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Abstract

It is known that the β-conversions of the full intuitionistic propositional cal-
culus (IPC) translate into βη-conversions of the atomic polymorphic calculus Fat.
Since Fat enjoys the property of strong normalization for βη-conversions, an al-
ternative proof of strong normalization for IPC considering β-conversions can be
derived. In the present paper we improve the previous result by analyzing the
translation of the η-conversions of the latter calculus into a technical variant of the
former system (the atomic polymorphic calculus F∧at). In fact, from the strong nor-
malization of F∧at we can derive the strong normalization of the full intuitionistic
propositional calculus considering all the standard (β and η) conversions.

Keywords. η-conversions, predicative polymorphism, intuitionistic propositional cal-
culus, strong normalization, natural deduction.

1 Introduction
The atomic polymorphic calculus Fat [3, 7]1 is the restriction of Jean-Yves Girard’s
system F [9] to atomic universal instantiations. The restriction occurs only in the
derivations (terms) allowed, not in the formulas (types) permitted. The formulas in
Fat (as in system F) are defined as the smallest class of expressions that includes the
atomic formulas (propositional constants and second-order variables) and is closed un-
der implication and second-order universal quantification. In the natural deduction
calculus proofs in Fat are built using the following introduction rules:

[A]
.
.
.
B

→IA→ B

.

.

.
A

∀I
∀X.A

1The system Fat was first introduced by Fernando Ferreira in [3] under the designation of atomic PSOLi.
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where, in the second rule, X does not occur free in any undischarged hypothesis; and
the following elimination rules:

.

.

.
A→ B

.

.

.
A
→EB

.

.

.
∀X.A

∀E
A[C/X]

with C an atomic formula, free for X in A. It is the restriction to atomic instantiations
in the latter rule that distinguishes Fat from F. The (impredicative) system F allows,
in the ∀E rule, the instantiation of X by any (not necessarily atomic) formula of the
system.

The introduction of Fat may be a possible answer to Girard’s dissatisfaction with
the natural deduction rules for ⊥ and ∨. From page 80 of [9]:

“One tends to think that natural deduction should be modified to correct such atroc-
ities [referring to the commuting conversions needed to deal with the bad connectives
⊥, ∨ and ∃]: if a connector has such bad rules, one ignores it (a very common attitude)
or one tries to change the very spirit of natural deduction in order to be able to integrate
it harmoniously with the others. It does not seem that the (⊥, ∨, ∃) fragment of the
calculus is etched on tablets of stone.”

Fat is an alternative to full intuitionistic propositional calculus (IPC) in the sense
that IPC can be translated into Fat via a sound [3, 8] and faithful [6, 5] embedding.
Thus, any deduction in IPC can be performed into Fat - a predicative system with no
bad connectives, with no commuting conversions, with a simple strong normalization
proof [7, 4] and whose normal proofs enjoy the subformula property [3].

The embedding of IPC into Fat relies on the well-known Russell-Prawitz’s defini-
tion of the connectives ⊥, ∨ and ∧ in terms of→ and ∀ and on instantiation overflow.
To make this paper reasonably self-contained, in the next section we remember these
notions.

Since ∧ is not a bad2 connective we can take it as primitive in Fat. So, till the end
of the present paper we will work with an atomic polymorphic calculus, we denote by
F∧at, which has the primitive connectives ∧ (for conjunction), → (for implication) and
∀ (for second-order universal quantification) and, in addition to the introduction and
elimination rules previously presented for Fat, F∧at has also the following rules for ∧:

.

.

.
A

.

.

.
B
∧IA ∧ B

.

.

.
A ∧ B

∧EA

.

.

.
A ∧ B

∧EB

The standard conversions of F∧at are the following β-conversions:
.
.
.
A

.

.

.
B

A ∧ B
A

 

.

.

.
A

.

.

.
A

.

.

.
B

A ∧ B
B

 

.

.

.
B

2“Bad” in the previous (Girard’s) sense. I.e., as opposed to ⊥, ∨, ∃ (see [9], pages 73–74), the natural
deduction rules for the elimination of ∧ do not introduce formulas without connection with the formulas
being eliminated and ∧ is not responsible for the introduction of commuting conversions in IPC.
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[A]
.
.
.
B

A→ B

.

.

.
A

B
 

.

.

.
A
.
.
.
B

.

.

