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1 WAVE NATURE OF LIGHT

1.1 LIGHT WAVES IN A HOMOGENEOUS MEDIUM

A. Plane Electromagnetic Wave

The wave nature of light, quite aside from its photonic behavior, is well recog-
nized by such phenomena as interference and diffraction. We can treat light as an 
electromagnetic (EM) wave with time-varying electric and magnetic fields, Ex and 
By, respectively, which are propagating through space in such a way that they are 
always perpendicular to each other and the direction of propagation z as illustrated 
in Figure 1.1. The simplest traveling wave is a sinusoidal wave that, for propaga-
tion along z, has the general mathematical form

 Ex = Eo cos (vt - kz + fo) (1.1.1)

in which Ex is the electric field at position z at time t, k is the propagation 
 constant2 given by 2p>l, where l is the wavelength, v is the angular frequency, 
Eo is the amplitude of the wave, and fo is a phase constant, which accounts for 
the fact that at t = 0 and z = 0; Ex may or may not necessarily be zero depend-
ing on the choice of origin. The argument (vt - kz + fo) is called the phase of 
the wave and denoted by f. Equation (1.1.1) describes a monochromatic plane 
wave of infinite extent traveling in the positive z direction as depicted in Figure 1.2. 
In any plane perpendicular to the direction of propagation (along z), the phase of 
the wave,  according to Eq. (1.1.1), is constant, which means that the field in this 
plane is also constant. A surface over which the phase of a wave is constant at a 
given instant is referred to as a wavefront. A wavefront of a plane wave is obvi-
ously an infinite plane perpendicular to the direction of propagation as shown in 
Figure 1.2.

We know from electromagnetism that time-varying magnetic fields 
 result in time-varying electric fields (Faraday’s law) and vice versa. A time-
varying electric field would set up a time-varying magnetic field with the same 

Traveling 
wave 

along z

2 Some authors also call k the wave number. However, in spectroscopy, the wave number implies 1>l, 
reciprocal wavelength. To avoid any confusion, propagation constant would be preferred for k.
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frequency. According to electromagnetic principles,3 a traveling electric field Ex as repre-
sented by Eq. (1.1.1) would always be accompanied by a traveling magnetic field By with the 
same wave frequency and propagation constant (v and k) but the directions of the two fields 
would be  orthogonal as in Figure 1.1. Thus, there is a similar traveling wave equation for the 
magnetic field component By. We generally describe the interaction of a light wave with a 
non-conducting matter (conductivity, s = 0) through the electric field component Ex rather 
than By because it is the electric field that displaces the electrons in molecules or ions in the 
crystal and thereby gives rise to the polarization of matter. However, the two fields are linked, 
as in Figure 1.1, and there is an intimate relationship between them. The optical field refers 
to the electric field Ex.

FIGURE 1.1 An electromagnetic wave in a homogenous and isotropic medium is a traveling wave that has 
time-varying electric and magnetic fields which are perpendicular to each other and the direction of propagation z.  
This is a snapshot at a given time of a particular harmonic or a sinusoidal EM wave. At a time dt later, a point on 
the wave, such as the maximum field, would have moved a distance vdt in the z-direction.

FIGURE 1.2 A plane EM 
wave traveling along z has the 
same Ex (or By) at any point in a 
given xy plane. All electric field 
vectors in a given xy plane are 
therefore in phase. The xy planes 
are of infinite extent in the  
x and y directions.

3 Maxwell’s equations formulate electromagnetic phenomena and provide relationships between the electric and mag-
netic fields and their space and time derivatives. We need only to use a few selected results from Maxwell’s equation 
without delving into their derivations. The magnetic field B is also called the magnetic induction or magnetic flux den-
sity. The magnetic field intensity H and magnetic field B in a non-magnetic material are related by B = moH in which mo 
is the absolute permeability of the medium.
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We can also represent a traveling wave using the exponential notation since 
 cos f = Re3exp( jf)4  in which Re refers to the real part. We then need to take the real part of 
any complex result at the end of calculations. Thus, we can write Eq. (1.1.1) as

Ex(z, t) = Re3Eo exp(  jfo) exp j(vt - kz)4
or

 Ex(z, t) = Re3Ecexp j(vt - kz)4  (1.1.2)

in which Ec = Eo exp( jfo) is a complex number that represents the amplitude of the wave and 
includes the constant phase information fo. Note that in Eq. (1.1.2), exp j(vt - kz) represents 
e j(vt - kz).

We indicate the direction of propagation with a vector k, called the wave vector (or 
 propagation vector), whose magnitude is the propagation constant, k = 2p>l. It is clear that 
k is perpendicular to constant phase planes as indicated in Figure 1.2. Consider an electromag-
netic wave that is propagating along some arbitrary direction k, as indicated in Figure 1.3. The 
electric field E(r, t) at an arbitrary point r is given by

 E(r, t) = Eo cos (vt - k # r + fo) (1.1.3)

because the dot product k # r is along the direction of propagation similar to kz as indicated in 
Figure 1.3. The latter can be shown by drawing a plane that has the point r and is perpendicular 
to k as illustrated in Figure 1.3. The dot product is the product of k and the projection of r onto k, 
which is r′ in Figure 1.3, so that k # r = kr=. Indeed, if propagation is along z, k # r becomes kz. 
In general, if k has components kx, ky, and kz along x, y, and z, then from the definition of the dot 
product, k # r = kxx + kyy + kzz.

The relationship between time and space for a given phase, f for example, that corre-
sponds to a maximum field, according to Eq. (1.1.1), is described by

f = vt - kz + fo = constant

During a time interval dt, this constant phase (and hence the maximum field) moves a dis-
tance dz. The phase velocity of this wave is therefore dz/dt. Thus the phase velocity v is

 v =
dz
dt

=
v

k
= yl (1.1.4)

in which y is the frequency (v = 2py) of the EM wave. For an EM wave propagating in free 
space v is the speed of light in vacuum or c.

Traveling 
wave 
along z

Traveling 
wave in 
3D with 
wave 
vector k

Phase 
velocity

FIGURE 1.3 A traveling plane EM 
wave along a direction k.
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We are often interested in the phase difference ∆f at a given time between two points on 
a wave (Figure 1.1) that are separated by a certain distance. If the wave is traveling along z with 
a wave vector k, as in Eq. (1.1.1), then the phase difference between two points separated by ∆z 
is simply k∆z since vt is the same for each point. If this phase difference is 0 or multiples of 2p 
then the two points are in phase. Thus phase difference ∆f can be expressed as k∆z or 2p∆z>l.

B. Maxwell’s Wave Equation and Diverging Waves

Consider the plane EM wave in Figure 1.2. All constant phase surfaces are xy planes that are per-
pendicular to the z-direction. A cut of a plane wave parallel to the z-axis is shown in Figure 
1.4 (a) in which the parallel dashed lines at right angles to the z-direction are wavefronts. We 
normally show wavefronts that are separated by a phase of 2p or a whole wavelength l as in 
the figure. The vector that is normal to a wavefront surface at a point such as P represents the 
direction of wave propagation (k) at that point P. Clearly, the propagation vectors everywhere 
are all parallel and the plane wave propagates without the wave diverging; the plane wave has no 
divergence. The amplitude of the planar wave Eo does not depend on the distance from a refer-
ence point, and it is the same at all points on a given plane perpendicular to k (i.e., independent 
of x and y). Moreover, as these planes extend to infinity there is infinite energy in the plane 
wave. A plane wave such as the one in Figure 1.4 (a) is an idealization that is useful in analyzing 
many wave phenomena. In reality, however, the electric field in a plane at right angles to k does 
not  extend to infinity since the light beam would have a finite cross-sectional area and finite power. 
We would need an infinitely large EM source with infinite power to generate a perfect plane wave!

In practice there are many types of possible EM waves. These waves must obey a special 
wave equation that describes the time and space dependence of the electric field. In an isotropic 
and linear dielectric medium, the relative permittivity (er) is the same in all directions and is inde-
pendent of the electric field. The field E in such a medium obeys Maxwell’s EM wave equation

 
02E

0x2 + 02E

0y2 + 02E

0z2 - eoermo
02E

0t2 = 0 (1.1.5)

in which mo is the absolute permeability, eo is the absolute permittivity, and er is the relative per-
mittivity of the medium. Equation (1.1.5) assumes an isotropic medium (as discussed later) and 

Maxwell’s 
wave 

equation

FIGURE 1.4 Examples of possible EM waves. (a) A perfect plane wave. (b) A perfect spherical wave.  
(c) A divergent beam.
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that the conductivity of the medium is zero. To find the time and space dependence of the field,  
we must solve Eq. (1.1.5) in conjunction with the initial and boundary conditions. We can easily 
show that the plane wave in Eq. (1.1.1) satisfies Eq. (1.1.5). There are many possible waves that 
satisfy Eq. (1.1.5) that can therefore exist in nature.

A spherical wave is described by a traveling field that emerges from a point EM source 
and whose amplitude decays with distance r from the source. At any point r from the source, the 
field is given by

 E =
A
r

  cos (vt - kr) (1.1.6)

in which A is a constant. We can substitute Eq. (1.1.6) into Eq. (1.1.5) to show that Eq. (1.1.6) 
is indeed a solution of Maxwell’s equation (transformation from Cartesian to spherical coor-
dinates would help). A cut of a spherical wave is illustrated in Figure 1.4 (b) where it can be 
seen that wavefronts are spheres centered at the point source O. The direction of propagation 
k at any point such as P is determined by the normal to the wavefront at that point. Clearly k 
 vectors diverge out and, as the wave propagates, the constant phase surfaces become larger. 
Optical  divergence  refers to the angular separation of wave vectors on a given wavefront. The 
spherical wave has 360° of divergence in all planes through the point source. It is apparent that 
plane and spherical waves represent two extremes of wave propagation behavior from perfectly 
parallel to fully  diverging wave vectors. They are produced by two extreme sizes of EM wave 
source: an infinitely large source for the plane wave and a point source for the spherical wave. In 
reality, an EM source is neither of infinite extent nor in point form, but would have a finite size 
and finite power. Figure 1.4 (c) shows a more practical example in which a light beam exhibits 
some inevitable divergence while propagating; the wavefronts are slowly bent away thereby 
spreading the wave. Light rays of geometric optics are drawn to be normal to constant phase 
surfaces (wavefronts). Light rays therefore follow the wave vector directions. Rays in Figure 1.4 (c) 
slowly diverge away from each other. The reason for favoring plane waves in many optical expla-
nations is that, at a distance far away from a source, over a small spatial region, the wavefronts 
will  appear to be plane even if they are actually spherical. Figure 1.4 (a) may be a small part of 
a huge spherical wave.

Many light beams, such as the output from a laser, can be described by assuming that 
they are Gaussian beams. Figure 1.5 illustrates a Gaussian beam traveling along the z-axis. 
The beam still has an exp j(vt - kz) dependence to describe propagation characteristics but 
the amplitude varies spatially away from the beam axis and also along the beam axis. Such 
a beam has similarities to that in Figure 1.4 (c); it slowly diverges4 and is the result of radia-
tion from a source of finite extent. The light intensity (i.e., the radiation energy flow per unit 
area per unit time) distribution across the beam cross-section anywhere along z is Gaussian 
as shown in Figures 1.5 (b) and (c). The beam diameter 2w at any point z is defined in such  
a way that the cross-sectional area pw2 at that point contains 86% of the beam power. Thus, 
the beam diameter 2w increases as the beam travels along z. The Gaussian beam shown in 
Figure 1.5 (a) starts from O with a finite width 2wo where the wavefronts are parallel and then 
the beam slowly diverges as the wavefronts curve out during propagation along z. The finite width 
2wo where the wavefronts are parallel is called the waist of the beam; wo is the waist radius 

Spherical 
wave

4 The divergence is due to the self-diffraction of the beam—the beam is diffraction limited. Diffraction is covered later 
in this chapter. Further, the intensity of light will be defined quantitatively in Section 1.4. For the present discussion it 
represents the radiation energy flow per unit time per unit area.
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and 2wo is the spot size. Far away from the source, the beam diameter 2w increases linearly 
with distance z. The increase in beam diameter 2w with z makes an angle 2u at O, as shown 
in Figure 1.5, which is called the beam divergence. The greater the waist, the narrower the 
divergence. The two are related by

 2u =
4l

p(2wo)
 (1.1.7)

It can be shown that the Gaussian beam is a solution of Maxwell’s equations when the 
beam divergence is small,5 and the intensity decays slowly with distance z. Suppose that we 
reflect the Gaussian beam back on itself (by using a spherical mirror that has the right curvature 
to match the incident wavefront) so that the beam is traveling in the -z direction and converg-
ing toward O; simply reverse the direction of travel in Figure 1.5 (a). The wavefronts would be 
“straightening out,” and at O they would be parallel again. The beam would still have the same 
finite diameter 2wo (waist) at O. From then on, the beam again diverges out just as it did travel-
ing in +z direction as illustrated in Figure 1.6 (a). When we try to focus a Gaussian beam using a 
lens or a spherical mirror, as in Figure 1.6 (a), the beam cannot be brought a point but to a finite 
spot size 2wo. The relationship in Eq. (1.1.7) for the beam divergence can be used to find this 
minimum spot size 2wo to which a Gaussian beam can be focused.

At a certain distance zo from O, the beam diameter becomes 21>2(2wo) as illustrated in 
Figure 1.6 (a). The distance zo is called the Rayleigh range, and is given by

 zo =
pwo

2

l
 (1.1.8)

The Rayleigh range is also known as the depth of focus. 2zo is called the confocal parameter. 
The region along z far away from the Rayleigh region, z W zo, is called the far-field region.

The width 2w of a Gaussian beam at a position along z increases with z and is given by

 2w = 2wo c 1 + a z
zo

 b2 d 1>2
= 2wo c 1 + a zl

pwo
2 b2 d 1>2

 (1.1.9a)

Far field 
Gaussian 

beam 
divergence

Gaussian 
beam 

Rayleigh 
range

Gaussian 
beam 

width at 
distance 

5 This is called the paraxial approximation in which the normals to the wavefronts, the wave vectors, make small angles 
with the z-axis.

FIGURE 1.5 (a) 
Wavefronts of a Gaussian 
light beam. (b) Light 
intensity across a beam 
cross-section. (c) Light 
intensity vs. radial 
distance r from beam 
axis (z).
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Far away from the Rayleigh range, for z W zo, in the far-field region, the beam width 
 increases linearly with z, that is,

 2w ≈  (2wo) 
z
zo

 (1.1.9b)

Notice that the product of the beam radius wo (half the beam waist) and half the diver-
gence angle u from Eq. (1.1.7) is given by wou = l>p, that is, it depends only on the wave-
length and is a well-defined constant for a given wavelength. The product wou is called the beam 
 parameter product.

The Gaussian beam concept is so useful in photonics that a special quantity, called the 
M2-factor, has been introduced to compare a given laser beam to an ideal Gaussian beam. The 
M2 factor measures the deviation of the real laser beam from the Gaussian characteristics, in 
which M2 = 1 for an ideal (theoretical) Gaussian beam shape. Suppose that 2ur and 2wor are the 
divergence and waist, respectively, of the real laser beam, and 2u and 2wo are those for the ideal 
Gaussian. The M2 factor is defined by6

 M2 =
wor ur

wou
=

wor ur

(l>p)
 (1.1.10)

where we have used wou = l>p for an ideal Gaussian beam.
According to Eq. (1.1.10), M2 is the ratio of the beam parameter product of the real 

beam to that of a Gaussian beam, and hence M2 gauges the beam quality of the laser beam. 
For many  lasers, M2 is greater than unity, and can be as high as 10–30 in multimode lasers.  

Gaussian 
beam 
width at 
distance z

M2 factor 
definition

6 Some authors define M, instead of M2, as M = ur>u = wor>wo. In addition, the reader should not be too concerned with 
the terms “multimode” and “single mode” at this point, except that they represent the types of radiation that is emitted 
from lasers.

FIGURE 1.6 (a) Gaussian beam 
definitions. The region zo is called 
the Rayleigh range and also the 
depth of focus. (b) Comparison of 
a real beam with M2 7 1 with a 
Gaussian beam with M2 = 1 and  
the same waist 2wo.
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For stable He-Ne single mode lasers, it is very close to unity. We can apply the above Gaussian 
equations to a real laser beam by replacing wo with wor>M2. For example, the width at a dis-
tance z becomes

 2w = 2wor c 1 + azlM2

pwor
 b2 d 1>2

 (1.1.11)

Far away from the Rayleigh range, 2wr = M2(2w), where 2w is the ideal Gaussian beam width 
at the same location. Suppose that we put a Gaussian beam with a waist wo onto the real beam 
and adjust wo to be the same as wor, i.e., wor = wo. Then, from Eq. (1.1.10) the divergence of the 
real beam is greater inasmuch as ur = M2u, which is shown in Figure 1.6 (b).

Beam 
width at 

distance z

EXAMPLE 1.1.1  A diverging laser beam

Consider a He-Ne laser beam at 633 nm with a spot size of 1 mm. Assuming a Gaussian beam, what is the 
divergence of the beam? What are the Rayleigh range and the beam width at 25 m?

Solution
Using Eq. (1.1.7), we find

                                             2u =
4l

p(2wo)
=

4(633 * 10-9 m)

p(1 * 10-3 m)
= 8.06 * 10-4 rad = 0.046°

The Rayleigh range is                     zo =
pwo

2

l
=

p3(1 * 10-3 m)>242

(633 * 10-9 m)
= 1.24 m

The beam width at a distance of 25 m is

2w = 2wo31 + (z>zo)
241>2 = (1 * 10-3 m)51 + 3(25 m)>(1.24 m)4261>2

 = 0.0202 m or 20 mm.

1.2 REFRACTIVE INDEX AND DISPERSION

When an EM wave is traveling in a dielectric medium, the oscillating electric field polarizes the 
molecules of the medium at the frequency of the wave. Indeed, the EM wave propagation can be 
considered to be the propagation of this polarization in the medium. The field and the induced 
molecular dipoles become coupled. The relative permittivity er measures the ease with which the 
medium becomes polarized and hence it indicates the extent of interaction between the field and 
the induced dipoles. To find the nature of propagation of an EM wave in a dielectric medium, 
and hence the phase velocity, we have to solve Maxwell’s equations in a dielectric medium. If 
we assume the medium is insulating, nonmagnetic, and also isotropic, that is the relative permit-
tivity is independent of the direction of propagation of the EM wave and the optical field, then 
the solution becomes quite simple and leads to Maxwell’s wave equation stated in Eq. (1.1.5). 
We can continue to represent the EM wave in a similar fashion to its propagation in vacuum but 
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we need to assign to it a new phase velocity v, and a new wavelength, both of which depend  
on er. In a dielectric medium of relative permittivity er, the phase velocity v is given by

 v =
11ereomo

 (1.2.1)

It is important to use the relative permittivity at the frequency of operation in Eq. (1.2.1) 
since er depends on the frequency. Typical frequencies that are involved in optoelectronic  
devices are in the infrared (including far infrared), visible, and UV, and we generically refer to 
these frequencies as optical frequencies; they cover a somewhat arbitrary range from roughly 
1012 Hz  to 1016 Hz.

For an EM wave traveling in free space, er = 1 and vvacuum = 1>(eomo)
1>2 = c =  

3 * 108 m s-1, the velocity of light in vacuum. The ratio of the speed of light in free space to its 
speed in a medium is called the refractive index n of the medium, that is,

 n =
c
v

= 1er (1.2.2)

If k is the propagation constant (k = 2p>l) and l is the wavelength, both in free space, 
then in the medium7 kmedium = nk and lmedium = l>n. Equation (1.2.2) is in agreement with our 
intuition that light propagates more slowly in a denser medium that has a higher refractive index. 
We should note that the frequency y (or v) remains the same.8

The refractive index of a medium is not necessarily the same in all directions. In noncrystal-
line materials such as glasses and liquids, the material structure is the same in all directions and 
n does not depend on the direction. The refractive index is then isotropic. In crystals, however, the 
atomic arrangements and interatomic bonding are different along different directions. Crystals, in 
general, have nonisotropic, or anisotropic, properties. Depending on the crystal structure, the rela-
tive permittivity er is different along different crystal directions. This means that, in general, the 
refractive index n seen by a propagating electromagnetic wave in a crystal will depend on the value 
of er along the direction of the oscillating electric field (i.e., along the direction of polarization). 
For example, suppose that the wave in Figure 1.1 is traveling along the z- direction in a particular 
crystal with its electric field oscillating along the x-direction. If the relative permittivity along this 
x- direction is erx, then nx = (er x)

1>2. The wave therefore propagates with a phase velocity that is 
c>nx. The variation of n with direction of propagation and the direction of the electric field depends 
on the particular crystal structure. With the exception of cubic crystals (such as diamond), all crys-
tals exhibit a degree of optical anisotropy that leads to a number of important applications as dis-
cussed in Chapter 6. Typically, noncrystalline solids, such as glasses and liquids, and cubic crystals 
are optically isotropic; they possess only one refractive index for all directions.

Relative permittivity er or the dielectric constant of materials, in general, depends on the 
frequency of the electromagnetic wave. The relationship n = (er)

1>2 between the refractive index 
n and er must be applied at the same frequency for both n and er. The relative permittivity for 
many materials can be vastly different at high and low frequencies because different polarization 

Phase 
velocity in 
a medium

Definition 
of refrac-
tive index

7 On occasions, we will need to use ko and lo for the free-space propagation constant and wavelength (as in the next  section) 
and use k and l for those values inside the medium. In each case, these quantities will be clearly defined to avoid confusion.
8 We are accustomed to describing light in terms of its wavelength and often quote wavelengths in nm (or Å) in the 
 visible and IR regions. However, there would be certain advantages to using the frequency instead of the wavelength, for 
example, terahertz (THz) instead of nm, one of which is that the frequency v does not change in the medium. (See Roger 
A. Lewis, Am. J. Phys, 79, 341, 2011.)



28� $IBQUFS��� t� 8BWF�/BUVSF�PG�-JHIU

mechanisms operate at these frequencies.9 At low frequencies all polarization mechanisms pres-
ent can contribute to er, whereas at optical frequencies only the electronic polarization can re-
spond to the oscillating field. Table 1.1 lists the relative permittivity er(LF) at low frequencies 
(e.g., 60 Hz or 1 kHz as would be measured, for example, using a capacitance bridge in the 
laboratory) for various materials. It then compares 3er(LF)41>2 with n.

For silicon and diamond there is an excellent agreement between 3er(LF)41>2 and n. Both 
are covalent solids in which electronic polarization (electronic bond polarization) is the only 
polarization mechanism at low and high frequencies. Electronic polarization involves the dis-
placement of light electrons with respect to positive ions of the crystal. This process can readily 
respond to the field oscillations up to optical or even ultraviolet frequencies.

For GaAs and SiO2 3er(LF)41>2 is larger than n because at low frequencies both of these sol-
ids possess a degree of ionic polarization. The bonding is not totally covalent and there is a degree 
of ionic bonding that contributes to polarization at frequencies below far-infrared wavelengths.

In the case of water, the er(LF) is dominated by orientational or dipolar polarization, which 
is far too sluggish to respond to high-frequency oscillations of the field at optical frequencies.

It is instructive to consider what factors affect n. The relative permittivity depends on 
the  polarizability a per molecule (or atom) in the solid. (a is defined as the induced electric 
dipole moment per unit applied field.) The simplest and approximate expression for the relative  
permittivity is

er ≈ 1 + Na
eo

in which N is the number of molecules per unit volume. Both the atomic concentration, or den-
sity, and polarizability therefore increase n. For example, glasses of given type but with greater 
density tend to have higher n.

The frequency or wavelength dependence of er and hence n is called the dispersion relation, 
or simply dispersion. There are various theoretical and empirical models that describe the n vs. l 
behavior. The Cauchy dispersion equation in its simplest form is given by10

 n = A + B

l2 + C

l4 (1.2.3)

Cauchy 
short form 
dispersion 
equation

TABLE 1.1 Low-frequency (LF) relative permittivity Er(LF) and refractive index n

Material Er(LF) [Er(LF)]1,2 n (at L) Comment

Si 11.9    3.44 3.45 (at 2.15 om) Electronic bond polarization up to optical frequencies
Diamond   5.7    2.39 2.41 (at 590 nm) Electronic bond polarization up to UV light
GaAs 13.1    3.62 3.30 (at 5 om) Ionic polarization contributes to er(LF)
SiO2   3.84    2.00 1.46 (at 600 nm) Ionic polarization contributes to er(LF)
Water 80    8.9 1.33 (at 600 nm) Dipolar polarization contributes to er(LF), which  

 is large

9 Chapters 7 and 9 in Principles of Electronic Materials and Devices, 3rd Edition, S. O. Kasap (McGraw-Hill, 2006) 
provides a semiquantitative description of the frequency dependence of er and hence the wavelength dependence of n.
10 Dispersion relations like the one in Eq. (1.2.3) are always in terms of the free-space wavelength l. (It does not make 
sense to give them in terms of the actual wavelength in the medium.)
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where A, B, and C are material-specific constants. A more general Cauchy dispersion relation is 
of the form

 n = n-2(hy)-2 + n0 + n2(hy)2 + n4(hy)4 (1.2.4)

where hy is the photon energy, and n0, n-2, n2, and n4 are constants; values for diamond, Si, and 
Ge are listed in Table 1.2. The general Cauchy equation is usually applicable over a wide photon 
energy range.

Another useful dispersion relation that has been widely used, especially in optical fibers, 
is the Sellmeier equation given by

 n2 = 1 +
A1l

2

l2 - l1
2 +

A2l
2

l2 - l2
2 +

A3l
2

l2 - l3
2 (1.2.5)

where A1, A2, A3 and l1, l2, l3 are constants, called Sellmeier coefficients.11 Equation (1.2.5) 
turns out to be quite a useful semi-empirical expression for calculating n at various wavelengths 
if the Sellmeier coefficients are known. Higher terms involving A4 and higher A coefficients can 
generally be neglected in representing n vs. l behavior over typical wavelengths of interest. For 
example, for diamond, we only need the A1 and A2 terms. The Sellmeier coefficients are listed in 
various optical data handbooks.

Cauchy 
dispersion 
equation 
in photon 
energy

Sellmeier 
equation

TABLE 1.2 Sellmeier and Cauchy coefficients

Sellmeier    A1  A2 A3 L1 (,m) L2 (,m)       L3 (,m)

SiO2 (fused 
silica)

0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559

86.5%SiO2-
13.5%GeO2

0.711040 0.451885 0.704048 0.0642700 0.129408 9.425478

GeO2 0.80686642 0.71815848 0.85416831 0.068972606 0.15396605 11.841931
Sapphire 1.023798 1.058264 5.280792 0.0614482 0.110700 17.92656
Diamond 0.3306 4.3356 – 0.1750 0.1060 –

 
Cauchy

Range of  
hv (eV)

 
n–2 (eV2)

 
n0

 
n2 (eV–2)

 
n4 (eV–4)

Diamond 0.05-5.47 -1.07 * 10-5 2.378 8.01 * 10-3 1.04 * 10-4

Silicon 0.002-1.08 -2.04 * 10-8 3.4189 8.15 * 10-2 1.25 * 10-2

Germanium 0.002-0.75 -1.0 * 10-8 4.003 2.2 * 10-1 1.4 * 10-1

Source: Sellmeier coefficients combined from various sources. Cauchy coefficients from D. Y. Smith et al., J. Phys. CM, 13, 3883, 2001.

EXAMPLE 1.2.1  Sellmeier equation and diamond

Using the Sellmeier coefficients for diamond in Table 1.2, calculate its refractive index at 610 nm (red light) 
and compare with the experimental quoted value of 2.415 to three decimal places.

11 This is also known as the Sellmeier-Herzberger formula.
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Solution
The Sellmeier dispersion relation for diamond is

 n2 = 1 + 0.3306l2

l2 - 175 nm2 + 4.3356l2

l2 - 106 nm2

n2 = 1 +
0.3306(610 nm)2

(610 nm)2 - (175 nm)2 +
4.3356(610 nm)2

(610 nm)2 - (106 nm)2 = 5.8308

So that

  n = 2.4147

which is 2.415 to three decimal places and matches the experimental value.

EXAMPLE 1.2.2  Cauchy equation and diamond

Using the Cauchy coefficients for diamond in Table 1.2, calculate the refractive index at 610 nm.

