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1 General background

Photonics is an engineering discipline concerning the control of light, or photons, for
useful applications, much as electronics has to do with electrons. Light is electromag-
netic radiation of frequencies in the range from 1 THz to 10 PHz, corresponding to
wavelengths between ∼300 µm and ∼30 nm in free space. This optical spectral range is
generally divided into infrared, visible, and ultraviolet regions, as indicated in Table 1.1.
The spectral range of concern in photonics is usually in a wavelength range between
10 µm and 100 nm. The primary interest in the applications of photonic devices is in
an even narrower range of visible and near infrared wavelengths. As we shall see later,
this spectral range of application is largely determined by the properties of materials
used for photonic devices.

The wave nature of light is very important in the function of photonic devices. In
particular, the propagation of light in a photonic device is completely characterized by
its wave nature. However, in the spectral range of interest for practical photonic devices,
the quantum energies of photons are in a range where the quantum nature of light is also
important. For example, photons of visible light have energies between 1.7 and 3.1 eV,
which are in the range of the bandgaps of most semiconductors. Photon energy is an
important factor that determines the behavior of an optical wave in a semiconductor
photonic device. The uniqueness of photonic devices is that both wave and quantum
characteristics of light have to be considered for the function and applications of these
devices. Generally speaking, the photon nature of light is important in the operation of
photonic devices for generation, amplification, frequency conversion, or detection of
light, while the wave nature is important in the operation of all photonic devices but is
particularly so for devices used in transmission, modulation, or switching of light. In
this chapter, we review some relevant wave and quantum properties of light as a general
background for later chapters.

1.1 Optical fields and Maxwell’s equations

When dealing with photonic devices, we consider in most situations optical fields in
media of various electromagnetic properties. The electromagnetic field in a medium is
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Table 1.1 Electromagnetic spectrum

Wave region Frequency Wavelength Devices

Radio kHz–MHz–GHz km–m–cm Electronic devices
Microwave 1 GHz–1 THz 300 mm–300 µm Microwave devices
Optical

Infrared 1 THz–430 THz 300 µm–700 nm
Visible 430 THz–750 THz 700 nm–400 nm
Ultraviolet 750 THz–10 PHz 400 nm–30 nm

⎫
⎪⎬

⎪⎭
Photonic devices

X-ray 10 PHz–10 EHz 30 nm–300 pm
Gamma ray 10 EHz and above 300 pm and shorter

generally characterized by the following four field quantities:

electric field E(r, t) V m−1,
electric displacement D(r, t) C m−2,
magnetic field H(r, t) A m−1,
magnetic induction B(r, t) T or Wb m−2.

Note that E and B are fundamental microscopic fields, while D and H are macroscopic
fields that include the response of the medium. The units given above and below for the
field quantities are SI units consistent with the SI system used in this book for Maxwell’s
equations. Experimentally measured magnetic field quantities are sometimes given in
Gaussian units, which are gauss for the B field and oersted (Oe) for the H field. The
conversion relations between SI and Gaussian units are 1 T = 1 Wb m−2 = 104 gauss
for B and 1 A m−1 = 4π × 10−3 Oe for H.

The response of a medium to an electromagnetic field generates the polarization and
the magnetization:

polarization (electric polarization) P(r, t) C m−2,
magnetization (magnetic polarization) M(r, t) A m−1.

They are connected to the field quantities through the following relations:

D(r, t) = ϵ0 E(r, t) + P(r, t) (1.1)

and

B(r, t) = µ0 H(r, t) + µ0 M(r, t), (1.2)

where

ϵ0 ≈ 1
36π

× 10−9 F m−1 or A s V−1 m−1 (1.3)
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is the electric permittivity of free space and

µ0 = 4π × 10−7 H m−1 or V s A−1 m−1 (1.4)

is the magnetic permeability of free space. In addition, independent charge or current
sources may exist:

charge density ρ(r, t) C m−3,
current density J(r, t) A m−2.

In a medium, the behavior of a time-varying electromagnetic field is governed by
the following space- and time-dependent macroscopic Maxwell’s equations:

∇ × E = −∂ B
∂t

Faraday’s law, (1.5)

∇ × H = J + ∂ D
∂t

Ampere’s law, (1.6)

∇ · D = ρ Coulomb’s law, (1.7)
∇ · B = 0 absence of magnetic monopoles. (1.8)

The current and charge densities are constrained by the following continuity equation:

∇ · J + ∂ρ

∂t
= 0 conservation of charge. (1.9)

In a medium free of sources, J = 0 and ρ = 0. Then, Maxwell’s equations are simply

∇ × E = −∂ B
∂t

, (1.10)

∇ × H = ∂ D
∂t

, (1.11)

∇ · D = 0, (1.12)
∇ · B = 0. (1.13)

These are the equations normally used for optical fields because optical fields are usually
not generated directly by free currents or free charges.

Transformation properties

Maxwell’s equations and the continuity equation are the basic physical laws that govern
the behavior of electromagnetic fields. They are invariant under the transformation of
space inversion, in which the spatial vector r is changed to r′ = −r, or (x, y, z) →
(−x, −y, −z), and the transformation of time reversal, in which the time variable t
is changed to t ′ = −t , or t → −t . This means that the form of these equations is
not changed when we perform the space-inversion transformation or the time-reversal
transformation, or both together.
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Different quantities in Maxwell’s equations have different transformation proper-
ties. An understanding of these properties is important and leads to a fundamental
appreciation of the difference between the characteristics of the electric and magnetic
fields, which is the origin of the difference between the electric and magnetic symme-
try properties of materials. It also helps in understanding many basic characteristics
of the electro-optic, magneto-optic, and nonlinear optical properties of materials to be
addressed in later chapters.

The electric field vectors, E and D, have the same transformation properties as those
of P , while the transformation properties of the magnetic field vectors, H and B, are
the same as those of M. The origin of the electric properties of a material is the charge-
density distribution, ρ(r, t), at the atomic level in the material, whereas that of the
magnetic properties stems from the current-density distribution, J(r, t). The transfor-
mation properties of the scalar quantity ρ are such that the sign of ρ remains unchanged
under the transformation of either space inversion or time reversal. In contrast, J is
a polar vector because it is charge density times velocity, ρv, where velocity, v, is a
polar vector. Thus, the vector J changes sign under the transformation of either space
inversion or time reversal. It changes sign under space inversion because a polar vector
changes sign under space inversion, and it changes sign under time reversal because v
is the first time derivative of r. The electric polarization P is a polar vector because it is
the volume average of the electric dipole moment density defined by ρ(r, t)r, and the
product of a scalar quantity ρ and a polar vector r is a polar vector. In contrast, mag-
netization M is an axial vector because it is the volume average of the magnetic dipole
moment density defined by r × J(r, t), and the cross product of two polar vectors, r
and J, is an axial vector. Therefore, we find the following transformation properties.

1. Electric fields. The electric field vectors, P , E, and D, change sign under space
inversion but not under time reversal.

2. Magnetic fields. The magnetic field vectors, M, H, and B change sign under time
reversal but not under space inversion.

With these transformation properties understood, the invariance of Maxwell’s
equations and the continuity equation under the transformation of space inversion or
time reversal or both can be easily verified.

Response of medium

Polarization and magnetization in a medium are generated, respectively, by the response
of the medium to the electric and magnetic fields. Therefore, P(r, t) depends on E(r, t),
while M(r, t) depends on B(r, t). At optical frequencies, the magnetization vanishes,
M = 0. Consequently, for optical fields, the following relation is always true:

B(r, t) = µ0 H(r, t). (1.14)
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This is not true at low frequencies, however. It is possible to change the properties of
a medium through a magnetization induced by a DC or low-frequency magnetic field,
leading to the functioning of magneto-optic devices. It should be noted that even for
magneto-optic devices, magnetization is induced by a DC or low-frequency magnetic
field that is separate from the optical fields. No magnetization is induced by the magnetic
components of the optical fields.

Except for magneto-optic devices, most photonic devices are made of dielectric
materials that have zero magnetization at all frequencies. The optical properties of such
materials are completely determined by the relation between P(r, t) and E(r, t). This
relation is generally characterized by an electric susceptibility tensor, χ, through the
following definition for electric polarization:

P(r, t) = ϵ0

∞∫

−∞

dr′
t∫

−∞

dt ′χ(r − r′, t − t ′) · E(r′, t ′). (1.15)

From (1.1), then

D(r, t) = ϵ0 E(r, t) + ϵ0

∞∫

−∞

dr′
t∫

−∞

dt ′χ(r − r′, t − t ′) · E(r′, t ′)

=
∞∫

−∞

dr′
t∫

−∞

dt ′ϵ(r − r′, t − t ′) · E(r′, t ′), (1.16)

where ϵ is the electric permittivity tensor of the medium.
Because χ and, equivalently, ϵ represent the response of a medium to the optical

field and thus completely characterize the macroscopic electromagnetic properties of
the medium, (1.15) and (1.16) can be regarded as the definitions of P(r, t) and D(r, t),
respectively. A few remarks can be made:

1. Both χ and ϵ are generally tensors because the vectors P and D are, in general, not
parallel to vector E due to material anisotropy. In the case of an isotropic medium,
both χ and ϵ can be reduced to scalars χ and ϵ, respectively.

2. The relations in (1.15) and (1.16) are in the form of convolution integrals. The
convolution in time accounts for the fact that the response of a medium to excitation
of an electric field is generally not instantaneous or local in time and will not vanish
for some time after the excitation is over. Because time is unidirectional, causality
exists in physical processes. An earlier excitation can have an effect on the property
of a medium at a later time, but not a later excitation on the property of the medium
at an earlier time. Therefore, the upper limit in the time integral is t , not infinity.
In contrast, the convolution in space accounts for the spatial nonlocality of the
material response. Excitation of a medium at a location r′ can result in a change
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(a) (b)

Figure 1.1 Nonlocal responses in (a) time and (b) space.

in the property of the medium at another location r. For example, the property of
a semiconductor at one location can be changed by electric or optical excitation
at another location through carrier diffusion. Because space is not unidirectional,
there is no spatial causality, in general, and spatial convolution is integrated over
the entire space. Figure 1.1 shows the temporal and spatial nonlocality of responses
to electromagnetic excitations. The temporal nonlocality of the optical response of
a medium results in frequency dispersion of its optical property, while the spatial
nonlocality results in momentum dispersion.

3. In addition to the dependence on space and time through the convolution relation
with the optical field, χ and ϵ can also be functions of space or time independent
of the optical field because of spatial or temporal inhomogeneities in the medium.
Spatial inhomogeneity exists in all optical structures, such as optical waveguides,
where the index of refraction is a function of space. Temporal inhomogeneity exists
when the optical property of a medium varies with time, for example, because of
modulation by a low-frequency electric field or by an acoustic wave.

4. In a linear medium, χ and ϵ do not depend on the optical field E. In a nonlinear
optical material, χ and ϵ are themselves also functions of E.

Boundary conditions

At the interface of two media of different optical properties as shown in Fig. 1.2,
the optical field components must satisfy certain boundary conditions. These boundary
conditions can be derived from Maxwell’s equations given in (1.10)–(1.13). From (1.10)
and (1.11), the tangential components of the fields at the boundary satisfy

n̂ × E1 = n̂ × E2 (1.17)
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Figure 1.2 Boundary between two media of different optical properties.

and

n̂ × H1 = n̂ × H2, (1.18)

where n̂ is the unit vector normal to the interface as shown in Fig. 1.2. From (1.12) and
(1.13), we have

n̂ · D1 = n̂ · D2 (1.19)

and

n̂ · B1 = n̂ · B2 (1.20)

for the normal components of the fields.
The tangential components of E and H must be continuous across an interface,

while the normal components of D and B are continuous. Because B = µ0 H for
optical fields, as discussed above, (1.18) and (1.20) also imply that the tangential
component of B and the normal component of H are also continuous. Consequently,
all of the magnetic field components in an optical field are continuous across a boundary.
Possible discontinuities in an optical field exist only in the normal component of E or
the tangential component of D.

Optical power and energy

By multiplying E by (1.6) and multiplying H by (1.5), we obtain

E · (∇ × H) = E · J + E · ∂ D
∂t

, (1.21)

H · (∇ × E) = −H · ∂ B
∂t

. (1.22)
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Using the vector identity

B · (∇ × A) − A · (∇ × B) = ∇ · (A × B), (1.23)

we can combine (1.21) and (1.22) to have

−∇ · (E × H) = E · J + E · ∂ D
∂t

+ H · ∂ B
∂t

. (1.24)

Using (1.1) and (1.2) and rearranging (1.24), we obtain

E · J = −∇ · (E × H) − ∂

∂t

( ϵ0

2
|E|2 + µ0

2
|H|2

)
−

(
E · ∂ P

∂t
+ µ0 H · ∂ M

∂t

)
.

(1.25)

Recall that power in an electric circuit is given by voltage times current and has
the unit of W = V A (watts = volts × amperes). In an electromagnetic field, we find
similarly that E · J is the power density that has the unit of V A m−3 or W m−3.
Therefore, the total power dissipated by an electromagnetic field in a volume V is just
∫

V

E · J dV. (1.26)

Expressing (1.25) in an integral form, we have
∫

V

E · J dV = −
∮

A

E × H · n̂dA − ∂

∂t

∫

V

( ϵ0

2
|E|2 + µ0

2
|H|2

)
dV

−
∫

V

(
E · ∂ P

∂t
+ µ0 H · ∂ M

∂t

)
dV, (1.27)

where the first term on the right-hand side is a surface integral over the closed surface A
of volume V and n̂ is the outward-pointing unit normal vector of the surface, as shown
in Fig. 1.3.

Figure 1.3 Boundary surface enclosing a volume element and the unit surface normal vector.
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Clearly, each term in (1.27) has the unit of power. Each has an important physical
meaning. The vector quantity

S = E × H (1.28)

is called the Poynting vector of the electromagnetic field. It represents the instantaneous
magnitude and direction of the power flow of the field. The scalar quantity

u0 = ϵ0

2
|E|2 + µ0

2
|H|2 (1.29)

has the unit of energy per unit volume and is the energy density stored in the prop-
agating field. It consists of two components, thus accounting for energies stored in
both electric and magnetic fields at any instant of time. The last term in (1.27) also
has two components associated with electric and magnetic fields, respectively. The
quantity

Wp = E · ∂ P
∂t

(1.30)

is the power density expended by the electromagnetic field on the polarization. It is
the rate of energy transfer from the electromagnetic field to the medium by inducing
electric polarization in the medium. Similarly, the quantity

Wm = µ0 H · ∂ M
∂t

(1.31)

is the power density expended by the electromagnetic field on the magnetization. With
these physical meanings attached to these terms, it can be seen that (1.27) simply states
the law of conservation of energy in any arbitrary volume element V in the medium.
The total energy in the medium equals that in the propagating field plus that in the
electric and magnetic polarizations.