.
A
∀X.A

A[C/X]
 

.

.

.
A[C/X]

where C is an atomic formula, free for X in A, and the following η-conversions:
.
.
.

A ∧ B
A

.

.

.
A ∧ B

B
A ∧ B

 

.

.

.
A ∧ B

.

.

.
A→ B [A]

B
A→ B

 

.

.

.
A→ B

.

.

.
∀X.A

A
∀X.A

 

.

.

.
∀X.A

The formulas on the left hand-side of the conversion are called redexes and on the
right hand-side contractums.

Note that since F∧at has no bad connectives there is no need for commuting conver-
sions in the system. The reason why we choose to work within F∧at instead of Fat will
become clear in the last two sections of the paper.

It is an easy exercise to adapt the proof of strong normalization presented in [7] (for
Fat) to F∧at. We sketch such a proof in the next section.

It was shown in [7] that the β-conversions of IPC could be implemented in Fat
through βη-conversions and, as an application of strong normalization for Fat consid-
ering βη-conversions, the strong normalization for full IPC considering β-conversions
was derived. What about the η-conversions?

In the present paper we show that the η-conversions of IPC can be implemented in
F∧at via βη-conversions. As a consequence we are able to improve the previous results:
from the strong normalization of F∧at considering βη-conversions we can derive the
strong normalization of full IPC considering all the standard (β and η) conversions.

The paper is organized as follows: In Section 2 we present the embedding of full
IPC into F∧at and the proof of strong normalization for the latter calculus considering
βη-conversions. In Section 3 we study the translation of the η-conversions of IPC into
F∧at and in Section 4, as an application, we present an alternative proof for the strong
normalization of full IPC considering the standard (β and η) conversions.

2 Preliminaries
The embedding of full IPC into F∧at uses a well-known translation of the connectives
⊥ and ∨ in terms of→ and ∀ due to Bertrand Russell [12] and Dag Prawitz [11]. For
every formula A of the full propositional calculus we define its translation A∗ into F∧at
inductively as follows:
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(P)∗ :≡ P, for P a propositional constant

(⊥)∗ :≡ ∀X.X

(A→ B)∗ :≡ A∗ → B∗

(A ∧ B)∗ :≡ A∗ ∧ B∗

(A ∨ B)∗ :≡ ∀X ((A∗ → X)→ ((B∗ → X)→ X)),

where X is a second-order variable which does not occur in A∗ nor in B∗. Note that
the Russell-Prawitz translation also allows for the translation of ∧ in terms of → and
∀. In our context we do not need to translate conjunction in such a way because ∧ is a
primitive symbol in F∧at.

The previous translation is, in fact, a sound embedding, i.e., denoting by `i prov-
ability in the full intuitionistic propositional calculus and by `F∧at

provability in the
atomic polymorphic system F∧at, we have: If `i A then `F∧at

A∗.
The proof can be found in [3, 8]3 and relies in the phenomenon of instantiation

overflow. Instantiation overflow ensures that from formulas of the form

∀X.X

∀X ((A→ X)→ ((B→ X)→ X)),

it is possible to deduce in F∧at (respectively)

F

(A→ F)→ ((B→ F)→ F),

for any (not necessarily atomic) formula F. The proof of instantiation overflow is given
in [3, 8] and it yields algorithmic methods for obtaining the two kinds of deductions
above. For a recent study on instantiation overflow see [1]. Since the (canonical) de-
ductions provided by instantiation overflow are going to be extensively used in sections
3 and 4, we exemplify instantiation overflow with the case of disjunction.

More precisely, by induction on the complexity of F, we show how to deduce in
F∧at the formula (A → F) → ((B → F) → F), for arbitrary F, from ∀X ((A → X) →
((B→ X)→ X)). For F atomic there is nothing to argue, it is the application of a single
rule: ∀E. We just have to analyze the cases in which F is D1 ∧ D2, D1 → D2 and ∀XD
admitting (by induction hypothesis) that instantiation overflow is available for D1, D2
and D.

For F :≡ D1 ∧ D2, we have:
3In the present context of F∧at, the proof is even simpler than in the papers cited because the conjunction

is primitive in the atomic polymorphic calculus so the translation of the rules ∧I and ∧E becomes trivial.
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∀X((A→ X)→ ((B→ X)→ X))
I.H.

