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CHAPTER 1 PROBLEMS 

 

1.1 Determine whether the element in Fig. 1.1 is absorbing or supplying power and how 

much. 

-2A
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-

12V

 
Fig. 1.1 

 

1.2 In Fig. 1.2, element 2 absorbs 24W of power.  Is element 1 absorbing or supplying power 

and how much. 
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Fig. 1.2 

 

1.3. Given the network in Fig.1.3 find the value of the unknown voltage VX. 

1 2

3+
-

+
-

+

-

+ - + -4V 10V
2A

2A

4A

8V12V

6A

V
X

 
Fig. 1.3 
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CHAPTER 1 SOLUTIONS 

 

1.1 One of the easiest ways to examine this problem is to compare it with the diagram that 

illustrates the sign convention for power as shown below in Fig. S1.1(b). 

-2A

+

-

12V

i(t)

+

-

v(t)

 
 Fig. S1.1(a) Fig. S1.1(b) 

 

 We know that if we simply arrange our variables in the problem to match those in the 

diagram on the right, then p(t) = i(t) v(t) and the resultant sign will indicate if the element 

is absorbing (+ sign) or supplying (- sign) power. 

 

 If we reverse the direction of the current, we must change the sign and if we reverse the 

direction of the voltage we must change the sign also.  Therefore, if we make the diagram 

in Fig. S1.1(a) to look like that in Fig. S1.1(b), the resulting diagram is shown in Fig. 

S1.1(c). 

 

2A

+

-

(-12V)

 
Fig. S1.1(c) 

 

 Now the power is calculated as 

 

P = (2) (-12) = -24W 

 

 And the negative sign indicates that the element is supplying power. 

 

1.2 Recall that the diagram for the passive sign convention for power is shown in Fig. S1.2(a) 

and if p = vi is positive the element is absorbing power and if p is negative, power is 

being supplied by the element. 
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Fig. S1.2(a) 

 

 If we now isolate the element 2 and examine it, since it is absorbing power, the current 

must enter the positive terminal of this element.  Then 

P = VI 

24 = 6(I) 

I = 4A 

 

 The current entering the positive terminal of element 2 is the same as that leaving the 

positive terminal of element 1.  If we now isolate our discussion on element 1, we find 

that the voltage across the element is 6V and the current of 4A emanates from the 

positive terminal.  If we reverse the current, and change its sign, so that the isolated 

element looks like the one in Fig. S1.2(a), then 

 

P = (6) (-4) = -24W 

 

 And element 1 is supplying 24W of power. 

 

1.3 By employing the sign convention for power, we can determine whether each element in 

the diagram is absorbing or supplying power.  Then we can apply the principle of the 

conservation of energy which means that the power supplied must be equal to the power 

absorbed. 

 

 If we now isolate each element and compare it to that shown in Fig. S1.3(a) for the sign 

convention for power, we can determine if the elements are absorbing or supplying 

power. 

i

+

-

V

P = Vi

 
Fig. S1.3(a) 

 

 For the 12V source and the current through it to be arranged as shown in Fig. S1.3(a), the 

current must be reversed and its sign changed.  Therefore 

 

P12V = (12) (-6) = -72W 
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 Treating the remaining elements in a similar manner yields 

 

 P1 = (4) (6) = 24W 

 P2 = (2) (10) = 20W 

 P3 = (8) (4) = 32W 

 PVX = (VX) (2) = 2VX 

 

 Applying the principle of the conservation of energy, we obtain 

 

-72 + 24 + 20 + 32 + 2VX = 0 

 And  

VX = -2V 
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CHAPTER 2 PROBLEMS 

 

2.1 Determine the voltages V1 and V2 in the network in Fig. 2.1 using voltage division. 
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Fig. 2.1 

 

2.2 Find the currents I1 and I0 in the circuit in Fig. 2.2 using current division. 
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Fig. 2.2 

 

2.3 Find the resistance of the network in Fig. 2.3 at the terminals A-B. 

A

B

8k 10k 2k
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Fig. 2.3 

 

2.4 Find the resistance of the network shown in Fig. 2.4 at the terminals A-B. 
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Fig. 2.4 
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2.5 Find all the currents and voltages in the network in Fig. 2.5. 
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Fig. 2.5 

 

2.6 In the network in Fig. 2.6, the current in the 4k  resistor is 3mA.  Find the input voltage 

VS. 
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Fig. 2.6 
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CHAPTER 2 SOLUTIONS 

 

2.1 We recall that if the circuit is of the form 

V
1

R
1

R
2 V

0

+
- +

-  
Fig. S2.1(a) 

 

 Then using voltage division 

 

1

21
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0
V

RR

R
V  

 

 That is the voltage V1 divides between the two resistors in direct proportion to their 

resistances.  With this in mind, we can draw the original network in the form 
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Fig. S2.1(b) 

 

 The series combination of the 4k  and 2k  resistors and their parallel combination with 

the 3k  resistor yields the network in Fig. S2.1(c). 
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Fig. S2.1(c) 

 

 Now voltage division can be sequentially applied.  From Fig. S2.1(c). 
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 Then from the network in Fig. S2.1(b) 



 10

V2

V
k4k2

k2
V

12
 

 

2.2 If we combine the 6k and 12k ohm resistors, the network is reduced to that shown in Fig. 

S2.2(a). 