Solution
At l = 610  nm, the photon energy is

hy =
hc
l

=
(6.626 * 10-34 J s)(2.998 * 108 m s-1)

(610 * 10-9  m)
* 1

1.602 * 10-19  J eV-1 = 2.0325 eV

Using the Cauchy dispersion relation for diamond with coefficients from Table 1.2,

n = n-2(hy)-2 + n0 + n2(hy)2 + n4(hy)4

= (-1.07 * 10-5)(2.0325)-2 + 2.378 + (8.01 * 10-3)(2.0325)2

           + (1.04 * 10- 4)(2.0325)4

      = 2.4140

which is slightly different than the value calculated in Example 1.2.1; one reason for the discrepancy is 
due to the Cauchy coefficients quoted in Table 1.2 being applicable over a wider wavelength range at the 
expense of some  accuracy. Although both dispersion relations have four parameters, A1, A2, l1, l2 for 
Sellmeier and n-2, n0, n2, n4 for Cauchy, the functional forms are different.

1.3 GROUP VELOCITY AND GROUP INDEX

Since there are no perfect monochromatic waves in practice, we have to consider the way 
in which a group of waves differing slightly in wavelength will travel along the z-direction. 
Figure 1.7 shows how two perfectly harmonic waves of slight different frequencies v - dv 
and v + dv interfere to generate a periodic wave packet that contains an oscillating field at 
the mean frequency v that is amplitude modulated by a slowly varying field of frequency dv. 
We are interested in the velocity of this wave packet. The two sinusoidal waves of frequencies 
v - dv and v + dv will propagate with propagation constants k - dk and k + dk respectively 
inside the material so that their sum will be

Ex(z, t) = Eo cos3(v - dv)t - (k - dk)z4 + Eo cos3(v + dv)t - (k + dk)z4
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By using the trigonometric identity  cos A +  cos B = 2 cos31
2 (A - B)4    cos 3  12 (A + B)4  we 

 arrive at

Ex(z, t) = 2Eo cos3(dv)t - (dk)z4  cos (vt - kz)

As illustrated in Figure 1.7, this represents a sinusoidal wave of frequency v, which 
is amplitude modulated by a very slowly varying sinusoid of frequency dv. The system of 
waves, that is, the modulation, travels along z at a speed determined by the modulating term, 
 cos 3(dv)t - (dk)z4 . The maximum in the field occurs when 3(dv)t - (dk)z4 = 2mp = constant
(m is an integer), which travels with a velocity

dz
dt

=
dv

dk

or12

 vg =
dv
dk

 (1.3.1)

where the velocity vg is the group velocity of the waves, since it determines the speed of propa-
gation of the maximum electric field along z. The group velocity represents the speed with which 
energy or information is propagated since it defines the speed of the envelope of the amplitude 
variation. The maximum electric field in Figure 1.7 advances with a velocity vg whereas the 
phase variations in the electric field propagate at the phase velocity v.

The wave packet we generated by adding two slightly different harmonic waves is periodic 
with a period 2p>dv. By adding many such harmonic waves with slightly different frequencies 
but with the right amplitudes, we can generate a single wave packet that is nonperiodic as illus-
trated in Figure 1.7. This wave packet travels with a group velocity vg.

Group 
velocity

FIGURE 1.7 Two waves of 
slightly different wavelengths 
traveling in the same direction 
result in a wave packet that has 
an amplitude variation which 
travels at the group velocity.

12 It is quite common to replace small changes in expressions like dz/dt by differentials, and write it as dz>dt, which we 
will often do in the future.
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We know that in vacuum, v = ck and the group velocity is

 vg(vacuum) =
dv
dk

= c = phase velocity (1.3.2)

In vacuum or air, the group velocity is the same as the phase velocity.
For an EM wave in a medium, k in Eq. (1.3.2) is the propagation constant inside the 

 medium, which can be written k = 2pn>lo where lo is the free pace wavelength. The group 
 velocity then is not necessarily the same as the phase velocity v, which depends on v>k and is 
given by c>n. The group velocity vg, on the other hand, is dv>dk, which depends on how the 
propagation changes in the medium, dk, with the change in frequency dv, and dv>dk, is not 
necessarily the same as v>k when the refractive index has a wavelength dependence. Suppose 
that the refractive index n = n(lo) is a function of (free space) wavelength lo, perhaps being 
described by one of the expressions in Section 1.2. Its gradient would be dn>dlo. We can easily 
find the group velocity, as shown in Example 1.3.1, by first finding dv and dk in terms of dn and 
dlo, and then using Eq. (1.3.2),

 vg(medium) =
dv
dk

=
c

n - loa dn
dlo

 b  (1.3.3)

This can be written as

 vg(medium) =
c

Ng
 (1.3.4)

in which 

 Ng = n - lo
dn
dlo

 (1.3.5)

is defined as the group index of the medium. Equation (1.3.5) defines the group refractive 
index Ng of a medium and determines the effect of the medium on the group velocity via  
Eq. (1.3.4). What is important in Eqs. (1.3.4) and (1.3.5) is the gradient of the refractive 
index, dn>dlo. If the refractive index is constant and independent of the wavelength, at least 
over the wavelength range of interest, then Ng = n; and the group and phase velocities are 
the same.

In general, for many materials the refractive index n and hence the group index Ng depend 
on the wavelength of light by virtue of er being frequency dependent. Then, both the phase 
 velocity v and the group velocity vg depend on the wavelength and the medium is called a 
 dispersive  medium. The refractive index n and the group index Ng of pure SiO2 (silica) glass 
are important  parameters in optical fiber design in optical communications. Both of these 
 parameters depend on the wavelength of light as shown in Figure 1.8. Around 1300 nm, Ng is 
minimum, which means that for wavelengths close to 1300 nm, Ng is wavelength independent. 
Thus, light waves with wavelengths around 1300 nm travel with the same group velocity and do 
not experience dispersion. This phenomenon is significant in the propagation of light in optical 
fibers as discussed in Chapter 2.

Group 
velocity in 

vacuum

Group 
velocity in 
a medium

Group 
velocity in 
a medium

Group 
index
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FIGURE 1.8 Refractive index n and the group 
index Ng of pure SiO2 (silica) glass as a function 
of wavelength.

EXAMPLE 1.3.1  Group velocity

Consider two sinusoidal waves that are close in frequency, that is, waves of frequencies v - dv and v + dv 
as in Figure 1.7. Their propagation constant will be k - dk and k + dk. The resultant wave will be

Ex(z, t) = Eo cos3(v - dv)t - (k - dk)z4 + Eo cos3(v + dv) t - (k + dk)z4
By using the trigonometric identity cos A + cos B = 2cos31

2 (A - B)4  cos31
2 (A + B)4  we arrive at

Ex(z, t) = 2Eo cos3(dv)t - (dk)z4 cos(  vt - kz)

As illustrated in Figure 1.7, this represents a sinusoidal wave of frequency v, which is amplitude 
modulated by a very slowly varying sinusoid of frequency dv. The system of waves, that is, the modula-
tion, travels along z at a speed determined by the modulating term, cos3(dv)t - (dk)z4 . The maximum in 
the field occurs when 3(dv)t - (dk)z4 = 2mp = constant (m is an integer), which travels with a velocity

dz
dt

=
dv

dk
  or vg =

dv
dk

This is the group velocity of the waves, as stated in Eq. (1.3.1), since it determines the speed of 
propagation of the maximum electric field along z.13

EXAMPLE 1.3.2  Group velocity and index

Consider v = 2pc>lo and k = 2pn>lo, where lo is the free-space wavelength. By finding  expressions 
for dv and dk in terms of dn and dlo derive Eq. (1.3.4) for the group velocity vg.

Solution
Differentiate v = 2pc>lo to get dv = -(2pc>lo

2)dlo, and then differentiate k = 2pn>lo to find

dk = 2pn(-1>lo
2)dlo + (2p>lo) a dn

dlo
 bdlo = - (2p>lo

2)an - lo
dn
dlo

 bdlo

13 It is left as an exercise to show that the same result can be obtained by using a sine instead of cosine function for the waves.
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We can now substitute for dv and dk in Eq. (1.3.1),

vg =
dv
dk

=
- (2pc>lo

2)dlo

- (2p>lo
2) an - lo

dn
dlo

 bdlo

=
c

n - lo
dn
dlo

EXAMPLE 1.3.3  Group and phase velocities

Consider a light wave traveling in a pure SiO2 (silica) glass medium. If the wavelength of light is 1 om and 
the refractive index at this wavelength is 1.450, what is the phase velocity, group index (Ng), and group 
velocity (vg)?

Solution
The phase velocity is given by

v = c>n = (3 * 108 m s-1)>(1.450) = 2.069 * 108 m s-1

From Figure 1.8, at l = 1 om, Ng = 1.463, so that

vg = c>Ng = (3 * 108 m s-1)>(1.463) = 2.051 * 108 m s-1

The group velocity is about ∼ 0.9,  smaller than the phase velocity.

14 This is actually a statement of Faraday’s law for EM waves. In vector notation it is often expressed as vB = k * E.

1.4 MAGNETIC FIELD, IRRADIANCE, AND POYNTING VECTOR

Although we have considered the electric field component Ex of the electromagnetic wave, we 
should recall that the magnetic field (magnetic induction) component By always accompanies 
Ex in an EM wave propagation. In fact, if v is the phase velocity of an EM wave in an isotropic 
dielectric medium and n is the refractive index, then according to electromagnetism, at all times 
and anywhere in an EM wave,14

 Ex = vBy =
c
n

 By (1.4.1)

in which v = (eoermo)-1>2 and n = er
1>2. Thus, the two fields are simply and intimately related 

for an EM wave propagating in an isotropic medium. Any process that alters Ex also intimately 
changes By in accordance with Eq. (1.4.1).

As the EM wave propagates in the direction of the wave vector k as shown in Figure 1.9, 
there is an energy flow in this direction. The wave brings with it electromagnetic energy. A small 
region of space in which the electric field is Ex has an energy density, that is, energy per unit 
volume, given by (1>2)eoerEx

2. Similarly, a region of space where the magnetic field is By has an 
energy density (1>2mo)By

2. Since the two fields are related by Eq. (1.4.1), the energy densities in 
the Ex and By fields are the same.

 
1
2

 eoerEx
2 =

1
2mo

 By
2 (1.4.2)

The total energy density in the wave is therefore eoerEx
2. Suppose that an ideal  “energy 

meter” is placed in the path of the EM wave so that the receiving area A of this meter is 

Fields in 
an EM 
wave

Energy 
densities 
in an EM 

wave
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perpendicular to the direction of propagation. In a time interval ∆t, a portion of the wave of 
spatial length v∆t crosses A. Thus, a volume Av∆t of the EM wave crosses A in time ∆t. The en-
ergy in this volume consequently becomes received. If S is the EM power flow per unit area, then

 S = Energy flow per unit time per unit area

giving

 S =
(Av∆t)(eoerEx

2)
A∆t

= veoerEx
2 = v2eoerExBy (1.4.3)

In an isotropic medium, the energy flow is in the direction of wave propagation. If we use 
the vectors E and B to represent the electric and magnetic fields in the EM wave, then the wave 
propagates in a direction E * B because this direction is perpendicular to both E and B. The EM 
power flow per unit area in Eq. (1.4.3) can be written as,

 S = v2eoerE * B (1.4.4)

in which S, called the Poynting vector, represents the energy flow per unit time per unit area in 
a direction determined by E * B (direction of propagation). Its magnitude, power flow per unit 
area, is called the irradiance.15

The field Ex at the receiver location (say, z = z1) varies sinusoidally, which means that 
the energy flow also varies sinusoidally. The irradiance in Eq. (1.4.3) is the instantaneous 
 irradiance. If we write the field as Ex = Eo sin (vt) and then calculate the average irradiance by 
averaging S over one period we would find the average irradiance,

 I = Saverage =
1
2

 veoerEo
2 (1.4.5)

Since v = c>n and er = n2 we can write Eq. (1.4.5) as

 I = Saverage =
1
2

 ceonEo
2 = (1.33 * 10-3)nEo

2 (1.4.6)

The instantaneous irradiance can be measured only if the power meter can respond more 
quickly than the oscillations of the electric field, and since this is in the optical frequencies range, 

Poynting 
vector 

Average 
irradiance 
(intensity)

Average 
irradiance 
(intensity)

FIGURE 1.9 A plane EM wave 
traveling along k crosses an area A 
at right angles to the direction of 
propagation. In time ∆t, the energy in 
the cylindrical volume Av∆t (shown 
dashed) flows through A.

15 The term intensity is widely used and interpreted by many engineers as power flow per unit area even though the 
strictly correct term is irradiance. Many optoelectronic data books simply use intensity to mean irradiance. By the way, 
the Poynting vector was named after John H. Poynting (1851–1914), an English physicist, who was a physics professor 
at the University of Birmingham (known as Mason Science College at the time).
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all practical measurements invariably yield the average irradiance. This is because all detectors 
have a response rate much slower than the frequency of the wave.

The irradiance of an EM wave depends on the distance from the EM source. For an ideal 
plane wave, the irradiance at a distance r from the “infinite extended plane EM source” is inde-
pendent of r. On the other hand, for a spherical wave, the irradiance drops as 1>r2 because the 
electric field drops as 1>r. Suppose that the total power emitted by a point source placed at some 
point O is Po as shown in Figure 1.10. Then the irradiance I at a distance r from O is

 I =
Po

4pr2 (1.4.7)

For a Gaussian beam, the irradiance has a Gaussian distribution across the beam cross-
section, as illustrated in Figure 1.5 (b) and (c), and also decreases as the beam propagates along z;  
the power in the beam becomes spread over larger and larger wavefront surfaces as the wave 
propagates along z. The irradiance I at a point z from O, and at a radial distance r from the beam 
axis (Figures 1.5 and 1.6) is given by

 I(z, r) = Ioawo

w
 b2

 exp a- 2r2

w2  b  (1.4.8)

where wo is the beam waist, w is the beam width at a distance z from O, and Io is the maxi-
mum beam irradiance, which occurs at z = 0 when w = wo. Since w depends on z through 
2w = 2wo 31 + (z>zo)241>2, the irradiance also depends on z and I decreases with z. At far away 
from the Rayleigh range, z W zo, the irradiance on the beam axis is

 Iaxis(z) = Io
zo

2

z2 (1.4.9)

which shows that the decay of light intensity with distance is similar to that for a spherical wave. 
The radial dependence, of course, remains Gaussian.

The total optical power Po is the EM power carried by a wave, and can be found by inte-
grating the irradiance. For a Gaussian beam Po and Io are related by

 Po =
1
2

 3Io(pwo
2)4  (1.4.10)

where it can be seen that the apparent “cross-sectional area” of the beam, pwo
2, is used to multi-

ply the maximum irradiance with a factor of half to yield the total optical power.

Irradiance 
of a 

spherical 
wave

Irradiance 
of a 

Gaussian 
beam

Irradiance 
of a 

Gaussian 
beam on 

axis

Total 
power and 
irradiance 

of a 
Gaussian 

beam

FIGURE 1.10 The irradiance 
of a spherical wave decreases 
with distance from the source 
because the area through which 
the power flows increases as r 2.
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EXAMPLE 1.4.1  Electric and magnetic fields in light

The intensity (irradiance) of the red laser beam from a He-Ne laser at a certain location has been 
measured to be 1 mW cm-2. What are the magnitudes of the electric and magnetic fields? What are the 
magnitudes if this beam were in a glass medium with a refractive index n = 1.45 and the irradiance was 
still 1 mW cm-2?

Solution
Using Eq. (1.4.6) for the average irradiance, the field in air is

Eo = C 2I
ceon

= C 2(1 * 10-3 * 104 W m-2)

(3 * 108 m s-1)(8.85 * 10-12 F m-1)(1)

so that

Eo = 87 V m-1 or 0.87 V cm-1

The corresponding magnetic field is

Bo = Eo>c = (87 V m-1)>(3 * 108 m s-1) = 0.29 oT

If the same intensity were in a glass medium of n = 1.45, then

Eo(medium) = C 2I
ceon

= C 2(1 * 10-3 * 104 W m-2)

(3 * 108 m s-1)(8.85 * 10-12 F m-1)(1.45)

or

 Eo(medium) = 72 V m-1

and

Bo(medium) = nEo(medium)>c = (1.45)(72 V m-1)>(3 * 108 m s-1) = 0.35 oT

EXAMPLE 1.4.2  Power and irradiance of a Gaussian beam

Consider a 5 mW He-Ne laser that is operating at 633 nm, and has a spot size of 1 mm. Find the maximum 
irradiance of the beam and the axial (maximum) irradiance at 25 m from the laser.

Solution
The 5 mW rating refers to the total optical power Po available, and 633 nm is the free-space output wave-
length l. Apply Eq. (1.4.10), Po = (1>2)3Io(pwo

2)4 ,

5 * 10-3 W =
1
2

 Io(p) a1
2

 * 1 * 10-3 mb2

which gives 

Io = 1.273 * 104 W m-2 = 1.273 W cm-2
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The Rayleigh range zo was calculated previously as zo = pwo
2  >l = 1.24 m in Example 1.1.1.  

At z = 25 m, the axial irradiance is

Iaxis = (1.273 * 104 W m-2)
(1.24 m)2

(25 m)2 = 31.3 W m-2 = 3.13 mW cm2

1.5 SNELL’S LAW AND TOTAL INTERNAL REFLECTION (TIR)

Willebrord Snellius (Willebrord Snel van Royen, 
1580–1626) was a Dutch astronomer and a mathemati-
cian, who was a professor at the University of Leiden. 
He discovered his law of refraction in 1621 which was 
published by Réne Descartes in France 1637; it is not 
known whether Descartes knew of Snell’s law or for-
mulated it independently. (Courtesy of AIP Emilio 
Segre Visual Archives, Brittle Books Collection.)

René Descartes (1596–1650) was a French philosopher 
who was also involved with mathematics and sciences. 
He has been called the “Father of Modern Philosophy.” 
Descartes was responsible for the development of 
Cartesian coordinates and analytical geometry. He 
also made significant contributions to optics, includ-
ing reflection and refraction. (Courtesy of Georgios 
Kollidas/Shutterstock.com.)

We consider a traveling plane EM wave in a medium (1) of refractive index n1 propagating 
t oward a medium (2) with a refractive index n2. Constant phase fronts are joined with broken 
lines and the wave vector ki is perpendicular to the wavefronts as shown in Figure 1.11. When 
the wave reaches the plane boundary between the two media, a transmitted wave in medium 2 
and a reflected wave in medium 1 appear. The transmitted wave is called the refracted light. 
The angles ui, ut, ur define the directions of the incident, transmitted, and reflected waves, 
 respectively, with respect to the normal to the boundary plane as shown in Figure 1.11. The wave 
vectors of the reflected and transmitted waves are denoted as kr and kt. Since both the incident 
and  reflected waves are in the same medium, the magnitudes of kr and ki are the same, kr = ki.

Simple arguments based on constructive interference can be used to show that there can 
be only one reflected wave that occurs at an angle equal to the incidence angle. The two waves 
along Ai and Bi are in phase. When these waves are reflected to become waves Ar and Br then 
they must still be in phase, otherwise they will interfere destructively and destroy each other. 
The only way the two waves can stay in phase is if ur = ui. All other angles lead to the waves  
Ar and Br being out of phase and interfering destructively.

The refracted waves At and Bt are propagating in a medium of refracted index n2(6n1) 
that is different than n1. Hence the waves At and Bt have different velocities than Ai and Bi. We 
consider what happens to a wavefront such as AB, corresponding perhaps to the maximum field, 
as it propagates from medium 1 to 2. We recall that the points A and B on this front are always 
in phase. During the time it takes for the phase B on wave Bi to reach B′, phase A on wave At has 
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progressed to A′. The wavefront AB thus becomes the front A′B′ in medium 2. Unless the two 
waves at A= and B= still have the same phase, there will be no transmitted wave. A= and B= points 
on the front are in phase only for one particular transmitted angle, ut.

If it takes time t for the phase at B on wave Bi to reach B′, then BB′ = v1t = ct>n1. During 
this time t, the phase A has progressed to A′ where AA= = v2t = ct>n2. A′ and B′ belong to the same 
front just like A and B so that AB is perpendicular to ki in medium 1 and A′B′ is perpendicular to kt 
in medium 2. From geometrical considerations, AB′ = BB′>sin ui and AB′ = AA′>sin ut so that

AB= =
v1t

 sin ui
=

v2t
 sin ut

or

 
 sin ui

 sin ut
=

v1

v2
=

n2

n1
 (1.5.1)

This is Snell’s law,16 which relates the angles of incidence and refraction to the refractive 
indices of the media.

If we consider the reflected wave, the wavefront AB becomes A″B′ in the reflected wave. 
In time t, phase B moves to B′ and A moves to A″. Since they must still be in phase to constitute 
the reflected wave, BB′ must be equal to AA″. Suppose it takes time t for the wavefront B to 
move to B′ (or A to A″). Then, since BB′ = AA″ = v1t, from geometrical considerations,

AB′ =
v1t

 sin ui
=

v1t
 sin ur

so that ui = ur. Angles of incidence and reflection are the same.

Snell’s 
Law

FIGURE 1.11 A light wave traveling  
in a medium with a greater refractive  
index (n1 7 n2) suffers reflection and  
refraction at the boundary. (Notice  
that lt is slightly longer than l.)

16 Snell’s law is known as Descartes’s law in France as he was the first to publish it in his “Discourse on Method” in 1637.
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When n1 7 n2 then obviously the transmitted angle is greater than the incidence angle as 
apparent in Figure 1.11. When the refraction angle ut reaches 90°, the incidence angle is called 
the critical angle uc, which is given by

  sin uc =
n2

n1
 (1.5.2)

When the incidence angle ui exceeds uc then there is no transmitted wave but only a  reflected 
wave. The latter phenomenon is called total internal reflection (TIR). The effect of  increasing the 
incidence angle is shown in Figure 1.12. It is the TIR phenomenon that leads to the propagation 
of waves in a dielectric medium surrounded by a medium of smaller refractive index as shown in 
Chapter 2. Although Snell’s law for ui 7 uc shows that sin ut 7 1 and hence ut is an “imaginary” 
angle of refraction, there is however a wave called the evanescent wave, whose amplitude decays 
exponentially with distance into the second medium as discussed below. The wave exists only in 
the interface region from which the reflected wave emerges (not outside).

Snell’s law can also be viewed as the k-vector of light parallel to the interface being con-
tinuous through the interface, that is, having the same value on both sides of the interface. In 
 medium n1, ki parallel to the interface is ki sin ui or kn1 sin ui, where ki = kn1, and k is the mag-
nitude of the wave vector in free space. In medium n2, kt parallel to the interface is kt sin ut or 
kn2 sin ut. If k’s component tangential to the interface remains constant, kn1 sin ui = kn2 sin ut, 
then we obtain Snell’s law in Eq. (1.5.1). Put differently, Snell’s law is equivalent to

 n sin u = constant through an interface between different media (1.5.3)

Snell’s law of refraction and TIR play a very important role in many optoelectronic and 
photonic devices. A prism is a transparent optical component that can deflect a light beam as 
illustrated in Figure 1.13. There are two basic types of prism. In a refracting prism, the light 
 deflection is caused by refractions whereas in a reflecting prism it is caused by one or more 
TIRs. (Some prisms such as composite prisms need both refraction and TIR to achieve their 
 desired deflection.) The deflection d depends not only on the incidence angle of the light beam on 
the prism, the prism material (n), and geometry, but also on the wavelength and the  polarization 
state of the incident light. The reason is that the refractive index n of the prism material normally 
depends on the wavelength, and further, for certain materials (e.g., quartz, calcite), it depends on 
the polarization state (direction of the electric field) of light as well.

Total 
internal 

reflection 
(TIR) 

Snell’s 
Law

FIGURE 1.12 Light wave travelling in a more dense medium strikes a less dense medium. Depending on the 
incidence angle with respect to uc, which is determined by the ratio of the refractive indices, the wave may be 
transmitted (refracted) or reflected. (a) ui 6 uc (b) ui = uc (c) ui 7 uc and total internal reflection. (Wavefronts  
are only indicated in (a).)
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FIGURE 1.13 Basic types of prism: 
refracting and reflecting prisms.

EXAMPLE 1.5.1  Beam displacement

Lateral displacement of light, or beam displacement, occurs when a beam of light passes obliquely 
through a plate of transparent material, such as a glass plate. When a light beam is incident on a plate of 
transparent material of refractive index n, it emerges from the other side traveling parallel to the  incident 
light but displaced from it by a distance d, called lateral  displacement, as illustrated in Figure 1.14. 
Find the displacement d in terms of the incidence angle the plate thickness. What is d for a glass of 
n = 1.600, d = 10 mm if the incidence angle is 45°?

Solution
The displacement d = BC = AB sin (ui - ut). Further, L>AB = cos ut so that combining these two equa-
tion we find

d = L c  sin (ui - ut)

cos ut
 d

We can expand  sin (ui - ut) =  sin ui cos ut - cos ui sin ut, use cos ut = 21 -  sin2 ut and then apply 
Snell’s law n sin ut = no sin ui at the top surface to find

d
L

= sin ui £1 -
cos ui3(n>no)2 -  sin2 ui

 §
which is maximum with d = L when ui ≃ 90°, glazing incidence. Substituting n = 1.600, no = 1, ui = 45°, 
and L = 10 mm, we find, d = 3.587 mm. If the refractive index increases by 1, , n = 1.616, then 
d = 3.630 and the change in d is 0.043 mm or 43 om, which can be measured electronically by using, for 
example, CCD or CMOS photodiode arrays.

FIGURE 1.14 Lateral displacement of light 
passing obliquely through a transparent plate.
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1.6 FRESNEL’S EQUATIONS

A. Amplitude Reflection and Transmission Coefficients (r and t)

Although the ray picture with constant phase wavefronts is useful in understanding refraction 
and reflection, to obtain the magnitude of the reflected and refracted waves and their relative 
phases, we need to consider the electric field in the light wave. The electric field in the wave 
must be perpendicular to the direction of propagation as shown in Figure 1.15. We can resolve 
the field Ei of the incident wave into two components, one in the plane of incidence, Ei, //, and 
the other perpendicular to the plane of incidence, Ei, ›. The plane of incidence is defined as the 
plane containing the incident and the reflected rays, which in Figure 1.15 corresponds to the 
plane of the paper.17 Similarly for both the reflected and transmitted waves, we will have field 
components parallel and perpendicular to the plane of incidence, that is, Er, //, Er, ›, and Et, //, Et, ›.

As apparent from Figure 1.15, the incident, transmitted, and reflected wave all have a 
wave vector component along the z-direction; that is, they have an effective velocity along z. 
The fields Ei, ›, Er, ›, and Et, › are all perpendicular to the z-direction. These waves are called 
transverse electric field (TE) waves. On the other hand, waves with Ei, //, Er, //, and Et, // have only 
their  magnetic field components perpendicular to the z-direction, and these are called transverse 
magnetic field (TM) waves.

We will describe the incident, reflected, and refracted waves each by the exponential 
 representation of a traveling wave:

 Ei = Eio exp j(vt - ki
# r) (1.6.1)

 Er = Ero exp j(vt - kr
# r) (1.6.2)

 Et = Eto exp j(vt - kt
# r) (1.6.3)

in which r is the position vector, the wave vectors ki, kr, and kt describe the directions of the 
 incident, reflected, and transmitted waves, and Eio, Ero, and Eto are the respective amplitudes. 
Any phase changes such as fr and ft in the reflected and transmitted waves with respect to the 
phase of the incident wave are incorporated into the complex amplitudes, Ero and Eto. Our objec-
tive is to find Ero and Eto with respect to Eio.

We should note that similar equations can be stated for the magnetic field components in 
the incident, reflected, and transmitted waves but these will be perpendicular to the correspond-
ing electric fields. The electric and magnetic fields anywhere on the wave must be perpendicular 
to each other as a requirement of electromagnetic wave theory. This means that with E// in the 
EM wave we have a magnetic field B› associated with it such that B# = (n>c)E//. Similarly, E› 
will have a magnetic field B// associated with it such that B// = (n>c)E#.