(A→ D1)→ ((B→ D1)→ D1)

[A→ (D1 ∧ D2)] [A]
D1 ∧ D2

D1

A→ D1

(B→ D1)→ D1

[B→ (D1 ∧ D2)] [B]
D1 ∧ D2

D1

B→ D1

D1 D

D1 ∧ D2

(B→ (D1 ∧ D2))→ (D1 ∧ D2)
(A→ (D1 ∧ D2))→ ((B→ (D1 ∧ D2))→ (D1 ∧ D2))

whereD is the derivation:

∀X((A→ X)→ ((B→ X)→ X))
I.H.

(A→ D2)→ ((B→ D2)→ D2)

[A→ (D1 ∧ D2)] [A]
D1 ∧ D2

D2

A→ D2

(B→ D2)→ D2

[B→ (D1 ∧ D2)] [B]
D1 ∧ D2

D2

B→ D2

D2

For F :≡ D1 → D2, we have:

∀X((A→ X)→ ((B→ X)→ X))
I.H.

(A→ D2)→ ((B→ D2)→ D2)

[A→ (D1 → D2)] [A]
D1 → D2 [D1]

D2

A→ D2

(B→ D2)→ D2

[B→ (D1 → D2)] [B]
D1 → D2 [D1]

D2

B→ D2

D2

D1 → D2

(B→ (D1 → D2))→ (D1 → D2)
(A→ (D1 → D2))→ ((B→ (D1 → D2))→ (D1 → D2))

For F :≡ ∀XD we have:

∀X((A→ X)→ ((B→ X)→ X))
I.H.

(A→ D)→ ((B→ D)→ D)

[A→ ∀XD] [A]
∀XD

D
A→ D

(B→ D)→ D

[B→ ∀XD] [B]
∀XD

D
B→ D

D
∀XD

(B→ ∀XD)→ ∀XD
(A→ ∀XD)→ ((B→ ∀XD)→ ∀XD)

When we refer to the translation of a certain derivation of IPC into F∧at, we mean
the canonical translation (rule-by-rule) provided by the proof of the embedding of IPC
into F∧at (see [3, 8]). We exemplify the canonical translation with the elimination rule
of disjunction:

.

.

.
A ∨ B

[A]
.
.
.
F

[B]
.
.
.
F

F
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The translation of the IPC rule above into F∧at is:

.

.

.
∀X((A∗ → X)→ ((B∗ → X)→ X))

(A∗ → F∗)→ ((B∗ → F∗)→ F∗)

[A∗]
.
.
.

F∗

A∗ → F∗

(B∗ → F∗)→ F∗

[B∗]
.
.
.

F∗

B∗ → F∗

F∗

where the double line hides the instantiation overflow discussed before.
Next we will observe that the strategy to prove strong normalization for Fat pre-

sented in [7] also works to prove strong normalization for F∧at.
By the Curry-Howard isomorphism also known as “formulas-as-types paradigm”,

F∧at can be presented in the (operational) λ-calculus style. Types in F∧at are the ones
in Fat - see [7] Definition 1, page 261, resulting from the atomic types (propositional
constants and type variables) by means of two type-forming operations→ and ∀ - with
an extra type-forming operation ∧, i.e. if A and B are types then A∧ B is a type. Terms
in F∧at are defined as the terms in Fat (see [7], Definition 2, page 261-262) adding two
clauses:

i) If tA∧B is a term of type A∧ B then (π1t)A is a term of type A and (π2t)B is a term
of type B,

ii) If tA is a term of type A and sB is a term of type B then 〈t, s〉A∧B is a term of type
A ∧ B.

Note that in F∧at we have the same conversions we have in Fat plus the conversions
for ∧ which, in the λ-calculus style, are the following two β-conversions:

π1〈t, s〉  t
π2〈t, s〉  s

and the following η-conversion:

〈π1t, π2t〉  t

Remember that the strategy in [7] to prove that Fat has the strong normalization
property (a simple adaptation of Tait’s convertibility technique) proceeds as follows: i)
we define by induction on the complexity of the types a class Red of terms of Fat; ii)
we prove that all terms in Red are strongly normalizable considering βη-conversions;
iii) we prove that all terms in Fat are in Red.

Remember also that Red was defined in the following way:

For C an atomic type, t ∈ RedC :≡ t is strongly normalizable.

t ∈ RedA→B :≡ for all q, if q ∈ RedA then tq ∈ RedB.

t ∈ Red∀X.A :≡ for all atomic types C, tC ∈ RedA[C/X].