In the special case of a linear, nondispersive medium where ϵ(r − r′, t − t ′) = ϵδ(r −
r′)δ(t − t ′), (1.16) simply reduces to D(r, t) = ϵ · E(r, t). Then, instead of (1.25), we
have

E · J = −∇ · S − ∂

∂t

(
1
2

E · D + 1
2

H · B
)

(1.32)

from (1.24). In this situation, the total energy density stored in the medium, including
that in the propagating field and that in the polarizations, is simply

u = 1
2

E · D + 1
2

H · B. (1.33)

For an optical field, J = 0 and M = 0, as is discussed above. Then, (1.27) becomes

−
∮

A

S · n̂dA = ∂

∂t

∫

V

u0dV +
∫

V

WpdV, (1.34)
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which states that the total optical power flowing into volume V through its boundary
surfaceA is equal to the rate of increase with time of the energy stored in the propagating
fields in V plus the power transferred to the polarization of the medium in this volume.
In a linear, nondispersive medium, we have

−
∮

A

S · n̂dA = ∂

∂t

∫

V

udV. (1.35)

Wave equation

By applying ∇× to (1.10) and using (1.14) and (1.11), we have

∇ × ∇ × E + µ0
∂2 D
∂t2

= 0. (1.36)

Using (1.1), (1.36) can be expressed as

∇ × ∇ × E + 1
c2

∂2 E
∂t2

= −µ0
∂2 P
∂t2

, (1.37)

where

c = 1
√

µ0ϵ0
≈ 3 × 108 m s−1 (1.38)

is the speed of light in free space. The wave equation in (1.37) describes the space-
and-time evolution of the electric field of the optical wave. Its right-hand side can
be regarded as the driving source for the optical wave. The polarization in a medium
drives the evolution of an optical field. This wave equation can take on various forms
depending on the characteristics of the medium, as will be seen on various occasions
later. For now, we leave it in this general form.

1.2 Harmonic fields

Optical fields are harmonic fields that vary sinusoidally with time. The field vectors
defined in the preceding section are all real quantities. For harmonic fields, it is always
convenient to use complex fields. We define the space- and time-dependent complex
electric field, E(r, t), through its relation to the real electric field, E(r, t):1

E(r, t) = E(r, t) + E∗(r, t) = E(r, t) + c.c., (1.39)

1 In some literature, the complex field is defined through a relation with the real field as E(r, t) =
1/2(E(r, t) + E∗(r, t)), which differs from the relation in (1.39) by the factor 1/2. The magnitude of the com-
plex field defined through this alternative relation is twice that of the complex field defined through (1.39). As a
result, expressions for many quantities may be different under the two different definitions. An example is that
of the optical intensity given in (1.98). We have chosen to define the complex field through the relation in (1.39)
without the factor 1/2 primarily because this definition is more convenient and less confusing in expressing the
nonlinear polarizations discussed in Chapter 9.
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where c.c. means the complex conjugate. In our convention, E(r, t) contains the complex
field components that vary with time as exp(−iωt) with positive values of ω, while
E∗(r, t) contains those varying with time as exp(iωt) with positive ω, or exp(−iωt)
with negative ω. The complex fields of other field quantities are similarly defined (see
Appendix A).

With this definition for the complex fields, all of the linear field equations retain their
forms. In particular, Maxwell’s equations for the complex optical fields are

∇ × E = −∂B
∂t

, (1.40)

∇ × H = ∂D
∂t

, (1.41)

∇ · D = 0, (1.42)
∇ · B = 0. (1.43)

The wave equation in terms of the complex electric field is

∇ × ∇ × E + 1
c2

∂2E
∂t2

= −µ0
∂2P
∂t2

, (1.44)

while

P(r, t) = ϵ0

∞∫

−∞

dr′
t∫

−∞

dt ′χ(r − r′, t − t ′) · E(r′, t ′) (1.45)

and

D(r, t) = ϵ0E(r, t) + ϵ0

∞∫

−∞

dr′
t∫

−∞

dt ′χ(r − r′, t − t ′) · E(r′, t ′)

=
∞∫

−∞

dr′
t∫

−∞

dt ′ϵ(r − r′, t − t ′) · E(r′, t ′). (1.46)

It is important to note that while P, D, and E are complex, χ(r − r′, t − t ′) and ϵ(r −
r′, t − t ′) in (1.45) and (1.46) are always real and are the same as those in (1.15) and
(1.16).

For a harmonic optical field of wavevector k and angular frequency ω, its complex
electric field can be further written as

E(r, t) = E(r, t) exp(ik · r − iωt), (1.47)

where E(r, t) is the space- and time-varying field envelope, such as that for a modu-
lated field, a guided field, or an optical pulse. Other complex field quantities, such as
H(r, t), can be similarly expressed. The phase factor in (1.47) indicates the direction
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of wave propagation:

ik · r − iωt , forward propagating in k direction;
−ik · r − iωt , backward propagating in −k direction.

The light intensity, or irradiance, is the power density of the harmonic optical
field. It can be calculated by time averaging of the Poynting vector over one wave
cycle:

S = 1
T

T∫

0

E × Hdt = 2 Re(E × H∗), (1.48)

where Re(·) means taking the real part. We can define a complex Poynting vector:

S = E × H∗ (1.49)

so that

S = S + S∗, (1.50)

which has the same form as the relation between the real and complex fields de-
fined in (1.39) except that the real Poynting vector in this relation is time averaged.
The light intensity, I , is simply the magnitude of the real time-averaged Poynting
vector:

I = |S| = |S + S∗|, (1.51)

where I is in watts per square meter.
For harmonic optical fields, it is often useful to consider the complex fields in the

momentum space and frequency domain defined by the following Fourier-transform
relations:

E(k, ω) =
∞∫

−∞

dr

∞∫

−∞

dtE(r, t) exp(−ik · r + iωt), for ω > 0, (1.52)

E(r, t) = 1
(2π )4

∞∫

−∞

dk

∞∫

0

dωE(k, ω) exp(ik · r − iωt). (1.53)

Note that E(k, ω) in (1.52) is defined for ω > 0 only, and the integral for the time
dependence of E(r, t) in (1.53) extends only over positive values of ω. This is
in accordance with the convention we used to define the complex field E(r, t) in
(1.39). All other space- and time-dependent quantities, including other field vectors
and the permittivity and susceptibility tensors, are transformed in a similar manner.
Through the Fourier transform, the convolution integrals in real space and time be-
come simple products in the momentum space and frequency domain. Consequently,
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we have

P(k, ω) = ϵ0χ(k, ω) · E(k, ω) (1.54)

and

D(k, ω) = ϵ(k, ω) · E(k, ω). (1.55)

1.3 Linear optical susceptibility

As mentioned above, the susceptibility tensor χ(r, t) and the permittivity tensor ϵ(r, t)
of space and time are always real quantities although all field quantities, including both
E(r, t) and E(k, ω), can be defined in a complex form. This is true even in the presence
of an optical loss or gain in the medium. However, the susceptibility and permittivity
tensors in the momentum space and frequency domain, χ(k, ω) and ϵ(k, ω), can be
complex. If an eigenvalue, χi , of χ is complex, the corresponding eigenvalue, ϵi , of ϵ
is also complex, and their imaginary parts have the same sign because ϵ = ϵ0(1 + χ).
The signs of such imaginary parts of eigenvalues tell whether the medium has an
optical gain or loss. In our convention, we write, for example, χi = χ ′

i + iχ ′′
i in the

frequency domain. Then, χ ′′
i (ω) > 0 corresponds to an optical loss or absorption,

while χ ′′
i (ω) < 0 represents an optical gain or amplification.

The fact that χ(r, t) and ϵ(r, t) are real quantities leads to the following symmetry
relations for the tensor elements of χ(k, ω) and ϵ(k, ω):

χ∗
i j (k, ω) = χi j (−k, −ω) (1.56)

and

ϵ∗
i j (k, ω) = ϵi j (−k, −ω), (1.57)

which are called the reality condition. The reality condition implies that χ ′
i j (k, ω) =

χ ′
i j (−k, −ω) and χ ′′

i j (k, ω) = −χ ′′
i j (−k, −ω). Similar relations also apply for the real

and imaginary parts of ϵi j . Therefore, the real parts of χi j and ϵi j are even functions
of k and ω, whereas the imaginary parts are odd functions of k and ω. Any constant
contribution, independent of k and ω, in χi j and ϵi j is an even function of k and ω; hence
it can appear only in the real parts. As a result, the imaginary parts, if they exist, are
always functions of either k or ω, or both. The loss, or gain, in a medium is associated
with the imaginary parts of the eigenvalues of χ(ω); consequently, it is inherently dis-
persive. Any other effects that can be described by the imaginary parts of the eigenvalues
of χ(k, ω) are also dispersive in either momentum or frequency, or both.

The momentum and frequency dependencies of an electric susceptibility, χ(k, ω),
are due to the spatial and temporal nonlocality properties of the underlying physical
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mechanisms that contribute to χ. As discussed in the preceding section, spatial non-
locality causes spatially convoluted effects and results in momentum dependence of
the susceptibility, and temporal nonlocality causes temporal convolution and results in
frequency dispersion of the medium.

In addition to nonlocality, it is also important to consider inhomogeneity, in both
space and time. In a linear medium, changes in the wavevector of an optical wave, or
coupling between waves of different wavevectors, can occur only if the optical property
of the medium in which the wave propagates is spatially inhomogeneous such that
χ(k, ω) is spatially dependent. Likewise, changes in the frequency of an optical wave,
or coupling between waves of different frequencies, are possible in a linear medium only
if the optical property of the medium is time varying such that χ(k, ω) varies with time.
Changes in the wavevector of an optical wave can take the form of changes in the wave
propagation direction, as in reflection and diffraction, or in the optical wavelength,
as in the case when a wave propagates from one part of the medium to another of
different refractive index. Changes in the frequency of an optical wave result in the
generation of other frequencies or the conversion of the optical wave to a completely
different frequency. Consequently, for practical photonic devices, it is often necessary
to consider both nonlocality and inhomogeneity in both space and time, thus writing
χ(r, t ; k, ω) and, correspondingly, ϵ(r, t ; k, ω).

1.4 Polarization of light

Consider a monochromatic plane optical wave that has a complex field

E(r, t) = E exp(ik · r − iωt) = êE exp(ik · r − iωt), (1.58)

where E is a constant independent of r and t , and ê is its unit vector. The polarization
of the optical field is characterized by the unit vector ê. The wave is linearly polarized,
also called plane polarized, if ê can be expressed as a constant, real vector. Otherwise,
the wave is elliptically polarized in general, and is circularly polarized in some special
cases. For the convenience of discussion, we take the direction of wave propagation to
be the z direction so that k = kẑ and assume that both E and H lie in the xy plane.2

Then, we have

E = x̂E x + ŷE y = x̂ |E x |eiϕx + ŷ|E y|eiϕy , (1.59)

where E x and E y are space- and time-independent complex amplitudes, with phases ϕx

and ϕy , respectively.

2 This assumption is generally true if the medium is isotropic. It is not necessarily true if the medium is anisotropic.
Propagation and polarization in isotropic and anisotropic media are discussed in the following two sections.
However, the general concept discussed here does not depend on the validity of this assumption.
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The polarization of the wave depends only on the phase difference and the magnitude
ratio between the two field components E x and E y . It can be completely characterized
by the following two parameters:

ϕ = ϕy − ϕx , −π < ϕ ≤ π, (1.60)

and

α = tan−1 |E y|
|E x |

, 0 ≤ α ≤ π

2
. (1.61)

Because only the relative phase ϕ matters, we can set ϕx = 0 and take E to be real in
the following discussions. Then E from (1.59) can be written as

E = E ê, with ê = x̂ cos α + ŷeiϕ sin α. (1.62)

Using (1.39), the space- and time-dependent real field is

E(z, t) = 2E [x̂ cos α cos(kz − ωt) + ŷ sin α cos(kz − ωt + ϕ)] . (1.63)

At a fixed z location, say z = 0, we see that the electric field varies with time as

E(t) = 2E [x̂ cos α cos ωt + ŷ sin α cos(ωt − ϕ)] . (1.64)

In general, E x and E y have different phases and different magnitudes. Therefore, the
values of ϕ and α can be any combination. At a fixed point in space, both the direction
and the magnitude of the field vector E in (1.64) can vary with time. Except when the
values of ϕ and α fall into one of the special cases discussed below, the tip of this vector
generally describes an ellipse, and the wave is said to be elliptically polarized. Note that
we have assumed that the wave propagates in the positive z direction. When we view
the ellipse by facing against this direction of wave propagation, we see that the tip of the
field vector rotates counterclockwise, or left handedly, if ϕ > 0, and clockwise, or right
handedly, if ϕ < 0. Figure 1.4 shows the ellipse traced by the tip of the rotating field
vector at a fixed point in space. Also shown in the figure are the relevant parameters
that characterize elliptic polarization.

In the description of the polarization characteristics of an optical wave, it is some-
times convenient to use, in place of α and ϕ, a set of two other parameters, θ and
ε, which specify the orientation and ellipticity of the ellipse, respectively. The orien-
tational parameter θ is the directional angle measured from the x axis to the major
axis of the ellipse. Its range is taken to be 0 ≤ θ < π for convenience. Ellipticity ε is
defined as

ε = ± tan−1 b
a
, −π

4
≤ ε ≤ π

4
, (1.65)

where a and b are the major and minor semiaxes, respectively, of the ellipse. The plus



18 General background

Figure 1.4 Ellipse described by the tip of the field of an elliptically polarized optical wave at a
fixed point in space. Also shown are relevant parameters characterizing the state of polarization.
The propagation direction is assumed to be the positive z direction, and the ellipse is viewed by
facing against this direction.

sign for ε > 0 is taken to correspond to ϕ > 0 for left-handed polarization, whereas
the minus sign for ε < 0 is taken to correspond to ϕ < 0 for right-handed polarization.
The two sets of parameters (α, ϕ) and (θ, ε) have the following relations:

tan 2θ = tan 2α cos ϕ, (1.66)

sin 2ε = sin 2α sin ϕ. (1.67)

Either set is sufficient to characterize the polarization state of an optical wave com-
pletely.

The following special cases are of particular interest.

1. Linear polarization. This happens when ϕ = 0 or π for any value of α. It is
also characterized by ε = 0, and θ = α, if ϕ = 0, or θ = π − α, if ϕ = π . Clearly,
the ratio E x/E y is real in this case; therefore, linear polarization is described by a
constant, real unit vector as

ê = x̂ cos θ + ŷ sin θ . (1.68)

It follows that E(t) described by (1.64) reduces to

E(t) = 2E ê cos ωt, (1.69)
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Figure 1.5 Field of a linearly polarized optical wave.

The tip of this vector traces a line in space at an angle θ with respect to the x axis,
as shown in Fig. 1.5.

2. Circular polarization. This happens when ϕ = π/2 or −π/2, and α = π/4. It
is also characterized by ε = π/4 or −π/4, and θ = 0. Because α = π/4, we have
|E x | = |E y| = E/

√
2. There are two different circular polarization states:

a. Left-circular polarization. For ϕ = π/2, also ε = π/4, the wave is left-
circularly polarized if it propagates in the positive z direction. The complex field
amplitude in (1.62) becomes

E = E
x̂ + iŷ√

2
= E ê+, (1.70)

and E(t) described by (1.64) reduces to

E(t) =
√

2E(x̂ cos ωt + ŷ sin ωt). (1.71)

As we view against the direction of propagation ẑ, we see that the field vector
E(t) rotates counterclockwise with an angular frequency ω. The tip of this vector
describes a circle. This is shown in Fig. 1.6(a). This left-circular polarization is
also called positive helicity. Its eigenvector is

ê+ ≡ x̂ + iŷ√
2

. (1.72)

b. Right-circular polarization. For ϕ = −π/2, also ε = −π/4, the wave is right-
circularly polarized if it propagates in the positive z direction. We then have

E = E
x̂ − iŷ√

2
= E ê−, (1.73)
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(a) (b)

Figure 1.6 (a) Field of a left-circularly polarized wave. (b) Field of a right-circularly polarized
wave.

and

E(t) =
√

2E(x̂ cos ωt − ŷ sin ωt). (1.74)

The tip of this field vector rotates clockwise in a circle, as shown in
Fig. 1.6(b). This right-circular polarization is also called negative helicity. Its
eigenvector is

ê− ≡ x̂ − iŷ√
2

. (1.75)

As can be seen, neither ê+ nor ê− is a real vector. Note that the identification
of ê+, defined in (1.72), with left-circular polarization and that of ê−, defined in
(1.75), with right-circular polarization are based on the assumption that the wave
propagates in the positive z direction. For a wave that propagates in the negative z
direction, the handedness of these unit vectors changes: ê+ becomes right-circular
polarization, while ê− becomes left-circular polarization.

