € No(p(z) — ¢(z + 1)) — Vo € Nyp(z), wherep is a
yb-formula, possibly with second-order parameters.

This is the amount of induction that characterizes Buss’ th@grgcf. [1]). It is known (see [10] or [2]) that
this form of induction follows from theninimization principle

(*)Va e NoVX(ae X - eNy(be X AV e Nog(z < b— z ¢ X))).

Therefore, it is sufficient to prove:
Sublemma OverBTFA, integration implies the minimization principléx).

Proof. We reason insidBTFA. Suppose that we havetegration. Let X be a set of elements N, and
a € X. Consider ®x the continuous function associated to the Eeaccording to the introductory section.
Since®x is a continuous total function o[@ a + 1] with a modulus of uniform continuity, we know that the

function f : [0,a + 1] — R, defined byf (v fo ® x (t)dt, is well-defined and continuous. We have:
f(0) =0and
fla+1) = [3T ox(t)dt = [T Ox(t)dt + [“F Dx(t)dt > 1.

Note thatfaa’L1 ®x(t)dt = 1 because: is in X. By Bolzano’s intermediate value theoreff. [5]), there is a
real numbery such thaty €]0,a + 1] A f(a) = 1. Letm € Ny be such thatn < o <m + 1. We claim that:

($) There is at least one dyadic natural number less than or equalriaX.

Suppose (in order to get a contradiction) that € No(k < m — k ¢ X). Under these circunstances,
T ey (t)dt = [T 0 =0 andferl x(t)ydt = [* ®x(t)dt + [T @ (t)dt > 1, a contradiction. Now,
takek; <minX. ThIS element is, in fact, the least eIementX)f For, suppose that there is also< & in X.
Thenz + 1 < k < m < a. Hence,
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« T z+1 k «
1= [T Ox(t)dt = [y Dx(t)dt+ [7F Dx(t)dt + [, Px(t)dt + [" x(t)dt > 1,

r+1

becausg”" ®x(t)dt = 1and [, ®x(t)dt > 0 (sincek € X andk < a). O

3 Integration implies counting

Proposition 3.1 BTFA | integration — counting.

We reason insidBTFA. Suppose that theredstegration and fixX C Ny anda € X. Taken a tally number
such thatz + 2 < 2"~2 and conside® x the continuous function associatedXoaccording to the introductory
section. Letf be the continuous total function defined[ina + 1] by f(vy fo ® x (t)dt. Such a function
exists by hypothesis. Since every real number can be approximated to Wlthln any degree of accuracy by a dyadic
rational number (these were suitably defined in [5] as certain strings, and are denoted as elefems bhve

Vaﬁ<a+13q€D|f0 Dy (t)dt — q| < 2n+1

It followsfrom the d|scu55|on at the end of the introductory section that the relation beivwarehy given by
| [y @x(t)dt — q| < 3t is given by ax9-formula, i.e., it is equivalent tdw[(w, z,q) € Z], for some set Z.
Thereforev:c < a+13¢3w(q € DA (w,x,q) € Z). By thebounded collection schena principle ofBTFA),
there iss € N; such that

(*) Ve<a+13dg=<xsTw<s(geDA(w,x,q) € Z).

Hereq < s means that has (string) length less than or equal to the (string) length. dllow, consider the
following }-formula:

o(x,j) = zeNgAjeENs Az <a+1ATg<sTw<s(geDA(w,z,q) € ZAl|g—j| < ).

Fact 1 BTFA + integration proves:
(a) Vo <a+ 135 <z p(z,j) (existence);
(b) x <a+1A¢(x,j)Ae(x,i) — j =i (uniqueness).

If this is shown, thenp(z, 5) is equivalent to thdl’-formulaz < a + 1 A Vi < z(p(z,i) — j = i). By
Af-comprehension (actually, less than that), witBiRFA it is ensured the existence of the $ét, j) : p(z,7)}.
Of course, this set is functionh defined on the dyadic natural numbers less than or equaktd and taking
values inNs.

Fact 2 h is the counting function of the sét up toa.

Proof of Fact 1. Existence is proved bplain induction onz. Observe that we have argued in the previous
section that this form of induction is available to us. Firstly, we must show;i({ato) By (), takeq € D and
w € Ng such thay < s, w < s and(w, 0,q) € Z. Thus, \fo O (t)dt — q| < 2n+1 , implying |¢g — 0| < 2”.

To prove the inductlon step, fix < a and suppose, by |nduct|on hypothesis, that therg 46 « such that
o(z,j). As a consequence, theregise D such that fox Px(t)dt — ¢'| < g and|q’ — j| < S By (%), let
g € Dandw € Ny suchthayy < s, w < sand(w,z + 1,q) € Z. There are two cases to consider: eithef X

orz ¢ X. Inthe first casefaj”rl ® x (t)dt = 1. Therefore,

z+1
lg—(G+1)] < \q—/ dt|+|/ (t)dt — (¢ +1)| + |¢" — jl
0

1 .
< W—H/o Py (t)dt —q'| + |q" — jl

< 1 1 z+1 x+2
— 2n+1 + 2n+1 on - on :

We have shown that(z + 1,5 + 1). In caser ¢ X, a similar argument shows thatz + 1, j).
To prove the uniqueness condition, supposeditat j) andp(z, i) with x < a+1. Hence, there arg ¢’ € D
such that

Copyright line will be provided by the publisher



mlqg header will be provided by the publisher 5

| fo @x(t)dt —q| < 353 |lg— | < 55

Jo @x(t)dt — ¢'| < ztr ; and|g’ —i| < SEL.

271.
We get,
G-il < li-al+la- [ ex@dl+| [ ex(odt-q|+1d i
0 0
< a;+1+ 1 n 1 +x+1_2x+3<
2n 2n+1 2n+1 211 - 2n —

2(a+1)+3 2a+2) 1 2"t 1
= - < - 1.
- P o T = T s

Note thatn was taken so that + 2 < 272, Sincej, i € N», it follows thati = j.

Proof of Fact 2. This is a consequence of the existence proof of the previous fact.
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