In the context of F∧at we only have to add a new clause for conjunction:
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t ∈ RedA∧B :≡ π1t ∈ RedA and π2t ∈ RedB.

We say that a term is neutral if it is not of the form 〈t, s〉 or λx.t or ΛX.t.4

The proof of strong normalization for F∧at, considering βη-conversions, proceeds as
in [7]. For the treatment of conjunction see [9] pages 42-46.

3 How do the η-conversions of IPC translate into F∧at?
In (full) intuitionistic propositional calculus we have the following η-conversions:

.

.

.
A ∧ B

A

.

.

.
A ∧ B

B
A ∧ B

 

.

.

.
A ∧ B

.

.

.
A→ B [A]

B
A→ B

 

.

.

.
A→ B

.

.

.
A ∨ B

[A]
A ∨ B

[B]
A ∨ B

A ∨ B
 

.

.

.
A ∨ B

Proposition 1. Consider an η-conversion of (full) IPC. The canonical translation of
its redex into F∧at reduces, by means of a finite number (at least one) of βη-conversions,
into the canonical translation of its contractum into F∧at.

Proof. The case of the η-conversions for ∧ and → is trivial. Let us study the η-
conversion for ∨. In what follows, for ease of notation, we ignore the translations
of A and B.

The translation of the redex into F∧at, we denote by derivationD, has the form:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ (A ∨ B))→ ((B→ (A ∨ B))→ (A ∨ B))

[A] [A→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
A→ (A ∨ B)

(B→ (A ∨ B))→ (A ∨ B)

[B] [B→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
B→ (A ∨ B)

A ∨ B

where the double line hides the proof in F∧at that exists by instantiation overflow, and
for reasons of space, we write A ∨ B in some points of the derivation to abbreviate
∀X ((A → X) → ((B → X) → X)). This abbreviation for economy of space will
also be used in other parts of this proof. Note that no confusion arises from this abuse
of notation since all deductions are in the context of F∧at where there is no disjunction
symbol ∨.

We want to prove that from the derivation D above, applying standard (β and η)
conversions of F∧at, we obtain the derivation

4ΛX.t denotes the universal abstraction: if tA is a term of type A and the type variable X does not occur
free in the type of any free assumption variable of tA, then (ΛX.tA)∀X.A is a term of type ∀X.A (see [7],
Definition 2).
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.

.

.
∀X((A→ X)→ ((B→ X)→ X))

i.e., the portion of the derivationD above the double line.
At first is seems that there are no redexes where we can apply β or η conversions of

F∧at but indeed there are. They become visible as we start disclosing the portion of the
proof hidden in the double line. Abbreviating by φ(X) the formula (A → X) → ((B→
X)→ X) (i.e. A∨ B :≡ ∀X φ(X)), and revealing part of the instantiation overflow, what
we have above (A→ (A ∨ B))→ ((B→ (A ∨ B))→ (A ∨ B)) is

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ φ(X))→ ((B→ φ(X))→ φ(X))

[A→ ∀Xφ(X)] [A]
∀Xφ(X)
φ(X)

A→ φ(X)
(B→ φ(X))→ φ(X)

[B→ ∀Xφ(X)] [B]
∀Xφ(X)
φ(X)

B→ φ(X)
φ(X)
∀Xφ(X)
A ∨ B

(B→ (A ∨ B))→ (A ∨ B)
(A→ (A ∨ B))→ ((B→ (A ∨ B))→ (A ∨ B))

where the dashed line means syntactically equal. Note that the last rule above is the
introduction of an implication which is going to be (see derivation D) immediately
followed by the elimination of that implication. Thus, applying a β-conversion we
obtain:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ φ(X))→ ((B→ φ(X))→ φ(X))

[A] [A→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
A→ (A ∨ B) [A]

A ∨ B
φ(X)

A→ φ(X)
(B→ φ(X))→ φ(X)

[B→ ∀Xφ(X)] [B]
∀Xφ(X)
φ(X)

B→ φ(X)
φ(X)
A ∨ B

(B→ (A ∨ B))→ (A ∨ B)

[B] [B→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
B→ (A ∨ B)

A ∨ B

With another β-conversion we get:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ φ(X))→ ((B→ φ(X))→ φ(X))