Linearly polarized light can be produced from unpolarized light using a polarizer. A
polarizer can be of transmission type, which often utilizes the phenomenon of double
refraction in an anisotropic crystal, discussed in Section 1.6, or of reflection type,
which takes advantage of the polarization-sensitive reflectivity of a surface, discussed
in Section 1.7. A very convenient transmission-type polarizer is the Polaroid film,
which utilizes a material with linear dichroism, having low absorption for light linearly
polarized in a particular direction and high absorption for light polarized orthogonally
to this direction. The output is linearly polarized in the direction defined by the polarizer
irrespective of the polarization state of the input optical wave. A polarizer can also be
used to analyze the polarization of a particular optical wave. When so used, a polarizer
is also called an analyzer.
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1.5 Propagation in an isotropic medium

The propagation of an optical wave is governed by the wave equation. It depends on the
optical property and physical structure of the medium. It also depends on the makeup of
the optical wave, such as its frequency contents and its temporal characteristics. In this
section, we consider the basic characteristics of the propagation of a monochromatic
plane optical wave in an infinite homogeneous medium. For such a monochromatic
wave, there is only one value of k and one value of ω. Its complex electric field is that
given by (1.58), in which the field amplitude E is independent of r and t . Thus,

P(r, t) = ϵ0χ(k, ω) · E(r, t) (1.76)

and

D(r, t) = ϵ(k, ω) · E(r, t). (1.77)

Also, in this section, we shall assume no spatial nonlocality in the media thus neglecting
the k dependence of χ and ϵ. Then,

P(r, t) = ϵ0χ(ω) · E(r, t) (1.78)

and

D(r, t) = ϵ(ω) · E(r, t). (1.79)

For a monochromatic wave of a frequency ω, the wave equation is simply

∇ × ∇ × E + µ0ϵ(ω) · ∂2E
∂t2

= 0. (1.80)

For an isotropic medium, ϵ(ω) is reduced to a scalar ϵ(ω) and

∇ · E = 1
ϵ(ω)

∇ · D = 0. (1.81)

Then, by using the vector identity ∇ × ∇× = ∇∇ · −∇2, the wave equation in (1.80)
is reduced to the following simple form:

∇2E − µ0ϵ(ω)
∂2E
∂t2

= 0. (1.82)

For an anisotropic medium, (1.82) is generally not valid because (1.81) does not hold.
Note that with E in (1.58) being independent of r and t , we can make the following

replacement for the operators when operating on E of the form in (1.58) or H of the
same form:

∇ −→ ik,
∂

∂t
−→ −iω. (1.83)
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Free space

In free space, P = 0 and ϵ is reduced to the scalar ϵ0. Substitution of (1.58) in (1.82)
then yields

k2 = ω2µ0ϵ0. (1.84)

The propagation constant in free space is

k = ω

c
= 2πν

c
= 2π

λ
, (1.85)

where ν is the frequency of the optical wave and λ is its wavelength. Because k is
proportional to 1/λ, it is also called the wavenumber.

Using (1.83) and noting that B = µ0H and D = ϵ0E, Maxwell’s equations in (1.40)–
(1.43) become

k × E = ωµ0H, (1.86)

k × H = −ωϵ0E, (1.87)

k · E = 0, (1.88)

k · H = 0. (1.89)

From (1.86) and (1.87), we also have

E · H = 0. (1.90)

Therefore, the three vectors E, H, and k are orthogonal. These relationships also imply
that

S ∥ k. (1.91)

The relationships among the directions of these vectors are shown in Fig. 1.7.

Figure 1.7 Relationships among the directions of E, D, H, B, k, and S in free space or in an
isotropic medium.
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Using (1.85), we can also write (1.86) and (1.87) in the following form:

H = 1
Z0

k̂ × E, E = Z0H × k̂, (1.92)

where k̂ = k/k is the unit vector in the k direction and

Z0 =
√

µ0

ϵ0
≈ 120π . ≈ 377 . (1.93)

is the free-space impedance. The concept of this impedance is not that of the impedance
of a resistor but is analogous to the concept of the impedance of a tranmission
line.

Because S ∥ k, the light intensity in free space can be expressed as

I = k̂ · S = 2
|E|2

Z0
= 2Z0|H|2. (1.94)

Lossless medium

In this case, ϵ(ω) is reduced to a positive real scalar ϵ(ω), which is different from ϵ0. All
of the results obtained for free space remain valid, except that ϵ0 is replaced by ϵ(ω).
This change of the electric permittivity from a vacuum to a material is measured by the
relative electric permittivity, ϵ/ϵ0, which is a dimensionless quantity also known as the
dielectric constant of the material. Therefore, the propagation constant in the medium
is

k = ω
√

µ0ϵ = nω

c
= 2πnν

c
= 2πn

λ
, (1.95)

where

n =
√

ϵ

ϵ0
= (dielectric constant)1/2 (1.96)

is the index of refraction, or refractive index, of the medium.
In a medium that has an index of refraction n, the optical frequency is still ν, but the

optical wavelength is λ/n, and the speed of light is v = c/n. Because n(ω) in a medium
is generally frequency dependent, the speed of light in a medium is also frequency
dependent. This results in various dispersive phenomena such as the separation of
different colors by a prism and the broadening or shortening of an optical pulse traveling
through a medium. We also find that

Z = Z0

n
(1.97)

in a medium. The light intensity is then

I = 2
|E|2

Z
= 2Z |H|2 = 2k

ωµ0
|E|2 = 2k

ωϵ
|H|2. (1.98)
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Medium with a loss or gain

As discussed in the preceding section, χ and ϵ become complex when a medium has
an optical loss or gain. Therefore,

k2 = ω2µ0ϵ = ω2µ0(ϵ′ + iϵ′′), (1.99)

and the propagation constant k becomes complex:

k = k ′ + ik ′′ = β + i
α

2
. (1.100)

The index of refraction also becomes complex:

n =

√
ϵ′ + iϵ′′

ϵ0
= n′ + in′′. (1.101)

The relation between k and n in (1.95) is still valid. Meanwhile, the impedance Z of
the medium also becomes complex. Therefore, E and H are no longer in phase, as can
be seen from (1.92) by replacing Z0 with a complex Z , and I is not simply given by
(1.98) but is given by the real part of it.

It can be shown that if we choose β to be positive, the sign of α is the same as that
of ϵ′′. In this case, k ′ and n′ are also positive and k ′′ and n′′ also have the same sign as
ϵ′′. If we consider as an example an optical wave propagating in the z direction, then
k̂ = ẑ and, from (1.58) and (1.100), the complex electric field is

E(r, t) = Ee−αz/2 exp(iβz − iωt). (1.102)

It can be seen that the wave has a phase that varies sinusoidally with a period of 1/β

along z. In addition, its amplitude is not constant but varies exponentially with z. Thus,
light intensity is also a function of z:

I ∝ e−αz. (1.103)

Clearly, β is the wavenumber in this case, and the sign of α determines the attenuation
or amplification of the optical wave:

1. If χ ′′ > 0, then ϵ′′ > 0 and α > 0. As the optical wave propagates, its field amplitude
and intensity decay exponentially along the direction of propagation. Therefore, α

is called the absorption coefficient or attenuation coefficient.
2. If χ ′′ < 0, then ϵ′′ < 0 and α < 0. The field amplitude and intensity of the opti-

cal wave grow exponentially. Then, we define g = −α as the gain coefficient or
amplification coefficient.

The unit of both α and g is per meter, often also quoted per centimeter.
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EXAMPLE 1.1 The complex susceptibility of GaAs at an optical wavelength of λ = 850 nm
is χ = 12.17 + i0.49. Therefore, at this wavelength, GaAs has a complex refractive
index of

n = (ϵ/ϵ0)1/2 = (1 + χ )1/2 = (13.17 + i0.49)1/2 = 3.63 + i0.0676

and an absorption coefficient of

α = 2k ′′ = 4πn′′

λ
= 4π × 0.0676

850 × 10−9
m−1 = 106 m−1.

An optical beam at 850 nm wavelength can travel in GaAs only for a distance of
l = −ln(1 − 0.99)/α = 4.6 µm before losing 99% of its energy to absorption, which
is obtained by solving 1 − e−αl = 0.99 with α = 106 m−1.

1.6 Propagation in an anisotropic medium

In an anisotropic medium, the tensors χ and ϵ do not reduce to scalars. Therefore,
P ∦ E and D ∦ E. As a result, (1.81) is not true any more, and, in general,

∇ · E ̸= 0. (1.104)

Consequently, (1.82) cannot be used for propagation of a monochromatic wave in an
anisotropic medium. Instead, (1.80) has to be used.

Anisotropic χ and ϵ

In a linear anisotropic medium, both χ and ϵ are second-rank tensors. They can be
expressed in the following matrix forms:

χ =

⎡

⎢⎣
χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

⎤

⎥⎦ (1.105)

and

ϵ =

⎡

⎢⎣
ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23

ϵ31 ϵ32 ϵ33

⎤

⎥⎦. (1.106)

The relationships P = ϵ0χ · E and D = ϵ · E are carried out as products between a
tensor and a column vector. For example,
⎡

⎢⎣
D1

D2

D3

⎤

⎥⎦ =

⎡

⎢⎣
ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23

ϵ31 ϵ32 ϵ33

⎤

⎥⎦

⎡

⎢⎣
E1

E2

E3

⎤

⎥⎦. (1.107)
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In general, the matrix in (1.106) representing the tensor ϵ is not diagonal. It can be
diagonalized by a proper choice of the coordinate system, yielding

ϵ =

⎡

⎢⎣
ϵ1 0 0
0 ϵ2 0
0 0 ϵ3

⎤

⎥⎦, (1.108)

where ϵi , for i = 1, 2, 3, are the eigenvalues of ϵwith their corresponding eigenvectors,
ûi , being the axes of the coordinate system chosen to diagonalize ϵ. The characteristics
of ϵi and ûi depend on the symmetry properties of ϵ. The two matrices representing
χ and ϵ have the same symmetry properties because ϵ = ϵ0(1 + χ), where 1 has the
form of a 3 × 3 identity matrix in its addition to the tensor χ. Therefore, χ and ϵ

are diagonalized by the same set of eigenvectors that represent the axes of the chosen
coordinate system.

The symmetry properties of ϵ, as well as those of χ, are determined by the properties
of the medium.

1. Reciprocal media. Nonmagnetic materials in the absence of an external magnetic
field are reciprocal media. In a reciprocal medium, the Lorentz reciprocity theorem
of electromagnetics holds; consequently, the source and the detector of an optical
signal can be interchanged. If such a material is not optically active, its optical
properties are described by a symmetric ϵ tensor: ϵi j = ϵ j i . For a symmetric tensor,
the eigenvectors ûi are always real vectors. They can be chosen to be x̂ , ŷ, and ẑ of a
rectangular coordinate system in real space. This is true even when ϵ is complex. (a) If
a nonmagnetic medium does not have an optical loss or gain, its ϵ tensor is Hermitian.
A symmetric Hermitian tensor is real and symmetric: ϵ∗

i j = ϵi j = ϵ j i = ϵ∗
j i . In this

case, the eigenvalues ϵi have real values. (b) If a nonmagnetic medium has an optical
loss or gain, its ϵ tensor is not Hermitian but is complex and symmetric: ϵi j = ϵ j i

but ϵi j ̸= ϵ∗
j i . Then, the eigenvalues ϵi are complex. (c) If a nonmagnetic medium is

optically active, it is still reciprocal although its ϵ tensor is not symmetric. In this
case, the eigenvectors are complex but the eigenvalues can be real if the medium is
lossless.

2. Nonreciprocal media. Magnetic materials, and nonmagnetic materials subject to
an external magnetic field, are nonreciprocal media. In such a medium, no symmetry
exists when the source and the detector of an optical signal are interchanged. The ϵ

tensor describing the optical properties of such a material is not symmetric: ϵi j ̸= ϵ j i .
The eigenvectors ûi are complex vectors. Therefore, they are not ordinary coordinate
axes in real space, as seen later in the discussion on magneto-optic devices. (a) For
a lossless magnetic medium, ϵ is Hermitian: ϵi j = ϵ∗

j i . In this case, the eigenvalues
ϵi are real even though the eigenvectors are complex. (b) For a magnetic medium
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that has an optical loss or gain, ϵ is neither symmetric nor Hermitian. Both the
eigenvectors and the eigenvalues are complex.

Most materials used for photonic devices are nonmagnetic dielectric materials that
are not optically active. The properties of magnetic materials are of interest to us only
in consideration of magneto-optic devices, discussed in Chapter 7. Similarities and
differences between magnetic and optically active materials are also briefly mentioned
in Section 7.2. The discussion in the rest of this section is specific to nonmagnetic
dielectric materials that are not optically active.

According to the above, in a dielectric material the axes of the coordinate system
in which ϵ is diagonal are real in space and can be labeled x̂ , ŷ, and ẑ. Noncrystalline
materials are generally isotropic, for which the choice of the orthogonal coordinate axes
x̂ , ŷ, and ẑ is arbitrary. In contrast, many crystalline materials that are useful for photonic
device applications are anisotropic. For any given anisotropic crystal, there is a unique
set of coordinate axes for ϵ to be diagonal. These unique x̂ , ŷ, and ẑ coordinate axes are
called the principal dielectric axes, or simply the principal axes, of the crystal. In the
coordinate system defined by these principal axes, ϵ is diagonalized with eigenvalues
ϵx , ϵy , and ϵz . The components of D and E along these axes have the following simple
relations:

Dx = ϵx Ex , Dy = ϵy Ey, Dz = ϵz Ez. (1.109)

The values ϵx/ϵ0, ϵy/ϵ0, and ϵz/ϵ0 are the eigenvalues of the dielectric constant tensor,
ϵ/ϵ0, and are called the principal dielectric constants. They define three principal
indices of refraction:

nx =
√

ϵx

ϵ0
, ny =

√
ϵy

ϵ0
, nz =

√
ϵz

ϵ0
. (1.110)

Note that when ϵ is diagonalized, χ is also diagonalized along the same principal axes
with corresponding principal dielectric susceptibilities, χx , χy , and χz . The principal
dielectric susceptibilities of any lossless dielectric material always have positive values;
therefore, the principal dielectric constants of such a material are always larger than
unity.

Because D ⊥ k due to the fact that ∇ · D = 0, there is no D component along
the direction of wave propagation. In general, D can be decomposed into two mutually
orthogonal components, each of which is also orthogonal to k. In an anisotropic crystal,
these two components generally have different indices of refraction, and thus different
propagation constants. This phenomenon is called birefringence. Such a crystal is a
birefringent crystal.
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EXAMPLE 1.2 At an optical wavelength of 1 µm, the permittivity tensor of the KDP
crystal represented in a rectangular coordinate system defined by x̂1, x̂2, and x̂3 is found
to be

ϵ = ϵ0

⎡

⎢⎣
2.28 0 0

0 2.25 −0.051 96
0 −0.051 96 2.19

⎤

⎥⎦.

Find the principal axes and the corresponding principal indices for this crystal.

Solution Note that ϵ is represented by a symmetric matrix because KDP is a nonmag-
netic dielectric crystal. Diagonalization of this matrix yields the following eigenvalues
and corresponding eigenvectors:

ϵx = 2.28ϵ0, x̂ = x̂1,

ϵy = 2.28ϵ0, ŷ = 0.866x̂2 − 0.500x̂3,

ϵz = 2.16ϵ0, ẑ = 0.500x̂2 + 0.866x̂3.