There are two useful fundamental rules in electromagnetism that govern the behavior 
of the electric and magnetic fields at a boundary between two dielectric media, which we can 
 arbitrarily label as 1 and 2. These rules are called boundary conditions. The first states that the 

Incident 
wave

Reflected 
wave

Transmitted 
wave

17 The definitions of the field components follow those of S. G. Lipson et al., Optical Physics, 3rd Edition (Cambridge 
University Press, 1995) and Grant Fowles, Introduction to Modern Optics, 2nd Edition (Dover Publications,  
Inc., 1975), whose clear treatments of this subject are highly recommended. The majority of authors use a different  
convention, which leads to different signs later in the equations (“they [Fresnel’s equations] must be related to the 
specific electric field directions from which they are derived.” Eugene Hecht, Optics, 4th Edition (Addison Wesley, 
Pearson Education, 2002), p. 115.
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electric field that is tangential to the boundary surface, Etangential, must be continuous across 
the boundary from medium 1 to 2, that is, at the boundary, y = 0 in Figure 1.15,

 Etangential(1) = Etangential(2) (1.6.4)

The second rule is that the tangential component of the magnetic field, Btangential, to the 
boundary must likewise be continuous from medium 1 to 2, provided that the two media are non-
magnetic (relative permeability, mr = 1),

 Btangential(1) = Btangential(2) (1.6.5)

Using the boundary conditions above for the fields at y = 0 and the relationship between 
the electric and magnetic fields, we can find the reflected and transmitted waves in terms of the 
incident wave. The boundary conditions can be satisfied only if the reflection and incidence 
angles are equal, ur = ui, and the angles for the transmitted and incident wave obey Snell’s law, 
n1 sin u1 = n2 sin u2.

Applying the boundary conditions above to the EM wave going from medium 1 to 2, the 
amplitudes of the reflected and transmitted waves can be readily obtained in terms of n1, n2, and 
the incidence angle ui alone.18 These relationships are called Fresnel’s equations. If we define 
n = n2>n1 as the relative refractive index of medium 2 to that of 1, then the reflection and 
transmission coefficients for E› are

 r# =
Ero,#

Eio,#
=

cos ui - 3n2 -  sin2 ui41>2
cos ui + 3n2 -  sin2 ui41>2 (1.6.6a)

Boundary 
condition

Boundary 
condition

Reflection 
coefficient

FIGURE 1.15 Light wave traveling in a more dense medium strikes a less dense medium. The plane of incidence 
is the plane of the paper and is perpendicular to the flat interface between the two media. The electric field is normal 
to the direction of propagation. It can be resolved into perpendicular (#) and parallel (//) components. (a) ui 6 uc 
then some of the wave is transmitted into the less dense medium. Some of the wave is reflected. (b) ui 7 uc then 
the incident wave suffers total internal reflection. There is a decaying evanescent wave into the n2-medium.

18 These equations are readily available in any electromagnetism textbook. Their derivation from the two boundary 
conditions involves extensive algebraic manipulation, which we will not carry out here. The electric and magnetic field 
components on both sides of the boundary are resolved tangentially to the boundary surface and the boundary conditions 
are then applied. We then use such relations as cos ut = 31 - sin ut41>2 and sin ut is determined by Snell’s law, etc.
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and

 t# =
Eto,#

Eio,#
=

2cos ui

cos ui + 3n2 -  sin2 ui41>2 (1.6.6b)

There are corresponding coefficients for the E// fields with corresponding reflection and 
transmission coefficients, r// and t//.

 r// =
Ero, //

Eio, //
=

3n2 - sin2 ui41/2 - n2 cos ui3n2 - sin2 ui41>2 + n2 cos ui

 (1.6.7a)

 t// =
Eto, //

Eio, //
=

2n cos ui

n2 cos  ui + 3n2 - sin2 ui41>2 (1.6.7b)

Further, the coefficients above are related by

 r// + nt// = 1 and r# + 1 = t# (1.6.8)

The significance of these equations is that they allow the amplitudes and phases of the 
reflected and transmitted waves to be determined from the coefficients r›, r//, t//, and t›. For  
convenience we take Eio to be a real number so that phase angles of r› and t› correspond to the 
phase changes measured with respect to the incident wave. For example, if r› is a complex quan-
tity then we can write this as r# = ( r#( exp(- jf#) in which ( r› (  and f# represent the relative 
amplitude and phase of the reflected wave with respect to the incident wave for the field perpen-
dicular to the plane of incidence. Of course, when r› is a real quantity, then a positive number 
represents no phase shift and a negative number is a phase shift of 180° (or p). As with all waves, 
a negative sign corresponds to a 180° phase shift. Complex coefficients can be obtained only from 
Fresnel’s equations if the terms under the square roots become negative and this can happen only 
when n 6 1 (or  n1 7 n2), and also when ui 7 uc, the critical angle. Thus, phase changes other 
than 0 or 180° occur only when there is total internal reflection. Fresnel’s equations for normal 
incidence are greatly simplified. Putting ui = 0 into Eqs. (1.6.6) and (1.6.7) we find

 r// = r# =
n1 - n2

n1 + n2
  and t// = t# =

2n1

n1 + n2
 (1.6.9)

Figure 1.16 (a) shows how the magnitudes of the reflection coefficients, ( r› (  and ( r// (, 
vary with the incidence angle ui for a light wave traveling from a more dense medium, n1 = 1.44, 
to a less dense medium, n2 = 1.00, as predicted by Fresnel’s equations. Figure 1.16 (b) shows 
the changes in the phase of the reflected wave, f# and f//, with ui. The critical angle uc as 
 determined from  sin uc = n2>n1 in this case is 44°. It is clear that for incidence close to normal 
(small ui), there is no phase change in the reflected wave. The reflection coefficient in Eq. (1.6.9) 
is a positive quantity for n1 7 n2, which means that the reflected wave suffers no phase change. 
This is confirmed by f# and f// in Figure 1.16 (b). As the incidence angle increases, eventu-
ally r// becomes zero at an angle of about 35°. We can find this special incidence angle, labeled 
as up, by solving the Fresnel equation (1.6.7a) for r// = 0. The field in the reflected wave is 
then always perpendicular to the plane of incidence and hence well-defined as illustrated in 
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Figure 1.17. This special angle is called the polarization angle or Brewster’s19 angle and 
from Eq. (1.6.7a) is given by

  tan up =
n2

n1
 (1.6.10)

The reflected wave is then said to be linearly polarized because it contains electric field 
oscillations that are contained within a well-defined plane, which is perpendicular to the plane 
of incidence and also to the direction of propagation. Electric field oscillations in unpolarized 
light, on the other hand, can be in any one of infinite number of directions that are perpendicular 

Brewster’s 
polarization 
angle

FIGURE 1.16 Internal reflection: (a) Magnitude of the reflection coefficients r// and r› vs. angle of incidence 
ui for n1 = 1.44 and n2 = 1.00. The critical angle is 44°. (b) The corresponding phase changes f// and f# vs. 
incidence angle ui.

FIGURE 1.17 At the Brewster angle 
of incidence ui = up, the reflected light 
contains only field oscillations normal 
to the plane of incidence (paper).

19 After Sir David Brewster (1781–1868), a Scottish physicist who was educated in theology at the University of 
Edinburgh in Scotland. He became interested in the polarization properties of light from 1799 onwards, and reported 
some of his experiments in scientific journals, including the Philosophical Transactions of London.
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to the direction of propagation. In linearly polarized light, however, the field oscillations are 
contained within a well-defined plane. Light emitted from many light sources, such as a tungsten 
light bulb or an LED diode, is unpolarized.20 Unpolarized light can be viewed as a stream or 
collection of EM waves whose fields are randomly oriented in a direction that is perpendicular 
to the direction of light propagation.

For incidence angles greater than up but smaller than uc, Fresnel’s equation (1.6.7a) gives 
a negative number for r//, which indicates a phase shift of 180° as shown in f// in Figure 1.16 
(b). The magnitude of both r// and r› increases with ui as illustrated in Figure 1.16 (a). At the 
critical angle and beyond (past 44° in Figure 1.16), that is, when ui Ú uc, the magnitudes of 
both r// and r› go to unity so that the reflected wave has the same amplitude as the incident 
wave. The incident wave has suffered total internal reflection, TIR. When ui 7 uc, in the 
presence of TIR, both Eqs. (1.6.6) and (1.6.7) are complex quantities because then sin ui 7 n 
and the terms under the square roots become negative. The reflection coefficients become com-
plex quantities of the type r# = 1 # exp (- jf#) and r// = 1 #  exp (- jf//) with the phase angles 
f# and f// being other than zero or 180°. The reflected wave therefore suffers phase changes, 
f# and f//, in the components E› and E//. These phase changes depend on the incidence angle, 
as illustrated in Figure 1.16 (b), and on n1 and n2.

Examination of Eq. (1.6.6) for r› shows that for ui 7 uc, we have |r#| = 1, but the phase 
change f# is given by

  tan11
2 f#2 =

3sin2 ui - n241>2
cos ui

 (1.6.11)

For the E// component, the phase change f// is given by

  tan11
2 f// + 1

2 p2 =
3sin2 ui - n241>2

n2 cos ui
 (1.6.12)

We can summarize that in internal reflection (n1 7 n2), the amplitude of the reflected 
wave from TIR is equal to the amplitude of the incident wave but its phase has shifted by an 
amount determined by Eqs. (1.6.11) and (1.6.12). The fact that f// has an additional p shift that 
makes f// negative for ui 7 uc is due to the choice for the direction of the reflected optical field 
Er, // in Figure 1.15. This p shift can be ignored if we by simply invert Er, //. (In many books 
Eq. (1.6.12) is written without the p-shift.)

The reflection coefficients in Figure 1.16 considered the case in which n1 7 n2. When 
light approaches the boundary from the higher index side, that is n1 7 n2, the reflection is said 
to be internal reflection and at normal incidence there is no phase change. On the other hand, 
if light approaches the boundary from the lower index side, that is n1 6 n2, then it is called 
external reflection. Thus in external reflection light becomes reflected by the surface of an 
optically denser (higher refractive index) medium. There is an important difference between 
the two. Figure 1.18 shows how the reflection coefficients r› and r// depend on the incidence 
angle ui for external reflection (n1 = 1 and n2 = 1.44). At normal incidence, both coefficients 
are negative, which means that in external reflection at normal incidence there is a phase shift 
of 180°. Further, r// goes through zero at the Brewster angle up given by Eq. (1.6.10). At this 
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20 Even light from a tungsten light bulb or an LED has some polarization but this is usually negligibly small.
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angle of incidence, the reflected wave is polarized in the E› component only. Transmitted 
light in both internal reflection (when ui 6 uc) and external reflection does not experience a 
phase shift.

What happens to the transmitted wave when ui 7 uc? According to the boundary con-
ditions, there must still be an electric field in medium 2; otherwise, the boundary conditions 
cannot be satisfied. When ui 7 uc, the field in medium 2 is a wave that travels near the 
 surface of the boundary along the z direction as shown in Figure 1.19. The wave is called an 
evanescent wave and advances along z with its field decreasing as we move into medium 2; 
that is,

 Et,#(y, z, t) ∝ e-a2yexp j(vt - kizz) (1.6.13)

in which kiz = ki sin ui is the wave vector of the incident wave along the z-axis, and a2 is an 
 attenuation coefficient for the electric field penetrating into medium 2,21

 a2 =
2pn2

lo
 c an1

n2
 b2

 sin2 ui - 1 d 1>2
 (1.6.14)

in which l is the free-space wavelength. According to Eq. (1.6.13), the evanescent wave 
travels along z and has an amplitude that decays exponentially as we move from the bound-
ary into medium 2 (along y). The field of the evanescent wave is e–1 in medium 2 when 
y = 1>a2 = d, which is called the penetration depth. It is not difficult to show that the 
evanescent wave is correctly predicted by Snell’s law when ui 7 uc. The evanescent wave 
propagates along the boundary (along z) with the same speed as the z-component velocity 
of the incident and reflected waves. In Eqs. (1.6.1) and (1.6.2) we had assumed that the 
incident and reflected waves were plane waves, that is, of infinite extent. If we were to 
extend the plane wavefronts on the reflected wave, these would cut the boundary as shown 
in Figure 1.19. The evanescent wave traveling along z can be thought of arising from these 
plane wavefronts at the boundary as in Figure 1.19. (Evanescent wave is important in light 
propagation in optical waveguides such as optical fibers.) If the incident wave is a narrow 

Evanescent 
wave

Attenuation 
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wave

FIGURE 1.18 External reflection coefficients  
r// and r› vs. angle of incidence ui for n1 = 1.00  
and n2 = 1.44.

21 Normally the term attenuation coefficient refers to the attenuation of the irradiance but in this case it refers to the 
electric field.
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beam of light (e.g., from a laser pointer) then the reflected beam would have the same cross-
section. There would still be an evanescent wave at the boundary, but it would exist only 
within the cross-sectional area of the reflected beam at the boundary.

B. Intensity, Reflectance, and Transmittance

It is frequently necessary to calculate the intensity or irradiance22 of the reflected and transmitted 
waves when light traveling in a medium of index n1 is incident at a boundary where the refrac-
tive index changes to n2. In some cases we are simply interested in normal incidence where 
ui = 0°. For example, in laser diodes light is reflected from the ends of an optical cavity where 
there is a change in the refractive index.

For a light wave traveling with a velocity v in a medium with relative permittivity er, the 
light intensity I is defined in terms of the electric field amplitude Eo as

 I =
1
2

 vereoEo
2 (1.6.15)

Here 1
2 ereoEo

2 represents the energy in the field per unit volume. When multiplied by the 
velocity v it gives the rate at which energy is transferred through a unit area. Since v = c>n and 
er = n2 the intensity is proportional to nEo

2.
Reflectance R measures the intensity of the reflected light with respect to that of the inci-

dent light and can be defined separately for electric field components parallel and perpendicular 
to the plane of incidence. The reflectances R› and R// are defined by

 R# =
0Ero,# 0 20Eio,# 0 2 = 0 r# 0 2 and R// =

0Ero,// 0 20Eio,// 0 2 = 0 r// 0 2 (1.6.16)

Although the reflection coefficients can be complex numbers that can represent phase 
changes, reflectances are necessarily real numbers representing intensity changes. Magnitude of 
a complex number is defined in terms of its product with its complex conjugate. For example, 
when Ero, // is a complex number then

(Ero, // (2 = (Ero, //)(Ero, //)*

in which (Ero, //)* is the complex conjugate of (Ero, //).

Light 
intensity or 

irradiance

Reflec tances

22 Strictly the terms intensity and irradiance are not the same as mentioned in footnote 15.

FIGURE 1.19 When ui 7 uc for a plane 
wave that is reflected, there is an evanescent 
wave at the boundary whose magnitude 
decays into the n2-medium.
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From Eqs. (1.6.6a) and (1.6.7a) with normal incidence, these are simply given by

 R = R# = R// = an1 - n2

n1 + n2
 b2

 (1.6.17)

Since a glass medium has a refractive index of around 1.5 this means that typically 4% of 
the incident radiation on an air–glass surface will be reflected back.

Transmittance T relates the intensity of the transmitted wave to that of the incident wave 
in a similar fashion to the reflectance. We must, however, consider that the transmitted wave is 
in a different medium and also that its direction with respect to the boundary is different from 
that of the incident wave by virtue of refraction. For normal incidence, the incident and transmit-
ted beams are normal and the transmittances are defined and given by

 T# =
n2 0Eto,# 0 2
n1 0Eio,# 0 2 = an2

n1
 b 0 t# 0 2 and T// =

n2 0Eto,// 0 2
n1 0Eio,// 0 2 = an2

n1
 b 0 t// 0 2 (1.6.18)

or

 T = T# = T// =
4n1n2

(n1 + n2)
2 (1.6.19)

Further, the fraction of light reflected and fraction transmitted must add to unity. Thus 
R + T = 1.

When the light is incident at an angle ui, as in Figure 1.15, then the transmitted light has an 
angle ut with respect to normal. The corresponding transmittances are given by

 T# = an2 cos ut

n1 cos ui
 b 0 t# 0 2 and T// = an2 cos ut

n1 cos ui
 b 0 t// 0 2 (1.6.20)

Each transmittance in Eq. (1.6.20) is with respect to the incident intensity in the corre-
sponding polarization.

C. Goos-Hänchen Shift and Optical Tunneling

A light traveling in an optically more dense medium suffers total internal reflection when it is 
incident on a less dense medium at an angle of incidence greater than the critical angle (ui 7 uc) 
as shown in Figure 1.12 (c). Simple ray trajectory analysis gives the impression that the reflected 
ray emerges from the point of contact of the incident ray with the interface as in Figure 1.12 (c). 
However, careful optical experiments examining the incident and reflected beams have shown 
that the reflected wave appears to be laterally shifted from the point of incidence at the interface 
as illustrated in Figure 1.20. Although the angles of incidence and reflection are the same (as one 
expects from Fresnel’s equation), the reflected beam, nonetheless, is laterally shifted and appears 
to be reflected from a virtual plane inside the optically less dense medium. The lateral shift is 
known as the Goos-Haenchen shift.

The lateral shift of the reflected beam can be understood by considering that the reflected 
beam experiences a phase change f, as shown in Figure 1.16 (b), and that the electric field extends 
into the second medium roughly by a penetration depth d = 1>a2. We know that phase changes 
other than 0 or 180° occur only when there is total internal reflection. We can equivalently  
represent this phase change f and the penetration into the second medium by shifting the  
reflected wave along the direction of propagation of the evanescent wave, that is, along z,  
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by an amount23 ∆z as shown in Figure 1.20. The lateral shift depends on the angle of incidence 
and the penetration depth. We can represent the reflection as if it were occurring from a virtual 
plane placed at some distance d from the interface (d is not the same as d), then from simple 
geometric conside rations, ∆z = 2d tan ui. Actual d, however, is quite complicated to calculate, 
but its order of magnitude is the penetration depth d, so that for light with l = 1 om incident 
at 85° at a glass–glass (n1 = 1.450 and n2 = 1.430) interface and suffering TIR, d = 0.78 om, 
which means ∆z ∼  18 om.

Total internal reflection occurs whenever a wave propagating in an optically denser 
 medium, such as in A in Figure 1.20, is incident at an angle greater than the critical angle at the 
interface AB with a medium B of lower refractive index. If we were to shrink the thickness d of 
medium B, as in Figure 1.21, we would observe that when B is sufficiently thin, an attenuated 
light beam emerges on the other side of B in C. This phenomenon in which an incident wave is 
partially transmitted through a medium where it is forbidden in terms of simple geometrical optics 
is called optical tunneling and is a consequence of the electromagnetic wave nature of light. It 
is due to the fact that the field of the evanescent wave penetrates into medium B and reaches the 
interface BC before it vanishes. The optical tunneling phenomenon is illustrated in Figure 1.21 
and is referred to as frustrated total internal reflection (FTIR): the proximity of medium C  

FIGURE 1.20 The reflected light beam in total internal reflection appears to have been laterally shifted by an 
amount ∆z at the interface. It appears as though it is reflected from a virtual plane at a depth d in the second medium 
from the interface.

23 The actual analysis of the Goos-Haenchen shift is more complicated; see for example J. E. Midwinter, Optical 
Fibers for Transmission (John Wiley and Sons, 1979), Ch. 3. d in Figure 1.20 is not simply the penetration depth d. 
In fact, d is such that ∆z represents the right phase change observed upon TIR.

FIGURE 1.21 When medium B is thin,  
the field penetrates from the AB interface  
into medium B and reaches BC interface,  
and gives rise to a transmitted wave in 
medium C. The effect is the tunneling of 
the incident beam in A through B to C. The 
maximum field Emax of the evanescent wave 
in B decays in B along y but is finite at the BC 
boundary and excites the transmitted wave.
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frustrates TIR. The transmitted wave in C carries some of the light intensity and thus the intensity 
of the reflected wave is reduced. Notice that the field of the evanescent wave in B decays and has 
a finite value at the BC interface, where the field oscillations are able to excite a transmitted wave.

Frustrated total internal reflection is utilized in beam splitters as shown in Figure 1.22. 
A light beam entering the glass prism A suffers TIR at the hypotenuse face (ui 7 uc at the glass–
air interface) and becomes reflected; the prism deflects the light as in Figure 1.22 (a). In the 
beam splitter cube in Figure 1.22 (b), two prisms, A and C, are separated by a thin film, B, of low 
refractive index. Some of the light energy is now tunneled through this thin film and transmit-
ted into C and out from the cube. FTIR at the hypotenuse face of A leads to a transmitted beam 
and hence to the splitting of the incident beam into two beams. The extent of energy division 
between the two beams depends on the thickness of the thin layer B and its refractive index.

FIGURE 1.22 (a) A light incident at the long face of a glass prism suffers TIR; the prism deflects the light. 
(b) Two prisms separated by a thin low refractive index film forming a beam-splitter cube. The incident beam is 
split into two beams by FTIR.

Beam splitter cubes. (Courtesy of 
CVI Melles Griot.)

EXAMPLE 1.6.1   Reflection of light from a less dense medium  
(internal reflection)

A ray of light that is traveling in a glass medium of refractive index n1 = 1.450 becomes incident on a less 
dense glass medium of refractive index n2 = 1.430. Suppose that the free-space wavelength (l) of the light 
ray is 1 om.

 (a) What should the minimum incidence angle for TIR be?
 (b) What is the phase change in the reflected wave when ui = 85° and when ui = 90°?
 (c) What is the penetration depth of the evanescent wave into medium 2 when ui = 85° and when ui = 90°?
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EXAMPLE 1.6.2   Reflection at normal incidence, and internal 
and external reflection

Consider the reflection of light at normal incidence on a boundary between a glass medium of refractive 
index 1.5 and air of refractive index 1.

 (a) If light is traveling from air to glass, what is the reflection coefficient and the intensity of the 
 reflected light?

Solution
 (a) The critical angle uc for TIR is given by  sin uc = n2>n1 = 1.430>1.450 so that uc = 80.47°.
 (b) Since the incidence angle ui 7 uc, there is a phase shift in the reflected wave. The phase change in 

Er, › is given by f#. With n1 = 1.450, n2 = 1.430, and ui = 85°

 tan11
2 f#2 =

3sin2 ui - n241>2
cos ui

=
csin2 (85°) - a1.430

1.450
b2 d 1>2

cos (85°)

 = 1.61449 = tan31
2 (116.45°)4

  so that the phase change is 116.45°. For the Er, // component, the phase change is

tan11
2 f// + 1

2 p2 =
3sin2 ui - n241>2

n2 cos ui
=

1

n2 tan11
2 f#2

so that

 tan11
2 f// + 1

2 p2 = (n1>n2)
2 tan (f#>2) = (1.450>1.430)2 tan11

2 116.45°2
which gives f// = -62.1°. (Note: If we were to invert the reflected field, this phase change would 
be +117.86°)

We can repeat the calculation with ui = 90° to find f# = 180° and f// = 0°.
Note that as long as ui 7 uc, the magnitude of the reflection coefficients are unity. Only the 

phase changes.
 (c) The amplitude of the evanescent wave as it penetrates into medium 2 is

Et,#(y) = Eto,#exp (-a2y)

We ignore the z-dependence, exp j(vt - kzz), as it only gives a propagating property along z. 
The field strength drops to e–1 when y = 1>a2 = d, which is the penetration depth. The attenuation 
constant a2 is

a2 =
2pn2

lo
 c an1

n2
b2

sin2 ui - 1 d 1>2
that is, 

a2 =
2p(1.430)

(1.0 * 10-6 m)
 c a1.450

1.430
b2

sin2 (85°) - 1 d 1>2
= 1.28 * 106 m-1

so the penetration depth is d = 1>a2 = 1>(1.28 * 106 m) = 7.8 * 10-7 m, or 0.78 om. For 90°, 
repeating the calculation we find a2 = 1.5 * 106 m-1, so that d = 1>a2 = 0.66 om. We see that 
the penetration is greater for smaller incidence angles. This will be an important consideration later in 
analyzing light propagation in optical fibers.
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 (b) If light is traveling from glass to air, what is the reflection coefficient and the intensity of the 
 reflected light?

Solution
 (a) The light travels in air and becomes partially reflected at the surface of the glass that corresponds to 

external reflection. Thus n1 = 1 and n2 = 1.5. Then

r// = r# =
n1 - n2

n1 + n2
=

1 - 1.5
1 + 1.5

= -0.2

  This is negative, which means that there is a 180° phase shift. The reflectance (R), which gives the 
fractional reflected power, is

R = r //
2 = 0.04 or 4, .

 (b) The light travels in glass and becomes partially reflected at the glass–air interface that corresponds 
to internal reflection. Thus n1 = 1.5 and n2 = 1. Then

r// = r# =
n1 - n2

n1 + n2
=

1.5 - 1
1.5 + 1

= 0.2

There is no phase shift. The reflectance is again 0.04 or 4%. In both cases (a) and (b), the amount of 
reflected light is the same.

EXAMPLE 1.6.3  Reflection and transmission at the Brewster angle

A light beam traveling in air is incident on a glass plate of refractive index 1.50. What is the Brewster or 
polarization angle? What are the relative intensities of the reflected and transmitted light for the polarization 
perpendicular and parallel to the plane of incidence at the Brestwer angle of incidence?

Solution
Light is traveling in air and is incident on the glass surface at the polarization angle up. Here n1 = 1, n2 = 1.5, 
n = n2 >n1 = 1.5, and tan up = (n2 >n1) = 1.5 so that up = 56.31°. We now use Fresnel’s equations to find 
the reflected and transmitted amplitudes. For the perpendicular polarization, from Eq. (1.6.6a),

r# =
cos (56.31°) - 31.52 - sin2 (56.31°)41>2
cos (56.31°) + 31.52 - sin2 (56.31°)41>2 = -0.385

On the other hand, r// = 0. The reflectances R# = ( r# (2 = 0.148 and R// = ( r// (2 = 0 so that the  
reflected light has no parallel polarization in the plane of incidence. Notice the negative sign in r›, which 
indicates a phase change of p.

From Eqs. (1.6.6b) and (1.7.7b), the transmission coefficients are

t# =
2cos (56.31°)

cos (56.31°) + 31.52 - sin2 (56.31°)41>2 = 0.615

and

t// =
2(1.5) cos (56.31°)

(1.5)2 cos (56.31°) + 31.52 - sin2 (56.31°)41>2 = 0.667
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Notice that r// + nt// = 1 and r# + 1 = t#, as we expect. To find the transmittance for each polariza-
tion, we need the refraction angle ut. From Snell’s law, n1 sin ui = n2 sin ut, that is (1) sin (56.31°) = (1.5) sin ut, 
we find ut = 33.69°. Then, from Eq. (1.6.20),

T# = c (1.5) cos (33.69°)
(1) cos (56.31°)

d (0.615)2 = 0.852 and T// = c (1.5) cos (33.69°)
(1) cos (56.31°)

d (0.667)2 = 1

Clearly, light with polarization parallel to the plane of incidence has greater intensity. Note that 
R + T = 1 for both polarizations.

If we were to reflect light from a glass plate, keeping the angle of incidence at 56.3°, then the reflected 
light will be polarized with an electric field component perpendicular to the plane of incidence. The transmit-
ted light will have the field greater in the plane of incidence; that is, it will be partially polarized. By using 
a stack of glass plates one can increase the polarization of the transmitted light. (This type of pile-of-plates 
polarizer was invented by Dominique F. J. Arago in 1812.)

1.7 ANTIREFLECTION COATINGS AND DIELECTRIC MIRRORS

Fresnel equations are routinely used in a number of applications in optoelectronics to design and 
fabricate optical coatings, that is, thin films, to reduce reflections and glare, and also in various 
components such as dielectric mirrors and filters. Section 1.14 on thin films optics provides a 
good example of their application for thin film coatings; but in this section we consider two prac-
tical applications in optoelectronics: antireflection (AR) coatings and dielectric mirrors.

A. Antireflection Coatings on Photodetectors and Solar Cells

When light is incident on the surface of a semiconductor, it becomes partially reflected. Partial 
reflection is an important consideration in solar cells where transmitted light energy into the 
semiconductor device is converted to electrical energy. The refractive index of Si is about 3.5 
at wavelengths around 600–800 nm. Thus, the reflectance with n1(air) = 1 and n2(Si) ≈ 3.5 is

R = an1 - n2

n1 + n2
b2

= a1 - 3.5
1 + 3.5

b2

= 0.309

This means that 30% of the light is reflected and is not available for conversion to electri-
cal energy; a considerable reduction in the efficiency of the solar cell.