[A] [A→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
A→ (A ∨ B) [A]

A ∨ B
φ(X)

A→ φ(X)
(B→ φ(X))→ φ(X)

[B] [B→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
B→ (A ∨ B) [B]

A ∨ B
φ(X)

B→ φ(X)
φ(X)
A ∨ B

With two β-conversions we obtain:
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.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ φ(X))→ ((B→ φ(X))→ φ(X))

[A] [A→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
φ(X)

A→ φ(X)
(B→ φ(X))→ φ(X)

[B] [B→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A ∨ B
φ(X)

B→ φ(X)
φ(X)
A ∨ B

Since φ(X) :≡ (A→ X)→ ((B→ X)→ X), applying two β-conversions we obtain:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ φ(X))→ ((B→ φ(X))→ φ(X))

[A] [A→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

A→ φ(X)
(B→ φ(X))→ φ(X)

[B] [B→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

B→ φ(X)
φ(X)
A ∨ B

To reveal other redexes and proceed with the reduction process, we need to disclose
a bit more the portion of the proof hidden in the double line. Let ψ(X) abbreviate
(B → X) → X, i.e., φ(X) ≡ (A → X) → ψ(X). The derivation above - denoting by
DA the portion of the proof above A→ φ(X) and byDB the portion above B→ φ(X) -
disclosing part of the proof has the form:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ ψ(X))→ ((B→ ψ(X))→ ψ(X))

[A→ φ(X)] [A]
φ(X) [A→ X]

ψ(X)
A→ ψ(X)

(B→ ψ(X))→ ψ(X)

[B→ φ(X)] [B]
φ(X) [A→ X]

ψ(X)
B→ ψ(X)

ψ(X)
(A→ X)→ ψ(X)

φ(X)
(B→ φ(X))→ φ(X)

(A→ φ(X))→ ((B→ φ(X))→ φ(X)) DA

(B→ φ(X))→ φ(X) DB

φ(X)
A ∨ B

Applying one β-conversion and disclosingDA we get:
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.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ ψ(X))→ ((B→ ψ(X))→ ψ(X))

[A] [A→ X]
X

(B→ X)→ X
φ(X)

A→ φ(X) [A]
φ(X) [A→ X]

ψ(X)
A→ ψ(X)

(B→ ψ(X))→ ψ(X)

[B→ φ(X)] [B]
φ(X) [A→ X]

ψ(X)
B→ ψ(X)

ψ(X)
φ(X)

(B→ φ(X))→ φ(X) DB

φ(X)
A ∨ B

With two β-conversions and disclosingDB we obtain

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ ψ(X))→ ((B→ ψ(X))→ ψ(X))

[A] [A→ X]
X

(B→ X)→ X
φ(X) [A→ X]

ψ(X)
A→ ψ(X)

(B→ ψ(X))→ ψ(X)

[B] [B→ X]
X

(B→ X)→ X
φ(X)

B→ φ(X) [B]
φ(X) [A→ X]

ψ(X)
B→ ψ(X)

ψ(X)
φ(X)
A ∨ B

With two β-conversions we have:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ ψ(X))→ ((B→ ψ(X))→ ψ(X))

[A] [A→ X]
X

ψ(X)
A→ ψ(X)

(B→ ψ(X))→ ψ(X)

[B] [B→ X]
X

(B→ X)→ X
φ(X) [A→ X]

ψ(X)
B→ ψ(X)

ψ(X)
φ(X)
A ∨ B

With one more β-conversion we obtain:
.
.
.

∀X((A→ X)→ ((B→ X)→ X))

(A→ ψ(X))→ ((B→ ψ(X))→ ψ(X))

[A] [A→ X]
X

ψ(X)
A→ ψ(X)

(B→ ψ(X))→ ψ(X)

[B] [B→ X]
X

ψ(X)
B→ ψ(X)

ψ(X)
φ(X)
A ∨ B

Revealing completely the instantiation overflow hidden in the double line, the pre-
vious derivation is in fact:
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.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ X)→ ((B→ X)→ X)

[A→ ψ(X)] [A]
ψ(X) [B→ X]

X
A→ X

(B→ X)→ X

[B→ ψ(X)] [B]
ψ(X) [B→ X]

X
B→ X

X
ψ(X)

(B→ ψ(X))→ ψ(X)
(A→ ψ(X))→ ((B→ ψ(X))→ ψ(X)) PA

(B→ ψ(X))→ ψ(X) PB

ψ(X)
φ(X)
A ∨ B

where PA is the derivation

[A] [A→ X]
X

ψ(X)
A→ ψ(X)

and PB the homologous derivation in B.

