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Suppose that it is possible to integrate real functions over a weak base theory related to polynomial time com-
putability. Does it follow that we can count? The answer seems to be:obviouslyyes! We try to convince the
reader that the severe restrictions on induction in feasible theories preclude a straightforward answer. Never-
theless, a more sophisticated reflection does indeed show that the answer is affirmative.
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1 Introduction

The first author defined in [3] a system of second-order arithmeticBTFA as a groundwork for formalizing and
studying the strength of mathematical results over a weak basis related to polynomial time computability. This
study is in the spirit of work inreverse mathematicsinitiated by S. Simpson and H. Friedman – see the encyclo-
pedic [12] – where the standard base theoryRCA0 is related to the primitive recursive functions (note that the
theories of Simpson and Friedman, as well as the theories of this paper, are theories framed inclassicallogic).
The weakening of the base theory was motivated by a challenge of W. Sieg (cf. [11]): to find a mathematically
significant subsystem of analysis whose class of provable recursive functions consists only of the computationally
“feasible” ones.BTFA is a formal system of analysis (thus, with two sorts of variables) which, however, departs
from the usual presentations of arithmetic by being based on a language that purports to describe the set{0, 1}∗
of finite sequences of 0s and 1s (binary strings), instead of the natural numbers. The option for this setting is
mainly a matter of taste and convenience, where the latter lies in the fact that in the absence of (the totality) of
exponentiation a distinction must be made between numbersN2 as given by their binary notation (dyadic nat-
ural numbers) and meretally numbers envisaged as being given by finite sequences of 1s. This distinction is
notationally very clear in systems based on{0, 1}∗.

The fundamental numerical systems of mathematics (up to, and including, the real numbers) were introduced
in [5] within the base theoryBTFA, as well as the notion of a continuous function of real variable. Therein, it
is proved (withinBTFA) Bolzano’s intermediate value theorem, a result which shall be used below. Riemann
integration does not seem to have a decent formalization withinBTFA, but the second author has recently shown
in [4] how to formalize the Riemann integral (for continuous functions with a modulus of uniform continuity)
up to thefundamental theorem of calculusover a certain weak theoryextendingBTFA. The necessity of going
to an extension ofBTFA is strongly suggested by general considerations and, more specifically, by work of H.
Friedman and K. Ko in the context of the complexity theory of real functions (cf. [9], [8]), where they relate
Riemann integration with the class of the polynomial space computable functions. It must be observed that our
game, although related to the study of the complexity of real functions, is nevertheless different – namely, a game
on formalizingmathematics within weak second-order theories (in particular, induction cannot be freely used).
G. Ferreira’s extended formal theory (see also the forerunner theory [7]) lies in strength betweenI∆0 + Ω1 and S.
Buss’ theoryU1

2 (see [6] and [1] for these theories). The latter theory is related to polynomial space computability,
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and Riemann integration can indeed be formalized in (a suitable second-order formulation of) it (this follows from
G. Ferreira’s work). G. Ferreira’s theory is (in a precise sense) weaker thanU1

2. As a matter of fact, its provably
total functions are exactly those in thehierarchy of counting functions, a class defined by K. Wagner in [13] based
on an iteration procedure which stems from L. Valiant’s well-known counting class#P . The functions of this
hierarchy are all polynomial space computable.

The main principle of G. Ferreira’s theory is thecounting principlethat guarantees the existence of a counting
function up toa for a given setX:

∀a ∈ N2∀X∃f(f(0) = 0 ∧ ∀x ≤ a((x /∈ X → f(x + 1) = f(x)) ∧ (x ∈ X → f(x + 1) = f(x) + 1))).