However, we can coat the surface of the semiconductor device with a thin layer of a dielec-
tric material, such as an a@Si1 - xNx:H (amorphous hydrogenated silicon nitride based on silicon 
nitride, Si3N4, and x is typically 0.4–0.6), that has an intermediate refractive index. Figure 1.23 

FIGURE 1.23 Illustration of how an antireflection (AR) 
coating reduces the reflected light intensity. The thickness d 
and the refractive index n2 of the antireflection coefficient 
are such that the waves A and B have a phase difference of p 
and hence interfere destructively. There is no reflection.
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illustrates how the thin dielectric coating, called an antireflection (AR) coating, reduces the 
reflected light intensity. In this case n1(air) = 1, n2(coating) ≈ 1.9, and n3(Si) = 3.5. Light is 
first incident on the air/coating surface and some of it becomes reflected and this reflected wave 
is shown as A in Figure 1.23. Wave A has experienced a 180° phase change on reflection as this 
is an external reflection. The wave that enters and travels in the coating then becomes reflected at 
the coating/semiconductor surface. This wave, which is shown as B in Figure 1.23, also suffers 
a 180° phase change since n3 7 n2. When wave B reaches A, it has suffered a total delay cor-
responding to traversing the thickness d of the coating twice. The phase difference is equivalent 
to kc(2d) in which kc = 2p>lc is the propagation constant in the coating and is given by 2p>lc, 
where lc is the wavelength in the coating. Since lc = l>n2, where l is the free-space wavelength, 
the phase difference ∆f between A and B is (2pn2>l) (2d). To reduce the reflected light, A and 
B must interfere destructively and this requires the phase difference to be p or odd-multiples of  
p, mp in which m = 1, 3, 5, c  is an odd-integer. Thus

 a2pn2

l
b2d = mp or d = m a l

4n2
b  (1.7.1)

Thus, the thickness of the coating must be odd multiples of the quarter wavelength in the 
coating and depends on the wavelength.

To obtain a good degree of destructive interference between waves A and B, the two ampli-
tudes must be comparable. (In fact, we have to consider multiple reflections as in Section 1.14, a 
subject of thin film optics) It turns out that we need n2 = (n1n3)

1>2. When n2 = (n1n3)
1>2, then 

the reflection coefficient between the air and coating is equal to that between the coating and 
the semiconductor. In this case we would need (3.5)1>2 or 1.87. Thus, a@Si1 - xNx:H is a good 
choice as an AR coating material on Si solar cells. Its refractive index can also be modified 
in thin film deposition by changing its composition x. Taking the wavelength to be 600 nm, 
d = (600 nm)> 34(1.9)4 = 79.0 nm or odd-multiples of d.

Once Eq. (1.7.1) is satisfied for an AR coating, it is not difficult to calculate the minimum 
reflectance obtainable from such a coating. However, we need to consider all reflected waves 
arising from multiple reflections in the thin film, such as C and D and so on, and we need to 
properly account for the magnitude of the field by multiplying the field with the right reflection 
coefficient at each reflection, and with the right transmission coefficient at each transmission. 
We add all the reflected fields, A + B + C + D + c, and then square the total reflected field 
for the intensity. Once we have done all that, the minimum reflectance Rmin is given by

 R min = an2
2 - n1n3

n2
2 + n1n3

b2

 (1.7.2)

Clearly, the best choice is for n2 = (n1n3)
1>2; recall that Rmin is only minimum at one wavelength 

that satisfies Eq. (1.7.1).

EXAMPLE 1.7.1  Antireflection coating on a photodetector

Consider an InGaAs photodetector for use at a wavelength of 1310 nm in optical communications. The re-
fractive index of doped InGaAs that is used in the detector at 1310 nm is 3.61. What is the reflectance from 
its surface without an AR coating? What would be the ideal refractive index for an AR coating on InGaAs? 
What should be thickness of an AR coating that has a  refractive index of 1.85. What is its reflectance?

Antireflec-
tion coating

Minimum 
and 
maximum 
reflectance
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Solution
We use n1 = 1 for air, n2 for the antireflection coating and n3 = 3.61 for InGaAs,

Without an AR coating, the reflectance is

R = 3(n1 - n3)>(n1 + n3)42 = 3(1 - 3.61)>(1 + 3.61)42 = 0.32 or 32,

The ideal AR coating would satisfy Eq. (1.7.1) and would have n2 = (n1n3)
1>2 = 1.90.

From Eq. (1.7.1), the thickness of the AR layer should be

d = l>(4n2) = (1310 nm)> 34(1.85)4 = 177 nm

From Eq. (1.7.2), the minimum reflectance with the AR coating is

R min = a1.852 - (1)(3.61)

1.852 + (1)(3.61)
b2

= 7.1 * 10-4, or 0.07, , very small

B. Dielectric Mirrors and Bragg Reflectors

A dielectric mirror consists of a stack of dielectric layers of alternating refractive indices as 
schematically illustrated in Figure 1.24 (a), in which n1 is greater than n2. It is customary to 
write n1 = nH(high) and n2 - nL(low) to represent the nHnL stack shown in the figure. The 
thickness of each layer is a quarter of wavelength or llayer>4 in which llayer is the wavelength of 
light in that layer, or lo>n where lo is the free-space wavelength at which the mirror is required 
to reflect the incident light and n is the refractive index of the layer. Reflected waves from the 
interfaces interfere constructively and give rise to a substantial reflected light over a band of 
wavelengths centered around lo as shown in Figure 1.24 (b). If there are sufficient numbers of 
layers, the reflectance can approach unity at the wavelength lo. Since n1 (high) and n2 (low) lay-
ers are used in pairs, the total number of such pairs of layers, or double layers, is denoted as N; 
as N increases, the reflectance also increases. The layers are coated, by vacuum deposition tech-
niques, on a suitable substrate. The dielectric mirror illustrated in Figure 1.24 (a) is also known 
as a quarter-wave dielectric stack. Figure 1.24 (b) shows the typical reflectance vs. wavelength 
behavior of three dielectric mirrors with different n1 to n2 ratios and N values. The mirror has 
been designed to reflect at 1.55 om.

The reflection coefficient r12 for light in layer 1 being reflected at the 1-2 boundary, 
from Eq. (1.6.9), is r12 = (n1 - n2)>(n1 + n2) and is a positive number indicating no phase 
change. The reflection coefficient for light in layer 2 being reflected at the 2-1 boundary is 
r21 = (n2 - n1)>(n2 + n1), which is –r12 or negative, indicating a p phase change. Thus 
the reflection coefficient alternates in sign through the mirror. Consider two arbitrary waves,  
B and C, which are reflected at two consecutive interfaces. The two waves are therefore already 
out of phase by p due to reflections at the different boundaries. Further, wave B travels an 
 additional distance that is twice (l2>4) (the thickness of layer d2) before reaching wave B and 
therefore  experiences a phase change equivalent to 2(l2>4) or l2>2, that is p. The phase dif-
ference  between B and C is then p + p or 2p. Thus, waves B and C are in phase and interfere 
constructively. We can similarly show that waves C and D also interfere constructively and so 
on, so that all reflected waves from the consecutive boundaries interfere constructively. After 
several layers (depending on the n1>n2 ratio) the transmitted intensity will be very small and the 
reflected light intensity will be close to unity as indicated in Figure 1.24 (b). These dielectric 
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mirrors are widely used in photonics, for example, in solid state lasers such as the vertical cavity 
surface emitting laser diode. Since the dielectric mirror has a periodic variation in the refractive 
index (the period being d1 + d2), similar to a diffraction grating, it is sometimes referred to as a 
Bragg  reflector.24 It is left as an exercise to show that if we interchange the high and low layers, 
n1 = nL and n2 = nH, we obtain the same result.

As shown in Figure 1.24 (b), with sufficient number of double layers, the reflectance is 
almost unity over a band of wavelengths, ∆l. Conversely, the transmittance vanishes over the 
same wavelength range ∆l. This wavelength range in which the transmittance vanishes is called 
reflectance bandwidth; or the stop band for the transmitted light. As discussed in Section 1.17, 
the dielectric mirror in Figure 1.24 (a) is a one-dimensional photonic crystal in which there is a 
certain stop band within which there can be no propagation of waves along the z axis within the 
multilayer dielectric structure in Figure 1.24 (a).

FIGURE 1.24 (a) Schematic illustration of the principle of the dielectric mirror with many high and low  
refrac tive index layers. Reflected waves A, B, C, D, and so on all interfere constructively if the layer thicknesses d1 
and d2 are a quarter of a wavelength within the layer, that is d1 = l>4n1 and d2 = l>4n2, where l is the free-space  
wavelength. The dielectric mirror is assumed to be coated on a substrate with an index n3. (b) The reflectance  
of three different dielectric mirrors that have N = 10, n1>n2 = 2.35>1.46; N = 10, n1>n2 = 1.95>1.46; N = 6,  
n1>n2 = 1.95>1.46, n3 = 1.52. (Note: n(TiO2) = 2.35, n(Si3N4) = 1.95, n(SiO2) = 1.46.)

24 As we will see later, a periodic variation in the refractive index is actually a diffraction grating and is able to diffract or 
reflect a wave in a certain direction if the periodicity is right. The dielectric mirror is also called a one-dimensional Bragg 
grating structure. It is also a one-dimensional photonic crystal for large N.
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There are two general observations from the reflectance spectra in Figure 1.24 (b). The 
reflectance R increases with N, the number of double layers used. R also increases with the 
 refractive index ratio n1>n2; or put differently, with the index contrast. For a large number of 
layers, the bandwidth ∆l of the dielectric mirror increases with the index contrast. The maximum 
reflectance RN for N pairs of layers is given by

 RN = c n1
2N - (n0>n3)n2

2N

n1
2N + (n0>n3)n2

2N d 2

 (1.7.3)

The bandwidth ∆l when 2N is large (for near-unity reflectance) is given by

 
∆l

lo
 ≈ (4>p) arcsin an1 - n2

n1 + n2
b  (1.7.4)

which increases with the refractive index contrast as apparent from Figure 1.24 (b). If we inter-
change the low-high layers so that the high index layer is on the air side, there is very little change 
in the reflectance or the bandwidth in a highly reflecting dielectric mirror.

EXAMPLE 1.7.2  Dielectric mirror

Consider a dielectric mirror that has quarter wave layers consisting of Ta2O5 with nH = 1.78 and SiO2 with 
nL = 1.55 both at 850 nm, the central wavelength at which the mirror reflects light. Suppose the substrate 
is Pyrex glass with an index ns = 1.47 and the outside medium is air with n0 = 1. Calculate the maximum 
reflectance of the mirror when the number N of double layers is 4 and 12. What would happen if you use 
TiO2 with nH = 2.49, instead of Ta2O5? What is the bandwidth for these two dielectric stacks when they 
are highly reflecting (with many pairs of layers)? Suppose we use a Si wafer as the substrate, what happens 
to the maximum reflectance?

Solution
We use n0 = 1 for air, n1 = nH = 1.78, n2 = nL = 1.55, n3 = ns = 1.47, N = 4 in Eq. (1.7.3). Thus, for 
four pairs of layers, the maximum reflectance R4 is

R4 = c (1.78)2(4) - (1>1.47)(1.55)2(4)

(1.78)2(4) + (1>1.47)(1.55)2(4) d 2

= 0.40 or 40,

If we repeat the calculation for 12 pairs of layers, we will find R12 = 90.6, .

Maximum 
reflectance, 

dielectric 
mirror

Reflectance 
bandwidth

Various dielectric mirrors, which are quarter 
wave dielectric stacks on Pyrex or Zerodur 
 substrates. (Courtesy of Newport.)



� ���� t� "CTPSQUJPO�PG�-JHIU�BOE�$PNQMFY�3FGSBDUJWF�*OEFY 59

If we use TiO2 with n1 = nH = 2.49, we would find R4 = 94.0,  and R12 = 100,  (to two decimal 
places). Obviously the refractive index contrast is important; with the TiO2-SiO2 stack we only need four 
double layers to get roughly the same reflectance as from 12 pairs of layers of Ta2O5-SiO2. If we  interchange 
nH and nL in the 12-pair stack, that is, n1 = nL and n2 = nH, the Ta2O5-SiO2 reflectance falls to 80.8% but 
the TiO2-SiO2 stack is unaffected since it is already reflecting nearly all the light.

We can only compare bandwidths ∆l for “infinite” stacks (those with R ≈ 100, ). For the TiO2-SiO2 
stack, Eq. (1.7.4) gives

∆l ≈ lo(4>p) arcsin an2 - n1

n2 + n1
b = (850 nm)(4>p) arcsin a2.49 - 1.55

2.49 + 1.55
b = 254 nm

On the other hand, for the Ta2O5-SiO2 infinite stack, we get ∆l = 74.8 nm. As expected, ∆l is 
 narrower for the smaller contrast stack.

If we change the substrate to a silicon wafer with n3 = ns = 3.50, we would find that the Ta2O5-SiO2 
4-pair stack gives a reflectance of 68.5%, higher than before because the large index changes from nL to ns at 
the substrate interface provides further reflections.

1.8 ABSORPTION OF LIGHT AND COMPLEX REFRACTIVE INDEX

Generally when light propagates through a material it becomes attenuated in the direction of 
propagation as illustrated in Figure 1.25. We distinguish between absorption and scattering both 
of which gives rise to a loss of intensity in the regular direction of propagation. In absorption, 
the loss in the power in the propagating electromagnetic wave is due to the conversion of light 
energy to other forms of energy; for example, lattice vibrations (heat) during the polarization of 
the molecules of the medium or during the local vibrations of impurity ions driven by the optical 
field. The excitation of electrons from the valence band to the conduction band, or from impuri-
ties to the conduction band, in insulators and semiconductors would also absorb energy from the 
propagating radiation. Further, free electrons inside a medium with a finite conductivity can be 
drifted by the optical field in the radiation. As these electrons become scattered by lattice vibra-
tions (or impurities) they will pass the energy they have acquired from the EM wave to lattice 
vibrations. There are other examples as well. In all cases, some of energy from the propagating 
light wave is absorbed and converted to other forms of energy.

On the other hand, scattering is a process by which the energy from a propagating EM wave 
is redirected as secondary EM waves in various directions away from the original direction of propa-
gation. (This is discussed later in this chapter) The attenuation coefficient a is defined as the 
fractional decrease in the irradiance I of a wave per unit distance along the direction of propagation z

 a = - dI
Idz

 (1.8.1)
Definition 
of atten-
uation 
coefficient

FIGURE 1.25 Attenuation of a 
traveling wave in a medium results  
in the decay of its amplitude.
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When the irradiance decreases, dI>dz is negative, and the attenuation coefficient is a positive 
 number. If the attenuation of the wave is due to absorption only, then a is the absorption coefficient.

It is instructive to consider what happens when a monochromatic light wave such as

 E = Eo exp j (vt - kz) (1.8.2)

is propagating in a dielectric medium. The electric field E in Eq. (1.8.2) is either parallel to x or y 
since propagation is along z. As the wave travels through the medium, the molecules become 
polarized. This polarization effect is represented by the relative permittivity er of the medium. 
If there were no losses in the polarization process, then the relative permittivity er would be 
a real number and the corresponding refractive index n = er

1>2 would also be a real number. 
However, we know that there are always some losses in all polarization processes. For example, 
when the ions of an ionic crystal are displaced from their equilibrium positions by an alternat-
ing electric field and made to oscillate, some of the energy from the electric field is coupled 
and converted to lattice vibrations (called phonons). These losses are generally accounted 
by describing the whole medium in terms of a complex relative permittivity (or dielectric  
constant) er, that is,

 er = er
= - jer

== (1.8.3)

where the real part er
= determines the polarization of the medium with losses ignored and the 

imaginary part e″r  describes the losses in the medium.25 For a lossless medium, obviously 
er = er

=. The loss e″r  depends on the frequency of the wave and usually peaks at certain natural 
(resonant) frequencies involved in the absorption process.

An EM wave that is traveling in a medium and experiencing attenuation due to absorption 
can be generally described by a complex propagation constant k, that is,

 k = k= - jk″ (1.8.4)

where k′ and k″ are the real and imaginary parts. If we put Eq. (1.8.4) into Eq. (1.8.2) we will 
find the following:

 E = Eo exp (-k″z) exp j(vt - k′z) (1.8.5)

The amplitude decays exponentially while the wave propagates along z. The real k′ part of 
the complex propagation constant (wave vector) describes the propagation characteristics (e.g., 
phase velocity v = v>k=). The imaginary k″ part describes the rate of attenuation along z. The 
irradiance I at any point along z is

I ∝ ( E (2 ∝ exp (-2k″z)

so that the rate of change in the irradiance with distance is

 dI>dz = -2k″I (1.8.6)

where the negative sign represents attenuation. Clearly a = 2k″

Lossless 
propagation

Complex 
dielectric 
constant

Complex 
propagation 

constant

Attenuated 
propagation

Imaginary 
part k′

25 See, for example, S. O. Kasap, Principles of Electronic Materials and Devices, 3rd Edition (McGraw-Hill, 2006), Ch. 7. 
Further, some books use er = er

= + jer
== instead of Eq. (1.8.3), with a positive imaginary part, but the latter normally refers 

to an applied field that has a time dependence of the form exp(- jvt).
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Suppose that ko is the propagation constant in vacuum. This is a real quantity as a plane 
wave suffers no loss in free space. The complex refractive index N with a real part n and imagi-
nary part K is defined as the ratio of the complex propagation constant in a medium to propaga-
tion constant in free space.

 N = n - jK = k>ko = (1>ko)3k= - jk″4  (1.8.7)

that is,

 n = k=>ko and K = k″>ko

The real part n is simply and generally called the refractive index and K is called the 
 extinction coefficient. In the absence of attenuation

k″ = 0, k = k= and N = n = k>ko = k=>ko

We know that in the absence of loss, the relationship between the refractive index n and 
the relative permittivity er is n = er

1>2. This relationship is also valid in the presence of loss 
 except that we must use a complex refractive index and complex relative permittivity, that is

 N = n - jK = 1er = 1e′r - je″r  (1.8.8)

By squaring both sides we can relate n and K directly to er
= and e″r. The final result is

 n2 - K2 = er
= and 2nK = e″r  (1.8.9)

Optical properties of materials are typically reported either by showing the frequency 
 dependences of n and K or e=r and e″r. Clearly we can use Eq. (1.8.9) to obtain one set of properties 
from the other.

Figure 1.26 shows the real (n) and imaginary (K ) parts of the complex refractive index of 
CdTe as a function of wavelength in the infrared region to highlight their behavior around a reso-
nance absorption phenomenon, when the energy transfer is maximum from the EM wave to the 
material. Both ionic and electronic polarizations contribute to n (≈ 3.3) at low frequencies whereas 
only electronic polarization contributes to n (≈ 2.6) at high frequencies. The extinction coefficient 
peaks at about 72 om when the EM wave oscillations are efficiently coupled to the lattice vibrations, 

Complex 
refractive 
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Complex 
refractive 
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Complex 
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FIGURE 1.26 Optical properties 
of CdTe as a function of wavelength 
in the infrared region.
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that is, the vibrations of chains of Cd2+ and Te2- ions in the crystal,26 so that energy is passed from 
the EM wave to these lattice vibrations. This type of absorption in which energy is passed to lattice 
vibrations is called lattice or Reststrahlen absorption. Notice that K has a clear peak whereas  
n shows a response that has a maximum, a minimum, and an inflection point (an S-like shape).

If we know the frequency dependence of the real part e=r of the relative permittivity of a mate-
rial, we can also determine the frequency dependence of the imaginary part e″r; and vice versa. This 
may seem remarkable but it is true provided that we know the frequency dependence of either the 
real or imaginary part over as wide a range of frequencies as possible (ideally from dc to infinity) 
and the material is linear, that is, it has a relative permittivity that is independent of the applied 
field; the polarization response must be linearly proportional to the applied field.27 The relation-
ships that relate the real and imaginary parts of the relative permittivity are called Kramers-Kronig 
relations, which involve integral transformations. If e=r(v) and e″r(v) represent the frequency  
dependences of the real and imaginary parts, then one can be determined from the other. Similarly, 
if we know the wavelength dependence of n (or K), over as a wide wavelength range as possible, 
we can determine the wavelength dependence of K (or n) using Kramers-Kronig relations for n-K.

It is instructive to mention that the reflection and transmission coefficients that we derived 
above were based in using a real refractive index, that is neglecting losses. We can still use the 
reflection and transmission coefficients if we simply use the complex refractive index N instead 
of n. For example, consider a light wave traveling in free space incident on a material at normal 
incidence (ui = 90°). The reflection coefficient is now

 r =
1 - n + jK

1 + n - jK
 (1.8.10)

The reflectance is then

 R = ` n - jK - 1
n - jK + 1

` 2 =
(n - 1)2 + K2

(n + 1)2 + K2 (1.8.11)

which reduce to the usual forms when the extinction coefficient K = 0.
The optical properties n and K can be determined by measuring the reflectance from the surface 

of a material as a function of polarization and the angle of incidence (based on Fresnel’s equations).

Reflection 
coefficient

Reflectance

26 In physics, these would be optical phonons. The EM wave would be interacting with optical phonons, and passing its 
energy onto these phonons.
27 In addition, the material system should be passive—contain no sources of energy.

EXAMPLE 1.8.1  Complex refractive index of InP

An InP crystal has a refractive index (real part) n of 3.549 and an extinction coefficient K of 0.302 at a 
wavelength of 620 nm (photon energy of 2 eV). Calculate the absorption coefficient a of InP at this wave-
length and the reflectance of the air–InP crystal surface.

Solution
The absorption coefficient is

a = 2k″ = 2k oK = 23(2p)>(620 * 10-9 m)4(0.302) = 6.1 * 106 m-1
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The reflectance R is given by

R =
(n - 1)2 + K2

(n + 1)2 + K2 =
(3.549 - 1)2 + (0.302)2

(3.549 + 1)2 + (0.302)2 = 0.317 or 31.7,

EXAMPLE 1.8.2  Reflectance of CdTe around resonance absorption

CdTe is also an optical material used in various applications such as lenses, wedges, prisms, beam splitters, 
antireflection coatings, and optical windows operating typically in the infrared region up to 25 om. It is 
used as an optical material for low power CO2 laser applications. Figure 1.26 shows the infrared refractive 
index n and the extinction coefficient K of CdTe. Calculate the  absorption coefficient a and the reflectance 
R of CdTe at the Reststrahlen peak, and also at 50 om and at 100 om. What is your conclusion?

Solution
At the Reststrahlen peak, l ≈ 70 om, K ≈ 6, and n ≈ 4, so that the corresponding free-space propaga-
tion constant is

ko = 2p>l = 2p>(70 * 10-6 m) = 9.0 * 104 m-1

The absorption coefficient a is 2k> as in Eq. (1.8.6) so that

a = 2k″ = 2koK = 2(9.0 * 104 m-1)(6) = 1.08 * 106 m-1

which corresponds to an absorption depth 1>a of about 0.93 om. The reflectance is

R =
(n - 1)2 + K2

(n + 1)2 + K2 =
(4 - 1)2 + 62

(4 + 1)2 + 62 = 0.74 or 74 ,

At l = 50 om, we first read K ≈ 0.02, and n ≈ 2 from Figure 1.26. Repeating the above calcula-
tions we get a ≈ 5.08 * 103 m-1, and R = 0.11 or 11%. There is a sharp increase in the reflectance from 
11% to 72% as we approach the Reststrahlen peak.

At l = 100 om, we first read K ≈ 0.06, and n ≈ 3.5 from Figure 1.26. Repeating the above 
calculations, we find a = 7.5 * 103 m-1, and R = 0.31 or 31%, which is again smaller than the peak 
 reflectance. R is maximum around the Reststrahlen peak. Those materials that strongly absorb light at a  
given wavelength inside the bulk of the sample will also strongly reflect light at the same wavelength when 
that light is incident on the surface of the sample.

1.9 TEMPORAL AND SPATIAL COHERENCE

When we represent a traveling EM wave by a pure sinusoidal wave, for example by

 Ex = Eo sin (vot - koz) (1.9.1)

with a well-defined angular frequency vo = 2pyo and a propagation constant ko, we are  
assuming that the wave extends infinitely over all space and exists at all times as illustrated in 
Figure 1.27 (a) inasmuch as a sine function extends periodically over all values of its argument. 
Such a sine wave is perfectly coherent because all points on the wave are predictable. Perfect  
coherence is therefore understood to mean that we can predict the phase of any portion of the wave 
from any other portion of the wave. Temporal coherence measures the extent to which two points, 

A sinusoidal 
wave
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such as P and Q, separated in time at a given location in space can be correlated; that is, one can be 
reliably predicted from the other. At a given location, for a pure sine wave as in Figure 1.27 (a), any 
two points such as P and Q separated by any time interval are always correlated because we can 
predict the phase of one (Q) from the phase of the other (P) for any temporal separation.

Any time-dependent arbitrary function f(t) can be represented by a sum of pure sinusoidal 
waves with varying frequencies, amplitudes, and phases. The spectrum of a function f(t) represents 
the amplitudes of various sinusoidal oscillations that constitute the function. All these pure sine 
waves are added, with the right amplitude and phase, to make up f(t). Mathematically, the spectrum 
of f(t) is found by taking the Fourier transform of f(t).28 We need only one sinusoidal wave at a well-
defined frequency yo = vo>2p to make up Eq. (1.9.1) as illustrated in Figure 1.27 (a).

A pure sine wave is an idealization far from reality and in practice a wave can exist only over 
a finite time duration ∆t, which corresponds to a finite wave train of length l = c∆t as  illustrated 
in Figure 1.27 (b). This duration ∆t may be the result of the radiation emission process, modula-
tion of the output from a laser, or some other process (indeed, in practice, the amplitude will not 
be constant over ∆t). It is clear that we can only correlate points in the wave train within the dura-
tion or over the spatial extent l = c∆t. This wave train has a coherence time ∆t and a coherence 
length l = c∆t. Since it is not a perfect sine wave, it contains a number of different frequencies in 
its spectrum. A proper calculation shows that most of the significant frequencies that constitute this 
finite wave train lie, as expected, centered around yo over a range ∆y as shown in Figure 1.27 (b). The 
spread ∆y is the spectral width of the wave train and depends on the temporal coherence length ∆t. 
In this particular case of a truncated sinusoidal wave, ∆y = 2>∆t.

In general, the radiation will not be a perfect truncated sine wave, and the exact relationship 
between ∆y and ∆t will depend on the envelope function of the oscillations, which depends on the 

FIGURE 1.27 (a) A sine wave is perfectly coherent and contains a well-defined frequency yo. (b) A finite 
wave train lasts for a duration ∆t and has a length l. Its frequency spectrum extends over ∆y = 2>∆t. It has a 
coherence time ∆t and a coherence length l. (c) White light exhibits practically no coherence.

28 Fourier transformation of f(t) involves integrating f (t) exp (- j2pyt) over time and produces a function F(y) that 
 depends on y. F(y) is called the spectrum of f(t), and represents the pure harmonic waves (such as sine waves) that we 
need to reconstruct f(t). F(y) specifies the amplitudes and phases of these harmonics.
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way the oscillations were generated or emitted. For example, if one takes the envelope of the oscil-
lations to be Gaussian as shown in Figure 1.28 so that the wave is a Gaussian wave packet, then the 
Fourier transform will also be a Gaussian, centered at the oscillation frequency yo. The coherence 
length and coherence time then usually refer to some suitable widths of the respective Gaussian 
envelopes. If ∆y and ∆t are the full widths at half maximum (FWHM) spreads in the frequency and 
time domains, as in Figure 1.28, then approximately29

 ∆y ≈
1
∆t

 (1.9.2)

Equation (1.9.2) is usually known as the bandwidth theorem. Although a Gaussian wave packet 
is useful in representing finite-length light wave packets, it still needs to be suitably truncated to 
be able to represent more practical pulses since a Gaussian function extends over all times. This 
truncation does not limit the use of Eq. (1.9.2) since it is meant to apply approximately to any wave 
packet. Although the exact relationship in Eq. (1.9.2) depends on the shape of the wave packet, 
Eq. (1.9.2) is still widely used for approximately relating ∆y and ∆t for various wave packets.

Coherence and spectral width are therefore intimately linked. For example, the orange 
radiation at 589 nm (both D-lines together) emitted from a sodium lamp has spectral width 
∆y ≈ 5 * 1011 Hz. This means that its coherence time is ∆t ≈ 2 * 10-12 s or 2 ps, and its 
coherence length is 6 * 10-4 m or 0.60 mm. On the other hand, the red lasing emission from a 
He-Ne laser operating in multimode has a spectral width around 1 * 109 Hz, which corresponds 
to a coherence length of 30 cm. Furthermore, a continuous wave laser operating in a single mode 
will have a very narrow linewidth and the emitted radiation will perhaps have a coherence length 
of several hundred meters. Typically light waves from laser devices have substantial coherence 
lengths and are therefore widely used in wave-interference studies and applications such as inter-
ferometry, holography, and laser Doppler anemometry. Suppose that standing at one location in 
space we measure the field vs. time behavior shown in Figure 1.27 (c) in which the zero crossing 
of the signal occurs randomly. Given a point P on this “waveform,” we cannot predict the “phase” 
or the signal at any other point Q. Thus P and Q are not in any way correlated for any temporal sepa-
ration except Q coinciding with P (or being very close to it by an infinitesimally short time interval). 
There is no coherence in this “white” light signal and the signal essentially represents white noise; 

Spectral 
width and 
coherence 
time

29 FWHM is the width of the Gaussian function between the half maximum points (see Appendix A). The bandwidth 
theorem for a Gaussian wave train is actually ∆y∆t = 0.88 which can be derived by using Fourier transforms.