Therefore, the principal axes of the crystal are x̂ , ŷ, and ẑ, given above, and the principal
indices of refraction are nx =

√
2.28 = 1.51, ny =

√
2.28 = 1.51, and nz =

√
2.16 =

1.47.

Index ellipsoid

The inverse of the dielectric constant tensor mentioned above is the relative imperme-
ability tensor:

η =
[
ηi j

]
=

(
ϵ

ϵ0

)−1

, (1.111)

where i and j are spatial coordinate indices. In a general rectangular coordinate system
(x1, x2, x3), the ellipsoid defined by
∑

i, j

xiηi j x j = 1 (1.112)

is called the index ellipsoid or the optical indicatrix. In a nonmagnetic dielectric
medium, η is a symmetric tensor, i.e., ηi j = η j i , because ϵ is symmetric. Therefore,
(1.112) can be written as

η11x2
1 + η22x2

2 + η33x2
3 + 2η23x2x3 + 2η31x3x1 + 2η12x1x2 = 1. (1.113)

This equation is usually written as

η1x2
1 + η2x2

2 + η3x2
3 + 2η4x2x3 + 2η5x3x1 + 2η6x1x2 = 1 (1.114)

using the following index contraction rule to reduce the double index i j of ηi j to the
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single index α of ηα:

i j : 11 22 33 23, 32 31, 13 12, 21
or i j : xx yy zz yz, zy zx, xz xy, yx

α: 1 2 3 4 5 6
(1.115)

The index ellipsoid equation is invariant with respect to coordinate rotation. When
a coordinate system with axes aligned with the principal dielectric axes of the crystal
is chosen, ϵ is diagonalized. Thus the tensor η is also diagonalized with the following
eigenvalues:

ηx = ϵ0

ϵx
= 1

n2
x
, ηy = ϵ0

ϵy
= 1

n2
y
, ηz = ϵ0

ϵz
= 1

n2
z
. (1.116)

In this coordinate system, the index ellipsoid takes the following simple form:

x2

n2
x

+ y2

n2
y

+ z2

n2
z

= 1. (1.117)

Comparing (1.117) with (1.114), we find that the terms containing cross products of
different coordinates are eliminated when the coordinate system of the principal di-
electric axes is used. The principal axes of the index ellipsoid now coincide with the
principal dielectric axes of the crystal, and the principal indices of refraction of the
crystal are given by the semiaxes of the index ellipsoid. This is illustrated in Fig. 1.8.
Therefore, a coordinate transformation by rotation to eliminate cross-product terms
in the index ellipsoid equation is equivalent to diagonalization of the ϵ tensor. The

Figure 1.8 Index ellipsoid and its relationship with the coordinate system. Here (x, y, z) is the
coordinate system aligned with the principal axes of the crystal, while (x1, x2, x3) is an arbitrary
coordinate system.
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principal dielectric axes and their corresponding principal indices of refraction can
be found through either approach. Between the two approaches, however, diagonal-
ization of the ϵ tensor is better because it is more systematic and is easier to carry
out.

EXAMPLE 1.3 Find the principal axes and their corresponding principal indices for the
KDP crystal given in Example 1.2 by using the index ellipsoid instead of diagonalizing
the ϵ tensor as done in Example 1.2. Compare the two approaches.

Solution The relative impermeability tensor in the (x1, x2, x3) coordinate system can
be found by inverting the ϵ tensor:

η =
(
ϵ

ϵ0

)−1

=

⎡

⎢⎣
2.28 0 0

0 2.25 −0.051 96
0 −0.051 96 2.19

⎤

⎥⎦

−1

≈

⎡

⎢⎢⎢⎢⎣

1
2.28

0 0

0
1

2.25
0.010 55

0 0.010 55
1

2.19

⎤

⎥⎥⎥⎥⎦
.

In the (x1, x2, x3) coordinate system, the index ellipsoid is thus described by the fol-
lowing equation:

x2
1

2.28
+ x2

2

2.25
+ x2

3

2.19
+ 0.0211x2x3 = 1.

To find the principal axes and their principal indices of refraction, the cross-product
term has to be eliminated by rotating the coordinates. From Example 1.2, we know that
this can be done by taking

x1 = x, x2 = 0.866y + 0.500z, x3 = −0.500y + 0.866z.

Substitution of these relations into the above index ellipsoid equation transforms it into
the following equation for the index ellipsoid in the (x, y, z) coordinate system:

x2

2.28
+ y2

2.28
+ z2

2.16
= 1.

Thus the principal indices are nx =
√

2.28 = 1.51, ny =
√

2.28 = 1.51, and nz =√
2.16 = 1.47.
Comparing the two approaches illustrated in this example and in Example 1.2, it

is clear that they are equivalent to one another. It is also clear that the method of
diagonalizing ϵ described in Example 1.2 is more systematic and straightforward than
that of eliminating the cross-product terms in the equation for the index ellipsoid,
particularly when there is more than one cross-product term.



31 1.6 Propagation in an anisotropic medium

Propagation along a principal axis

We first consider the simple case when an optical wave propagates along one of the
principal axes, say ẑ. Then the field can be decomposed into two normal modes, each
of which is polarized along one of the other two principal axes, x̂ or ŷ. We see from
(1.109) and (1.110) that each field component along a principal axis has a characteristic
index of refraction ni , meaning that it has a characteristic propagation constant of
ki = niω/c, which is determined by the polarization of the field but not by the direction
of wave propagation. For a wave propagating along ẑ, the electric field can be expressed
as

E = x̂E x eikx z−iωt + ŷE yeiky z−iωt

=
[
x̂E x + ŷE yei(ky−kx )z] eikx z−iωt . (1.118)

Because the wave propagates in the z direction, the wavevectors are kx = kx ẑ for
the x-polarized field and ky = ky ẑ for the y-polarized field. Note that kx = nxω/c and
ky = nyω/c are the propagation constants of the x- and y-polarized fields, respectively,
not to be confused with the x and y components of a wavevector k, which are normally
expressed as kx and ky . The field expressed in (1.118) has the following propagation
characteristics.

1. If it is originally linearly polarized along one of the principal axes, it remains linearly
polarized in the same direction.

2. If it is originally linearly polarized at an angle θ = tan−1(E y/E x ) with respect to the
x axis, its polarization state varies periodically along z with a period of 2π/|ky − kx |.
In general, its polarization follows a sequence of variations from linear to elliptical
to linear in the first half-period and then reverses the sequence back to linear in the
second half-period. At the half-period position, it is linearly polarized at an angle θ

on the other side of the x axis. Thus the polarization is rotated by 2θ from the original
direction. This is shown in Fig. 1.9(a). In the special case when θ = 45◦, the wave
is circularly polarized at the quarter-period point and is linearly polarized with its
polarization rotated by 90◦ from the original direction at the half-period point. This
is shown in Fig. 1.9(b).

These characteristics have very useful applications. A plate of an anisotropic material
that has a quarter-period thickness of

lλ/4 = 1
4

· 2π

|ky − kx |
= λ

4|ny − nx |
(1.119)

is called a quarter-wave plate. It can be used to convert a linearly polarized wave to
circular or elliptic polarization, and vice versa. A plate of thickness 3lλ/4 or 5lλ/4 or
any odd integral multiple of lλ/4 also has the same function. In contrast, a plate of a
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Figure 1.9 Evolution of the polarization state of an optical wave propagating along the principal
axis ẑ of an anisotropic crystal that has nx ̸= ny . Only the evolution over one half-period is shown
here. (a) The optical wave is initially linearly polarized at an arbitrary angle θ with respect to the
principal axis x̂ . (b) The optical wave is initially polarized at 45◦ with respect to x̂ .

half-period thickness of

lλ/2 = λ

2|ny − nx |
(1.120)

is called a half-wave plate. It can be used to rotate the polarization direction of a linearly
polarized wave by any angular amount by properly choosing the angle θ between the
incident polarization with respect to the principal axis x̂ , or ŷ, of the crystal. A plate
of a thickness that is any odd integral multiple of lλ/2 has the same function. Note that
though the output from a quarter-wave or half-wave plate can be linearly polarized,
the wave plates are not polarizers. They are based on different principles and have
completely different functions.

For the quarter-wave and half-wave plates discussed here, nx ̸= ny . Between the two
crystal axes x̂ and ŷ, the one with the smaller index is called the fast axis while the
other, with the larger index, is the slow axis.

EXAMPLE 1.4 KDP can be used to make quarter-wave and half-wave plates. Find the
thicknesses of the quarter-wave and half-wave plates made of KDP for 1µm wavelength.

Solution From Example 1.3, we know that nx = ny = 1.51 and nz = 1.47 for KDP
at 1 µm wavelength. Because nx = ny , we cannot use nx and ny to make a wave plate
that allows the beam to propagate in the z direction. Instead, the beam can propagate
in any direction on the xy plane so that the difference between nz and nx = ny can
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be used for the function of a wave plate. Assuming that the wave propagates in the x
direction, then the thickness of a quarter-wave plate for λ = 1 µm is

lλ/4 = λ

4|ny − nz|
= 1 µm

4 × |1.51 − 1.47|
= 6.25 µm.

A quarter-wave plate at 1 µm wavelength can have a thickness of any odd integral
multiple, such as 18.75 µm, 31.25 µm, . . . , of 6.25 µm. A half-wave plate for the 1 µm
wavelength has a thickness of

lλ/2 = λ

2|ny − nz|
= 1 µm

2 × |1.51 − 1.47|
= 12.5 µm.

A plate of a thickness that is an odd multiple, such as 37.5 µm, 62.5 µm, . . . , of 12.5 µm
also functions as a half-wave plate at 1 µm wavelength. For these wave plates, ẑ is the
fast axis and ŷ is the slow axis because nz < ny .

Optical axes

The state of polarization of an optical wave generally varies along its path of propa-
gation through an anisotropic crystal unless it is linearly polarized in the direction of a
principal axis. However, in an anisotropic crystal with nx = ny ̸= nz , a wave propagat-
ing in the z direction does not see the anisotropy of the crystal because in this situation
the x and y components of the field have the same propagation constant. This wave
will maintain its original polarization as it propagates through the crystal. Evidently,
this is true only for propagation along the z axis in such a crystal. Such a unique axis
in a crystal along which an optical wave can propagate with an index of refraction that
is independent of its polarization direction is called the optical axis of the crystal.

For an anisotropic crystal that has only one distinctive principal index among its
three principal indices, there is only one optical axis, which coincides with the axis of
the distinctive principal index of refraction. Such a crystal is called a uniaxial crystal.
It is customary to assign ẑ to this unique principal axis. The identical principal indices
of refraction are called the ordinary index, no, and the distinctive index of refraction
is called the extraordinary index, ne. Thus, nx = ny = no and nz = ne. The crystal is
called positive uniaxial if ne > no and is negative uniaxial if ne < no.

For a crystal that has three distinct principal indices of refraction, there are two optical
axes, neither of which coincides with any one of the principal axes. Such a crystal is
called a biaxial crystal because of the existence of two optical axes.

Ordinary and extraordinary waves

When an optical wave propagates in a direction other than that along an optical axis,
the index of refraction depends on the direction of its polarization. In this situation,
there exist two normal modes of linearly polarized waves, each of which sees a unique
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index of refraction. One of them is the polarization perpendicular to the optical axis.
This normal mode is called the ordinary wave. We use êo to indicate its direction of
polarization. The other normal mode is clearly one that is perpendicular to êo because
the two normal-mode polarizations are orthogonal to each other. This normal mode
is called the extraordinary wave, and its direction of polarization is indicated by êe.
Note that these are the directions of D rather than those of E. For the ordinary wave,
êo ∥ Do ∥ Eo. For the extraordinary wave, êe ∥ De ̸∥ Ee except when êe is parallel to a
principal axis. Both êo and êe, being the unit vectors of Do and De, are perpendicular
to the direction of wave propagation, k̂. From this understanding, both êo and êe can be
found if both k̂ and the optical axis are known. For a uniaxial crystal with optical axis
ẑ, this means that

êo = 1
sin θ

k̂ × ẑ, êe = êo × k̂ (1.121)

if the vector k̂ is in a direction that is at an angle θ with respect to ẑ and an angle φ with
respect to the axis x̂ . Therefore, we have (see Problem 1.6.12)

k̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ, (1.122)

êo = x̂ sin φ − ŷ cos φ, (1.123)

êe = −x̂ cos θ cos φ − ŷ cos θ sin φ + ẑ sin θ . (1.124)

The relationships among these vectors are illustrated in Fig. 1.10.
The indices of refraction associated with the ordinary and extraordinary waves can

be found by using the index ellipsoid given in (1.117), as is shown in Fig. 1.11. The

Figure 1.10 Relationships among the direction of wave propagation and the polarization directions
of the ordinary and extraordinary waves.
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Figure 1.11 Determination of the indices of refraction for the ordinary and extraordinary waves in
a uniaxial crystal using index ellipsoid.

intersection of the index ellipsoid and the plane normal to k̂ at the origin of the el-
lipsoid defines an index ellipse. The principal axes of this index ellipse are in the
directions of êo and êe, and their half-lengths are the corresponding indices of refrac-
tion. For a uniaxial crystal, the index of refraction for the ordinary wave is simply
no. The index of refraction for the extraordinary wave depends on the angle θ and is
given by (see Problem 1.6.12)

1
n2

e(θ )
= cos2θ

n2
o

+ sin2θ

n2
e

, (1.125)

which can be seen from Fig. 1.11. Because D is orthogonal to k and can be decomposed
into Do and De components, we have

D = êoDoeiko k̂·r−iωt + êeDeeike k̂·r−iωt , (1.126)

where ko = noω/c and ke = ne(θ )ω/c. In general, E cannot be written in the form of
(1.126) because its longitudinal component along the wave propagation direction k
does not vanish except when θ = 0◦ or 90◦. We see that ne(0◦) = no and ne(90◦) = ne.
The special case when the wave propagates along one of the principal axes discussed
earlier belongs to one of these situations.

The normal-mode polarizations for an optical wave propagating in a biaxial crystal
can be found following a similar, albeit more complicated, procedure.

EXAMPLE 1.5 From the preceding three examples, we find that KDP is a uniaxial crystal
with ẑ being its optical axis because nx = ny ̸= nz . At 1 µm wavelength, we have
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no = 1.51 and ne = 1.47. KDP is negative uniaxial because no > ne. For an optical
wave propagating in KDP along a direction k̂ that makes an angle θ with respect to
the optical axis ẑ, the refractive index for the extraordinary wave is a function of θ .
For θ = 0◦, ne(0◦) = no = 1.51. For θ = 90◦, ne(90◦) = ne = 1.47. For 0◦ < θ < 90◦,
1.47 < ne(θ ) < 1.51. For example,

ne(30◦) =
(

cos2 30◦

n2
o

+ sin2 30◦

n2
e

)−1/2

= 1.50,

ne(60◦) =
(

cos2 60◦

n2
o

+ sin2 60◦

n2
e

)−1/2

= 1.48.