In this paper we address thereversequestion: does a good theory of integration for real functions imply the
counting principle? The answer seems to be:obviouslyyes! GivenX ⊆ N2, it is possible to associate (within
BTFA) a continuous total function,ΦX , from [0,+∞[ into R, with a modulus of uniform continuity, such that: ΦX(α) = 0, if m /∈ X;

ΦX(α) = 4α− 4m, if m ∈ X ∧ α ≤ m + 1
2 ;

ΦX(α) = −4α + 4(m + 1), if m ∈ X ∧m + 1
2 < α;

whereα ≥ 0 is a real number andm is the dyadic natural number such thatm ≤ α < m + 1.
For instance, ifX = {0, 2, 3} thenΦX is the function:

-
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If we have integration, the functionf(x) =R
∫ x

0
ΦX(t)dt does the counting. We must nevertheless be careful

because the counting functionf (which we may suppose to be defined only in the dyadic natural numbers not
exceeding a certain given valuea + 1) is supposed to be a function taking values inN2, not in R. Prima facie,
this seems to be only a technical detail without any importance whatsoever. In fact, since functions are (in our
setting) given by sets of ordered pairs, we could just define:

f := {〈x, n〉 : x, n ∈ N2, x ≤ a + 1, n ≤ x,
∫ x

0
ΦX(t)dt =R nR},

where〈 , 〉 is a smooth pairing function andnR is the real number (second-order entity) corresponding to the
dyadic natural numbern (henceforth, we will omit the subscript). Unfortunately, this “set” is given byΠ0

1-
comprehension and this much comprehension is not available inBTFA. Notwithstanding,f can be given as well
by

f = {〈x, n〉 : x, n ∈ N2, x ≤ a + 1, n ≤ x, n− 1
2 <R

∫ x

0
ΦX(t)dt <R n + 1

2},

and this definition isΣ0
1. Since comprehension for∆0

1-definable sets is available inBTFA, the issue is apparently
disposed of. However, a more basic problem looms. How do we know, withinBTFA, that the above two defini-
tions off coincide? We are presupposing that, forx ≤ a+1,

∫ x

0
ΦX(t)dt ∈ N2. The reader may protest and say

this is an obvious fact which should follow from any decent theory of integration. We agree that it is obvious, but
no thanksto integration. A decent theory of integration should indeed show that
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∫ x+1

0
ΦX(t)dt =R δ +R

∫ x

0
ΦX(t)dt,

for δ the real number 1 or 0 (according to whetherx ∈ X or not). In particular, the implicationf(x) ∈ N2 →
f(x + 1) ∈ N2 holds. However, it isnot integration that allows the inference from this implication tof(x) ∈ N2,
for all x ≤ a + 1. It is induction! It is induction onx applied to the formula∃n ≤ x(

∫ x

0
ΦX(t)dt =R n). This

amounts to induction with respect to aΠ0
1-formula, and this much induction is simply not available inBTFA.

We hope that we have convinced the reader that there is something to be said for the implicationintegration →
counting over a weak base theory (overBTFA). In the remaining part of the paper we show that, under natural
conditions, this implication does indeed hold withinBTFA.

We will not specify precisely what do we mean by integration. Instead, we just use in the proof properties that
anydecenttheory of integration of real functions should have. Beyond these, we only appeal to results that stem
from the very framework in which we are working. Let us be totally clear about these latter results (details can
be found in [5]). In the framework of second-order arithmetic, we are integrating continuous functions (with a
modulus of uniform continuity) defined on closed bounded intervals of the real line. These continuous functions
are given by certainsetsof quintuples (following the standard work in reverse mathematics). We will use the fact
that if g : [α, β] 7→ R is a continuous function with a modulus of uniform continuity, then the mapf : [α, β] 7→ R
defined byf(γ) =

∫ γ

α
g(t) dt is also a continuous function and, hence, given by a suitable set of quintuples. This

has the consequence that relations of the form
∫ a

α
g(t)dt =R b or

∫ a

α
g(t)dt <R b between dyadic natural numbers

a andb are, respectively, given byΠ0
1 andΣ0

1 formulas. More precisely, they can be given by formulas of the
form ∀x[〈x, a, b〉 ∈ Z] and∃x[〈x, a, b〉 ∈ Z], for a suitable setZ. These facts will be used in the sequel.