FIGURE 1.28 A Gaussian wave packet which has sinusoidal oscillations at a frequency yo and a Gaussian 
envelope (amplitude variation) over time. Its coherence time ∆t between half maximum points is ∆t. Its frequency 
spectrum is Gaussian, centered at the oscillation frequency yo, and extends over ∆y ≈ 1>∆t.
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its spectrum typically contains a wide range of frequencies. White light, like an ideal sine wave,  
is an idealization because it assumes all frequencies are present in the light beam. However, radia-
tion emitted from atoms typically has a central frequency and a certain spectral width, that is, a 
degree of coherence. The light in the real world lies between (a) and (c) in Figure 1.27.

Coherence between two waves is related to the extent of correlation between two waves. 
The waves A and B in Figure 1.29 (a) have the same frequency yo but they coincide only over the 
time interval ∆t and hence they can only give rise to interference phenomena over this time. They 
therefore have mutual temporal coherence over the time interval ∆t. This situation can arise, for 
example, when two identical wave trains each of coherence length l travel different optical paths. 
When they arrive at the destination, they can interfere only over a space portion c∆t. Since interfer-
ence phenomena can occur only for waves that have mutual coherence, interference experiments, 
such as Young’s double slit experiments, can be used to measure mutual coherence between waves.

Spatial coherence describes the extent of coherence between waves radiated from differ-
ent locations on a light source as shown in Figure 1.29 (b). If the waves emitted from locations  
P and Q on the source are in phase, then P and Q are spatially coherent. A spatially coherent 
source emits waves that are in phase over its entire emission surface. These waves, however, may 
have partial temporal coherence. A light beam emerging from a spatially coherent light source will 
hence exhibit spatial coherence across the beam cross-section, that is, the waves in the beam will 
be in phase over coherence length c∆t in which ∆t is the temporal coherence. A mostly incoher-
ent beam will contain waves that have very little correlation with each other. The incoherent beam 
in Figure 1.29 (c) contains waves (across the beam cross-section) whose phases change randomly 
at random times. (Note, however, that there may be a very short time interval over which there is 
a little bit of temporal coherence.) The quantitative analysis of coherence requires mathematical 
techniques based on correlation functions and may be found in more  advanced textbooks.

EXAMPLE 1.9.1  Coherence length of LED light

Light emitting diodes (LEDs) emit light that is seemingly of a well-defined color, or wavelength. However, 
they have much broader spectral widths than lasers. For example, a red LED emitting at 650 nm will have a 
spectral line width of 22 nm. Find the coherence time and length of the emitted radiation.

FIGURE 1.29 (a) Two 
waves can only interfere 
over the time interval ∆t. 
(b Spatial coherence involves 
comparing the coherence of 
waves emitted from different 
locations on the source. 
(c) An incoherent beam.
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FIGURE 1.30 Interference 
of two mutually coherent 
waves of the same frequency 
originating from sources O1 and 
O2. We examine the resultant 
at P. The resultant field E 
depends on the phase angle d 
which depends on the optical 
path difference k(r2 - r1).

Solution
The frequency and wavelength are related through y = c>l, so that differentiating the latter we can find 
the frequency width ∆y from the wavelength width ∆l

∆y

∆l
 ≈ ` dy

dl
` = ` - c

l2 `
so that

∆y = ∆l(c>l2) = (22 * 10-9 m)(3 * 108 m s-1)>(650 * 10-9 m)2

 = 1.562 * 1013 Hz

Thus, the coherence time is

∆t ≈ 1>∆y = 1>(1.562 * 1013 Hz) = 6.40 * 10-14 s or 64.0 fs

The coherence length is

lc = c∆t = 1.9 * 10-5 m or 19 microns

The above very short coherence length explains why LEDs are not used in interferometry.

1.10 SUPERPOSITION AND INTERFERENCE OF WAVES

Optical interference involves the superposition of two or more electromagnetic waves in which 
the electric field vectors are added; the fields add vectorially. The waves are assumed to be nearly 
monochromic, and have to have the same frequency. Two waves can only interfere if they  exhibit 
mutual temporal coherence as in Figure 1.29 (a) at a point in space where they interact. Indeed, 
 interference phenomena can be used to infer on the mutual coherence of the waves. When two 
waves with the same frequency with fields E1 and E2 interfere, they generate a resultant field E 
that corresponds to the superposition of individual fields, that is, E = E1 + E2. Consider 
two linearly polarized plane waves that originate from O1 and O2, as schematically shown in 
Figure 1.30, so that the field oscillations at some arbitrary point of interest P is given by

 E1 = Eo1 sin (vt - kr1 - f1) and E2 = Eo2 sin (vt - kr2 - f2) (1.10.1)

where r1 and r2 are the distances from O1 and O2 to P. These waves have the same v and k. Due 
to the process that generates the waves, there is a constant phase difference between them given 
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by f2 - f1. The resultant field at P will be the sum of these two waves, that is, E = E1 + E2. 
Its irradiance depends on the time average of E # E, that is, E # E, so that

E # E = (E1 + E2) # (E1 + E2) = E1
2 + E2

2 + 2E1
# E2

It is clear that the interference effect is in the 2E1
# E2 term. We can simply the above equation a 

little further by assuming Eo1 and Eo2 are parallel with magnitudes Eo1 and Eo2. Further, irradiance 
of the interfering waves are I1 = 1

2 ceoEo1
2  and I2 = 1

2 ceoEo2
2  so that the resultant irradiance is given 

by the sum of individual irradiances, I1 and I2, and has an additional third term I21, that is,

 I = I1 + I2 + 2(I1I2)
1>2 cos d (1.10.2)

where the last term is usually written as 2(I1I2)
1>2 cos d = I21, and d is a phase difference given by

 d = k(r2 - r1) + (f2 - f1) (1.10.3)

Since we are using nearly monochromatic waves, (f2 - f1) is constant, and the interfer-
ence therefore depends on the term k(r2 - r1), which represents the phase difference between 
the two waves as a result of the optical path difference between the waves. As we move point P, 
k(r2 - r1) will change because the optical path difference between the two waves will change; 
and the interference will therefore also change.

Suppose (f2 - f1) = 0, the two waves are emitted from a spatially coherent source. Then, 
if the path difference k(r2 - r1) is 0, 2p or a multiple of 2p, that is, 2mp, m = 0, {1, {2 c, 
then the interference intensity I will be maximum; such interference is defined as constructive 
interference. If the path difference k(r2 - r1) is p or 3p or an odd multiple of p, (2m + 1)p, 
then the waves will be 180° out of phase, and the interference intensity will be minimum; such 
interference is defined as destructive interference; both constructive and destructive intensity 
are shown in Figure 1.30. The maximum and minimum irradiances are given by

 Imax = I1 + I2 + 2(I1I2)
1>2 and Imin = I1 + I2 - 2(I1I2)

1>2 (1.10.4)

If the interfering beams have equal irradiances, then Imax = 4I1 and Imin = 0.
It is important to emphasize that we have considered the interference of two nearly mono-

chromatic waves that exhibited mutual temporal and spatial coherence. If the waves do not 
have any mutual coherence, that is, they are incoherent, then we cannot simply superimpose the 
electric fields as we did above, and the detector at P, which averages the measurement over its 
response time, will register an irradiance that is simply the sum of individual irradiances,

 I = I1 + I2 (1.10.5)

One of the most described interference experiments is Young’s two slit experiment that 
generates an interference fringe. In the modern version of this, a coherent beam of light, as 
available from a laser, is incident on two parallel slits S1 and S2. There is a screen far away 
from the slits on which the waves emanating from the slits interfere, as shown in Figure 1.31. 
The result is an interference pattern that is composed of light and dark regions, correspond-
ing to Imax and Imin. Since S1 and S2 are excited by the same wavefront, they emit coherent 
waves, and we can take f2 - f1 = 0. Consider a point P at a distance y on the screen. The 
phase difference d at P is then k(r2 - r1). As we move P along y, d = k(r2 - r1) changes 
and the irradiance on the screen goes through minima and maxima with distance y, following  
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Eq. (1.10.2), generating dark and light bands or fringes. The maxima occur when d = 2m p, 
and minima when d = (2m + 1)p, where m = 0, {1, {2. It is not difficult to show that, if 
the screen is far away, (r2 - r1) ≃  (s>L)y in which L is the distance from the slits to the screen, 
and s is the separation of the slits, so that d is proportional to y. Assuming equal  irradiances are 
emitted from S1 and S2, I1 + I2 = Io, the brightness on the screen changes with y periodically as

 I = Io51 + cos3(s>L)ky46  (1.10.6)

The resulting periodic interference pattern on the screen, as shown in Figure 1.31, is often 
called Young’s interference fringes. In a better treatment one needs to consider not only the 
 coherence length of the waves from S1 and S2, but also the diffraction that takes place at each slit 
due to the finite width of the slit. (See diffraction in Section 1.12.)

Interference

FIGURE 1.31 Young’s two slit experiment. Slits S1 and S2, separated by s are illuminated at the same time 
by coherent (nearly monochromatic) collimated laser beam. The irradiance at the screen shows bright and dark 
fringes due to the interference of waves emanating from the two slits. The screen is assumed to be far away at a 
distance L from the slits (L >> s).

Charles Fabry (1867–1945), left, and Alfred Perot (1863–1925), right, were the first French physicists to con-
struct an optical cavity for interferometry. (Perot: The Astrophysical Journal, Vol. 64, November 1926, p. 208, 
courtesy of the American Astronomical Society. Fabry: Courtesy of Library of Congress Prints and Photographs 
Division, Washington, DC 20540, USA.)

1.11 MULTIPLE INTERFERENCE AND OPTICAL RESONATORS
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An electrical resonator such as a parallel inductor-capacitor (LC) circuit allows only electrical 
oscillations at the resonant frequency fo (determined by L and C) within a narrow bandwidth 
around fo. Such an LC circuit thereby stores energy at the same frequency. We know that it also 
acts as a filter at the resonant frequency fo, which is how we tune in our favorite radio stations. 
An optical resonator is the optical counterpart of the electrical resonator, storing energy or fil-
tering light only at certain frequencies (wavelengths).

When two flat mirrors are perfectly aligned to be parallel as in Figure 1.32 (a) with free 
space between them, light wave reflections between the two mirrors M1 and M2 lead to construc-
tive and destructive interference of these waves within the cavity. Waves reflected from M1 trav-
eling toward the right interfere with waves reflected from M2 traveling toward the left. The result 
is a series of allowed stationary or standing EM waves in the cavity as in Figure 1.32 (b) (just 
like the stationary waves of a vibrating guitar string stretched between two fixed points). Since 
the electric field at the mirrors (assume metal coated) must be zero, we can only fit in an integer 
number m of half-wavelengths, l>2, into the cavity length L,

 m al
2
b = L; m = 1, 2, 3, c  (1.11.1)

Each particular allowed l, labeled as lm, satisfying Eq. (1.11.1) for a given m defines a cavity 
mode as depicted in Figure 1.32 (b). Inasmuch as light frequency y and wavelength l are related 
by y = c>l, the corresponding frequencies ym of these modes are the resonant frequencies of 
the cavity

 ym = m a c
2L

b = myf ; yf = c>(2L) (1.11.2)

in which yf is the lowest frequency corresponding to m = 1, the fundamental mode, and also 
the frequency separation of two neighboring modes, ∆ym = ym + 1 - ym = yf. It is known as the 
free spectral range. Figure 1.32 (c) illustrates schematically the intensity of the allowed modes 
as a function of frequency. If there are no losses from the cavity, that is, the mirrors are perfectly 
reflecting, then the peaks at frequencies ym defined by Eq. (1.11.2) would be sharp lines. If the 
mirrors are not perfectly reflecting so that some radiation escapes from the cavity, then the mode 
peaks are not as sharp and have a finite width, as indicated in Figure 1.32 (c). It is apparent that 
this simple optical cavity serves to “store” radiation energy only at certain frequencies and it 
is called a Fabry–Perot optical resonator. The optical resonator does not have to have two 

Fabry–Perot 
cavity modes

Cavity 
resonant 
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FIGURE 1.32 Schematic illustration of the Fabry–Perot optical cavity and its properties. (a) Reflected waves 
interfere. (b) Only standing EM waves, modes, of certain wavelengths are allowed in the cavity. (c) Intensity vs. 
frequency for various modes. R is the mirror reflectance and lower R means higher loss from the cavity.
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mirrors and free space between them as shown in Figure 1.32 (a). It can be a solid medium, such 
as a dielectric (e.g., glass) plate or a rod, whose ends are used to reflect light. The ends of the 
solid can even have thin film coatings, or dielectric mirrors, to enhance the reflection. Optical 
resonators are also called etalons.

Consider an arbitrary wave such as A traveling toward the right at some instant as shown in 
Figure 1.32 (a). After one round trip this wave would be again traveling toward the right but now 
as wave B, which has a phase difference and a different magnitude due to non-perfect reflections. 
If the mirrors M1 and M2 are identical with a reflection coefficient of magnitude r, then B has 
one round-trip phase difference of k(2L) and a magnitude r2 (two reflections) with respect to A. 
When A and B interfere, the result is

A + B = A + Ar2 exp (- j2kL)

Of course, just like A, B will continue on and will be reflected twice, and after one round trip 
it would be going toward the right again and we will now have three waves interfering and so on. 
After infinite round-trip reflections, the resultant field Ecavity is due to infinite such interferences.

 Ecavity = A + B + c
          = A + Ar2 exp (- j2kL) + Ar4 exp (- j4kL) + Ar6 exp (- j6kL) + c

The sum of this geometric series is easily evaluated as

Ecavity =
A

1 - r2 exp (- j2kL)

Once we know the field in the cavity we can calculate the intensity Icavity ∝ ( Ecavity (2. 
Further, we can use reflectance R = r2 to further simplify the expression. The final result after 
algebraic manipulation is

 Icavity =
Io

(1 - R)2 + 4R sin2 (kL)
 (1.11.3)

in which Io ∝ A2 is the original intensity. The intensity in the cavity is maximum Imax when-
ever sin2(kL) in the denominator of Eq. (1.11.3) is zero, which corresponds to (kL) being mp, 
in which m is an integer. Thus, the intensity vs. k, or equivalently, the intensity vs. frequency 
spectrum, peaks whenever kL = mp, as in Figure 1.32 (c). These peaks are located at k = km 
that satisfy kmL = mp, which leads directly to Eqs. (1.11.1) and (1.11.2) that were derived intui-
tively. For those resonant km values, Eq. (1.11.3) gives

 Imax =
Io

(1 - R)2 ; kmL = mp (1.11.4)

A smaller mirror reflectance R means more radiation loss from the cavity, which affects 
the intensity distribution in the cavity. We can show from Eq. (1.11.3) that smaller R values 
result in broader mode peaks and a smaller difference between the minimum and maximum 
intensity in the cavity as schematically illustrated in Figure 1.32 (c). The spectral width30 dym 
of the Fabry–Perot etalon is the full width at half maximum (FWHM) of an individual mode 

Cavity 
intensity

Maximum 
cavity 
intensity

30 The spectral width is also called the fringe width and m the fringe order.
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intensity, as defined in Figure 1.32 (c). It can be calculated in a straightforward fashion when 
R 7 0.6 from

 dym =
yf

F
 ; F =

pR1>2
1 - R

 (1.11.5)

in which F is called the finesse of the resonator, which increases as losses decrease (R increases). 
Large finesses lead to sharper mode peaks. Finesse is the ratio of mode separation (∆ym) to 
spectral width (dym).

We can also define a quality factor Q for the optical resonant cavity in a similar fashion to 
defining a Q-factor for an LC oscillator, that is,

 Quality factor, Q =
Resonant frequency

Spectral width
=

ym

dym
= mF (1.11.6)

The Q-factor is a measure of the frequency selectiveness of a resonator; the higher the Q-factor, 
the more selective the resonator, or narrower the spectral width. It is also a measure of the energy 
stored in the resonator per unit energy dissipated (due to losses such as from the reflecting sur-
faces) per cycle of oscillation.

The Fabry–Perot optical cavities are widely used in laser, interference filter, and spec-
troscopic applications. Consider a light beam that is incident on a Fabry–Perot cavity as in 
Figure 1.33. The optical cavity is formed by partially transmitting and reflecting plates. Part of 
the incident beam enters the cavity. We know that only special cavity modes are allowed to exist 
in the cavity since other wavelengths lead to destructive interference. Thus, if the incident beam 
has a wavelength corresponding to one of the cavity modes, it can sustain oscillations in the cavity 
and hence lead to a transmitted beam. The output light is a fraction of the light intensity in the 
cavity and is proportional to Eq. (1.11.3). Commercial interference filters are based on this prin-
ciple except that they typically use two cavities in series formed by dielectric mirrors (a stack 
of quarter wavelength layers); the structure is more complicated than in Figure 1.33. Further, 
adjusting the cavity length L provides a “tuning capability” to scan different wavelengths.

Equation (1.11.3) describes the intensity of the radiation in the cavity. The intensity of 
the transmitted radiation in Figure 1.33 can be calculated, as above, by considering that each 
time a wave is reflected at the right mirror, a portion of it is transmitted, and that these transmit-
ted waves can interfere only constructively to constitute a transmitted beam when kL = mp. 
Intuitively, if Iincident is the incident light intensity, then a fraction (1 - R) of this would enter 

Spectral 
width and 

Finesse

FIGURE 1.33 Transmitted light through a Fabry–Perot optical cavity.

Q-factor 
and 

Finesse
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the cavity to build up into Icavity in Eq. (1.11.3), and a fraction (1 - R) of Icavity would leave the 
cavity as the transmitted intensity Itansmitted. Thus,

 Itransmitted = Iincident 
(1 - R)2

(1 - R)2 + 4R sin2 (kL)
 (1.11.7)

which is again maximum just as for Icavity whenever kL = mp as shown in terms of wavelength 
in Figure 1.33.31

The ideas above can be readily extended to a medium with a refractive index n by using nk 
for k or l>n for l where k and l are the free-space propagation constant and wavelength, respec-
tively. Equations (1.11.1) and (1.11.2) become

 m a l

2n
b = L m = 1, 2, 3, c  (1.11.8)

 ym = m a c
2nL

b = myf ; yf = c>(2nL) (1.11.9)

Further, if the angle of incidence u at the etalon face is not normal, then we can resolve k to 
be along the cavity axis; that is use k cos u instead of k in the discussions above.

The two mirrors in Figure 1.32 (a) were assumed to have the same reflectance R. Suppose 
that R1 and R2 are the reflectances of the mirrors M1 and M2. Then, we can continue to use the 
above equations by using an average geometric reflectance, that is R = (R1R2)

1>2.

Transmitted 
mode 
intensities

Fabry–Perot 
cavity modes 
in a medium

Cavity 
resonant 
frequencies

31 The term on the right multiplying Iincident in Eq. (1.11.7) is usually known as the Airy function.

Left: Fused silica etalon. Right: 
A 10 GHz air spaced etalon with 
3 zerodur spacers. (Courtesy of 
Light Machinery Inc.)

EXAMPLE 1.11.1   Resonator modes and spectral width  
of a semiconductor Fabry–Perot cavity

Consider a Fabry–Perot optical cavity made of a semiconductor material with mirrors at its ends. (The mir-
rors have been obtained by coating the end of the semiconductor crystal.) The length of the semiconductor, 
and hence the cavity, is 250 om and mirrors at the ends have a reflectance of 0.90. Calculate the cavity 
mode nearest to the free-space wavelength of 1310 nm. Calculate the separation of the modes, finesse, 
spectral width of each mode in frequency and wavelength, and the Q-factor.
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Solution
The wavelength of radiation inside the cavity is l>n, where n is the refractive index of the  medium, which 
is 3.6, and l is the free-space wavelength. We need to use Eq. (1.11.8), so that the mode number for the 
wavelength 1310 nm is

m =
2nL
l

=
2(3.6)(250 * 10-6)

(1310 * 10-9)
= 1374.05

which must be an integer (1374) so that the actual mode wavelength is

lm =
2nL
m

=
2(3.6)(250 * 10-6)

(1374)
= 1310.04 nm

Thus, for all practical purposes the mode wavelength is 1310 nm.
The mode frequency is ym = c>lm so that the separation of the modes, from Eq. (1.11.9), is

∆ym = yf =
c

2nL
=

(3 * 108)

2(3.6)(250 * 10-6)
= 1.67 * 1011 Hz or 167 GHz

The finesse is

F =
pR1>2
1 - R

=
p0.901>2
1 - 0.90

= 29.8

and the spectral width of each mode is

dym =
yf

F
=

1.67 * 1011

29.8
= 5.59 * 109 Hz or 5.59 GHz

The mode spectral width dym will correspond to a certain spectral wavelength width dlm. The 
mode wavelength lm = 1310 nm corresponds to a mode frequency ym = c>lm = 2.29 * 1014 Hz. Since 
lm = c>ym, we can differentiate this expression to relate small changes in lm and ym,

dlm = da c
ym

b = ` - c

ym
2 ` dym =

(3 * 108)

(2.29 * 1014)2 (5.59 * 109) = 3.2 * 10-11 m or 0.032 nm

The Q-factor is

Q = mF = (1374)(29.8) = 4.1 * 104

An optical cavity like this is used in so-called Fabry–Perot semiconductor laser diodes, and will be 
discussed further in Chapter 4.

1.12 DIFFRACTION PRINCIPLES

A. Fraunhofer Diffraction

An important property of waves is that they exhibit diffraction effects; for example, sound 
waves are able to bend (deflect around) corners and a light beam can similarly “bend” around an 
 obstruction (though the bending may be very small). Figure 1.34 shows an example of a collimated 
light beam passing through a circular aperture (a circular opening in an opaque screen). The pass-
ing beam is found to be divergent and to exhibit an intensity pattern that has bright and dark rings, 
called Airy rings.32 The passing beam is said to be diffracted and its light intensity pattern is called 

32 Sir George Airy (1801–1892), Astronomer Royal of Britain from 1835 to1881.
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a diffraction pattern. Clearly, the light pattern of the diffracted beam does not correspond to the 
geometric shadow of the circular aperture. Diffraction phenomena are generally classified into two 
categories. In Fraunhofer diffraction,33 the incident light beam is a plane wave (a collimated light 
beam) and the observation or detection of the light intensity pattern (by placing a photographic 
screen, etc.) is done far away from the aperture so that the waves received also look like plane 
waves. Inserting a lens between the aperture and the photographic screen enables the screen to be 
closer to the aperture. In Fresnel diffraction, the incident light beam and the received light waves 
are not plane waves but have significant wavefront curvatures. Typically, the light source and the 
photographic screen are both close to the aperture so that the wavefronts are curved. Fraunhofer 
diffraction is by far the most important; and it is mathematically easier to treat.

Diffraction can be understood in terms of the interference of multiple waves emanating from 
the aperture in the obstruction.34 We will consider a plane wave incident on a one- dimensional 
slit of length a. According to the Huygens-Fresnel principle,35 every unobstructed point of a 
wavefront, at a given instant in time, serves as a source of spherical secondary waves (with the 
same frequency as that of the primary wave). The amplitude of the optical field at any point 
 beyond is the superposition of all these wavelets (considering their amplitudes and relative phases). 
Figures 1.35 (a) and (b) illustrates this point pictorially showing that, when the plane wave reaches 
the aperture, points in the aperture become sources of coherent spherical secondary waves. These 
spherical waves interfere to constitute the new wavefront (the new wavefront is the envelope of 
the wavefronts of these secondary waves). These spherical waves can interfere constructively not 
just in the forward direction as in (a) but also in other appropriate directions, as in (b), giving rise 
to the observed bright and dark patterns (rings for a circular aperture) on the observation screen.

We can divide the unobstructed width a of the aperture into a very large number N of 
 coherent “point sources” each of extent dy = a>N  (obviously dy is sufficiently small to be 
nearly a point), as in Figure 1.36 (a). Since the aperture a is illuminated uniformly by the plane 
wave, the strength (amplitude) of each point source would be proportional to a>N = dy. Each 
would be a source of spherical waves. In the forward direction (u = 0), they would all be in 
phase and constitute a forward wave, along the z-direction. But they can also be in phase at 
some angle u to the z-direction and hence give rise to a diffracted wave along this direction. 
We will evaluate the intensity of the received wave at a point on the screen as the sum of all 

33 Joseph von Fraunhofer (1787–1826) was a German physicist who also observed the various dark lines in Sun’s spec-
trum due to hydrogen absorption.

FIGURE 1.34 A collimated light beam incident 
on a small circular aperture becomes diffracted 
and its light intensity pattern after passing through 
the aperture is a diffraction pattern with circular 
bright rings (called Airy rings). If the screen is far 
away from the aperture, this would be a Fraunhofer 
diffraction pattern.

34 “No one has been able to define the difference between interference and diffraction satisfactorily” [R. P. Feynman,  
R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1963)].
35 Eugene Hecht, Optics, 4th Edition (Pearson Education, 2002), Ch. 10, p. 444.
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waves arriving from all point sources in the aperture. The screen is far away from the aperture 
so the waves arrive almost parallel at the screen (alternatively a lens can be used to focus the 
diffracted parallel rays to form the diffraction pattern).

Consider an arbitrary direction u, and consider the phase of the emitted wave (Y) from an 
arbitrary point source at y with respect to the wave (A) emitted from source at y = 0 as shown 
in Figure 1.36 (a). If k is the propagation constant, k = 2p>l, the wave Y is out of phase with 
respect to A by ky sin u. Thus the wave emitted from the point source at y has a field dE,

 dE ∝ (dy) exp (- jky sin u) (1.12.1)

All of these waves from point sources from y = 0 to y = a interfere at the screen at a 
point P that makes an angle u at the slit, and the resultant field at the screen at this point P is 

FIGURE 1.36 (a) The aperture has a finite width a along y, but it is very long along x so that it is a one-
dimensional slit. The aperture is divided into N number of point sources each occupying dy with amplitude 
proportional to dy since the slit is excited by a plane electromagnetic wave. (b) The intensity distribution in the 
received light at the screen far away from the aperture: the diffraction pattern. Note that the slit is very long  
along x so that there is no diffraction along this dimension. The incident wave illuminates the whole slit.  
(c) Typical diffraction pattern using a laser pointer on a single slit. The difference from the pattern in (b) is due to 
the finite size of the laser pointer beam along x that is smaller than the length of the slit.

FIGURE 1.35 (a) Huygens-Fresnel principle states that each point in the aperture becomes a source of 
secondary waves (spherical waves). The spherical wavefronts are separated by l. The new wavefront is the 
envelope of all these spherical wavefronts. (b) Another possible wavefront occurs at an angle u to the z-direction, 
which is a diffracted wave.
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their sum. Because the screen is far away, a point on the screen is at the same distance from 
anywhere in the aperture. This means that all the spherical waves from the aperture experience 
the same phase change and decrease in amplitude in reaching the screen. This simply scales dE 
at the screen by an amount that is the same for all waves coming from the aperture. Thus, the 
resultant field E(u) at point P at the screen is

 E(u) = CL
y = a

y = 0
dy exp (- jky sin u) (1.12.2)

in which C is a constant. Integrating Eq. (1.12.2) we get

E(u) =
Ce-j12 ka sin u a sin11

2 ka sin u2
1
2 ka sin u

The light intensity I at a point at P at the screen is proportional to ( Eu (2, and thus

 I(u) = £ C= a sin11
2 ka sin u2

1
2 ka sin u

 § 2

= I(0) sinc2 (b); b = 1
2 (ka sin u) (1.12.3)

in which C= is a constant and b is a convenient new variable representing u, and sinc (“sink”) is 
a function that is defined by sinc (b) = sin (b)>(b).

If we were to plot Eq. (1.12.3) as a function of u at the screen we would see the intensity (dif-
fraction) pattern schematically depicted in Figure 1.36 (b). First, observe that the pattern has bright 
and dark regions, corresponding to constructive and destructive interference of waves emanating 
from the aperture. Second, the center bright region is wider than the aperture width a, which mean 
that the transmitted beam must be diverging. The zero intensity occurs when, from Eq. (1.12.3),

 sin u =
ml

a
 ; m = {1, {2, c (1.12.4)

The angle uo for the first zero, corresponding to m = {1, is given by uo = {l>a, where 
we assumed that the divergence is small (usually the case) so that sin uo ≈  uo. Thus, the diver-
gence ∆u, the angular spread, of the diffracted beam is given by

 ∆u = 2uo ≈
2l
a

 (1.12.5)

A light wave at a wavelength 1300 nm, diffracted by a slit of width a = 100 om (about 
the thickness of this page), has a divergence ∆u of about 1.5°. From Figure 1.36 (b), it is appar-
ent that, using geometry, we can easily calculate the width c of the central bright region of the 
intensity pattern, given uo from Eq. (1.12.5) and the distance R of the screen from the aperture.