Spatial beam walk-off

Each of the normal modes has a well-defined propagation constant. Therefore, the fields
of monochromatic ordinary and extraordinary waves in an anisotropic medium can be
separately written in the form of (1.47), with k = ko for the ordinary way and k = ke

for the extraordinary way. By using (1.83), Maxwell’s equations for a normal mode,
either ordinary or extraordinary, reduce to the following:

k × E = ωµ0H, (1.127)

k × H = −ωD, (1.128)

k · D = 0, (1.129)

k · H = 0. (1.130)

Note that because no ̸= ne, these relations apply to the ordinary and the extraordinary
normal mode separately with different values for k but not to a wave mixing the
two modes. At optical frequencies, B = µ0H is also true in an anisotropic medium.
Therefore, (1.127) and (1.130) have the same forms as (1.86) and (1.89), respectively.
Because (1.88) for a wave in an isotropic medium is now replaced by (1.129), we
have D ⊥ k for both ordinary and extraordinary waves. For an ordinary wave, Eo ⊥ ko

because Do ∥ Eo. Therefore, the relationships shown in Fig. 1.12(a) among the field
vectors for an ordinary wave in an anisotropic medium are the same as those shown
in Fig. 1.7 for a wave in an isotropic medium. However, Ee ̸⊥ ke for an extraordinary
wave in general, and Se is not necessarily parallel to ke because De ̸∥ Ee. The only
exception is when êe is parallel to a principal axis. As a result, the direction of power
flow, which is that of Se, is not the same as the direction of wavefront propagation,
which is normal to the planes of constant phase and is that of ke. This is shown in
Fig. 1.12(b) together with the relationships among the directions of the field vectors.
Note that Ee, De, ke, and Se lie in a plane normal to He because Be ∥ He. Though (1.90)
is still true according to (1.127), the relations between E and H in (1.92) are no longer
valid for an extraordinary wave.
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(a) (b)

Figure 1.12 Relationships among the directions of E, D, H, B, k, and S in an anisotropic medium
for (a) an ordinary wave and (b) an extraordinary wave. In both cases, the vectors E, D, k, and S lie
in a plane normal to H.

If the electric field of an extraordinary wave is not parallel to a principal axis, its
Poynting vector is not parallel to its propagation direction because Ee is not parallel to
De. As a result, its energy flows away from the direction of its wavefront propagation.
This phenomenon is known as spatial beam walk-off. If this characteristic appears in one
of the two normal modes of an optical wave propagating in an anisotropic crystal, the
optical wave will split into two beams of parallel wavevectors but separate, nonparallel
traces of energy flow.

For simplicity, let us consider the propagation of an optical wave in a uniaxial crystal
with k̂, for both ordinary and extraordinary waves, at an angle θ with respect to the
optical axis ẑ. Clearly, there is no walk-off for the ordinary wave because Eo ∥ Do and
So ∥ k̂. For the extraordinary wave, Se is not parallel to k̂ but points in a direction at an
angle ψe with respect to the optical axis. Figure 1.13(a) shows the relationships among
these vectors. The angle α between Se and k̂, which is defined as α = ψe − θ , is called
the walk-off angle of the extraordinary wave. Note that α is also the angle between
Ee and De, as can be seen from Fig. 1.13(a). Because neither Ee nor De is parallel to
any principal axis, their relationship is found through their projections on the principal
axes: De

z = n2
eϵ0 Ee

z and De
xy = n2

oϵ0 Ee
xy . Using these two relations and the definition

of α in Figs. 1.12(b) and 1.13(a), it can be shown that the walk-off angle is given by
(see Problems 1.6.14 and 1.6.15)

α = ψe − θ = tan−1
(

n2
o

n2
e

tan θ

)
− θ . (1.131)

If the crystal is positive uniaxial, α as defined in Fig. 1.13(a) is negative. This means that
Se is between k̂ and ẑ for a positive uniaxial crystal. If the crystal is negative uniaxial, α
is positive and k̂ is between Se and ẑ. No walk-off appears if an optical wave propagates
along any of the principal axes of a crystal.
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(a)

(b)

Figure 1.13 (a) Wave propagation and walk-off in a uniaxial crystal. (b) Birefringent plate acting
as a polarizing beam splitter for a normally incident wave. The x̂ , ŷ, and ẑ unit vectors indicate the
principal axes of the birefringent plate.

A birefringent crystal can be used to construct a very simple polarizing beam splitter
by taking advantage of the walk-off phenomenon. For such a purpose, a uniaxial crystal
can be cut into a plate whose surfaces are at an oblique angle with respect to the optical
axis, as is shown in Fig. 1.13(b). When an optical wave is normally incident upon
the plate, it splits into ordinary and extraordinary waves in the crystal if its original
polarization contains components of both polarizations. The extraordinary wave is then
separated from the ordinary wave because of spatial walk-off, creating two orthogonally
polarized beams. However, because of normal incidence, both ke and ko are parallel
to the direction of k̂ although they have different magnitudes. When both beams reach
the other side of the plate, they are separated by a distance of d = l tan α, where l is
the thickness of the plate. After leaving the plate, the two spatially separated beams
propagate parallel to each other along the same direction k̂ because the directions of
their wavevectors have not changed, as is also shown in Fig. 1.13(b).

EXAMPLE 1.6 Find the spatial walk-off angle at 1 µm wavelength at a few representative
propagation directions in KDP. Design a polarizing beam splitter at this wavelength
using a KDP crystal.

Solution For a KDP crystal, no = 1.51 and ne = 1.47 at 1 µm wavelength. The spatial
walk-off angle α of an extraordinary wave is a function of the angle θ between the wave
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propagation direction k̂ and the optical axis ẑ of the crystal. For example,

α = tan−1
(

1.512

1.472
tan 30◦

)
− 30◦ = 1.35◦, for θ = 30◦,

α = tan−1
(

1.512

1.472
tan 45◦

)
− 45◦ = 1.54◦, for θ = 45◦,

α = tan−1
(

1.512

1.472
tan 60◦

)
− 60◦ = 1.31◦, for θ = 60◦.

From these numerical examples, we find that the walk-off angle does not vary mono-
tonically with θ (see Problem 1.6.15).

A polarizing beam splitter can be made by cutting a KDP crystal at an angle, such
as 45◦, with respect to its optical axis for a parallel plate of thickness l. A beam at 1 µm
wavelength that consists of a mix of extraordinary and ordinary polarizations is normally
incident on the plate for θ = 45◦ and α = 1.54◦. Because the ordinary wave does not
have walk-off, the Poynting vectors of the extraordinary and ordinary components
of the beam separate at an angle of α = 1.54◦. If a minimum spatial separation of
d = 100 µm between the extraordinary and ordinary components is desired on the exit
surface of the KDP plate, the minimum thickness of the plate has to be l > d/ tan α =
3.7 mm.

Optical anisotropy and crystal symmetry

The optical anisotropy of a crystal depends on its structural symmetry. Crystals are
classified into seven systems according to their symmetry. The linear optical properties
of these seven systems are summarized in Table 1.2. Some important remarks regarding
the relation between the optical properties and the structural symmetry of a crystal are
made:

1. A cubic crystal need not have an isotropic structure although its linear optical proper-
ties are isotropic. For example, most III–V semiconductors, such as GaAs, InP, InAs,
AlAs, etc., are cubic crystals with isotropic linear optical properties. Nevertheless,
they have well-defined crystal axes, â, b̂, and ĉ. They are also polar semiconductors,
which have anisotropic nonlinear optical properties.

Table 1.2 Linear optical properties of crystals

Crystal symmetry Optical property

Cubic Isotropic: nx = ny = nz

Trigonal, tetragonal, hexagonal Uniaxial: nx = ny ̸= nz

Orthorhombic, monoclinic, triclinic Biaxial: nx ̸= ny ̸= nz
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2. Although the principal axes may coincide with the crystal axes in certain crystals,
they are not the same concept. The crystal axes, denoted by â, b̂, and ĉ, are defined
by the structural symmetry of a crystal, whereas the principal axes, denoted by x̂ ,
ŷ, and ẑ, are determined by the symmetry of ϵ. The principal axes of a crystal are
orthogonal to one another, but the crystal axes are not necessarily so.

1.7 Gaussian beam

Because the wave equation governs optical propagation, the transverse field distribution
pattern and its variation along the longitudinal propagation direction have to satisfy this
equation in order for the wave to exist and to propagate. A well-defined field pattern that
can remain unchanged as the wave propagates is called a mode of wave propagation.
Such a transverse field pattern is known as a transverse mode. The optical modes that
exist in a given medium are determined by the optical properties of the medium together
with any boundary conditions imposed on the wave equation by the optical structures
in the medium. Here we consider the optical modes in a homogeneous medium. Modes
in waveguides and optical fibers are discussed in Chapters 2 and 3.

A monochromatic optical wave propagating in an isotropic, homogeneous medium
is governed by the wave equation given in (1.82). Clearly, the monochromatic plane
wave expressed in (1.58) is a solution of this wave equation. Therefore, plane waves
are normal modes in an isotropic, homogeneous medium. They are not the only normal
modes, however, as the wave equation governing wave propagation in such a medium
has other normal-mode solutions. One such important set of modes is the Gaussian
modes. Like plane waves, Gaussian modes are normal modes of wave propagation in
an isotropic, homogeneous medium. Different from a plane wave, however, a Gaus-
sian mode has a finite cross-sectional field distribution defined by its spot size. Being
an unguided field with a finite spot size, a Gaussian mode differs from a waveguide
mode, discussed in Chapters 2 and 3, in that its spot size varies along its longitudi-
nal axis, taken to be the z axis, of propagation though its pattern remains unchanged.
Therefore, its transverse field distribution also changes with z though the field pat-
tern does not change. A Gaussian mode field at a frequency ω can thus be expressed
as

Emn(r, t) = Emn(x, y, z) exp(ik · r − iωt) = êEmn(x, y, z) exp(ik · r − iωt), (1.132)

with a corresponding field distribution for its magnetic field component, where m and n
are mode indices associated with the two transverse dimensions x and y, respectively.
A Gaussian mode field has neither longitudinal electric nor longitudinal magnetic field
components. It is a TEM mode that has only transverse electric and magnetic field
components. Normal modes are orthonormal to each other and can be normalized, as
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Figure 1.14 Gaussian beam characteristics.

is discussed in detail in Section 2.4. Gaussian modes are normalized by the following
condition:

2k
ωµ0

∞∫

−∞

∞∫

−∞

|Emn(x, y, z)|2dxdy = 1. (1.133)

The location, taken to be z = 0 for a beam propagating along the z axis, where the
smallest spot size of the beam occurs, is known as the waist of a Gaussian beam. The
minimum Gaussian beam spot size, w0, is defined as the e−2 radius of the Gaussian
beam intensity profile at the beam waist. The diameter of the beam waist is d0 = 2w0.
As illustrated in Fig. 1.14, a Gaussian beam has a plane wavefront at its beam waist.
The beam remains well collimated within a distance of

zR = kw2
0

2
= πnw2

0

λ
, (1.134)

known as the Rayleigh range, on either side of the beam waist. In (1.134), k = 2πn/λ

is the propagation constant of the optical beam in a medium of refractive index n. The
parameter b = 2zR is called the confocal parameter of the Gaussian beam. Because
of diffraction, a Gaussian beam diverges away from its waist and acquires a spherical
wavefront. As a result, both its spot size, w(z), and the radius of curvature, R(z), of its
wavefront are functions of distance z from its beam waist:

w(z) = w0

(
1 + z2

z2
R

)1/2

= w0

[

1 +
(

2z
kw2

0

)2
]1/2

(1.135)

and

R(z) = z
(

1 + z2
R

z2

)
= z

[

1 +
(

kw2
0

2z

)2
]

. (1.136)
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We see from (1.135) that at z = ± zR, w =
√

2w0. At |z| ≫ zR, far away from the beam
waist, R(z) ≈ z and w(z) ≈ 2|z|/kw0. Therefore, the far-field beam divergence angle
is

3θ = 2
w(z)
|z|

= 4
kw0

= 2λ

πnw0
. (1.137)

For the far field at |z| ≫ zR, we find that the beam spot size w(z) is inversely proportional
to the beam waist spot size w0 but is linearly proportional to the distance |z| from the
beam waist. This characteristic does not exist for the near field at |z| ≤ zR.

A complete set of Gaussian modes includes the fundamental TEM00 mode and high-
order TEMmn modes. The specific forms of the mode fields depend on the transverse
coordinates of symmetry: the mode fields are described by a set of Hermite–Gaussian
functions in rectangular coordinates, whereas they are described by the Laguerre–
Gaussian functions in cylindrical coordinates. Because there is no structurally deter-
mined symmetry in free space, either set is equally valid. Usually the Hermite–Gaussian
functions in the rectangular coordinates are used. In a transversely isotropic and ho-
mogeneous medium, a normalized TEMmn Hermite–Gaussian mode field propagating
along the z axis can be expressed as

Êmn(x, y, z) = Amn

w(z)
Hm

[√
2x

w(z)

]

Hn

[√
2y

w(z)

]

exp
[

i
k
2

x2 + y2

q(z)

]
exp [iζmn(z)]

= Amn

w(z)
Hm

[√
2x

w(z)

]

Hn

[√
2y

w(z)

]

exp
[
− x2 + y2
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× exp [iζmn(z)] , (1.138)

where Amn = (ωµ0/πk)1/2(2m+n m! n!)−1/2 is the normalization constant, Hm is the
Hermite polynomial of order m, q(z) is the complex radius of curvature of the Gaussian
wave,

q(z) = z − izR or
1

q(z)
= 1

R(z)
+ i

2
kw2(z)

, (1.139)

and ζmn(z) is a mode-dependent on-axis phase variation along the z axis given by

ζmn(z) = −(m + n + 1) tan−1 z
zR

= −(m + n + 1) tan−1
(

2z
kw2

0

)
. (1.140)

The Hermite polynomials can be obtained using the following relation:

Hm(ξ ) = (−1)meξ 2 dme−ξ 2

dξm
. (1.141)
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Figure 1.15 Intensity patterns of Hermite–Gaussian modes.

Some low-order Hermite polynomials are

H0(ξ ) = 1, H1(ξ ) = 2ξ, H2(ξ ) = 4ξ 2 − 2, H3(ξ ) = 8ξ 3 − 12ξ . (1.142)

We see from (1.138) and (1.142) that the transverse field distribution |Ê00(x, y)| of the
fundamental Gaussian mode, TEM00, at any fixed longitudinal location z is simply a
Gaussian function of the transverse radial distance r = (x2 + y2)1/2 and that the spot
size w(z) is the e−1 radius of this Gaussian field distribution at z. The transverse field
distribution of a high-order mode, TEMmn , is the same Gaussian distribution spatially
modulated by the Hermite polynomials Hm in x and Hn in y. As a result, its field
distribution is more spread out radially than that of the fundamental TEM00 mode.
In general, the higher the order of a mode, the farther its transverse field distribution
spreads out. The intensity patterns of some Hermite–Gaussian modes are shown in
Fig. 1.15.

EXAMPLE 1.7 A fundamental Gaussian beam in free space at the He–Ne laser wavelength
of 632.8 nm has a spot size of w0 = 500 µm at its beam waist. This beam has a
Rayleigh range zR = πw2

0/λ = 1.24 m and a confocal parameter b = 2zR = 2.48 m.
Using (1.135) and (1.136), we find the following spot sizes and radii of curvature at a
few different locations:

w = 502 µm, R = ± 15.5 m at z = ± 10 cm,

w = 642 µm, R = ± 2.54 m at z = ± 1 m,

w ≈ 40 cm, R ≈ ± 1 km at z = ± 1 km.

From these numerical examples, we see that a Gaussian beam diverges very slowly,
much like a plane wave, within the Rayleigh range on both sides of its beam waist. At
the beam waist, a Gaussian beam has a plane wavefront with R = ∞. At a distance
much larger than the Rayleigh range on either side of the beam waist, a Gaussian beam
approaches the characteristics of a spherical wave with R ≈ z. The Gaussian beam in
this example has a far-field divergence angle of 3θ = 2λ/πw0 = 0.8 mrad.
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1.8 Reflection and refraction

The characteristics of reflection and refraction of an optical wave at the interface of
two different media depend on the properties of the media. We first consider the simple
case of reflection and refraction at the planar interface of two dielectric media that
are linear, lossless, and isotropic. In this situation, the permittivities ϵ1 and ϵ2 of the
two media are constant real scalars, while the permeabilities are simply equal to µ0 at
optical frequencies. We assume that the optical wave is incident from medium 1 with a
wavevector ki, while the reflected wave has a wavevector kr and the transmitted wave
has a wavevector kt.