2 A lemma on minimization

We need a preliminary result in order to prove the implicationintegration → counting. We remind the reader
that the amount of induction present inBTFA is inductionon notationfor Σb

1-formulas. However, in the presence
of integration, stronger forms of induction are available. For instance, plaininduction forΣb

1-formulas:

Lemma 2.1 BTFA + integration ` ϕ(0) ∧ ∀x ∈ N2(ϕ(x) → ϕ(x + 1)) → ∀x ∈ N2 ϕ(x), whereϕ is a
Σb

1-formula, possibly with second-order parameters.

This is the amount of induction that characterizes Buss’ theoryT1
2 (cf. [1]). It is known (see [10] or [2]) that

this form of induction follows from theminimization principle:

(?) ∀a ∈ N2∀X(a ∈ X → ∃b ∈ N2(b ∈ X ∧ ∀x ∈ N2(x < b → x /∈ X))).

Therefore, it is sufficient to prove:

Sublemma OverBTFA, integration implies the minimization principle(?).
Proof. We reason insideBTFA. Suppose that we haveintegration. Let X be a set of elements inN2 and

a ∈ X. Consider ΦX the continuous function associated to the setX according to the introductory section.
SinceΦX is a continuous total function on[0, a + 1] with a modulus of uniform continuity, we know that the
functionf : [0, a + 1] 7→ R, defined byf(γ) =

∫ γ

0
ΦX(t)dt, is well-defined and continuous. We have:

f(0) = 0 and

f(a + 1) =
∫ a+1

0
ΦX(t)dt =

∫ a

0
ΦX(t)dt +

∫ a+1

a
ΦX(t)dt ≥ 1.

Note that
∫ a+1

a
ΦX(t)dt = 1 becausea is in X. By Bolzano’s intermediate value theorem(cf. [5]), there is a

real numberα such thatα ∈ ]0, a + 1] ∧ f(α) = 1. Let m ∈ N2 be such thatm < α ≤ m + 1. We claim that:

($) There is at least one dyadic natural number less than or equal tom in X.

Suppose (in order to get a contradiction) that∀k ∈ N2(k ≤ m → k /∈ X). Under these circunstances,∫ m+1

0
ΦX(t)dt =

∫ m+1

0
0 = 0 and

∫ m+1

0
ΦX(t)dt =

∫ α

0
ΦX(t)dt +

∫ m+1

α
ΦX(t)dt ≥ 1, a contradiction. Now,

takek ≤ m in X. This element is, in fact, the least element ofX. For, suppose that there is alsox < k in X.
Thenx + 1 ≤ k ≤ m < α. Hence,
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1 =
∫ α

0
ΦX(t)dt =

∫ x

0
ΦX(t)dt +

∫ x+1

x
ΦX(t)dt +

∫ k

x+1
ΦX(t)dt +

∫ α

k
ΦX(t)dt > 1,

because
∫ x+1

x
ΦX(t)dt = 1 and

∫ α

k
ΦX(t)dt > 0 (sincek ∈ X andk < α).

3 Integration implies counting

Proposition 3.1 BTFA ` integration → counting.

We reason insideBTFA. Suppose that there isintegration and fixX ⊆ N2 anda ∈ X. Taken a tally number
such thata + 2 ≤ 2n−2 and considerΦX the continuous function associated toX according to the introductory
section. Letf be the continuous total function defined in[0, a + 1] by f(γ) =

∫ γ

0
ΦX(t)dt. Such a function

exists by hypothesis. Since every real number can be approximated to within any degree of accuracy by a dyadic
rational number (these were suitably defined in [5] as certain strings, and are denoted as elements ofD), we have

∀x ≤ a + 1∃q ∈ D |
∫ x

0
ΦX(t)dt− q| < 1

2n+1 .

It followsfrom the discussion at the end of the introductory section that the relation betweenx andq given by
|
∫ x

0
ΦX(t)dt − q| < 1

2n+1 is given by aΣ0
1-formula, i.e., it is equivalent to∃w[〈w, x, q〉 ∈ Z], for some set Z.