The diffraction patterns from two-dimensional apertures such as rectangular and circular 
apertures are more complicated to calculate but they use the same principle based on the mul-
tiple interference of waves emitted from all point sources in the aperture. The diffraction pattern 
of a rectangular aperture is shown in Figure 1.37. It involves the multiplication of two indi-
vidual single slit (sinc) functions, one slit of width a along the horizontal axis, and the other of 
width b along the vertical axis. (Why is the diffraction pattern wider along the horizontal axis?)

The diffraction pattern from a circular aperture, known as Airy rings, was shown in 
Figure 1.34, and can be roughly visualized by rotating the intensity pattern in Figure 1.36 (b) 

Single slit 
diffraction 
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Zero 
intensity 
points

Divergence 
from single 
slit of 
width a
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about the z-axis. We can, as we did for the single slit, sum all waves emanating from every point 
in the circular aperture, taking into account their relative phases when they arrive at the screen 
to obtain the actual intensity pattern at the screen. The result is that the diffraction pattern is a 
Bessel function of the first kind,36 and not a simply rotated sinc function. The central white spot 
is called the Airy disk; its radius corresponds to the radius of the first dark ring. We can still 
use Figures 1.36 (a) and (b) to imagine how diffraction occurs from a circular aperture by taking 
this as a cut through the aperture so that a is now the diameter of the aperture, denoted as D. The 
angular position uo of the first dark ring, as defined as in Figure 1.36 (b), is determined by the 
diameter D of the aperture and the wavelength l, and is given by

 sin uo = 1.22
l

D
 (1.12.6)

The divergence angle from the aperture center to the Airy disk circumference is 2uo. If R is 
the distance of the screen from the aperture, then the radius of the Airy disk, approximately b, can 
be calculated from the geometry in Figure 1.36 (b), which gives b>R = tan uo ≈ uo. If a lens is 
used to focus the diffracted light waves onto a screen, then R = f, focal length of the lens.

It is worth commenting on the Gaussian beam at this point. Suppose we now exam-
ine a Gaussian beam with a waist 2wo that is the same as the aperture size D. The far field 

Angular 
radius of 
Airy disk

FIGURE 1.37 The rectangular 
aperture of dimensions a * b 
on the left gives the diffraction 
pattern on the right (b is twice a).

36 Bessel functions are special mathematical functions, which can be looked up in mathematics handbooks. They are used 
in various engineering problems.

Diffraction pattern far away from a  
circular aperture.

Diffraction pattern far away from a square  
aperture.
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half- divergence angle u of this Gaussian beam would be u = (2/p)(l>D) or 0.637(l>D) as in 
Eq. (1.1.7). The Gaussian beam has a smaller divergence than the diffracted beam from a cir-
cular aperture. The difference is due the fact that each point in the circular aperture emits with 
the same intensity because the aperture is illuminated by a plane wave. If we were to change 
the emission intensity within the aperture to follow a Gaussian distribution, we would see a 
Gaussian beam as the “diffracted beam.” The Gaussian beam is a self-diffracted beam and has 
the smallest divergence for a given beam diameter.

EXAMPLE 1.12.1  Resolving power of imaging systems

Consider what happens when two neighboring point light sources are examined through an  imaging system 
with an aperture of diameter D (this may even be a lens). The two sources have an angular separation of ∆u 
at the aperture. The aperture produces a diffraction pattern of the sources S1 and S2, as shown in Figure 1.38. 
As the points get closer, their angular separation  becomes narrower and the diffraction patterns overlap more. 
According to the Rayleigh criterion, the two spots are just resolvable when the principal maximum of one 
diffraction pattern coincides with the minimum of the other, which is given by the condition

 sin (∆u min ) = 1.22 
l

D
 (1.12.7)

The human eye has a pupil diameter of about 2 mm. What would be the minimum angular separation 
of two points under a green light of 550 nm and their minimum separation if the two objects are 30 cm from 
the eye? The image will be a diffraction pattern in the eye, and is a result of waves in this medium. If the 
refractive index n ≈ 1.33 (water) in the eye, then Eq. (1.12.7) is

sin (∆umin) = 1.22 
l

nD
= 1.22 

(550 * 10-9 m)

(1.33)(2 * 10-3 m)

giving

∆umin = 0.0145°

Their minimum separation s would be

s = 2L tan (∆umin >2) = 2(300 mm) tan (0.0145°>2) = 0.076 mm = 76 om

which is about the thickness of a human hair (or this page).

Angular 
limit of 
resolution

FIGURE 1.38 Resolution of imaging systems is limited by diffraction effects. As points S1 and S2 get closer, 
eventually the Airy patterns overlap so much that the resolution is lost. The Rayleigh criterion allows the 
minimum angular separation of two of the point sources to be determined. (Schematic illustration inasmuch as 
the side lobes are actually much smaller than the center peak.)
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Image of two-point sources captured through a small circular aperture. (a) The two points are fully resolved since the dif-
fraction patterns of the two sources are sufficiently separated. (b) The two images are near the Rayleigh limit of resolution. 
(c) The first dark ring of one image passes through the center of the bright Airy disk of the other. (Approximate.)

FIGURE 1.39 (a) A diffraction grating with N slits in an opaque screen. Slit periodicity is d and slit width is a; 
a V d. (b) The diffracted light pattern. There are distinct, that is diffracted, beams in certain directions (schematic). 
(c) Diffraction pattern obtained by shining a beam from a red laser pointer onto a diffraction grating. The finite size 
of the laser beam results in the dot pattern. (The wavelength was 670 nm, red, and the grating has 200 lines per inch.)

B. Diffraction Grating

A diffraction grating in its simplest form is an optical device that has a periodic series of slits in an 
opaque screen as shown in Figure 1.39 (a). An incident beam of light is diffracted in certain well-
defined directions that depend on the wavelength l and the grating properties. Figure 1.39 (b) shows a 
typical intensity pattern in the diffracted beam for a finite number of slits. There are “strong beams 
of diffracted light” along certain directions (u) and these are labeled according to their occurrence: 
zero-order (center), first-order, either side of the zero-order, and so on. If there are an infinite num-
ber of slits then the diffracted beams have the same intensity. In reality, any periodic variation in 
the refractive index would serve as a diffraction grating and we will discuss other types later. As in 
Fraunhofer diffraction we will assume that the observation screen is far away, or that a lens is used 
to focus the diffracted parallel rays on to the screen (the lens in the observer’s eye does it naturally).

We will assume that the incident beam is a plane wave so that the slits become coherent 
(synchronous) sources. Suppose that the width a of each slit is much smaller than the separation 
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d of the slits as shown in Figure 1.39 (a). Waves emanating at an angle u from two neighbor-
ing slits are out of phase by an amount that corresponds to an optical path difference d sin u. 
Obviously, all such waves from pairs of slits will interfere constructively when this is a multiple 
of the whole wavelength

 d sin u = ml; m = 0, {1, {2, c (1.12.8)

which is the well-know grating equation, also known as the Bragg37 diffraction condition.  
The value of m defines the diffraction order; m = 0 being zero-order, m = {1 being first-order, 
etc. If the grating in Figure 1.39 (a) is in a medium of refractive index n, that is, the incident and 
diffracted beams are all in the same medium of index n, then we should use l>n for the wave-
length in Eq. (1.12.8), where l is the free-space wavelength, that is, d sin u = ml>n.

The problem of determining the actual intensity of the diffracted beam is more compli-
cated as it involves summing all such waves at the observer and, at the same time, including the 
diffraction effect of each individual narrow slit. With a smaller than d as in the Figure 1.39 (a), 
the amplitude of the diffracted beam is modulated by the diffraction amplitude of a single slit 
since the latter is spread substantially, as illustrated in Figure 1.39 (b). It is apparent that the dif-
fraction grating provides a means of deflecting an incoming light by an amount that depends on 
its wavelength—the reason for their use in spectroscopy.

The diffraction grating in Figure 1.40 (a) is a transmission grating. The incident and 
diffracted beams are on opposite sides of the grating. Typically, parallel thin grooves on a glass 
plate would serve as a transmission grating as in Figure 1.40 (a). A reflection grating has the 
incident beam and the diffracted beams on the same side of the device as in Figure 1.40 (b). 
The surface of the device has a periodic reflecting structure, easily formed by etching parallel 
grooves in a metal film, etc. The reflecting unetched surfaces serve as synchronous secondary 
sources that interfere along certain directions to give diffracted beams of zero-order, first-order, 
etc. Among transmission gratings, it is customary to distinguish between amplitude gratings in 
which the transmission amplitude is modulated, and so-called phase gratings where only the 
refractive index is modulated, without any losses.

Grating 
equation

37 William Lawrence Bragg (1890–1971), Australian-born British physicist, won the Nobel Prize with his father, William 
Henry Bragg, for his “famous equation” when he was only 25 years old.

FIGURE 1.40 (a) Ruled periodic parallel scratches on a glass serve as a transmission grating. (The glass plate is 
assumed to be very thin.) (b) A reflection grating. An incident light beam results in various “diffracted” beams. The 
zero-order diffracted beam is the normal reflected beam with an angle of reflection equal to the angle of incidence.
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When the incident beam is not normal to the diffraction grating, then Eq. (1.12.8) must be 
modified. If ui is the angle of incidence with respect to the normal to the grating, then the diffrac-
tion angle um for the m-th mode is given by

 d(sin um - sin ui) = ml; m = 0, {1, {2, c  (1.12.9)

The same equation can be used for transmission and reflection gratings provided that we 
define the angles ui and um as positive on either side of the normal as in Figure 1.40 (b).38 
Consider a grating with N slits. The slit width is a (very narrow), and d is the periodicity as  
before. The detector is at a distance L, far away from the grating. While the periodicity in the 
slits gives rise to the diffracted beams, the diffraction at each narrow slit defines the envelope of 
the diffracted intensities as shown in Figure 1.39 (b). If the incident plane wave is normal to the 
grating, the intensity distribution along y at the screen is given by

 I(y) = Io£ sin11
2 kya2

1
2 kya

§ 2£ sin11
2 Nkyd2

Nsin11
2 kyd2 § 2

 (1.12.10)

where ky is the scattering wave vector defined by ky = (2p>l)(y>L) = (2p>l)sin u, and Io is the 
maximum intensity along u = 0. The  second term represents the oscillations in the intensity due 
to interference from different slits. The first term is the envelope of the diffraction pattern, and is 
the diffraction pattern of a single slit. 

The resolvance or the resolving power R of a diffraction grating is its ability to be able 
to separate out adjacent wavelengths. If l2 - l1 = ∆l is the minimum wavelength separation 
that can be measured, as determined by the Rayleigh criterion (the maximum of the intensity 
distribution at l1 is at the first minimum of the intensity distribution at l2), and l is the average 
wavelength (1>2)(l1 + l2) in ∆l, then the resolving power is defined by

 R = l>∆l (1.12.11)

The separation ∆l is also called the spectral resolution. If N grooves on a grating are 
 illuminated and the order of diffraction is m, the theoretical resolving power is given simply by 
R = mN. The resolving power is also called the chromatic resolving power since it refers to 
the separation of wavelengths.

Diffraction gratings are widely used in spectroscopic applications because of their ability 
to provide light deflection that depends on the wavelength. In such applications, the undiffracted 
light that corresponds to the zero-order beam (Figure 1.40) is clearly not desirable because it 
wastes a portion of the incoming light intensity. Is it possible to shift this energy to a higher 
order? Robert William Wood (1910) was able to do so by ruling grooves on glass with a con-
trolled shape as in Figure 1.41 (a) where the surface is angled periodically with a spatial period d. 
The diffraction condition in Eq. (1.12.9) applies with respect to the normal to the grating plane, 
whereas the first-order reflection corresponds to reflection from the flat surface, which is at an 
angle g. Thus it is possible to “blaze” one of the higher orders (usually m = 1) by appropri-
ately choosing g. Most modern diffraction gratings are of this type. If the angle of incidence is 
ui with respect to the grating normal, then specular reflection occurs at an angle (g + ui) with 
respect to the face normal and (g + ui) + g with respect to the grating normal. This reflection at 
(g + ui) + g should occur at diffraction angle um so that

 2g = um - ui (1.12.12)

Grating 
equation

Grating 
diffraction 

pattern

Resolving 
power

Blazing 
angle

38 Some books use d(sin um + sin ui) = ml for a transmission grating but the angles become positive on the incidence 
side and negative on the transmitted side with respect to the normal. It is a matter of sign convention.
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EXAMPLE 1.12.2  A reflection grating

Consider a reflection grating with a period d that is 10 om as in Figure 1.42 (a). Find the diffracted beams if a 
collimated light wave of wavelength 1550 nm is incident on the grating at an angle of 45° to its normal. What 
should be the blazing angle g if we were to use a blazed grating with the same periodicity? What happens to 
the diffracted beams if the periodicity is reduced to 2 om?

Solution
If we put m = 0 in Eq. (1.12.9) we would find the zero-order diffraction, which is at an angle 45°, as ex-
pected, and shown in Figure 1.42 (a). The general Bragg diffraction condition is

 d(sin um - sin ui) = ml

so that

(10 om)(sin um - sin (45°) = (+1)(1.55 om)

FIGURE 1.41 (a) A blazed grating. Triangular grooves have been cut into the surface with a periodicity d. The 
side of a triangular groove makes an angle g to the plane of the diffraction angle. For normal incidence, the angle 
of diffraction must be 2g to place the specular reflection on the diffracted beam. (b) When the incident beam is not 
normal, the specular reflection will coincide with the diffracted beam when (g + ui) + g = um.

William Lawrence Bragg (1890–1971), 
Australian-born British physicist, won the 
Nobel Prize with his father, William Henry 
Bragg, for his “famous equation” when he was 
only 25 years old. (SSPL via Getty Images.)
“The important thing in science is not so much 
to obtain new facts as to discover new ways of 
thinking about them.”
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and

(10 om)(sin um - sin (45°) = (-1)(1.55 om)

Solving these two equations, we find um = 59.6° for m = 1, and um = 33.5° for m = -1.
Consider Figure 1.41 (b) in which the secular reflection from the grooved surface coincides with the 

mth order diffraction when 2g = um - ui. Thus

g = (1>2)(um - ui) = (1>2)(59.6° - 45°) = 7.3°

Suppose that we reduce d to 2 om. Recalculating the above we find um = -3.9° for m = -1 and imagi-
nary for m = +1. Further, for m = -2, there is a second-order diffraction beam at -57.4°. Both are 
shown in Figure 1.42 (b). It is left as an exercise to show that if we increase the angle of incidence, for 
example, ui = 85° on the first grating, the diffraction angle for m = -1 increases from 33.5° to 57.3° and 
the other diffraction peak (m = 1) disappears.

Additional Topics

1.13 INTERFEROMETERS

An interferometer is an optical instrument that uses the wave-interference phenomena to pro-
duce interference fringes (e.g., dark and bright bands or rings) which can be used to measure the 
wavelength of light, surface flatness, or small distances. A nearly monochromatic light wave is 
split into two coherent waves traveling two different paths, and then the two waves are brought 
together and made to interfere on a screen (or a detector array); the result is an interference 
pattern as in the Young’s fringes in Figure 1.31. In some interferometers, the intensity of the 
resultant interference is measured at one location, and this intensity is monitored due to changes 
in one of the optical path lengths. Even a small change in the optical path, distance * refractive 
index, nL, can cause a measurable shift in the diffraction pattern or a displacement in the fringes, 
which can be used to infer on nL. There are many types of interferometers.

The Fabry–Perot interferometer is a Fabry–Perot cavity–based interferometer that produces 
an interference ring pattern (bright and dark rings) when illuminated from a broad monochromatic 
light source as illustrated in Figure 1.43. The resonator consists of two parallel flat glass plates 
facing each other and separated by an adjustable spacer. A piezoelectric transducer can provide 
small changes in the spacing between the plates. The inside surface of the glass plates are coated 
to enhance reflections within the cavity. (Dielectric mirrors can also be used on the inner surfaces.) 

FIGURE 1.42 A light beam is incident at an angle 45° to the normal on a reflection grating. (a) The grating 
periodicity is 10 om. (b) The periodicity is 2 om.
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The light entering the cavity will experience multiple reflections inside the cavity. The transmitted 
waves A, B, C, etc., are focused by a lens onto a point P on a screen. If A, B, C, etc., are in phase then 
the point P will be a bright spot. Suppose that L is the separation of the plates, u is the angle at which 
refracted rays inside the cavity are propagating with respect to the normal, k = 2pn>l is the propa-
gation constant in the cavity (l is the free-space wavelength), and n is the refractive index of the 
medium inside the cavity. We can then show that the phase difference between A and B is 2kL cos u, 
which must be 2mp, where m is an integer, for constructive interference. Recall that for normal 
incidence this was 2kL. Thus, P is bright if

 2nLcos u = ml; m = 0, {1, c (1.13.1)

All such points with the same u lie on a circle about the etalon axis. It is apparent that the 
 interference pattern consists of dark and bright rings. The interference ring diameter depends on 
the wavelength and the optical separation nL (refractive index * distance) of the plates of the 
etalon. The interferometer can be used in spectroscopic applications such as the measurement of 
the source wavelength.

In Figure 1.44, showing a Mach–Zehnder interferometer, a coherent light beam is split by 
a beam splitter into two paths at O. These beams are then reflected by two mirrors M1 and M2 onto 
a second beam splitter where they are combined at C to give rise to an output light beam onto a de-
tector D. The resultant field at C depends on the phase difference between the waves traveling the 
paths OAC and OBC. We can easily monitor the changes in n or the length d of a sample by placing 
it into one of the paths, such as in OAC. If ko = 2p>l is the propagation constant in vacuum and 
k = 2pn>l is that in the sample, then the phase difference Φ between the weaves arriving at C is39

Φ = ko(OAC - d) + kd - koOBC

FIGURE 1.43 Fabry–Perot interferometer.

FIGURE 1.44 Mach–
Zehnder interferometer.

39 OAC stands for the distance from O to A to C.
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The change ∆Φ in the phase angle due changes in the sample would be

∆Φ = ∆(kd) =
2p
l

 ∆(nd)

Thus, the change in the detected signal represents the change in nd. On the other hand, if we 
can somehow modulate n or d, we have the means of modulating the intensity at the detector. 
The Mach–Zehnder modulators used in communications rely on changing n in a suitable crystal 
(such as lithium niobate) by the application of an electric field through the electro-optic effect as 
discussed later in the book.

1.14 THIN FILM OPTICS: MULTIPLE REFLECTIONS IN THIN FILMS

There is much interest in the reflection of light from, and transmission through, a thin film coating 
of a transparent material (called an optical coating) on a substrate such as a semiconductor crystal; 
or even on glass as in antireflection coated lenses. The simplest case is shown in Figure 1.45 
where light traveling in a medium of refractive index n1 is incident on a thin film coating of index 
n2 on a substrate of index n3. There are multiple reflections in the thin film, and the problem is al-
most identical to the Fabry–Perot optical cavity in which there are similar multiple interferences.

Suppose the thickness of the coating is d. For simplicity, we will assume normal incidence. 
The phase change in traversing the coating thickness d twice is f = 2 * (2p>l)n2d where l is 
the free-space wavelength. The wave has to be multiplied by exp (- jf) to account for this phase 
difference in crossing the thickness twice. The reflection and transmission coefficients for the 
present n1-n2-n3 system are given by,

 r1 = r12 =
n1 - n2

n1 + n2
= -r21, r2 = r23 =

n2 - n3

n2 + n3
 , (1.14.1a)

and

 t1 = t12 =
2n1

n1 + n2
 , t =1 = t21 =

2n2

n1 + n2
 , t2 = t23 =

2n2

n2 + n3
 (1.14.1b)

where

 1 - t1t =1 = r1
2 (1.14.1c)

The first reflected beam, A1 = A0 * r, the second is A2 = Ao * t1 * t =1 * r2 * e-jf, 
and so on.

FIGURE 1.45 Light traveling 
in a medium of refractive index 
n1 is incident on a thin film 
coating of index n2 on a substrate 
of index n3.
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The amplitude of the reflected beam is

Areflected = A1 + A2 + A3 + A4 + c
that is,

 Areflected>A0 = r1 + t1t =1r2e
-jf - t1t =1r1r2

2e-j2f + t1t =1r1
2r2

3e-j3f + c (1.14.2)

which is a geometric series. Using Eq. (1.14.1c), Eq. (1.14.2) can be conveniently summed to 
obtain the overall reflection coefficient r

 r =
r1 + r2e

-jf

1 + r1r2e
-jf (1.14.3)

Similarly, we can sum for the amplitude of the transmitted beam as

Ctransmitted = C1 + C2 + C3 + c
that is,

 Ctransmitted>A0 = t1t2e
-jf>2 - t1t2r1r2e

-j3f>2 + t1t2r1
2r2

2e-j5f>2 + c (1.14.4)

which is a geometric series that sums to

 t =
t1t2e

-jf>2
1 + r1r2e

-jf (1.14.5)

Equations (1.14.3) and (1.14.5) describe the reflected and transmitted waves. The reflec-
tance and transmittance are then

 R = ( r (2 T = (n3>n1) ( t (2 (1.14.6)

Figure 1.46 (a) shows R and T as a function of f for n1 6 n2 6 n3. Clearly, R is minimum, 
and T is maximum, whenever f = p * (odd number) or f = 2(2p>l)n2d = p(2m + 1), 
where m = 0, 1, 2, c The latter leads to

 d =
l

4n2
 (2m + 1); m = 0, 1, 2, c (1.14.7)

which is the thickness required to minimize the reflection, and maximize the transmission of 
light when n2 is intermediate between n1 and n3. The oscillations in R and T with f (e.g., as the 
wavelength is scanned) are sometime referred to as an interference fringes in wavelength.

Thin film 
reflection 
coefficient

Thin film 
transmission 
coefficient

Thin film 
reflectance 
and 
trans mittance 

Thickness 
for minimum 
reflection

FIGURE 1.46 (a) Reflectance R and transmittance T vs. f = 2n2d>l, for a thin film on a substrate where 
n1 = 1 (air), n2 = 2.5, n3 = 3.5, and n1 6 n2 6 n3. (b) R and T vs. f for a thin film on a substrate where 
n1 = 1 (air), n2 = 3.5, n3 = 2.5, and n2 7 n3 7 n1.
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Figure 1.46 (b) represents the reflectance and transmittance vs. f of light through a thin layer 
of high index material on a low index substrate where n1 6 n3 6 n2; for example, a semiconductor 
film on a glass substrate. Notice the difference between the two cases, especially the locations of the 
maxima and minima. (Why is there a difference?) 

The phase change f, of course, depends on three factors, d, n2, and l. The minimum 
and maximum reflectances in Figure 1.46 at those particular f values can be found by using  
Eqs. (1.14.3) and (1.14.7). For n1 6 n2 6 n3 as in Figure 1.46 (a)

 Rmin = an2
2 - n1n3

n2
2 + n1n3

b2

; Rmax = an3 - n1

n3 + n1
b2

 (1.14.8)

and the transmittance can be found from R + T = 1. When n1 6 n3 6 n2 then Rmin and Rmax 
equations are interchanged. While Rmax appears to be independent from n2, the index n2 is none-
theless still involved in determining maximum reflection inasmuch as R reaches Rmax when 
f = 2(2p>l)n2d = p(2m); when f = p * (even number).

In transmission spectra measurements, a spectrophotometer is used to record the transmit-
tance of a light beam as a function of wavelength through a sample. If the sample is a thin film 
on a substrate, there will be multiple reflections and interferences in the thin film, and the mea-
sured transmittance will exhibit maxima and minima as in Figure 1.46 as the wavelength (or f) 
is scanned. The locations of the maxima and minima, with the knowledge of the substrate index 
(n3), can be used to find d and n.

Minimum 
and 

maximum 
reflectance

EXAMPLE 1.14.1  Thin film optics

Consider a semiconductor device with n3 = 3.5 that has been coated with a transparent optical film 
(a  dielectric film) with n2 = 2.5, n1 = 1 (air). If the film thickness is 160 nm, find the minimum and maxi-
mum reflectances and transmittances and their corresponding wavelengths in the visible range. (Assume 
normal incidence.)

Solution
This case corresponds to Figure 1.46 (a). Minimum reflectance Rmin occurs at f = p or odd multiple of p, 
and maximum reflectance Rmax at f = 2p or an integer multiple of 2p. From Eq. (1.14.8) we have

Rmin = an2
2 - n1n3

n2
2 + n1n3

b2

= a2.52 - (1)(3.5)

2.52 + (1)(3.5)
b2

= 0.080 or 8.0,

and

 Rmax = an3 - n1

n3 + n1
b2

= a3.5 - 1
3.5 + 1

b2

= 0.31 or 31,

Corresponding transmittances are,

 Tmax = 1 - R min = 0.92 or 92,

and

 Tmin = 1 - R max = 0.69 or 69,

Without the thin film coating, the reflectance would be 31%, the maximum reflectance.
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Given f = 2dn2(2p>l), and d = 160 nm, and the fact that the minimum reflectance  corresponds 
to f = odd integer * p, we choose f = 3p (by trial and error). The wavelength lmin is then given by

lmin = 4pdn2>f = 4p(160 nm)(2.5)>(3p) = 533 nm (green)

which is in the visible. The maximum reflectance in the visible occurs when f = 4p, giving

lmax = 4pdn2>f = 4p(160 nm)(2.5)>(4p) = 400 nm (violet)

1.15 MULTIPLE REFLECTIONS IN PLATES AND INCOHERENT WAVES

The interference of light waves in a thin film takes place because the waves have much longer 
coherence lengths than the thickness of the film so that the waves exhibit mutual coherence. We 
can add the electric field and interference leads to bright and dark fringes. A film would be con-
sidered too thick if it does not exhibit any interference phenomena due to the coherence length of 
the waves being shorter than the thickness. Such cases easily arise when we pass light through a 
transparent (or partially transparent) plate or when the light source is incoherent. In such cases, 
we cannot add the electric field to find the reflected and transmitted light irradiances. The overall 
reflectance and transmittance would be independent of the round-trip phase change f inside the 
plate and would not exhibit the behavior in Figure 1.46. We have to use Eq. (1.10.5).

Consider a light beam of unit intensity that is passed through a thick plate of transparent 
material of index n2 in a medium of index n1 as in Figure 1.47. The first transmitted light intensity 
into the plate is (1 - R), and the first transmitted light out is (1 - R) * (1 - R) or (1 - R)2. 
However, there are internal reflections as shown, so that the second transmitted light is 
(1 - R) * R * R * (1 - R) = R2(1 - R)2, so that the transmitted intensity through the plate is

Tplate = (1 - R)2 + R2(1 - R)2 + R4(1 - R)2 + c = (1 - R)231 + R2 + R4 + c4
or

 Tplate =
(1 - R)2

1 - R2  (1.15.1)

Trans-
mittance 
for a thick 
plate or 
incoherent 
light

FIGURE 1.47 Transmitted 
and reflected light through a 
slab of material in which there 
is no interference.
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By substituting for R in terms of the indices, we can write this as

 Tplate =
2n1n2

n1
2 + n2

2 (1.15.2)

For example, for a glass plate of n2 = 1.60 in air (n1 = 1), Tplate = 89.9,  while the simple trans-
mittance through an n19n2 interface would give 94.7%. The overall reflectance is 1 - Tplate so that

 Rplate =
(n1 - n2)

2

n1
2 + n2

2  (1.15.3)

One of the simplest ways to determine the refractive index of a plate is to measure the transmit-
tance Tplate in Eq. (1.15.1), from which we can calculate n2.

1.16 SCATTERING OF LIGHT

When a light beam propagates in a medium in which there are small particles or inhomogene-
ities, such as local changes in the refractive index of the medium, some of the power in the beam 
is radiated away from the direction of propagation, that is some of the power becomes scattered. 
Scattering is a process by which some of the power in a propagating electromagnetic wave is 
redirected as secondary EM waves in various directions away from the original direction of 
propagation as illustrated in Figure 1.48 (a). There are a number of scattering processes, which 
are usually classified in terms of the size of the scattering particles in relation to the wavelength 
of light that is scattered. In Rayleigh scattering, the scattering particle size, or the scale of 
 inhomogeneities in a medium, is much smaller than the wavelength of light. The intensity of the 
scattered light at an angle u to the original beam depends on the scattering process; the Rayleigh 
scattering case is shown in Figure 1.48 (b) in which the scattering is not spherically symmetric.