Because an optical wave varies with exp(ik · r − iωt), the condition that

ki · r = kr · r = kt · r (1.143)

is required at the interface for the boundary conditions described by (1.17)–(1.20) to
be satisfied at all points along the interface at all times. This implies that the three
vectors ki, kr, and kt lie in the same plane known as the plane of incidence, as shown
in Figs. 1.16 and 1.17. The projections of these three wavevectors on the interface are
all equal so that

ki sin θi = kr sin θr = kt sin θt, (1.144)

where θi is the angle of incidence, and θr and θt are the angle of reflection and the angle
of refraction, respectively, for the reflected and transmitted waves. All three angles are
measured with respect to the normal n̂ of the interface, as is shown in Figs. 1.16 and
1.17. Because ki = kr and ki/kt = n1/n2, (1.144) yields the relation

θi = θr (1.145)

and the following familiar Snell law for refraction:

n1 sin θi = n2 sin θt. (1.146)

By expressing H in terms of k × E in the form of (1.86) with appropriate values of
k for the incident, reflected, and refracted fields, the amplitudes of the reflected and
transmitted fields can be obtained from the boundary conditions in (1.17) and (1.18).
There are two different modes of field polarization.

TE polarization (s wave, σ wave)

The electric field is linearly polarized in a direction perpendicular to the plane of
incidence while the magnetic field is polarized parallel to the plane of incidence, as
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Figure 1.16 Reflection and refraction of a TE-polarized wave at the interface of two isotropic
dielectric media. The three vectors ki, kr, and kt lie in the plane of incidence. The relationship
between θi and θt shown here is for the case n1 < n2.

shown in Fig. 1.16. This is called transverse electric (TE) polarization or perpendicular
polarization. This wave is also called s polarized, or σ polarized. In this case, the
reflection coefficient, r , and the transmission coefficient, t , of the electric field are given
by the following Fresnel equations:

rs ≡ E r

E i
= n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
=

n1 cos θi −
√

n2
2 − n2

1 sin2 θi

n1 cos θi +
√

n2
2 − n2

1 sin2 θi

, (1.147)

ts ≡ E t

E i
= 2n1 cos θi

n1 cos θi + n2 cos θt
= 2n1 cos θi

n1 cos θi +
√

n2
2 − n2

1 sin2 θi

, (1.148)

respectively. The intensity reflectance and transmittance, R and T, which are also known
as reflectivity and transmissivity, respectively, are given by

Rs ≡ Ir

Ii
= |Sr · n̂|

|Si · n̂|
=

∣∣∣∣
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

∣∣∣∣
2

, (1.149)

Ts ≡ It

Ii
= |St · n̂|

|Si · n̂|
= 1 − Rs. (1.150)

TM polarization (p wave, π wave)

The electric field is linearly polarized in a direction parallel to the plane of incidence
while the magnetic field is polarized perpendicular to the plane of incidence, as shown
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Figure 1.17 Reflection and refraction of a TM-polarized wave at the interface of two isotropic
dielectric media. The three vectors ki, kr, and kt lie in the plane of incidence. The relationship
between θi and θt shown here is for the case n1 < n2.

in Fig. 1.17. This is called transverse magnetic (TM) polarization or parallel polariza-
tion. This wave is also called p polarized, or π polarized. In this case, the reflection
and transmission coefficients of the electric field are given by the following Fresnel
equations:

rp ≡ E r

E i
= n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
=

n2
2 cos θi − n1

√
n2

2 − n2
1 sin2 θi

n2
2 cos θi + n1

√
n2

2 − n2
1 sin2 θi

, (1.151)

tp ≡ E t

E i
= 2n1 cos θi

n2 cos θi + n1 cos θt
= 2n1n2 cos θi

n2
2 cos θi + n1

√
n2

2 − n2
1 sin2 θi

, (1.152)

respectively. The intensity reflectance and transmittance for TM polarization are given,
respectively, by

Rp ≡ Ir

Ii
=

∣∣∣∣
n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

∣∣∣∣
2

, (1.153)

Tp ≡ It

Ii
= 1 − Rp. (1.154)

Several important characteristics of the reflection and refraction of an optical wave
at an interface between two media are summarized.
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1. For both TE and TM polarizations, R = |r |2 and R + T = 1, but T ̸= |t |2.
2. If n1 < n2, light is incident from a rare medium upon a dense medium. In this case,

the reflection is called external reflection. If n1 > n2, light is incident from a dense
medium on a rare medium, and the reflection is called internal reflection.

3. Normal incidence. In the case of normal incidence, θi = θt = 0. There is no
difference between TE and TM polarizations, and

R =
∣∣∣∣
n1 − n2

n1 + n2

∣∣∣∣
2

, T = 1 − R = 4n1n2

(n1 + n2)2
. (1.155)

For the case of external reflection at normal incidence, there is a 180◦ phase reversal
for the reflected electric field with respect to the incident field. For internal reflection,
the phase of the reflected field is not reversed at normal incidence. However, the
values of R and T do not depend on which side of the interface the wave comes
from.

4. Brewster angle. For a TE wave, Rs increases monotonically with the angle of
incidence. For a TM wave, Rp first decreases then increases as the angle of inci-
dence increases. For the interface between two lossless media, Rp = 0 at an angle
of incidence θi = θB, where

θB = tan−1 n2

n1
(1.156)

is known as the Brewster angle. When θi = θB, the angle of refraction for the trans-
mitted wave is

θt = π

2
− θB. (1.157)

It can be shown that this angle is the Brewster angle for the same wave incident
from the other side of the interface. Figure 1.18(a) shows the reflectance of TE
and TM waves as a function of the angle of incidence for external reflection at the
interface between two media of refractive indices of 1 and 3.5. These characteristics
are very useful in practical device applications: (a) at θi = θB, a TM-polarized wave
is totally transmitted, resulting in a perfect lossless window for TM polarization –
such windows are called Brewster windows and are useful as laser windows; (b) at
θi = θB, the reflected wave is completely TE polarized – linearly polarized light can
be produced by a reflection-type polarizer based on this principle.

5. Critical angle. In the case of internal reflection with n1 > n2, total internal reflec-
tion occurs if the angle of incidence θi is larger than the angle

θc = sin−1 n2

n1
, (1.158)

which is called the critical angle. The reflectance of TE and TM waves as a function
of angle of incidence for internal reflection at the interface between two media of
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(a) (b)

Figure 1.18 Reflectance of TE and TM waves at an interface of lossless media as a function of the
angle of incidence for (a) external reflection and (b) internal reflection.

Figure 1.19 Reflectance of TE and TM waves at an interface of lossy or amplifying media as a
function of the angle of incidence for external reflection.

refractive indices of 1 and 3.5 is shown in Fig. 1.18(b). Note that the Brewster angle
for internal reflection is always smaller than the critical angle.

6. If one or both media have a loss or gain, the indices of refraction become complex.
In this situation, the reflectance of the TM wave has a minimum that does not reach
zero, as shown in Fig. 1.19 for external reflection.

7. For wave propagation in a general direction in an anisotropic medium, there are
two normal modes that have different indices of refraction. The refracted fields
of these two normal modes can propagate in different directions, resulting in the
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phenomenon of double refraction. Meanwhile, the Poynting vector does not have to
be in the plane of incidence.

8. Optical media are generally dispersive. Therefore, reflectance and transmittance, as
well as the direction of the refracted wave, are generally frequency dependent.

EXAMPLE 1.8 Water has an index of refraction n = 1.33. The index of refraction of
ordinary glass is approximately n = 1.5. For most semiconductors, such as Si, GaAs,
and InP, the index of refraction is often in the range between 3 and 4, depending on
the optical wavelength and the material. Here we take a nominal value of n = 3.5 for
a semiconductor. Find the reflectivities at normal incidence, the Brewster angles, and
the critical angles for these media at their interfaces with air.

Solution Using the formula given in (1.155) for the reflectivity at normal incidence,
we find that R = 0.02 for water, R = 0.04 for ordinary glass, and R typically falls in
the range of 0.3 and 0.32 for a semiconductor. Using (1.156) for the Brewster angle,
we find that θB ≈ 54◦ for water, θB ≈ 56◦ for ordinary glass, and θB is typically around
74◦ for a semiconductor. Using (1.158) for the critical angle, we find that θc ≈ 49◦ for
water, θc ≈ 42◦ for ordinary glass, and θc is around 17◦ for a semiconductor.

1.9 Phase velocity, group velocity, and dispersion

For a monochromatic plane optical wave traveling in the z direction, the electric field
can be written as

E = E exp(ikz − iωt), (1.159)

where E is a constant vector independent of space and time. This represents a sinusoidal
wave whose phase varies with z and t as

ϕ = kz − ωt. (1.160)

For a point of constant phase on the space- and time-varying field, ϕ = constant and
thus kdz − ωdt = 0. If we track this point of constant phase, we find that it is moving
with a velocity of

vp = dz
dt

= ω

k
. (1.161)

This is called the phase velocity of the wave. Note that the phase velocity is a function of
optical frequency because the refractive index of a medium is a function of frequency.
There is phase-velocity dispersion due to the fact that dn/dω ̸= 0. In the case of normal
dispersion, dn/dω > 0 and dn/dλ < 0; in the case of anomalous dispersion, dn/dω <

0 and dn/dλ > 0.
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Figure 1.20 Wave packet composed of two frequency components showing the carrier and the
envelope. The carrier travels at the phase velocity, whereas the envelope travels at the group
velocity.

In real circumstances, a propagating optical wave rarely contains only one frequency.
It usually consists of many frequency components grouped around some center fre-
quency ω0. For the simplicity of illustration, we consider a wave packet traveling in
the z direction that is composed of two plane waves of equal real amplitude E . The
frequencies and propagation constants of the two component plane waves are

ω1 = ω0 + dω, k1 = k0 + dk,

ω2 = ω0 − dω, k2 = k0 − dk.
(1.162)

The space- and time-dependent total real field of the wave packet is then given by

E = E exp(ik1z − iω1t) + c.c. + E exp(ik2z − iω2t) + c.c.

= 2E{cos[(k0 + dk)z − (ω0 + dω)t] + cos[(k0 − dk)z − (ω0 − dω)t]}
= 4E cos(dkz − dωt) cos(k0z − ω0t). (1.163)

We find that the resultant wave packet has a carrier, which has a frequency ω0 and a
propagation constant k0, and an envelope, which varies in space and time as cos(dkz −
dωt). This is illustrated in Fig. 1.20. Therefore, a fixed point on the envelope is defined
by dkz − dωt = constant, and it travels with a velocity of

vg = dz
dt

= dω

dk
. (1.164)

This is the velocity of the wave packet and is called the group velocity. Because the
energy of a harmonic wave is proportional to the square of its field amplitude, the
energy carried by a wave packet that is composed of many frequency components
is concentrated in regions where the amplitude of the envelope is large. Therefore,
the energy in a wave packet is transported at group velocity vg. The constant-phase
wavefront travels at the phase velocity, but the group velocity is the velocity at which
energy and information travel.
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In reality, group velocity is usually a function of optical frequency. Then,

d2k
dω2

= d
dω

v−1
g ̸= 0. (1.165)

Therefore, d2k/dω2 represents group-velocity dispersion. A dimensionless coefficient
for group-velocity dispersion can be defined as

D = cω
d2k
dω2

= 2πc2

λ

d2k
dω2

. (1.166)

Group-velocity dispersion is an important consideration in the propagation of opti-
cal pulses. It can cause broadening of an individual pulse, as well as changes in the
time delay between pulses of different frequencies. The sign of the group-velocity
dispersion can be either positive or negative. In the case of positive group-velocity dis-
persion, d2k/dω2 > 0 and D > 0, a long-wavelength, or low-frequency, pulse travels
faster than a short-wavelength, or high-frequency, pulse. In contrast, a short-wavelength
pulse travels faster than a long-wavelength pulse in the case of negative group-velocity
dispersion, d2k/dω2 < 0 and D < 0. In a given material, the sign of D generally de-
pends on the spectral region of concern. Group-velocity dispersion and phase-velocity
dispersion discussed earlier have different meanings. They should not be confused with
each other.

When measuring the transmission delay or the broadening of optical pulses due to
dispersion in optical fibers, another dispersion coefficient defined as

Dλ = −2πc
λ2

d2k
dω2

= − D
cλ

(1.167)

is usually used. This coefficient is generally expressed as a function of wavelength in
units of picoseconds per kilometer per nanometer. It is a direct measure of the chromatic
pulse transmission delay over a unit transmission length.

In general, both ϵ(ω) and n(ω) in an optical medium are frequency dependent, and
the propagation constant is

k = ω

c
n(ω). (1.168)

Therefore, we have

vp = c
n

(1.169)

and

vg = c
N

, (1.170)

where

N = n + ω
dn
dω

= n − λ
dn
dλ

(1.171)
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is called the group index. Using (1.166) and (1.167), we also have

D(λ) = λ2 d2n
dλ2

(1.172)

and

Dλ(λ) = −λ

c
d2n
dλ2

, (1.173)

respectively.

EXAMPLE 1.9 The index of refraction of a certain type of glass as a function of opti-
cal wavelength around λ = 1.3 µm can be approximated as n = 1.465 − 0.0114(λ −
1.3) − 0.004(λ − 1.3)3, where λ is measured in micrometers. Therefore,

dn
dλ

= −0.0114 − 0.012(λ − 1.3)2,

N = n − λ
dn
dλ

= 1.48 + 0.0156(λ − 1.3)2 + 0.008(λ − 1.3)3,

D = λ2 dn2

dλ2
= −0.024λ2(λ − 1.3).

We find that, in this spectral region, dn/dλ < 0 for any wavelength but D > 0
for λ < 1.3 µm and D < 0 for λ > 1.3 µm. Clearly, this glass has normal phase-
velocity dispersion in the entire spectral region around λ = 1.3 µm, but it has positive
group-velocity dispersion for λ < 1.3 µm and negative group-velocity dispersion for
λ > 1.3 µm. As an example, we find that n ≈ 1.469, N ≈ 1.481, and D ≈ 0.0072 at
λ = 1 µm. We also find that n ≈ 1.463, N ≈ 1.481, and D ≈ −0.0108 at λ = 1.5 µm.
Because of normal phase-velocity dispersion, the group index is always larger than the
refractive index, N > n, in this spectral region.

1.10 Material dispersion

As discussed in Sections 1.1 and 1.3, dispersion in the susceptibility of a medium is
caused by the fact that the response of the medium to excitation by an optical field does
not decay instantaneously. The general characteristics of the medium can be under-
stood from its impulse response. In general, the impulse response of a medium decays
exponentially while oscillating at some resonance frequencies. There may exist several
exponential relaxation constants and several oscillation frequencies for a given material
across the electromagnetic spectrum. This is true even within the optical spectral region.
However, at a given optical frequency ω, the characteristics of the material response
are dominated by the resonance frequency closest to ω and the relaxation constant
associated with the oscillation at this particular resonance frequency. We therefore con-
sider, for simplicity, a medium of a single resonance frequency at ω0 with a relaxation
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(a) (b)

Figure 1.21 Real and imaginary parts, χ ′ and χ ′′, respectively, of susceptibility for a medium with
(a) a loss and (b) a gain near a resonance frequency, ω0.

constant γ . The susceptibility in the time domain is simply the impulse response of the
medium, which is real and has the following general form:

χ (t) ∝
{

e−γ t sin ω0t, t > 0,

0, t < 0.
(1.174)

Note that χ (t) = 0 for t < 0 because a medium can respond only after, but not before,
an excitation. This is the causality condition, which applies to all physical systems.