Applying one β-conversion and disclosing PA we obtain:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ X)→ ((B→ X)→ X)

[A] [A→ X]
X

ψ(X)
A→ ψ(X) [A]

ψ(X) [B→ X]
X

A→ X
(B→ X)→ X

[B→ ψ(X)] [B]
ψ(X) [B→ X]

X
B→ X

X
ψ(X)

(B→ ψ(X))→ ψ(X) PB

ψ(X)
φ(X)
A ∨ B

With two β-conversions and disclosing PB we have:

.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ X)→ ((B→ X)→ X)

[A] [A→ X]
X

ψ(X) [B→ X]
X

A→ X
(B→ X)→ X

[B] [B→ X]
X

ψ(X)
B→ ψ(X) [B]

ψ(X) [B→ X]
X

B→ X
X

ψ(X)
φ(X)
A ∨ B

With two more β-conversions we have:

11



.

.

.
∀X((A→ X)→ ((B→ X)→ X))

(A→ X)→ ((B→ X)→ X)

[A] [A→ X]
X

A→ X
(B→ X)→ X

[B] [B→ X]
X

ψ(X) [B→ X]
X

B→ X
X

ψ(X)
φ(X)
A ∨ B

Applying one η-conversion and one β-conversion we obtain:.
.
.

∀X((A→ X)→ ((B→ X)→ X))
(A→ X)→ ((B→ X)→ X) [A→ X]

(B→ X)→ X

[B] [B→ X]
X

B→ X
X

ψ(X)
φ(X)
A ∨ B

With another η-conversion (and without making use of abbreviations) we have:
.
.
.

∀X((A→ X)→ ((B→ X)→ X))
(A→ X)→ ((B→ X)→ X) [A→ X]

(B→ X)→ X [B→ X]
X

(B→ X)→ X
(A→ X)→ ((B→ X)→ X)

∀X((A→ X)→ ((B→ X)→ X))

Thus, with three η-conversion we get
.
.
.

∀X((A→ X)→ ((B→ X)→ X))
�

4 Alternative strong normalization proof for IPC con-
sidering βη-conversions

In [7] it was proved that the β-conversions of IPC translate into βη-conversions of Fat.
In this section we start by arguing that the result remains valid for F∧at.

The β-conversions of IPC are the ones for conjunction and implication (see pages
2 and 3 in the context of F∧at) plus the following ones for disjunction:

.

.

.
A

A ∨ B

[A]
.
.
.
F

[B]
.
.
.
F

F
 

.

.

.
A
.
.
.
F

.

.

.
B

A ∨ B

[A]
.
.
.
F

[B]
.
.
.
F

F
 

.

.

.
B
.
.
.
F

12



Proposition 2. Consider a β-conversion of (full) IPC. The canonical translation of its
redex into F∧at reduces, by means of a finite number (at least one) of βη-conversions,
into the canonical translation of its contractum into F∧at.

Proof. The only case non trivial is disjunction. It is possible to prove that the derivation
.
.
.
A [A→ X]

X
(B→ X)→ X

(A→ X)→ ((B→ X)→ X)
∀X((A→ X)→ ((B→ X)→ X))

(A→ F)→ ((B→ F)→ F)

[A]
.
.
.
F

A→ F
(B→ F)→ F

[B]
.
.
.
F

B→ F
F

reduces in F∧at to

.

.

.
A
.
.
.
F

by induction on the complexity of the formula F exactly as in

[7], Lemma 4, pp. 268-271 (for Fat). In the present context of F∧at, we only need to
analyze a new case (F :≡ D1 ∧ D2). Take the derivation

.

.

.
A [A→ X]

X
(B→ X)→ X

(A→ X)→ ((B→ X)→ X)
∀X((A→ X)→ ((B→ X)→ X))

(A→ (D1 ∧ D2))→ ((B→ (D1 ∧ D2))→ (D1 ∧ D2))

[A]
.
.
.

D1 ∧ D2

A→ (D1 ∧ D2)
(B→ (D1 ∧ D2))→ (D1 ∧ D2)

[B]
.
.
.