Therefore,∀x ≤ a + 1∃q∃w(q ∈ D ∧ 〈w, x, q〉 ∈ Z). By thebounded collection scheme(a principle ofBTFA),
there iss ∈ N2 such that

(?) ∀x ≤ a + 1∃q 4 s∃w ≤ s (q ∈ D ∧ 〈w, x, q〉 ∈ Z).

Hereq 4 s means thatq has (string) length less than or equal to the (string) length ofs. Now, consider the
following Σb

1-formula:

ϕ(x, j) :≡ x ∈ N2 ∧ j ∈ N2 ∧ x ≤ a + 1 ∧ ∃q 4 s∃w ≤ s(q ∈ D ∧ 〈w, x, q〉 ∈ Z ∧ |q − j| < x+1
2n ).

Fact 1 BTFA + integration proves:

(a) ∀x ≤ a + 1∃j ≤ x ϕ(x, j) (existence);

(b) x ≤ a + 1 ∧ ϕ(x, j) ∧ ϕ(x, i) → j = i (uniqueness).

If this is shown, thenϕ(x, j) is equivalent to theΠb
1-formulax ≤ a + 1 ∧ ∀i ≤ x(ϕ(x, i) → j = i). By

∆0
1-comprehension (actually, less than that), withinBTFA it is ensured the existence of the set{〈x, j〉 : ϕ(x, j)}.

Of course, this set is afunctionh defined on the dyadic natural numbers less than or equal toa + 1 and taking
values inN2.

Fact 2 h is the counting function of the setX up toa.

Proof of Fact 1. Existence is proved byplain induction onx. Observe that we have argued in the previous
section that this form of induction is available to us. Firstly, we must show thatϕ(0, 0). By (?), takeq ∈ D and
w ∈ N2 such thatq 4 s, w ≤ s and〈w, 0, q〉 ∈ Z. Thus,|

∫ 0

0
ΦX(t)dt− q| < 1

2n+1 , implying |q − 0| < 1
2n .

To prove the induction step, fixx ≤ a and suppose, by induction hypothesis, that there isj ≤ x such that
ϕ(x, j). As a consequence, there isq′ ∈ D such that|

∫ x

0
ΦX(t)dt− q′| < 1

2n+1 and|q′ − j| < x+1
2n . By (?), let

q ∈ D andw ∈ N2 such thatq 4 s, w ≤ s and〈w, x + 1, q〉 ∈ Z. There are two cases to consider: eitherx ∈ X

or x /∈ X. In the first case,
∫ x+1

x
ΦX(t)dt = 1. Therefore,

|q − (j + 1)| ≤ |q −
∫ x+1

0

ΦX(t)dt|+ |
∫ x+1

0

ΦX(t)dt− (q′ + 1)|+ |q′ − j|

<
1

2n+1
+ |

∫ x

0

ΦX(t)dt− q′|+ |q′ − j|

≤ 1
2n+1

+
1

2n+1
+

x + 1
2n

=
x + 2
2n

.

We have shown thatϕ(x + 1, j + 1). In casex /∈ X, a similar argument shows thatϕ(x + 1, j).
To prove the uniqueness condition, suppose thatϕ(x, j) andϕ(x, i) with x ≤ a+1. Hence, there areq, q′ ∈ D

such that
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|
∫ x

0
ΦX(t)dt− q| < 1

2n+1 ; |q − j| < x+1
2n ; |

∫ x

0
ΦX(t)dt− q′| < 1

2n+1 ; and|q′ − i| < x+1
2n .

We get,

|j − i| ≤ |j − q|+ |q −
∫ x

0

ΦX(t)dt|+ |
∫ x

0

ΦX(t)dt− q′|+ |q′ − i|

<
x + 1
2n

+
1

2n+1
+

1
2n+1

+
x + 1
2n

=
2x + 3

2n
≤

≤ 2(a + 1) + 3
2n

=
2(a + 2)

2n
+

1
2n

≤ 2n−1

2n
+

1
2n

< 1.

Note thatn was taken so thata + 2 ≤ 2n−2. Sincej, i ∈ N2, it follows thati = j.

Proof of Fact 2. This is a consequence of the existence proof of the previous fact.
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