The Fourier transform of (1.174) yields

χ (ω) =
∞∫

−∞

χ (t)eiωt dt ≈ −χb
ω0

ω − ω0 + iγ
(1.175)

in the frequency domain, where χb = χ (ω ≪ ω0) is a constant equal to the back-
ground value of χ (ω) at low frequencies far away from resonance. In (1.175), we
have taken the so-called rotating-wave approximation by dropping a term that con-
tains ω + ω0 in its denominator because ω + ω0 ≫ |ω − ω0| in the optical spectral
region (see Problem 1.10.1). This susceptibility has the following real and imaginary
parts:

χ ′(ω) = −χb
ω0(ω − ω0)

(ω − ω0)2 + γ 2
, χ ′′(ω) = χb

ω0γ

(ω − ω0)2 + γ 2
, (1.176)

which are plotted in Fig. 1.21. Note that χ ′′(ω) has a Lorentzian lineshape, which has a
FWHM 3ω = 2γ . The sign of χ ′′ depends on that of χb. In the normal state, χb > 0,
and the medium has an optical loss near resonance. This characteristic results in the
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absorption of light at frequency ω = ω0. When χb < 0, the medium has optical gain,
resulting in the amplification of light at ω = ω0 such as in the case of a laser. Note
that both χ ′ and χ ′′ are proportional to χb. Therefore, when χ ′′ changes sign, χ ′ also
changes sign. When χ ′′ < 0, χ ′ is negative for ω < ω0 and positive for ω > ω0, as is
shown in Fig. 1.21(b).

EXAMPLE 1.10 For an atomic transition associated with absorption or emission of op-
tical radiation at 1 µm wavelength, the resonance frequency is ν0 = c/λ = 300 THz,
thus ω0 = 2πν0 = 1.885 × 1015 s−1. If the polarization associated with this resonant
transition relaxes with a time constant of τ = 1 ps, then γ = 1/τ = 1012 s−1 and
3ω = 2γ = 2 × 1012 s−1. Thus the Lorentzian spectral line has a FWHM linewidth of
3ν = 3ω/2π ≈ 318 GHz, which is considered quite broad but is approximately only
0.1% of the center frequency ν0 of the spectral line. If the relaxation time constant is
τ = 1 ns, we find a spectral linewidth of 3ν ≈ 318 MHz. For a relaxation time constant
of τ = 1 µs, we have a narrow linewidth of 3ν ≈ 318 kHz.

Note that the spectral linewidth is determined by the polarization relaxation time
rather than by the population relaxation time of a material. The polarization relax-
ation time constant is generally much smaller than the population relaxation time
constant for a given transition. Therefore, the spectral linewidth of a given transition
can be quite broad even when the energy levels involved have long population re-
laxation times. One good example is the optical transitions in Nd : YAG discussed in
Section 10.1.

A medium generally has many resonance frequencies, each corresponding to an
absorption frequency in the normal state of the medium. Because ϵ(ω) = ϵ0(1 + χ (ω)),
the dispersion characteristics of ϵ(ω) depend directly on those of χ (ω) given by (1.176).
Its real and imaginary parts in the normal state as a function of ω over a spectral
range covering a few resonances are shown in Fig. 1.22. Some important dispersion
characteristics of χ (ω) and ϵ(ω) are summarized below.

1. It can be seen from Fig. 1.21(a) that χ ′(ω ≪ ω0) is larger than χ ′(ω ≫ ω0) in the
normal state. Therefore, around any single resonance frequency, ϵ′ at any frequency
on the low-frequency side has a value larger than that at any frequency on the high-
frequency side.

2. A medium is said to have normal dispersion in a spectral region where ϵ′ increases
with frequency so that dϵ′/dω > 0. It is said to have anomalous dispersion in a
spectral region where ϵ′ decreases with increasing frequency so that dϵ′/dω < 0.
Because dn/dω and dϵ′/dω have the same sign, the index of refraction also increases
with frequency in a spectral region of normal dispersion and decreases with frequency
in a spectral region of anomalous dispersion.
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(a)

(b)

Figure 1.22 Real and imaginary parts of ϵ as a function of ω for a medium in its normal state over
a spectral range covering a few resonance frequencies.

3. It can be seen from Fig. 1.22 that when a material is in its normal state, normal
dispersion appears everywhere except in the immediate neighborhood within the
FWHM of a resonance frequency where anomalous dispersion occurs. This char-
acteristic can be reversed near a resonance frequency where resonant amplification,
rather than absorption, exists.

4. Note the distinction between the definition of normal and anomalous dispersion
in terms of the sign of dϵ′/dω or dn/dω and that of positive and negative group-
velocity dispersion in terms of the sign of D. Both positive and negative
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group-velocity dispersion can appear in a spectral region where the dispersion de-
fined in terms of dn/dω is normal.3

5. In most transparent materials, such as glass and water, normal dispersion appears in
the visible spectral region and may extend to the near infrared and near ultraviolet
regions.

Kramers–Kronig relations

It can be seen from the discussions above that the real and imaginary parts of
χ (ω), or those of ϵ(ω), are not independent of each other. The susceptibility of any
physical system has to satisfy the causality requirement in the time domain. This
requirement leads to a general relationship between χ ′ and χ ′′ in the frequency
domain:

χ ′(ω) = 2
π

P

∞∫

0

ω′χ ′′(ω′)

ω′2 − ω2
dω′, χ ′′(ω) = − 2

π
P

∞∫

0

ωχ ′(ω′)

ω′2 − ω2
dω′, (1.177)

where the principal values are taken for the integrals. These relations are known as
the Kramers–Kronig relations. Therefore, once the real part of χ (ω) is known over the
entire spectrum, its imaginary part can be found, and vice versa. Note that the relations
in (1.177) are consistent with the fact that χ ′(ω) is an even function, while χ ′′(ω) is an
odd function, of ω, as discussed in Section 1.3. The contradiction to this statement seen
in (1.176) is only apparent but not real. It is caused by the rotating-wave approximation
taken in (1.175). There is no contradiction when the approximation is removed and
exact expressions are used for χ ′(ω) and χ ′′(ω) (see Problem 1.10.1).

1.11 Photon nature of light

When considering the function of a device that involves the emission or absorption
of light, a purely electromagnetic wave description of light is not adequate. In this
situation, the photon nature of light cannot be ignored. Meanwhile, the material involved
in this process also undergoes quantum mechanical transitions between its energy
levels.

The energy of a photon is determined by its frequency ν or, equivalently, its angular
frequency ω. Associated with the particle nature of a photon, there is a momentum

3 In the literature, positive group-velocity dispersion is sometimes referred to as normal dispersion while negative
group-velocity dispersion is referred to as anomalous dispersion. This is confusing and is, strictly speaking, not
correct.
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determined by its wavelength λ or, equivalently, its wavevector k. These characteristics
are summarized below for a photon in free space:

speed c = λν,

energy hν = h̄ω = pc,

momentum p = hν

c
= h

λ
, p = h̄k.

The energy of a photon that has a wavelength λ in free space can be calculated using
the following formula:

hν = 1.2398
λ

µm eV = 1239.8
λ

nm eV. (1.178)

For example, at an optical wavelength of 1 µm, the photon energy is 1.2398 eV.
The energy of a photon is determined only by the frequency, or wavelength, of light,

but not by its intensity. The intensity of light is related to the flux density, or number
per unit time per unit area, of photons by

photon flux density = I
hν

= I
h̄ω

. (1.179)

EXAMPLE 1.11 It is found that a piece of crystal transmits light at λ = 500 nm but
absorbs light at λ = 400 nm. Make an intelligent guess of its bandgap from this limited
information.

Solution Because a crystal transmits photons with energies below its bandgap but
absorbs those with energies above its bandgap, we can reasonably guess that the bandgap
of this crystal falls between the photon energies corresponding to 500 and 400 nm
wavelengths. Using (1.178) for the photon energy, we find that

2.48 eV < Eg < 3.10 eV.

PROBLEMS

1.1.1 Verify that Maxwell’s equations and the continuity equation are invariant under
(a) space inversion, (b) time reversal, and (c) space inversion and time reversal
simultaneously.

1.3.1 Verify the reality condition for electric susceptibility and electric permittivity
given in (1.56) and (1.57), respectively.

1.4.1 Two polarizers placed in tandem along the line of propagation of an optical beam
are called cross polarizers if their axes are arranged to be orthogonal to each
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other. For the purpose of answering the following questions, consider polarizers
of transmission type.
a. Show that no light of any polarization can pass through a set of cross polar-

izers.
b. A third polarizer is inserted in between the two cross polarizers. The trans-

mission of this three-polarizer combination is not zero any more if the axis
of the inserted polarizer is not parallel to either of the original two. Find the
transmittance of this combination as a function of the angle between the axis
of this polarizer and that of the polarizer at the input end.

c. Since each polarizer acts only as a polarization-sensitive filter to transmit the
field component of a particular polarization, the phenomenon described in
(b) may not seem possible. Can you give a physically intuitive explanation
for it?

1.5.1 Express the wavenumber β and the attenuation coefficient α defined in (1.100)
for propagation of an optical wave in an absorptive medium in terms of the real
part, χ ′, and the imaginary part, χ ′′, of the electric susceptibility of the medium.
Show that when χ ′′ ≪ χ ′, we have

α ≈ β
χ ′′

n2
. (1.180)

1.5.2 The electric susceptibility of pure crystalline silicon at the optical wavelength of
λ = 532 nm is χ = 15.48 + i0.284. An optical beam of 1 W power at 532 nm
wavelength is normally incident from the air on the surface of a crystalline
silicon wafer, which is polished to mirror finish. The surface on the other side
of the silicon wafer is antireflection coated so that no reflection of light takes
place on that surface.
a. How much light (in milliwatts) is reflected from the surface from which the

light enters the silicon wafer? How much enters the silicon wafer?
b. How much of the light entering the wafer is transmitted from the other side

if the thickness of the silicon wafer is 100 µm?
c. What is the thickness of the wafer if 1 mW of light is transmitted from the

other side?
1.6.1 An optical isolator transmits light traveling in one direction and blocks its re-

flection traveling in the opposite direction. Show that isolation of light reflected
from a plane mirror can be accomplished by using a combination of a polarizer
and a quarter-wave plate with the axis of the quarter-wave plate set at 45◦ with
respect to the transmission axis of the polarizer.

1.6.2 A polarizer and a half-wave plate can be used to make an attenuator of linearly
polarized light. Sketch a diagram of how this can be achieved and then plot the
output intensity of the system as a function of the angle between the axis of the
wave plate and that of the polarizer.
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1.6.3 A crystal has the following electric permittivity tensor in the (x , y, z) coordinate
system:

ϵ = ϵ0

⎡

⎢⎣
2.25 0 0

0 2.13 0
0 0 2.02

⎤

⎥⎦ .

A linearly polarized optical wave that has a free-space wavelength λ = 600 nm
is sent into the crystal. Find the wavelength of the wave in the crystal in each of
the following arrangements.
a. The wave is polarized along x̂ and propagates along ẑ.
b. The wave is polarized along ŷ and propagates along ẑ.
c. The wave is polarized along x̂ and propagates along ŷ.
d. The wave is polarized along ẑ and propagates along ŷ.

1.6.4 When the electric permittivity of a crystal is measured at λ = 1 µm with respect
to an arbitrary Cartesian coordinate system defined by x̂1, x̂2, and x̂3, it is found
to be given by the following tensor:

ϵ = ϵ0

⎡

⎢⎣
4.786 0 0.168

0 5.01 0
0.168 0 4.884

⎤

⎥⎦ .

a. Find the principal dielectric axes x̂ , ŷ, and ẑ of the crystal and their corre-
sponding principal indices of refraction.

b. Write down the equation that describes the index ellipsoid of the crystal in
the original coordinate system. What is the equation for the index ellipsoid
in the coordinate system defined by the principal axes?

c. Is the crystal uniaxial or biaxial? Find its optical axis if it is uniaxial or its
optical axes if biaxial.

d. How do you arrange an optical wave to propagate in such a crystal so
that the polarization of the wave remains unchanged throughout the entire
path if the wave is linearly polarized? How about if the wave is circularly
polarized?

e. Make a quarter-wave plate for the optical wave at λ = 1 µm. What is the
thickness of the plate?

1.6.5 Under what condition can the polarization of an optical wave propagating in a
birefringent crystal remain unchanged for any initial state of polarization and
any distance of propagation?

1.6.6 Show that a linearly polarized wave can be converted into a circularly polarized
wave by passing it through a quarter-wave plate, and vice versa. In converting
a circularly polarized wave into a linearly polarized wave, how do you control
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the direction of the linear polarization at the output? Design the arrangement
in conducting such an experiment properly in terms of the orientation of the
relevant axes and the direction of polarization.

1.6.7 How far must a linearly polarized wave at λ = 1 µm travel through a crystal
that has nx = 1.55 and ny = 1.52 before its polarization is changed into each
of the following states. In answering these questions, explain by showing the
arrangements with sketches.
a. It is made circularly polarized.
b. It remains linearly polarized but with its polarization rotated by 90◦.
c. It remains linearly polarized but with its polarization rotated by 60◦.

1.6.8 Quartz is a positive uniaxial crystal, which has no=1.544 23 and ne=1.553 32 at
λ = 600 nm. A quartz plate is cut in such a way that its optical axis is parallel
to the surfaces of the plate. A linearly polarized optical beam at 600 nm is sent
to pass through such a quartz plate.
a. What is the thickness of a piece of quartz needed to change a linearly polarized

beam into a circularly polarized beam at 600 nm wavelength? How should
the quartz plate be arranged with respect to the polarization direction of the
linearly polarized beam in order for this to happen?

b. What should the thickness of the quartz plate be to enable rotation of the
linear polarization of the beam by 50◦? How do you arrange the polarization
direction with respect to the crystal axes in this case?

c. If instead we want to make sure that the linearly polarized beam stays lin-
early polarized in the same direction upon passing through the quartz plate
irrespective of the polarization direction with respect to the optical axis of
the quartz plate, what should the thickness of the plate be?

1.6.9 At what wavelength does a quarter-wave plate for λ = 1 µm function as a half-
wave plate if the dispersion in the refractive indices of the plate is neglected?
At what wavelength does light traveling through the plate always return to its
input polarization state?

1.6.10 Quartz is a positive uniaxial crystal, which has no = 1.544 23 and ne = 1.553 32
at λ = 600 nm.
a. Design a quartz waveplate to be used for rotating the polarization direction

of a linearly polarized beam at 600 nm wavelength by 60◦. Give the thickness
of the plate and the arrangement of your setup.

b. If dispersion of the quartz plate can be neglected, at what other wave-
lengths can this plate be used as a polarization rotator for linearly polarized
light?

c. Again, if dispersion can be neglected, at what optical wavelengths can this
plate be used to convert a linearly polarized beam into a circularly polarized
one?
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d. Find the thickness of a plate that has the same function as the one found in
(a) if it has to be thicker than 1 mm but thinner than 1.5 mm.

1.6.11 Rutile (TiO2) is a uniaxial crystal. Its ordinary and extraordinary indices of
refraction as a function of wavelength are given by

n2
o = 5.913 + 0.2441

λ2 − 0.083
, (1.181)

n2
e = 7.197 + 0.3322

λ2 − 0.0843
, (1.182)

where λ is in micrometers. A rutile plate of thickness l is cut in such a way that
its surface normal is perpendicular to its optical axis.
a. If the plate is to be used as a first-order half-wave plate at an optical wavelength

of 1 µm, what should its thickness l be? How do you arrange the plate
with respect to the polarization of the incident beam if the polarization of a
linearly polarized input beam is to be rotated 60◦ after passing through the
plate?

b. With the thickness of the plate obtained in (a), find another wavelength at
which the plate also functions as a half-wave plate. Find a wavelength at
which it functions as a quarter-wave plate.