D1 ∧ D2

B→ (D1 ∧ D2)
D1 ∧ D2

Disclosing a bit the double line we have:

.

.

.
A [A→ X]

X
(B→ X)→ X

(A→ X)→ ((B→ X)→ X)
∀X((A→ X)→ ((B→ X)→ X))

(A→ D1)→ ((B→ D1)→ D1)

[A→ (D1 ∧ D2)] [A]
D1 ∧ D2

D1

A→ D1

(B→ D1)→ D1

[B→ (D1 ∧ D2)] [B]
D1 ∧ D2

D1

B→ D1

D1 D

D1 ∧ D2

(B→ (D1 ∧ D2))→ (D1 ∧ D2)
(A→ (D1 ∧ D2))→ ((B→ (D1 ∧ D2))→ (D1 ∧ D2))

above the formula (A → (D1 ∧ D2)) → ((B → (D1 ∧ D2)) → (D1 ∧ D2)), where D is
the derivation:

13



.

.

.
A [A→ X]

X
(B→ X)→ X

(A→ X)→ ((B→ X)→ X)
∀X((A→ X)→ ((B→ X)→ X))

(A→ D2)→ ((B→ D2)→ D2)

[A→ (D1 ∧ D2)] [A]
D1 ∧ D2

D2

A→ D2

(B→ D2)→ D2

[B→ (D1 ∧ D2)] [B]
D1 ∧ D2

D2

B→ D2

D2

Applying the induction hypothesis twice, the derivation reduces to

.

.

.
A [A→ (D1 ∧ D2)]

D1 ∧ D2

D1

.

.

.
A [A→ (D1 ∧ D2)]

D1 ∧ D2

D2

D1 ∧ D2

(B→ (D1 ∧ D2))→ (D1 ∧ D2)
(A→ (D1 ∧ D2))→ ((B→ (D1 ∧ D2))→ (D1 ∧ D2))

[A]
.
.
.

D1 ∧ D2

A→ (D1 ∧ D2)
(B→ (D1 ∧ D2))→ (D1 ∧ D2)

[B]
.
.
.

D1 ∧ D2

B→ (D1 ∧ D2)
D1 ∧ D2

by means of βη-conversions. Note that we have only changed the portion of derivation
above D1 and D2.

Applying one η and one β-conversions we obtain

.

.

.
A

[A]
.
.
.

D1 ∧ D2

A→ (D1 ∧ D2)
D1 ∧ D2

(B→ (D1 ∧ D2))→ (D1 ∧ D2)

[B]
.
.
.

D1 ∧ D2

B→ (D1 ∧ D2)
D1 ∧ D2

Applying a β-conversion we get
.
.
.
A

[A]
.
.
.

D1 ∧ D2

A→ (D1 ∧ D2)
D1 ∧ D2

and, with one more β-

conversion we obtain

.

.

.
A
.
.
.

D1 ∧ D2
�

Finally we are able to present the alternative proof of strong normalization for (full)
IPC considering βη-conversions.

Theorem 1. The intuitionistic natural deduction calculus of ⊥, ∧, ∨,→ with the stan-
dard (β and η) conversions is strongly normalizable.
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Proof. From propositions 2 and 1 we know that the standard (β and η) conversions of
IPC translate into a finite (at least one) number of βη-conversions of F∧at. Suppose,
in order to obtain a contradiction, that IPC is not strongly normalizable for standard
conversions. Then, there is a derivation P in IPC and an infinite path of reductions
(successive application of βη-conversions) starting from P. Thus, applying the propo-
sitions above, the translation of P into F∧at also has an infinite path of (βη) reductions.
That contradicts the fact that F∧at is strongly normalizable considering βη-conversions
(see the end of Section 2). �

Let us make some final remarks.

1) Note that the study of the η-conversion for disjunction in Section 3 could have
been carried out in Fat instead of F∧at. I.e., the η-conversions of IPC for dis-
junction translate into βη-conversions of Fat (no standard conversions for ∧ were
needed). Since from [7] we also know that β-conversions of IPC translate into
βη-conversions of Fat, we could ask if standard conversions of IPC translate into
βη-conversions of Fat and so the last result of the paper - the alternative proof of
strong normalization for IPC considering standard conversions - could have been
obtained using Fat instead of F∧at. The answer is no. When considering the trans-
lation into Fat of the η-conversion for conjunction - translating as usual A ∧ B as
∀X ((A∗ → (B∗ → X))→ X) - a very simple example with A and B propositional
constants is enough to convince ourselves that the canonical translation of the re-
dex does not reduce (using βη-conversions of Fat) into the canonical translation
of the contractum.