Consider what happens when a propagating wave encounters a molecule, an impurity 
in a crystal or a small dielectric particle (or region), which is smaller than the wavelength of 
light. The electric field in the wave polarizes the particle by displacing the lighter electrons with 
 respect to the heavier positive nuclei. The electrons in the molecule couple and oscillate with 
the electric field in the wave (ac electronic polarization). The oscillation of charge “up” and 
“down,” or the oscillation of the induced dipole, radiates EM waves all around the molecule as 
illustrated in Figure 1.48 (a). We should remember that an oscillating charge is like an alternat-
ing current which always radiates EM waves (like an antenna). The net effect is that the incident 

Trans-
mittance 

for a thick 
plate for 

incoherent 
light

Trans-
mittance 

for a thick 
plate or 

incoherent 
beam of 

light

FIGURE 1.48 (a) Rayleigh scattering involves the polarization of a small dielectric particle or a region that is 
much smaller than the light wavelength. The field forces dipole oscillations in the particle (by polarizing it) which 
leads to the emission of EM waves in “many” directions so that a portion of the light energy is directed away from the 
incident beam. (b) A polar plot of the dependence of the intensity of the scattered light on the angular direction u with 
respect to the direction of propagation x in Rayleigh scattering (in a polar plot, the radial distance OP is the intensity).
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wave becomes partially reradiated in different directions and hence loses intensity in its original 
direction of propagation. (We may think of the process as the particle absorbing some of the 
energy via electronic polarization and reradiating it in different directions.) It may be thought 
that the scattered waves constitute a spherical wave emanating from the scattering molecule, but 
this is not generally the case as the re-emitted radiation depends on the shape and polarizability 
of the molecule in different directions. We assumed a small particle so that at any time the field 
has no spatial variation through the particle, whose polarization then oscillates with the electric 
field  oscillation. Whenever the size of the scattering region, whether an inhomogeneity, a small 
 particle, a molecule, or a defect in a crystal, is much smaller than the wavelength l of the inci-
dent wave, the scattering process is generally termed Rayleigh scattering. Typically, the particle 
size is smaller than one-tenth of the light wavelength.

Rayleigh scattering of light propagating in a glass medium is of particular interest 
in photonics because it results in the attenuation of the transmitted light pulses in optical 
 fibers. The glass structure is such that there are small random spatial variations in the refrac-
tive index about some average value. There are therefore local fluctuations in the relative 
 permittivity and polarizability, which effectively act if there are small inhomogeneities in the 
medium. These dielectric inhomogeneities arise from fluctuations in the relative permittivity 
that is part of the intrinsic glass structure. As the fiber is drawn by freezing a liquid-like flow, 
random thermodynamic fluctuations in the composition and structure that occur in the liquid 
state become frozen into the solid structure. Consequently, the glass fiber has small fluctua-
tions in the relative permittivity which leads to Rayleigh scattering. A small inhomogeneous  
region acts like a small dielectric particle and scatters the propagating wave in different 
 directions. Nothing can be done to eliminate Rayleigh scattering in glasses as it is part of 
their intrinsic structure.

It is apparent that the scattering process involves electronic polarization of the molecule 
or the dielectric particle. We know that this process couples most of the energy at ultraviolet 
frequencies where the dielectric loss due to electronic polarization is maximum and the loss is 
due to EM wave radiation. Therefore, as the frequency of light increases, the scattering becomes 
more severe. In other words, scattering decreases with increasing wavelength. The intensity 
of the scattered radiation is proportional to 1>l4. For example, blue light, which has a shorter 
wavelength than red light, is scattered more strongly by air molecules. When we look at the sun 
directly, it appears yellow because the blue light has been scattered in the direct light more than 

Lord Rayleigh (John William Strutt) was an English physicist 
(1877–1919) and a Nobel Laureate (1904) who made a number of 
contributions to wave physics of sound and optics. He formulated 
the theory of scattering of light by small particles and the depen-
dence of scattering on 1/l4 circa 1871. Then, in a paper in 1899 
he provided a clear explanation on why the sky is blue. Ludvig 
Lorentz, around the same time, and independently, also formulated 
the scattering of waves from a small dielectric particle, though 
it was published in Danish (1890).40 (© Mary Evans Picture 
Library/Alamy.)

40 Pedro Lilienfeld’s “A Blue Sky History”, in Optics and Photonics News, 15(6), 32, 2004, is highly recommended; it 
also provides the original references.
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the red light. When we look at the sky in any direction but the sun, our eyes receive scattered 
light which appears blue; hence the sky is blue. At sunrise and sunset, the rays from the sun have 
to traverse the longest distance through the atmosphere and have the most blue light scattered, 
which gives the sun its red color at these times.

The intensity of a light beam in a medium with small particles (or inhomogeneities) 
 decreases as the beam propagates due to Rayleigh scattering from these small particles as illus-
trated in Figure 1.49. The intensity at a position z inside the medium from the radiation receiving 
face is given by

 I = Io exp (-aRz) (1.16.1)

where aR is the attenuation coefficient due to Rayleigh scattering. aR depends on the concentra-
tion of scattering particles N, their radius a, wavelength l and the mismatch between the refrac-
tive index n of the scattering spheres and the index no of the medium

 aR ∝ N # a6 # 1
l4

# an2 - no
2

n2 + no
2 b2

 (1.16.2)

Equation (1.16.2) has been written in terms of products to identify those factors that affect aR.
Mie scattering refers to the scattering of light from scatterers that have dimensions com-

parable with, or greater than, the wavelength of light. For example, Mie scattering would occur 
for light scattering from long organic molecules in a solution, or scattering from various par-
ticulate pollutants (as in smog) in the atmosphere, including dust particles. The scatterers are 
assumed to have a refractive index significantly different from that of the surrounding medium. 
The scattering depends on the ratio of the scattering particle diameter to the wavelength of light, 
and favors scattering in the forward direction. The dependence on the wavelength is weaker than 
Rayleigh scattering.

The scattering of light from various particles suspended in a liquid is usually referred to 
as turbidity. For example, small solid particles suspended in water will scatter light and would 
make the water appear cloudy. The quality of water is often monitored for small particles by 
measuring the turbidity of water.

1.17 PHOTONIC CRYSTALS

The dielectric mirror, or the Bragg reflector, in Figure 1.24 is a stack of alternating layers of high 
and low refractive index material in a periodic manner. The one-dimensional periodic variation 
in the refractive index n in Figure 1.24 represents one of the simplest periodic structures within  

Attenuation 
by scattering

Rayleigh 
attenuation 
coefficient

FIGURE 1.49 When a light 
beam propagates through a medium 
in which there are small particles, it 
becomes scattered as it propagates 
and loses power in the direction 
of propagation. The light becomes 
attenuated.
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a general class of optical materials called photonic crystals. A photonic crystal (PC) is a mate-
rial that has been structured to possess a periodic modulation of the refractive index n, just like 
in Figure 1.24, so that the structure influences the propagation and confinement of light within it. 
The periodicity can be in one- (1D), two- (2D), or three-dimensional (3D); Figures 1.50 (a)–(c)  
illustrates 1D, 2D, and 3D simple photonic crystals as examples. In fact, quite complicated struc-
tures can be constructed that have very interesting optical properties. The dielectric mirror or 
the Bragg reflector can be viewed as one of the simplest 1D photonic crystals.41 For the structure 
to influence the propagation of the EM wave, it has to diffract the wave, which means that the 
scale of periodic variations must be on the wavelength scale. As  apparent from Figure 1.24, the 
1D PC has a band of frequencies over which it reflects the light and, conversely, there is a stop 
band over which no transmission is possible through the dielectric stack. There is a band of 
frequencies that represent waves that are not allowed to go through this periodic structure in the 
direction of refractive index variation, along z in Figure 1.50; this band is called an optical or 
photonic bandgap.

The periodic variation in n in Figure 1.50 is normally assumed to extend indefinitely, 
whereas in practice, the PCs have a finite size, for example, a certain number of layers in the 
dielectric mirror, not infinite. As in normal crystals, the periodic structures in Figure 1.50 have a 
unit cell, which  repeats itself to generate the whole lattice—that is, the whole crystal structure. 
For the 1D PC in Figure 1.50 (a), for example, two adjacent layers, n1n2, form the unit cell. We 
can move this unit cell along z by a distance Λ, the period (or periodicity), many times to gener-
ate the whole 1D photonic crystal.

The periodicity of a photonic crystal implies that any property at a location z will be the 
same at z { Λ, z { 2Λ and so on; that is, there is translational symmetry along z (in 1D). 

41 The propagation of light through such a one-dimensional (1D) periodic variation of n has been well-known, dating 
back to the early work of Lord Rayleigh in 1887. Eli Yablonovitch has suggested that the name “photonic crystal” should 
 really only apply to 2D and 3D periodic structures with a large dielectric (refractive index) difference. (E. Yablonovitch, 
“Photonic crystals: What’s in a name?,” Opt. Photon. News, 18, 12, 2007.) Nonetheless, the dielectric mirror in  
Figure 1.50 (a) is often considered as the simplest 1D photonic crystal to derive the concept of a “photonic bandgap,” 
essentially a stop band.

FIGURE 1.50 Photonic crystals in (a) 1D, (b) 2D, and (c) 3D, D being the dimension. Gray and white regions 
have different refractive indices and may not necessarily be the same size. Λ is the periodicity. The 1D photonic 
crystal in (a) is the well-known Bragg reflector, a dielectric stack.
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The EM waves that are allowed to propagate along z through the periodic structure are called the 
modes of the photonic crystal. They have a special waveform that must bear the periodicity of 
the structure, and are called Bloch waves. Such a wave for the field Ex, for example, has the form 
Ex(z, t) = A(z) exp (- jkz), which represents a traveling wave along z and A(z) is an amplitude 
function that has the periodicity of the structure, that is, it is periodic along z with a period Λ. A(z) 
depends on the periodic refractive index function n(z). As we will see in Chapter 3, the electron 
motion in a semiconductor crystal is also described by Bloch waves (electron wavefunctions).

As in the case of the dielectric mirror, the 1D PC has a band of frequencies over which 
there can be no propagation along z. In a homogeneous medium of refractive index n, the rela-
tionship between the frequency v and the propagation constant k is simple, that is, c>n = v>k, 
where k is the propagation constant inside the medium The dispersion behavior of the medium, 
that is, v vs. k, is a straight line with a slope c>n. The dispersion characteristic of a 1D PC 
for waves along z in Figure 1.50 (a) is shown in Figure 1.51 (a). We notice several important 
characteristics. At low frequencies (long wavelengths), the waves propagate as if they are in a 
homogenous medium with a constant phase velocity (dashed straight line). As expected, there 
is a band of frequencies ∆v = v2 - v1 (between S1 and S2) over which no propagation along 
z is allowed, which is a photonic bandgap along z. The whole v vs. k curves are periodic in  
k with a period 2p>Λ. The point P is equivalent to P′ because k = k′ + (2p>Λ). We only need 
to consider k-vales from -p>L to p>L. This region is called the first Brillouin zone.

At low frequencies or long wavelengths (small k values) in Figure 1.51 (a), the wavelength 
is so much longer than the variations in n that the propagating wave experiences essentially some 
average refractive index, nav, that is (n1 + n2)>2 if the n1 and n2 layers have the same thickness, 
and propagates through the structure as if the structure was a homogenous medium with some 
 effective refractive index, nav. Its phase velocity is v>k, which is c>nav, and its group velocity, 
the slope of the v vs. k characteristic, is the same as c>nav, in this region (ignoring the wave-
length dependence of n1 and n2). As the wavelength decreases (v increases), partial reflections of 
the waves from the boundaries become important and interfere with propagation. At sufficiently 
small wavelengths, diffraction becomes important as all these partially reflected waves interfere 
with each other and give rise to significant reflection. Eventually, a critical wavelength (cor-
responding to v1) is reached where the waves become fully diffracted or reflected backwards. 
A backward traveling (in -z direction) wave experiences the same reflection. These forward and 
backward diffracted waves give rise to a standing wave in the structure; indeed, only the latter 
can exist and waves cannot propagate, that is, travel freely.

Eli Yablonovitch at the University of California at Berkeley, and Sajeev John 
(shown later in this chapter) at the University of Toronto, carried out the initial 
pioneering work on photonic crystals. Eli Yablonovitch has suggested that the 
name “photonic crystal” should apply to 2D and 3D periodic structures with 
a large dielectric (refractive index) difference. (E. Yablonovitch, “Photonic 
crystals: What’s in a name?,” Opt. Photon. News, 18, 12, 2007.) Their original 
 papers were published in the same volume of Physical Review Letters in 1987. 
According to Eli Yablonovitch, “Photonic Crystals are semiconductors for 
light.” (Courtesy of Eli Yablonovitch.)
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Consider what happens when reflections such as C and D from two successive unit cells 
interfere constructively and give rise to a backward diffracted (reflected) wave as illustrated in 
Figure 1.51 (b). Reflections from two successive unit cells must be in phase for full reflection. 
This means that the phase difference between C and D (2p>l)(2n1d1 + 2n2d2) must be 2mp,  
where m = 1, 2, c is an integer. If we define nav = (n1d1 + n2d2)>Λ, and k = nav(2p>l) 
then reflection occurs when 2kΛ = 2mp, that is, k = mp>Λ. These are the wave vectors or 
propagation constants of the waves that cannot be propagated. The waves suffer Bragg reflection 
in 1D. What happens to these diffracted waves?

The diffracted waves in +z and -z directions set up a standing wave in the structure. If we 
write the two reflected waves in opposite directions as A exp ( jkz) and A exp (- jkz) they would add as 
A exp (jkz) { A exp (- jkz), which shows that there two possibilities S1 and S2. One of them, S1, has 
most of its energy inside the n2, high refractive index layers, and hence has a lower frequency v1. S2 
has most of its energy in the n1 layers and has a higher frequency v2; these are shown in Figure 1.51 
(b). There are no waves in the v2 - v1 interval, which we know as the photonic bandgap (PBG). 
The bandgap ∆v = v2 - v1 increases linearly with the index difference ∆n = n2 - n1.

It is clear that the 1D crystal exhibits a photonic bandgap for light propagation along z. It 
should also be apparent that there would be no PBGs for propagation along the x and y direction 
along which there are no periodic n-variations. Since we can resolve any k-vector along x, y, and 
z directions, overall there is no net PBG for light propagation in a 1D PC. The PBG for a 1D 
crystal is called a pseudo PBG.

The above ideas can be readily extended to 2D and 3D periodic structures. Again, in prin-
ciple, there is no full PBG in the 2D PC. In the case of 3D periodic structures, there would be 
photonic bandgaps along x, y, and z directions, and for difference polarizations of the electric 
field. If the refractive index contrast and the periodicity in the 3D structure are such that these 
 photonic bandgaps overlap in all directions and for all polarizations of light, as schematically 
depicted in Figure 1.52, the overlap frequency range ∆v becomes a full photonic bandgap in 
all directions for all polarizations of light—no light can propagate through this structure over this 

FIGURE 1.51 (a) Dispersion relation, v vs. k, for waves in a 1D PC along the z-axis. There are allowed modes and forbidden 
modes. Forbidden modes occur in a band of frequencies called a photonic bandgap. (b) The 1D photonic crystal corresponding 
to (a), and the corresponding points S1 and S2 with their stationary wave profiles at v1 and v2.
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frequency range, ∆v. The structure then has a full photonic bandgap. As it turns out not any 3D 
periodic structure results in a full photonic bandgap. Only certain 3D periodic structures allow full 
photonic bandgaps to develop. One such structure is the wood pile periodic structure shown in Figure 
1.52 (b). The unit cell has four layers of rods. The rods are parallel in each layer and the layers are  

FIGURE 1.52 (a) The photonic bandgaps along x, y, and z overlap for all polarizations of the field, which results in a 
full photonic bandgap ∆v (an intuitive illustration). (b) The unit cell of a woodpile photonic crystal. There are 4 layers, 
labeled 1–4 in the figure, with each later having parallel “rods.” The layers are at right angles to each other. Notice 
that layer 3 is shifted with respect to 1, and 4 with respect to 2. (c) An SEM image of a woodpile photonic crystal 
based on polycrystalline Si; the rod-to-rod pitch d is on the micron scale. (Courtesy of Sandia National Laboratories.)  
(d) The optical reflectance of a woodpile photonic crystal showing a photonic bandgap between 1.5 om and 2 om. 
The photonic crystal is similar to that in (c) with five layers and d ≈ 0.65 om. (Source: The reflectance spectrum 
was plotted using the data appearing in Fig. 3 in S-Y. Lin and J.G. Fleming, J. Light Wave Technol., 17, 1944, 1999.)

An SEM image of a 3D photonic crystal 
made from porous silicon in which the lattice 
structure is close to being simple cubic. The 
silicon squares, the unit cells, are connected 
at the edges to produce a cubic lattice. This 
3D PC has a photonic bandgap centered at 
5 om and about 1.9 om wide. (Courtesy 
of Max-Planck Institute for Microstructure 
Physics.)

An SEM image of a 3D photonic crystal that is based 
on the wood pile structure. The rods are polycrystalline 
silicon. Although five layers are shown, the unit cell 
has four layers, e.g., the four layers starting from the 
bottom layer. Typical  dimensions are in microns. In one 
similar structure with rod-to-rod pitch d = 0.65 om 
with only a few layers, the Sandia researchers were 
able to produce a photonic bandgap ∆l of 0.8 om cen-
tered around 1.6 om within the telecommunications 
band. (Courtesy of Sandia National Laboratories.)
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at 90° to each other. An SEM image of a woodpile photonic crystal is shown in Figure 1.52 (c).  
The optical reflectance, that is, 1 – transmittance, of this woodpile PC is shown in Figure 1.52 (d).  
It is apparent that there is a photonic bandgap, a stop band, over a range of frequencies, or wave-
lengths, ∆l, around 3 om. The width and the location of the reflectance or the transmittance band 
depends on the structure of the photonic crystal, that is, the periodicity, unit cell structure and 
refractive index contrast. The colors of certain butterflies and insects arise not from pigments or 
colorants but from a photonic crystal effect with the right periodicity.

An important practical aspect of PCs, analogous to semiconductor crystals, is the importance 
of defects. Point and line defects that occur in normal crystals also occur in PCs, as illustrated in 
Figure 1.53. They are intentionally introduced to endow the PC structure with certain optical proper-
ties. A defect is a discontinuity in the periodicity of the PC. For example, if we upset the  periodicity 
by removing a unit cell, we create a so-called point defect. This void can act as an optical cavity, 
trapping the EM radiation within the cavity as illustrated in Figure 1.53. We can, of course, remove 
a group of unit cells, or modify the refractive index over a few unit cells, which would create an 
optical microcavity. Defects introduce localized electromagnetic modes with frequencies within the 
photonic bandgap. Defects can tightly confine a mode of light in a very small cavity volume. We can 
also enhance the refractive index locally, which would also classify as a point defect.

Line defects are formed when a long row of unit cells are missing, or the refractive index 
stays constant over a long line in the crystal. Such a line in which the index is constant allows 
propagating EM modes within the photonic bandgap. Since EM waves can propagate within and 
along the line defect, the line defect acts as an optical wave guide, guiding the radiation along 
its length as shown in Figure 1.53. The EM wave cannot spread into the perfect photonic crystal 
region since, in this region, the frequency falls into the stop band.

One very important property of photonic crystals is their ability to suppress or inhibit 
spontaneous emission. We can understand this effect intuitively by considering a 3D PC made 
from a semiconductor. In spontaneous emission, an electron falls from the conduction band 

FIGURE 1.53 Schematic illustration of point and line defects in a photonic crystal. A point defect acts as an 
optical cavity, trapping the radiation. Line defects allow the light to propagate along the defect line. The light 
is prevented from dispersing into the bulk of the crystal since the structure has a full photonic bandgap. The 
frequency of the propagating light is in the bandgap, that is, in the stop band.
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to the valence band spontaneously and emits a photon of energy hv that corresponds to the 
bandgap energy Eg However, if the photon frequency hv falls into the bandgap of the PC, then 
this photon is not allowed to propagate or “exist” in the structure. It is prevented from being 
emitted—the photons have no place to go.

Photonic crystals have also been shown to exhibit a so-called superprism effect. Under 
 appropriate conditions, the dispersion of light by a prism-shaped photonic crystal is considerably 
enhanced over that corresponding to a homogeneous prism having the same average refractive 
index as the photonic crystal. This originates from the strong curvature of the v9k curve near the 
edge of the Brillouin Zone as apparent in Figure 1.51 (a). The latter may also be viewed as a high 
refractivity variation with wavelength.

Questions and Problems
 1.1 Maxwell’s wave equation and plane waves
 (a) Consider a traveling sinusoidal wave of the form Ex = Eo cos (vt - kz + fo). The latter can also be 

written as Ex = Eo cos3k(vt - z) + fo4 , where v = v>k is the velocity. Show that this wave satisfies 
 Maxwell’s wave equation, and show that v = 1>(moeoer)

1>2.
 (b) Consider a traveling function of any shape, even a very short delta pulse, of the form Ex = f 3k(vt - z)4 , 

where f is any function, which can be written is Ex = f(f), f = k(vt - z). Show that this traveling function 
satisfies Maxwell’s wave equation. What is its velocity? What determines the form of the function f ?

 1.2 Propagation in a medium of finite small conductivity An electromagnetic wave in an isotropic medium 
with a dielectric constant er and a finite conductivity s and traveling along z obeys the following equation for 
the variation of the electric field E perpendicular to z

 
d2E

dz2 - eoermo
02E

0t2 = mos
0E
0t

 (P1.1)

Show that one possible solution is a plane wave whose amplitude decays exponentially with propagation along z,  
that is, E = Eo exp (-a′z) exp3 j(vt - kz)4 . Here exp (-a′z) causes the envelope of the amplitude to decay 
with z (attenuation) and exp3  j(vt – kz) 4  is the traveling wave portion. Show that in a medium in which a is small, 
the wave velocity and the attenuation coefficient of the field are given by

v =
v

k
=

11moeoer
 and a′ =

s

2eocn

where n is the refractive index (n = er
1>2). What is the attenuation coefficient a that describes the decay of the 

light intensity? (Metals with high conductivities are excluded.)
 1.3 Point light source What is the irradiance measured at a distance of 1 m and 2 m from a 1 W light point source?
 1.4 Gaussian beam Estimate the divergence and Rayleigh range of a Gaussian beam from a He-Ne Laser with

l = 633 nm and a beam width of 1.00 nm at z = 0. After traversing 10 m through vacuum, what will the 
beam width be?

 1.5 Gaussian beam in a cavity with spherical mirrors Consider an optical cavity formed by two aligned spheri-
cal mirrors facing each other as shown in Figure 1.54. Such an optical cavity is called a spherical mirror  

Sajeev John, at the University of Toronto, along with Eli Yablonovitch 
(shown earlier in the chapter) carried out the initial pioneering work in the 
development of the field of photonics crystals. Sajeev John was able to 
show that it is  possible to trap light in a similar way the electron is captured, 
that is localized, by a trap in a semiconductor. Defects in photonic crystals 
can confine or localize electromagnetic waves; such  effects have important 
applications in quantum computing and integrated photonics. (Courtesy  
of Sajeev John.)
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resonator, and is most commonly used in gas lasers. Sometimes, one of the  reflectors is a plane mirror. The two 
spherical mirrors and the space between them form an optical resonator because only certain light waves with 
certain frequencies can exist in this optical cavity. The radiation inside a spherical mirror cavity is a Gaussian 
beam. The actual or particular Gaussian beam that fits into the cavity is that beam whose wavefronts at the mir-
rors match the curvature of the mirrors. Consider the symmetric resonator shown in Figure 1.54 in which the 
mirrors have the same radius of curvature R. When a wave starts at A, its wavefront is the same as the curvature 
of A. In the middle of the cavity it has the minimum width and at B the wave again has the same curvature as B. 
Such a wave in the cavity can replicate itself (and hence exist in the cavity) as it travels between the mirrors 
provided that it has right beam characteristics, that is the right curvature at the mirrors. The radius of curvature 
R of a Gaussian beam wavefront at a distance z along its axis is given by

R(z) = z31 + (zo>z)24 ;  zo = pwo
2>l is the Rayleigh range

FIGURE 1.54 Two spherical mirrors 
reflect waves to and from each other. 
The optical cavity contains a Gaussian 
beam. This particular optical cavity is 
symmetric and confocal; the two focal 
points coincide at F.

Consider a confocal symmetric optical cavity in which the mirrors are separated by L = R.
 (a) Show that the cavity length L is 2zo, that is, it is the same as twice the Rayleigh range, which is the reason 

the latter is called the confocal length.
 (b) Show that the waist of the beam 2wo is fully determined only by the radius of curvature R of the mirrors, 

and given by

2wo = (2lR>p)1>2
 (c) If the cavity length L = R = 50 cm, and l = 633 nm, what is the waist of the beam at the center and also 

at the mirrors?
 1.6 Cauchy dispersion equation Using the Cauchy coefficients and the general Cauchy equation, calculate  

refractive index of a silicon crystal at wavelengths of 200 om and at 2 om, over two orders of magnitude wave-
length change. What is your conclusion?

 1.7 Sellmeier dispersion equation Using the Sellmeier equation and the coefficients, obtain a graph of the 
 refractive index of fused silica (SiO2) versus its wavelength in the range of 500 nm to 1550 nm.

 1.8 Sellmeier dispersion equation The Sellmeier dispersion coefficient for pure silica (SiO2) and 86.5%  
SiO2-13.5% GeO2 are given in Table 1.2. Write a program on your computer or calculator, or use a math soft-
ware package or even a spreadsheet program (e.g., Excel) to obtain the refractive index n as a function of l from 
0.5 om to 1.8 om  for both pure silica and 86.5% SiO2-13.5% GeO2. Obtain the group index, Ng, vs. wavelength 
for both materials and plot it on the same graph. Find the wavelength at which the material dispersion, defined 
as the derivative of the group velocity with respect to the wavelength, becomes zero in each material.

 1.9 The Cauchy dispersion relation for zinc selenide ZnSe is a II–VI semiconductor and a very useful optical 
material used in various applications such as optical windows (especially high power laser windows), lenses, and 
prisms. It transmits over 0.50–19 om. n in the 1–11 om range is described by a Cauchy expression of the form

n = 2.4365 + 0.0485

l2 + 0.0061

l4 - 0.0003l2

in which l is in om. What are the n–2, n0, n2 and n4 coefficients? What is ZnSe’s refractive index n and group 
index Ng at 5 om?
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 1.10 Refractive index, reflection, and the Brewster’s angle
 (a) Consider light of free-space wavelength 1300 nm traveling in pure silica medium. Calculate the phase ve-

locity and group velocity of light in this medium. Is the group velocity ever greater than the phase velocity?
 (b) What is the Brewster angle (the polarization angle up) and the critical angle (uc) for total internal reflection 

when the light wave traveling in this silica medium is incident on a silica–air interface. What happens at the 
polarization angle?

 (c) What is the reflection coefficient and reflectance at normal incidence when the light beam travel ing in the 
silica medium is incident on a silica–air interface?

 (d) What is the reflection coefficient and reflectance at normal incidence when a light beam traveling in air is 
incident on an air–silica interface? How do these compare with part (c) and what is your conclusion?

 1.11 Snell’s law and lateral beam displacement What is the lateral displacement when a laser beam passes through 
two glass plates, each of thickness 1 mm, with refractive indices of n1 = 1.570 and n2 = 1.450 respectively, if 
the angle of incidence is 45°?

 1.12 Snell’s law and lateral beam displacement An engineer wants to design a refractometer (an  instrument for 
measuring the refractive index) using the lateral displacement of light through a glass plate. His initial experi-
ments involve using a plate of thickness L, and measuring the displacement of a laser beam when the angle of 
incidence ui is changed, for example, by rotating (tilting) the sample. For ui = 40° he measures a displacement 
of 0.60 mm, and when ui = 80° he measures 1.69 mm. Find the refractive index of the plate and its thickness. 
(Note: You need to solve a nonlinear equation for n numerically.)

 1.13 Snell’s law and prisms Consider the prism shown in Figure 1.55 that has an apex angle a = 60°. The prism 
has a refractive index of n and it is in air.

 (a) What are Snell’s law at interfaces at A (incidence and transmittance angles of ui and ut) and B (incidence 
and transmittance angles of ui′ and ut′)?

 (b) Total deflection d = d1 + d2 where d1 = ui - ut and d2 = ut′ - ui′. Now, b + ui
= + ut = 180° and 

a + b = 180°. Find the deflection of the beam for an incidence angle of 45° for the following three colors 
at which n is known: Blue, n = 1.4634 at l = 486.1 nm; yellow, n = 1.4587 at l = 589.2 nm; red, 
n = 1.4567 at l = 656.3 nm. What is the separation in distance  between the rays if the rays are projected 
on a screen 1 m away.