1.6.12 Consider wave propagation in a uniaxial crystal whose optical axis is ẑ.
a. By using the relationships among k̂, êo, and êe given in (1.121), verify that

the unit vectors êo and êe are given by the expressions in (1.123) and (1.124),
respectively.

b. By examining the index ellipsoid, show that ne(θ ) for the extraordinary wave
is given by (1.125).

1.6.13 Explain why (1.118) is written in E whereas (1.126) is written in D. How would
D be expressed for the wave that is described by (1.118)? Does it have the same
form as (1.118)? Why? How would E be expressed for the wave that is described
by (1.126)? Does it have the same form as (1.126)? Why?

1.6.14 Show that the walk-off angle as defined in Fig. 1.13(a) is given by (1.131). Given
ne and no for a uniaxial crystal, find the angle θ for the propagation direction k̂
that results in the largest walk-off for an extraordinary wave.

1.6.15 An extraordinary optical wave propagates in a uniaxial crystal with its wavevec-
tor k making an angle θ with respect to the optical axis, ẑ, of the crystal. In the
case when θ ̸= 90◦, the Poynting vector, S, of the wave is not parallel to k. The
angle α between S and k is the same as that between E and D.
a. Show that the vector S lies between k and the optical axis if the crystal is

positive uniaxial, while k lies between S and ẑ if it is negative uniaxial. What
is the relationship among E, D, and ẑ in either case?
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b. Show that the walk-off angle given by (1.131) can also be expressed as

α = tan−1
[

n2
e(θ )
2

(
1
n2

e
− 1

n2
o

)
sin 2θ

]
, (1.183)

where ne(θ ) is that given by (1.125).
c. Show that the maximum walk-off between S and k occurs at

θ = tan−1 ne

no
(1.184)

for

α = tan−1 no

ne
− tan−1 ne

no
. (1.185)

1.6.16 Rutile (TiO2) is a uniaxial crystal. Its ordinary and extraordinary indices of
refraction as a function of wavelength are given by (1.181) and (1.182), respec-
tively. A rutile plate of thickness l is cut in such a way that its surface normal
is at an angle θ = 30◦ with respect to its optical axis. If this plate is used as a
polarizing beam splitter for normally incident light at λ = 0.8 µm, what is the
separation between the two orthogonally polarized beams leaving the plate? If
the spot size of a collimated incident beam is 100 µm in diameter, what is the
minimum value of l for the two orthogonally polarized beams at the exit to be
completely separated without spatial overlap?

1.7.1 The intensity profile of a fundamental Gaussian beam, whose field profile is
given by (1.138) with m = n = 0, at any spatial location is a function of the
transverse radial distance, r = (x2 + y2)1/2, from the beam center and the lon-
gitudinal distance z from the beam waist.
a. Show that the intensity profile can be expressed as the following Gaussian

function:

I (r, z) = I0(z) exp
[
−2(x2 + y2)

w2(z)

]
= I0(z) exp

[
− 2r2

w2(z)

]
, (1.186)

where I0(z) is the peak intensity of the beam at the longitudinal location z.
b. Express the power, P , of this Gaussian beam as a function of its peak intensity

I0(z) and its spot size w(z) at any location z.
c. Find the variation of the peak intensity I0(z) along the longitudinal axis of

the beam by expressing it as a function of peak intensity I0 at the beam waist
and distance z from the beam waist.

1.7.2 A fundamental Gaussian laser beam of power P = 1 W at a wavelength of
λ = 532 nm is focused to a small spot radius of w0 = 10 µm at its beam waist.
What is the peak intensity I0 at the beam waist? What is the divergence angle
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of the beam? What are its spot size and peak intensity at a distance of 1 m from
the beam waist? If the spot size is reduced by half to w0 = 5 µm at the beam
waist, what are the changes of the peak intensities at the beam waist and at 1 m
from the waist?

1.7.3 A circular aperture of radius a is placed in the path of a fundamental Gaussian
beam with the center of the aperture located at the center of the beam. The
Gaussian beam has a spot size w at the location of the aperture.
a. Find and plot the fraction of beam power transmitted through the aperture as

a function of a and w.
b. What percentage of power is transmitted if the aperture has a radius equal to

the beam spot size, a = w?
c. What is the minimum aperture diameter for the aperture to transmit at least

99% of the beam power?
1.7.4 A laser retroreflector was first placed on the lunar surface by the astronauts

of the Apollo 11 lunar landing mission in 1969. Similar retroreflectors were
placed on different parts of the lunar surface by astronauts in later missions,
including Apollos 14 and 15 . These retroreflectors have since been used for
precision lunar laser ranging to measure the distance between Earth and the
Moon using nanosecond and picosecond laser pulses down to a precision of the
order of 1 cm. The Apollo 11 retroreflector consists of an array of 100 silica
corner cubes in a 46 cm × 46 cm panel. Each corner cube has a diameter of
3.8 cm. The function of a corner cube is to reflect the light intercepted by it right
back to the original direction from which the light comes without the need for
critical alignment. The distance between the centers of Earth and the Moon is
about 385 000 km, but the direct distance between their surfaces is shorter and
is about the distance for light to travel in 1.25 s. In this problem, we consider a
lunar ranging experiment using a telescope of 1.5 m diameter to collimate laser
pulses of 350 ps duration at a wavelength of 532 nm from the second harmonic of
a Nd : YAG laser. We assume that the laser beam has a fundamental Gaussian
profile of waist spot size w0 = 0.5 m at the aperture of the 1.5-m-diameter
telescope. We also assume that each corner cube in the retroreflector reflects
about 80% of the laser light it intercepts but adds a divergence of 14 µrad to
the reflected beam due to diffraction. In answering the following questions, we
first ignore the scattering, absorption, diffraction, and dispersion caused by the
atmosphere.
a. What is the divergence angle of the out-going beam? What is the spot size of

the beam on the Moon’s surface?
b. If the laser beam is incident on the retroreflector with the beam center located

at the center of the panel, what fraction of the laser energy is intercepted and
reflected back by the retroreflector?
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c. What is the spot size of the reflected beam on Earth? What fraction of the
beam reflected by the retroreflector back to Earth is intercepted by the 1.5-m
receiving aperture of the telescope?

d. What fraction of the energy in each laser pulse is finally received after making
the round trip to the Moon and back? If we hope to detect at least one photon
in each pulse, what is the minimum energy required of the original out-going
pulse?

e. In reality, the effects of the atmosphere are significant and certainly can-
not be ignored unless the entire station is located in space. In each pass,
the atmosphere adds a divergence of about 18 µrad to the beam mainly
due to dispersion and transmits only about 2% due to scattering and ab-
sorption. Answer questions (a)–(d) with the atmospheric effects accounted
for.

1.7.5 The effect of sending a Gassian beam through a thin lens of focal length f can
be described by the following relation:

1
q ′ = 1

q
− 1

f
, (1.187)

where q and q ′ are the complex radii of curvature of the Gaussian beam imme-
diately before and after the thin lens. The value of f can be either positive or
negative for a positive or negative lense, respectively. A Gaussian beam of waist
radius w0 located at z = 0 is sent through a thin lens of focal length f located
at z = z0.
a. Show that the waist radius for the beam after passing through the lens is

w′
0 = | f |

[(z0 − f )2 + z2
R]1/2

w0, (1.188)

where zR is the Rayleigh range of the incoming beam.
b. Show that the waist of the beam passing through the lens is located at

z = z2
0(z0 − f ) + z2

R(z0 + f )
(z0 − f )2 + z2

R

. (1.189)

c. How can the beam be best collimated? What are the waist radius and Rayleigh
range of this optimally collimated beam?

d. If the lens is placed at the waist location of the incoming beam, what is the
waist radius of the outgoing beam? Where is the waist located? What is the
effect of the lens on the divergence of the beam?

1.8.1 Under what condition is an optical wave that is reflected from a dielectric surface
completely polarized no matter whether the incident wave is polarized or not?
What is its state of polarization?
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1.8.2 A beam of circularly polarized light is incident from the air on the surface of
an isotropic lossless dielectric material. The index of refraction of the dielectric
material is unknown. However, it is found experimentally, by varying the angle
of incidence, that the reflected light is linearly polarized when the angle of
incidence is 60◦. What is the index of refraction of the dielectric material?
Explain what happens.

1.8.3 A reflection-type polarizer can be made simply with a glass plate. If the glass
plate available has an index of refraction n = 1.5 at the wavelength of interest,
what should the incident angle of the light be in order for the plate to function
as a polarizer? Illustrate how this device should be used if the incident light is
arbitrarily polarized.

1.8.4 During a sunny day on the equator when the sun rises at 6 a.m. and sets at 6 p.m.,
at what times is the sunlight reflected from the ocean surface most polarized?

1.8.5 When sunlight reflected from the surface of a body of water is viewed through
linearly polarizing glass, the apparent glare from the water is reduced.
a. Upon which concept discussed in this chapter is this glare reduction

based?
b. Suppose you have a beachfront house, and you want to use polarizing glass to

reduce the glare from the sunlight reflected from the ocean. How should you
orient the polarizing glass? (Should the glass block horizontally or vertically
polarized light?)

c. For what angle of reflected sunlight will your polarizing glass be most effec-
tive? (Assume that the index of refraction of water is 1.33.)

1.8.6 The index of refraction of ordinary glass is n = 1.5.

Figure 1.23 Stack of parallel flat glass plates.

a. Find the Brewster angles for the incidence of light from air to glass and from
glass to air, respectively. What is the angle for total internal reflection?
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b. For a stack of parallel flat glass plates separated by air gaps as shown in
Fig. 1.23, show that if TM-polarized light is incident on the surface of the
first plate at the Brewster angle, it is transmitted through the whole stack
without reflection at any interface. Sketch the path of light through the
stack. What are the effects of the thickness of the plates and that of the air
gaps?

c. What happens if one air gap is filled with water whose index of refraction is
1.33? Illustrate by sketching the path of light.

1.8.7 The indices of refraction for water and diamond are 1.33 and 2.42, respec-
tively.
a. For a piece of diamond exposed to the air, what are the critical angle for int-

ernal reflection, the Brewster angle for external reflection, and the reflectivi-
ties for TE and TM waves at an incident angle of 45◦?

b. Answer the same question for a piece of diamond that is immersed in
water.

1.8.8 A 90◦ symmetric prism with antireflection coating at the input surface as shown
in Fig 1.24 can be used as a retroreflector. This kind of prism can losslessly
reflect light with an adjustable lateral displacement between the paths of the
incident and reflected beams.

Figure 1.24 Prism retroreflector.

a. Show that the path of the reflected beam is parallel to that of the input
beam for both normal and oblique incidence, thus requiring no critical align-
ment.

b. However, if the angle of incidence is too large, the reflected beam will
suffer losses. What is the condition for a retroreflecting prism to have
an angular tolerance of ± 5◦ with respect to normal without substantial
loss?

1.8.9 At the optical wavelength of 500 nm, GaAs is measured to have a reflectivity
of 40% at normal incidence and an absorption coefficient of α = 107 m−1.
a. What is the complex refractive index of GaAs at 500 nm? What is the complex

susceptibility?
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b. Plot the reflectivity of GaAs at 500 nm as a function of incident angle for
both TE and TM polarizations. What is the lowest reflectivity for the TM
polarization? At what incident angle does it occur?

1.9.1 Explain how the primary rainbow is formed and describe the sequence of the
rainbow colors from top to bottom. Answer the same questions for the secondary
rainbow and explain the differences between the primary and secondary rain-
bows. Explain also why a rainbow has the shape of an arc. Find the arc angles
for the primary and secondary rainbows.

1.9.2 The LiNbO3 crystal is negative uniaxial. Its indices of refraction for the ordinary
and extraordinary waves at room temperature as a function of optical wavelength
are given by the following Sellmeier equations:

n2
o = 4.9130 + 0.1188

λ2 − 0.045 97
− 0.0278λ2, (1.190)

n2
e = 4.5798 + 0.0994

λ2 − 0.042 35
− 0.0224λ2, (1.191)

where λ is in micrometers. For both ordinary and extraordinary waves at an opti-
cal wavelength of 1.3 µm, find (a) the phase velocities, (b) the group velocities,
and (c) the group-velocity dispersion parameters.

1.9.3 The BBO crystal is negative uniaxial. Its indices of refraction for the ordinary
and extraordinary waves at room temperature as a function of optical wavelength
are given by the following Sellmeier equations:

n2
o = 2.7359 + 0.018 78

λ2 − 0.018 22
− 0.013 54λ2, (1.192)

n2
e = 2.3753 + 0.012 24

λ2 − 0.016 67
− 0.015 16λ2, (1.193)

where λ is in micrometers. For both ordinary and extraordinary waves in the
optical wavelength range between 0.5 and 2.0 µm, plot (a) phase velocity, (b)
group velocity, and (c) group-velocity dispersion, as a function of wavelength.

1.10.1 Find the exact χ (ω) corresponding to χ (t) given in (1.174) without making the
rotating-wave approximation used in (1.175). Show that the real and imaginary
parts of this exact χ (ω) are even and odd functions of ω, respectively. Compare
them with their respective approximate expressions in (1.176) to justify the
applicability of the latter. Show that the exact expression for χ (ω) satisfies the
reality condition, as expected.

1.10.2 A material has two closely spaced resonance frequencies at ω01 and ω02 with
respective response constants χb1 and χb2 and relaxation constants γ1 and γ2.
The condition 0 ≪ ω02 − ω01 ≪ ω01 is always valid in this problem.
a. Consider the case when χb1 = χb2 and γ1 = γ2 = ω02 − ω01. Sketch the real

and imaginary parts of χ (ω) as a function of ω near the two closely spaced
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resonance frequencies. Also indicate the regions of normal and anomalous
dispersion.

b. What changes to the dispersion of a laser material do you expect when its res-
onance at ω01 is pumped to population inversion but not that at ω02, meaning
that χb1 changes sign but χb2 does not? Sketch the real and imaginary parts
of χ (ω) as a function of ω near the two closely spaced resonance frequencies
in this situation.

c. Sketch the real and imaginary parts of χ (ω) as a function of ω near the
two closely spaced resonance frequencies in the situation when population
inversion occurs at both resonances so that both χb1 and χb2 change sign.
Indicate the regions of normal and anomalous dispersion.

d. Answer questions (a)–(c) for the case when χb1 = 3χb2 but γ1 = γ2/3 =
ω02 − ω01.

1.11.1 What is the separation in energy between the two energy levels that are respon-
sible for emission at λ = 1.064 µm of a Nd : YAG laser?

1.11.2 A ruby is basically crystalline Al2O3 doped with Cr3+ impurities. Its red color
is caused by the fact that the Cr3+ ions emit light at 694.3 nm when making the
transition from an excited state to the ground state. What is the energy level of
this excited state?

1.11.3 Silicon has a bandgap of 1.12 eV at room temperature. What wavelengths in the
optical spectrum are transmitted through a pure silicon wafer?

1.11.4 GaAs has an energy bandgap of 1.424 eV at room temperature and absorbs any
photon that has an energy higher than this value. For what optical wavelengths
is GaAs transparent?

1.11.5 Consider monochromatic light illuminating a photographic film. The inci-
dent photons will be recorded if they have enough energy to dissociate the
AgBr molecules in the film. The minimum energy required to do this is
about 0.6 eV. Find the cutoff wavelength longer than which the incident
light will not be recorded. In what spectral region does this wavelength
fall?

1.11.6 A photon of 10.6 µm wavelength is combined with a photon of 1.06 µm wave-
length to create a photon that combines the energies of both. What is the wave-
length of the resultant photon?
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