In fact, for A and B propositional constants, the derivation

∀X((A→ (B→ X))→ X)

(A→ (B→ A))→ A

[A]

B→ A
A→ (B→ A)

A [A→ (B→ X)]

B→ X

∀X((A→ (B→ X))→ X)

(A→ (B→ B))→ B

[B]

B→ B
A→ (B→ B)

B
X

(A→ (B→ X))→ X

∀X((A→ (B→ X))→ X)

does not permit the application of any βη-conversion of Fat and therefore does
not reduce to ∀X((A→ (B→ X))→ X).

Considering the conjunction as primitive in the atomic polymorphic calculus al-
low us to circumvent the problem and, as mentioned in the introduction section,
the calculus keeps the good proof-theoretical properties and philosophical moti-
vations decisive in its genesis, i.e., no bad connectives.

2) The present paper deals with standard conversions. What about the commuting
(also known as permutative) conversions? In [8] it was proved that the commut-
ing conversions of IPC could be translated in Fat via bidirectional applications
of β-conversions, i.e., we can go from the translation of the redex to the transla-
tion of the contractum by means of β-conversions in both direction. Note that,
because the direction of the reductions is not unique, the argument in the proof
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of Theorem 1 can no longer be used when considering the IPC commuting con-
versions. Nevertheless, it remains an open question if the atomic polymorphic
framework is able to produce an alternative proof of strong normalization for the
full intuitionistic propositional calculus with commuting conversions.

3) The reason we work in the atomic polymorphic calculus (at the price of having
to consider instantiation overflow) instead of working directly in system F is
twofold. Firstly, note that (as opposed to F∧at) the canonical translation of proofs
(rule-by-rule) of IPC into system F (via the Russell-Prawitz translation) does
not preserve standard conversions. Take, for instance, the η-conversion for ∨
analysed in the proof of Proposition 1. The canonical translation of its redex into
system F is the derivation D (see page 7) with the double line (for instantiation
overflow) replaced by a single line. [In system F from ∀X((A → X) → ((B →
X) → X)) we can deduce through a single rule (∀E) the formula (A → (A ∨
B)) → ((B → (A ∨ B)) → (A ∨ B)), where A ∨ B abbreviates the formula
∀X((A → X) → ((B→ X) → X)).] Since D with the modification above has no
redexes it can not be βη-reduced to the canonical translation (into system F) of
the contractum of the η-conversion for ∨.

Since proofs in F∧at are, in particular, proofs in system F we can argue that (al-
though not canonical) the simulation of η-conversions in this paper can be seen
as having Girard’s system F as our target system. This leads us to our second
point.

This paper is part of a line of research that intends to develop an alternative
to full intuitionistic propositional calculus free from the defects (bad connec-
tives/commuting conversions) pointed by Girard et al. in [9]. Such alternative
is the atomic polymorphic framework. As opposed to system F, system F∧at is
predicative, enjoys the subformula property and allows for an elementary proof
of strong normalization (see [4]). Properties in IPC (see [5] for the disjunction
property, [7] for the strong β-normalization property and the present paper for the
strong βη-normalization property) can be reduced to properties elegantly proved
in F∧at with no bad connectives nor permutative conversions.
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Zawidzki, Łódź University Press, 55–65 (2014).

[7] F. Ferreira and G. Ferreira, Atomic polymorphism, J. Symb. Logic 78, 260–274
(2013).

[8] F. Ferreira and G. Ferreira, Commuting conversions vs. the standard conversions
of the “good” connectives, Studia Logica 92, 63–84 (2009).

[9] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types (Cambridge University
Press, 1989).

[10] S. Ikeda and K. Nakazawa, Strong normalization proofs by CPS-translations,
Information Processing Letters 99, 163–170 (2006).

[11] D. Prawitz, Natural Deduction (Almkvist & Wiksell, Stockholm, 1965).
Reprinted, with a new preface, in Dover Publications, 2006.

[12] B. Russell, Principles of Mathematics, George Allen and Unwin, London, 1903
(2nd edition 1937).

17