FIGURE 1.55 A light  
beam is deflected by a prism 
through an angle d. The angle  
of incidence is ui. The apex 
angle of the prism is a.

 1.14 Fermat’s principle of least time Fermat’s principle of least time in simple terms states that when light travels 
from one point to another it takes a path that has the shortest time. In going from a point A in some medium with 
a refractive index n1 to a point B in a neighboring medium with refractive index n2 as in Figure 1.56, the light 
path AOB involves refraction at O that satisfies Snell’s law. The time it takes to travel from A to B is minimum 
only for the path AOB such that the incidence and refraction angles ui and ut satisfy Snell’s law. Let’s draw a 
straight line from A to B cutting the x-axes at O′. The line AO′B will be our reference line and we will place the 
origin of x and y coordinates at O′. Without invoking Snell’s law, we will vary point O along the x-axis (hence 
OO′ is a variable labeled x), until the time it takes to travel AOB is minimum, and thereby derive Snell’s law. 
The time t it takes for light to travel from A to B through O is

 t =
AO

c>n1
+ OB

c>n2
=

3(x1 - x)2 + y1
241>2

c>n1
+

3(x2 + x)2 + y2
241>2

c>n2
 (P1.2)
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The incidence and transmittance angles are given by

 sin ui =
x1 - x3(x1 - x)2 + y1

241>2 and sin ui =
(x2 + x)3(x2 + x)2 + y2

241>2 (P1.3)

Differentiate Eq. (P1.2) with respect to x to find the condition for the “least time” and then use Eq. (P1.3) in this 
condition to derive Snell’s law.

FIGURE 1.56 Consider a light wave 
traveling from point A (x1, y2) to B (x1, y2) 
through an arbitrary point O at a distance x 
from O′. The principle of least time from A to 
B requires that O is such that the incidence 
and refraction angles obey Snell’s law.

Pierre de Fermat (1601–1665) was 
a French mathematician who made 
many significant contributions to 
modern calculus, number theory, 
analytical geometry, and prob-
ability. (Courtesy of Mary Evans 
Picture Library/Alamy.)

 1.15 Antireflection (AR) coating
 (a) A laser beam of wavelength 1550 nm from air is launched to a single mode optical fiber with a core refrac-

tive index n1 = 1.45. Estimate the refractive index and thickness of film required for an anti-reflecting 
coating on this fiber.

 (b) A Ge photodiode is designed to operate at 1550 nm, and it is required to have AR coatings to minimize 
reflected light. Two possible materials are available for AR coating: SiO2 with a refractive index of 1.46, 
and TiO2  with a refractive index of 2.2. Which would be better suited? What would be the thickness for 
the AR coating on this photodiode? The refractive index of Ge is about 4.

 (c) Consider a Ge photodiode that is designed for operation around 1200 nm. What are the best AR coating 
refractive index and thickness if the refractive index of Ge is about 4.0?

 1.16 Single- and double-layer antireflection V-coating For a single-layer AR coating of index n2 on a mate-
rial with index n3( 7 n2 7 n1), as shown in Figure 1.57 (a), the minimum reflectance at normal incidence is 
given by

Rmin = c n2
2 - n1n3

n2
2 + n1n3

d 2

when the reflections A, B, . . . all interfere as destructively as possible. Rmin = 0 when n2 = (n1n3)
1>2. The choice 

of materials may not always be the best for a single-layer AR coating. Double-layer AR coatings, as shown in 
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Figure 1.57 (b), can achieve lower and sharper reflectance at a specified wavelength as in Figure 1.57 (c).  
To reduce the reflection of light at the n1– n4 interface, two layers n2 and n3, each quarter wavelength in the layer 
(l>n2 and l>n3) are interfaced between n1 and n4. The reflections A, B, and C for normal incidence result in a 
minimum reflectance given by

Rmin = c n3
2n1 - n4n2

2

n3
2n1 + n4n2

2 d 2

The double-layer reflectance vs. wavelength behavior usually has a V-shape, and such coatings are called V-coatings.
 (a) Show that double-layer reflectance vanishes when

(n2>n3)
2 = n1>n4

 (b) Consider an InGaAs, a semiconductor crystal with an index 3.8, for use in a photodetector. What is the 
reflectance without any AR coating?

 (c) What is the reflectance when InGaAs is coated with a thin AR layer of Si3N4? Which material in Table 1.3 
would be ideal as an AR coating?

FIGURE 1.57 (a) A single-layer AR coating. (b) A double-layer AR coating and (c) its V-shaped 
reflectance spectrum over a wavelength range.

TABLE 1.3  Typical AR materials and their approximate refractive indices  
over the visible wavelengths

MgF2 SiO2 Al2O3 CeF3 Sb2O3 Si3N4 SiO ZrO2 ZnS TiO2 CdS

n 1.38 1.46 1.65 1.65 1.9–2.1 1.95 2.0 2.05 2.35 2.35 2.60

 (d) What two materials would you choose to obtain a V-coating? Note: The choice of an AR coating also 
depends on the technology involved in depositing the AR coating and its effects on the interface states 
between the AR layer and the semiconductor. Si1 - xNx is a common AR coating on devices inasmuch as it is 
a good passive dielectric layer, its deposition technology is well established and changing its composition 
(x) changes its index.

 1.17 Single-, double-, and triple-layer antireflection coatings  Figure 1.58 shows the reflectance of an uncoated 
glass, and glass that has a single- (1), double- (2) and triple- (3) layer AR coatings? The coating details are in 
the figure caption. Each layer in single- and double-layer AR coatings has a thickness of l>4, where l is the 
wavelength in the layer. The triple-layer AR layer has three coatings with thicknesses l>4, l>2, and l>4. Can 
you qualitatively explain the results by using interference? What applications would need single-, double-, and 
triple-layer coatings?
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FIGURE 1.58 Reflectance vs. wavelength for a glass plate, n = 1.52, with and without AR coatings. 
(1) Single-layer AR coating is a quarter wavelength (l>4) thick MgF2, n = 1.38. (2) Double-layer 
coating is l>4 thick MgF2 and l>4 thick Al2O3, n = 1.69. (3) Triple-layer coating is l>4 thick MgF2, 
l>2 thick ZrO2, n = 2.05, and a l>4 thick CeF3, n = 1.64. (Source: Plotted from data appearing in 
Figure 2.2 in S. Chattopadhyay et al., Mater. Sci. Engin. R, 69, 1, 2010.)

 1.18 Reflection at glass–glass and air–glass interfaces A ray of light that is traveling in a glass medium of refrac-
tive index n1 = 1.460 becomes incident on a less dense glass medium of refractive index n2 = 1.430. Suppose 
that the free-space wavelength of the light ray is 850 nm.

 (a) What should the minimum incidence angle for TIR be?
 (b) What is the phase change in the reflected wave when the angle of incidence ui = 85° and when ui = 90°?
 (c) What is the penetration depth of the evanescent wave into medium 2 when ui = 85° and when ui = 90°?
 (d) What is the reflection coefficient and reflectance at normal incidence (ui = 0°) when the light beam travel-

ing in the glass medium (n = 1.460) is incident on a glass–air interface?
 (e) What is the reflection coefficient and reflectance at normal incidence when a light beam traveling in air 

is incident on an air–glass (n = 1.460) interface? How do these compare with part (d) and what is your 
conclusion?

 1.19 Dielectric mirror A dielectric mirror is made up of a quarter wave layer of GaAs with nH = 3.38 and AlAs 
with nL = 3.00 at around 1550 nm. The light is incident on the mirror from another semiconductor of refractive 
index n0 = 3.40. Find out the number of pairs of layers N needed to get 90% reflectance. Find out the band-
width of the reflected light.

 1.20 TIR and polarization at water–air interface
 (a) Given that the refractive index of water is about 1.33, what is the polarization angle for light traveling in air 

and reflected from the surface of the water?
 (b) Consider a diver in sea pointing a flashlight towards the surface of the water. What is the critical angle for 

the light beam to be reflected from the water surface?
 1.21 Reflection and transmission at a semiconductor–semiconductor interface A light wave with a wavelength 

of 890 nm (free-space wavelength) that is propagating in GaAs becomes incident on AlGaAs. The refractive 
index of GaAs is 3.60, that of AlGaAs is 3.30.

 (a) Consider normal incidence. What are the reflection and transmission coefficients and the reflectance and 
transmittance? (From GaAs into AlGaAs.)

 (b) What is the Brewster angle (the polarization angle up) and the critical angle (uc) for total  internal reflection 
for the wave in (a); the wave that is traveling in GaAs and incident on the  GaAs– AlGaAs interface?

 (c) What is the reflection coefficient and the phase change in the reflected wave when the angle of incidence 
ui = 79°?

 (d) What is the penetration depth of the evanescent wave into medium 2 when ui = 79° and when ui = 89°? 
What is your conclusion?

 1.22 Phase changes on TIR Consider a light wave of wavelength 870 nm traveling in a semiconductor medium 
(GaAs) of refractive index 3.60. It is incident on a different semiconductor medium (AlGaAs) of refractive index 
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3.40, and the angle of incidence is 80°. Will this result in total internal reflection? Calculate the phase change in the 
parallel and perpendicular components of the reflected electric field.

 1.23 Fresnel’s equations Fresnel’s equations are sometimes given as follows:

r# =
Ero,#

Eio,#
=

n1 cos ui - n2 cos ut

n1cos ui + n2 cos ut

 r// =
Ero, //

Eio, //
=

n1 cos ut - n2 cos ui

n1 cos ut + n2 cos ui

 t# =
Eto,#

Eio,#
=

2n1 cos ui

n1 cos ui + n2 cos ut

and

t// =
Eto,//

Eio,//
=

2n1 cos ui

n1 cos ut + n2 cos ui

Show that these reduce to Fresnel’s equation given in Eqs. (1.6.6) and (1.6.7). 
Using Fresnel’s equations, find the reflection and transmission coefficients for normal incidence and  

show that

r# + 1 = t# and r// + nt// = 1

where n = n2>n1.
 1.24 Fresnel’s equations Consider a light wave traveling in a glass medium with an index n1 = 1.440 and it is 

incident on the glass–air interface. Using Fresnel’s equations only, that is, Eqs. (1.6.6a) and (1.6.6b), calcu-
late the reflection coefficients r› and r// and hence reflectances R› and R// for (a) ui = 25° and (b) ui = 50°. 
In the case of ui = 50°, find the phase change f# and f// from the reflection coefficients by writing 
r = ( r (exp (- jf). Compare f# and f// from r› and r// calculations with those calculated from Eqs. (1.6.11) 
and (1.6.12).

 1.25 Goos-Haenchen phase shift A ray of light which is traveling in a glass medium (1) of refractive index 
n1 = 1.460 becomes incident on a less dense glass medium (2) of refractive index n2 = 1.430. Suppose that 
the free-space wavelength of the light ray is 850 nm. The angle of incidence ui = 85°. Estimate the lateral 
Goos-Haenchen shift in the reflected wave for the perpendicular field component. Recalculate the Goos-
Haenchen shift if the second medium has n2 = 1 (air). What is your conclusion? Assume that the virtual 
reflection occurs from a virtual plane in medium B at a distance d that is roughly the same as the penetra-
tion depth. Note that d actually depends on the polarization, the direction of the field, but we will ignore this 
dependence.

 1.26 Evanescent wave Total internal reflection of a plane wave from a boundary between a more dense medium 
(1) n1 and a less dense medium (2) n2 is accompanied by an evanescent wave propagating in medium 2 near 
the boundary. Find the functional form of this wave and discuss how its magnitude varies with the distance into 
medium 2.

 1.27 TIR and FTIR
 (a) By considering the electric field component in medium B in Figure 1.21, explain how you can adjust the 

amount of transmitted light through a thin layer between two higher refractive index media.
 (b) What is the critical angle at the hypotenuse face of a beam splitter cube made of glass with n1 = 1.6 and 

having a thin film of liquid with n2 = 1.3. Can you use 45° prisms with normal incidence?
 (c) Explain how a light beam can propagate along a layer of material between two different media as shown in 

Figure 1.59 (a). Explain what the requirements are for the indices n1, n2, n3. Will there be any losses at the 
reflections?

 (d) Consider the prism coupler arrangement in Figure 1.59 (b). Explain how this arrangement works for cou-
pling an external light beam from a laser into a thin layer on the surface of a glass substrate. Light is then 
propagated inside the thin layer along the surface of the substrate. What is the purpose of the adjustable 
coupling gap?
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 1.28 Complex refractive index and dielectric constant The complex refractive index N = n - jK  can be  
defined in terms of the complex relative permittivity er = er1 - jer2 as

N = n - jK = er
1>2 = (er1 - jer2)

1>2
Show that

n = c (er1
2 + er2

2 )1>2 + er1

2
d 1>2
 and K = c (er1

2 + er2
2 )1>2 - er1

2
d 1>2

 1.29 Complex refractive index Spectroscopic ellipsometry measurements on a germanium crystal at a photon 
energy of 1.5 eV show that the real and imaginary parts of the complex relative permittivity are 21.56 and 
2.772, respectively. Find the complex refractive index. What is the reflectance and absorption coefficient at 
this wavelength? How do your calculations match with the experimental values of n = 4.653 and K = 0.298, 
R = 0.419 and a = 4.53 * 106 m-1?

 1.30 Complex refractive index Figure 1.26 shows the infrared extinction coefficient K of CdTe. Calculate the 
 absorption coefficient a and the reflectance R of CdTe at 60 om and 80 om.

 1.31 Refractive index and attenuation in the infrared region—Reststrahlen absorption Figure 1.26 shows the 
refractive index n and the extinction coefficient K as a function of wavelength l in the infrared for a CdTe crystal 
due to lattice absorption, called Reststrahlen absorption. It results from the ionic polarization of the crystal induced 
by the optical field in the light wave. The relative permittivity er due to positive (Cd2+) and negative (Te2-) ions 
being made to oscillate by the optical field about their equilibrium positions is given in its simplest form by

 er = e=r - je″r = erH +
erH - erLa v

vT
b2

- 1 + j 
g

vT
 a v

vT
b  (P1.4)

where erL and erH are the relative permittivity at low (L) and high (H) frequencies, well below and above the in-
frared peak, g is a loss coefficient characterizing the rate of energy transfer from the EM wave to lattice vibrations 
(phonons), and vT is a transverse optical lattice vibration frequency that is related to the nature of bonding between 
the ions in the crystal. Table 1.4 provides some typical values for CdTe and GaAs. Equation (P1.4) can be used to 
obtain a reasonable approximation to the infrared refractive index n and extinction coefficient K due to Reststrahlen 
absorption. (a) Consider CdTe, and plot n and K vs. l from 40 om to 90 om and compare with the experimental 
results in Figure 1.26 in terms of the peak positions and the width of the extinction coefficient peak. (b) Consider 

FIGURE 1.59 (a) Light propagation along an optical guide. (b) Coupling of laser light into a thin 
layer—optical guide—using a prism. The light propagates along the thin layer.

TABLE 1.4 Ionic polarization resonance parameters for CdTe and GaAs

ErL ErH VT (rad s-1) G(rad s-1)
CdTe 10.20 7.10 2.68 * 1013 0.124 * 1013

GaAs          13.0         11.0    5.07 * 1013   0.045 * 1013
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GaAs, and plot n and K vs. l from 30 om to 50 om. (c) Calculate n and K for GaAs at l = 38.02 om and compare 
with the experimental values n = 7.55 and K = 0.629. (You might want to use a logarithmic scale for K.)

 1.32 Coherence length A narrow band pass filter transmits wavelengths in the range 5000 { 0.5 A°. If this filter 
is placed in front of a source of white light, what is the coherence length of the transmitted light?

 1.33 Spectral widths and coherence
 (a) Suppose that frequency spectrum of a radiation emitted from a source has a central frequency yo and a spec-

tral width ∆y. The spectrum of this radiation in terms of wavelength will have a central wavelength lo and a 
spectral width ∆l. Clearly, lo = c>yo. Since ∆l V lo and ∆y V yo, using l = c>y, show that the line 
width ∆l and hence the coherence length lc are

∆l = ∆y 
lo

yo
= ∆y 

lo
2

c
 and lc = c∆t =

lo
2

∆l

 (b) Calculate ∆l for a lasing emission from a He-Ne laser that has lo = 632.8 nm and ∆y ≈ 1.5 GHz. Find its 
coherence time and length.

 1.34 Coherence lengths Find the coherence length of the following light sources:
 (a) An LED emitting at 1550 nm with a spectral width 150 nm;
 (b) A semiconductor laser diode emitting at 1550 nm with a spectral width 3 nm;
 (c) A quantum well semiconductor laser diode emitting at 1550 nm with a spectral width of 0.1 nm;
 (d) A multimode He-Ne laser with a spectral frequency width of 1.5 GHz;
 (e) A specially designed single mode and stabilized He-Ne laser with a spectral width of 100 MHz.
 1.35 Fabry–Perot optical cavity Consider an optical cavity formed between two identical mirrors, each with 

 reflectance = 0.97. The refractive index of the medium enclosed between the mirrors is 1. Find out the minimum 
length of the optical cavity which can resolve spectral lines of a sodium lamp with line width ∆l = 0.6 nm and 
∆l = 589.3 nm. Further, estimate the mode separation in frequency and wavelength. What are the finesse F 
and Q factors for this cavity?

 1.36 Fabry–Perot optical cavity from a ruby crystal Consider a ruby crystal of diameter 1 cm and length 10 cm. 
The refractive index is 1.78. The ends have been silvered and the reflectances are 0.99 and 0.95 each. What is 
the nearest mode number that corresponds to a radiation of wavelength 694.3 nm? What is the actual wave-
length of the mode closest to 694.3 nm? What is the mode separation in frequency and wavelength? What are 
the finesse F and Q factor for the cavity?

 1.37 Fabry–Perot optical cavity spectral width Consider an optical cavity of length 40 cm. Assume the refractive 
index is 1, and use Eq. (1.11.3) to plot the peak closest to 632.8 nm for 4 values of R = 0.99, 0.90, 0.75 and 0.6. 
For each case find the spectral width dlm, the finesse F and Q. How  accurate is Eq. (1.11.5) in predicting dlm. 
(You may want to use a graphing software for this problem.)

 1.38 Diffraction A collimated beam of light of wavelength 632.8 nm is incident on a circular aperture of 250 om. Find 
out the divergence of the transmitted beam. Obtain the diameter of the transmitted beam at a distance of 10 m. What 
would be the divergence if the aperture is a single slit of width 250 om?

 1.39 Diffraction intensity Consider diffraction from a uniformly illuminated circular aperture of dia meter D. The 
far field diffraction pattern is given by a Bessel function of the first kind and first order, J1, and the intensity at a 
point P on the angle ui with respect to the central axis through the aperture is

I(g) = Ioa2J1(g)

g
b2

where Io is the maximum intensity, g = (1>2)kD sin u is a variable quantity that represents the  angular position 
u on the screen as well as the wavelength (k = 2p>l) and the aperture diameter D. J1(g) can be calculated from

J1(g) =
1
pL

p

0

cos (a - g sin a)da

where a is an integration variable. Using numerical integration, or a suitable mathematics software program, 
plot 3J1(g)>g4  vs. g for g = 0 - 8 and confirm that zero-crossings occur at g = 3.83, 7.02 and the maxima at 
g = 0, 5.14. What is the intensity ratio of the first bright ring (at g = 5.14) to that at the center of the Airy disk 
(g = 0)? (You can use a very small g instead of zero for the center intensity calculation.) Using the first zero at 
g = 3.83, verify Eq. (1.12.5), sin uo = 1.22l>D, where uo is the angular position of the first dark ring, as defined 
in Figure 1.36 (b).
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 1.40 Bragg diffraction A reflection grating is made on the surface of a semiconductor with a periodicity of 0.5 om.  
If light of wavelength 1.55 om is incident at an angle of 88° to the normal, find out the diffracted beam.

 1.41 Diffraction grating for WDM Consider a transmission diffraction grating. Suppose that we wish to use this 
grating to separate out different wavelengths of information in a WDM signal at 1550 nm. (WDM stands of 
wavelength division multiplexing.) Suppose that the diffraction grating has a periodicity of 2 om. The angle of 
incidence is 0° with respect to the normal to the diffraction grating. What is the angular separation of the two 
wavelength component s at 1.550 om and 1.540 om? How would you increase this separation?

 1.42 A monochromator Consider an incident beam on a reflection diffraction grating as in Figure 1.60. Each in-
cident wavelength will result in a diffracted wave with a different diffraction angle. We can place a small slit 
and allow only one diffracted wave lm to pass through to the photodetector. The diffracted beam would con-
sist of wavelengths in the incident beam separated (or fanned) out after diffraction. Only one wavelength lm 
will be diffracted favorably to pass through the slit and reach the photodetector. Suppose that the slit width is 
s = 0.1 mm, and the slit is at a distance R = 5 cm from the grating. Suppose that the slit is placed so that it is 
at right angles to the incident beam: ui + um = p>2. The grating has a corrugation periodicity of 1 om.

George Bidell Airy (1801–1892, England). 
George Airy was a  professor of astronomy at 
Cambridge and then the Astronomer Royal at 
the Royal Observatory in Greenwich, England.  
(© Mary Evans Picture Library/Alamy.)

FIGURE 1.60 A mono-
chromator based on using a 
diffraction grating.

 (a) What is the range of wavelengths that can be captured by the photodetector when we rotate the grating from 
ui = 1° to 40°?

 (b) Suppose that ui = 15°. What is the wavelength that will be detected? What is the resolution, that is, the 
range of wavelengths that will pass through the slit? How can you improve the resolution? What would be 
the advantage and disadvantage in decreasing the slit width s?
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 1.43 Thin film optics Consider light incident on a thin film on a substrate, and assume normal incidence for 
simplicity.

 (a) Consider a thin soap film in air, n1 = n3 = 1, n2 = 1.40. If the soap thickness d = 1 om, plot the 
reflectance vs. wavelength from 0.35 om to 0.75 om, which includes the visible range. What is your 
conclusion?

 (b) MgF2 thin films are used on glass plates for the reduction of glare. Given that n1 = 1, n2 = 1.38, and 
n3 = 1.60 (n for glass depends on the type of glass but 1.6 is a reasonable value), plot the reflectance as 
a function of wavelength from 0.35 om to 0.75 om for a thin film of thickness 0.10 om. What is your 
conclusion?

 1.44 Thin film optics Consider a glass substrate with n3 = 165 that has been coated with a transparent opti-
cal film (a dielectric film) with n2 = 2.50, n1 = 1 (air). If the film thickness is 500 nm, find the minimum 
and maximum reflectances and transmittances and their corresponding wavelengths in the visible range 
for normal incidence. (Assume normal incidence.) Note that the thin n2-film is not an AR coating, and for 
n1 6 n3 6 n2,

R max = an2
2 - n1n3

n2
2 + n1n3

b2

 and R min = an3 - n1

n3 + n1
b2

 1.45 Thin film optics Consider light incident on a thin film on a substrate, and assume normal incidence for sim-
plicity. Plot the reflectance R and transmittance T as a function of the phase change f from f = -4p to +4p 
for the following cases

 (a) Thin soap film in air, n1 = n3 = 1, n2 = 1.40. If the soap thickness d = 1 om, what are the maxima and 
minima in the reflectance in the visible range?

 (b) A thin film of MgF2 on a glass plate for the reduction of glare, where n1 = 1, n2 = 1.38, and n3 = 1.70  
(n for glass depends on the type of glass but 1.7 is a reasonable value.) What should be the thickness of 
MgF2 for minimum reflection at 550 nm?

 (c) A thin film of semiconductor on glass where n1 = 1, n2 = 3.5, and n3 = 1.55.
 1.46 Transmission through a plate Consider the transmittance of light through a partially transparent glass plate 

of index n in which light experiences attenuation (either by absorption or scattering). Suppose that the plate is in 
a medium of index no, the reflectance at each n–no interface is R and the attenuation coefficient is a.

 (a) Show that

Tplate =
(1 - R)2e-ad

(1 - R2)e-2ad

 (b) If T is the transmittance of a glass plate of refractive index n in a medium of index no show that, in the 
absence of any absorption in the glass plate,

n>no = T -1 + (T -2 - 1)1>2
if we neglect any losses in the glass plate.

 (c) If the transmittance of a glass plate in air has been measured to be 89.96%. What is its refractive index? Do 
you think this is a good way to measure the refractive index?

 1.47 Scattering Consider Rayleigh scattering. If the incident light is unpolarized, the intensity Is of the scattered 
light a point at a distance r at an angle u to the original light beam is given by

Is ∝
1 - cos2 u

r2

Plot a polar plot of the intensity Is at a fixed distance r from the scatter as we change the angle u around the 
scatterer. In a polar plot, the radial coordinate (OP in Figure 1.48 (b)) is Is. Construct a contour plot in the xy 
plane in which a contour represents a constant intensity. You need to vary r and u or x and y such that Is remains 
constant. Note x = r cos u and y = r sin u, u = arctan (y>x), r = (x2 + y2)1>2.

 1.48 One-dimensional photonic crystal (a Bragg mirror) The 1D photonic crystal in Figure 1.50 (a), which is 
essentially a Bragg reflector, has the dispersion behavior shown in Figure 1.51 (a). The stop-band ∆v for nor-
mal incidence and for all polarizations of light is given by (R. H. Lipson and C. Lu, Eur. J. Phys., 30, S33, 2009)

∆v

vo
= (4>p) arcsin an2 - n1

n2 + n1
b
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where ∆v is the stop band, vo is the center frequency defined in Figure 1.51 and n2 and n1 are the high and low 
refractive indices. Calculate the lowest stop band in terms of photon energy in eV, and wavelength 1550 nm  
for a 1D photonic crystal structure with  n1d1 = n2d2 = l>4, made up of: (i) Si (nSi  =  3.5) and SiO2  
(nSiO2

= 1.445) pairs, and (ii) Si3N4 (nSi3N4
= 2.0) and SiO2  pairs.

 1.49 Photonic crystals Concepts have been borrowed from crystallography, such as a unit cell, to  define a pho-
tonic crystal. What is the difference between a unit cell used in a photonic crystal and that used in a real crystal? 
What is the size limit on the unit cell of a photonic crystal? Is the refractive index a microscopic or a macro-
scopic concept? What is the assumption on the refractive index?

A scanning Fabry–Perot interferometer (Model SA200), used as a spectrum analyzer, which has a free spec-
tral range of 1.5 GHz, a typical finesse of 250, spectral width (resolution) of 7.5 MHz. The cavity length is 
5 cm. It uses two concave mirrors instead of two planar mirrors to form the optical cavity. A piezoelectric 
transducer is used to change the cavity length and hence the resonant frequencies. A voltage ramp is applied 
through the coaxial cable to the piezoelectric transducer to scan frequencies. (Courtesy of Thorlabs.)

This is a tunable large aperture (80 mm) etalon with two end plates that act as reflectors. The end plates 
have been  machined to be flat to wavelength>110. There are three piezoelectric transducers that can tilt 
the end plates and hence obtain  perfect alignment. (Courtesy of Light Machinery.)



Charles Kao at the naming ceremony of Minor Planet (3463) “Kaokuen” by Nanjing’s Purple Mountain 
Observatory in July 1996. Charles Kao and his colleagues carried out the early experiments on optical fibers 
at the Standard Telecommunications Laboratories Ltd. (the research center of Standard Telephones and 
Cables) at Harlow in the United Kingdom, during the 1960s. He shared the Nobel Prize in 2009 in Physics 
with Willard Boyle and George Smith for “groundbreaking achievements concerning the transmission of 
light in fibers for optical communication.” In a milestone paper with George Hockam published in the 
IEE Proceedings in 1966 they predicted that the intrinsic losses of glass optical fibers could be much lower 
than 20 dB km-1, which would allow their use in long-distance telecommunications. Today, optical fibers 
are used not only in telecommunications but also in various other technologies such as instrumentation 
and sensing. From 1987 to his retirement in 1996, Professor Kao was the vice-chancellor of the Chinese 
University of Hong Kong. (Courtesy of the Chinese University of Hong Kong.)

The introduction of optical fiber systems will revolutionize the communications network.  
The low-transmission loss and the large bandwidth capability of the fiber systems allow  
signals to be transmitted for establishing communications contacts over large distances  

with few or no provisions of intermediate amplification.

—Charles K. Kao1

1 Charles K. Kao (one of the pioneers of glass fibers for optical communications) Optical Fiber Systems: Technology, Design, and 
Applications (McGraw-Hill, 1982), p. 1.