3k

2k

4k

9mA

I
1

 
Fig. S2.2(a) 

 

 The current emanating from the source will split between the two parallel paths, one of 

which is the 3k  resistor and the other is the series combination of the 2k and 4k  

resistors.  Applying current division 

 

mA3

k4k2k3

k3

k

9
I

1
 

 

 Using KCL or current division we can also show that the current in the 3k  resistor is 

6mA.  The original circuit in Fig. S2.2 (b) indicates that I1 will now be split between the 

two parallel paths defined by the 6k and 12k-  resistors. 
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6k
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I
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12k

I
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Fig. S2.2(b) 

 

 Applying current division again 

 

k12k6

k6
II

10
 

 

mA1

k18

k6

k

3
I

0
 

 

 Likewise the current in the 6k  resistor can be found by KCL or current division to be 

2mA.  Note that KCL is satisfied at every node. 
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2.3 To provide some reference points, the circuit is labeled as shown in Fig. S2.3(a). 

A

B

8k 10k 2k

4k
18k

6k 3k

3k
6k

12k
12k

A' A"

B' B"
 

Fig. S2.3(a) 

 

 Starting at the opposite end of the network from the terminals A-B, we begin looking for 

resistors that can be combined, e.g. resistors that are in series or parallel.  Note that none 

of the resistors in the middle of the network can be combined in anyway.  However, at 

the right-hand edge of the network, we see that the 6k and 12k ohm resistors are in 

parallel and their combination is in series with the 2k  resistor.  This combination of 

6k 12k + 2k is in parallel with the 3k  resistor reducing the network to that shown in 

Fig. S2.3(b). 
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B

8k 10k
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12k
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Fig. S2.3(b) 

 

 Repeating this process, we see that the 2k  resistor is in series with the 10k  resistor 

and that combination is in parallel with the12k  resistor.  This equivalent 6k  resistor 

(2k + 10k) 12k is in series with the 3k  resistor and that combination is in parallel with 

the 18k  resistor that (6k + 3k) 18k = 6k  and thus the network is reduced to that 

shown in Fig. S2.3(c). 
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Fig. S2.3(c) 
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 At this point we see that the two 6k  resistors are in series and their combination in 

parallel with the 4k  resistor.  This combination (6k + 6k) 4k = 3k  which is in series 

with 8k  resistors yielding A total resistance RAB = 3k + 8k = 11k . 

 

2.4 An examination of the network indicates that there are no series or parallel combinations 

of resistors in this network. However, if we redraw the network in the form shown in Fig. 

S2.4(a), we find that the networks have two deltas back to back. 

A

B

4k

2k 12k 12k

12k
6k 18k

 
Fig. S2.4(a) 

 

 If we apply the Y transformation to either delta, the network can be reduced to a 

circuit in which the various resistors are either in series or parallel.  Employing the Y 

transformation to the upper delta, we find the new elements using the following equations 

as illustrated in Fig. S2.4(b) 

12k

R
1

6k
18k

R
3

R
2

 
Fig. S2.4(b) 

 

k3
k18k12k6

k18k6
R

1
 

k2
k18k12k6

k12k6
R

2
 

k6
k18k12k6

k18k12
R

3
 

 

 The network is now reduced to that shown in Fig. S2.4(c). 
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A

B

4k

2k
12k

12k

3k

2k 6k

 
Fig. S2.4(c) 

 

 Now the total resistance, RAB is equal to the parallel combination of (2k + 12k) and (6k + 

12k) in series with the remaining resistors i.e. 

 

RAB = 4k + 3k + (14k 18k) + 2k 

 = 16.875k  

 

 If we had applied the Y transformation to the lower delta, we would obtain the 

network in Fig. S2.4(d). 

A

B

4k

2k

4k

4k

4k

6k 18k

 
Fig. S2.4(d) 

 

 In this case, the total resistance RAB is 

 

RAB = 4k + (6k + 4k) (18k + 4k) + 4k +2k 

 = 16.875k  

 

 which is, of course, the same as our earlier result. 

 

2.5 Our approach to this problem will be to first find the total resistance seen by the source, 

use it to find I1 and then apply Ohm’s law, KCL, KVL, current division and voltage 

division to determine the remaining unknown quantities.  Starting at the opposite end of 

the network from the source, the 2k and 4k ohm resistors are in series and that 

combination is in parallel with the 3k  resistor yielding the network in Fig. S2.5(a). 
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Fig. S2.5(a) 

 

 Proceeding, the 2k and 10k ohm resistors are in series and their combination is in parallel 

with both the 4k and 6k ohm resistors.  The combination (10k + 2k) 6k 4k = 2k .  

Therefore, this further reduction of the network is as shown in Fig. S2.5(b). 
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Fig. S2.5(b) 

 

 Now I1 and V1 can be easily obtained. 

 

mA12
k2k2

48
I

1
 

 And by Ohm’s law 

 

V1 = 2kI1 

 = 24V 

 or using voltage division 

 

V24

k2k2

k2
48V

1
 

 

 once V1 is known, I2 and I3 can be obtained using Ohm’s law 

 

mA6
k4

24

k4

V
I 1

2
 

mA4
k6

24

k6

V
I 1

3
 

 

 I4 can be obtained using KCL at node A.  As shown on the circuit diagram. 

 

 I1 = I2 + I3 + I4 
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4
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 The voltage V2 is then 

 

 V2 = V1 - 10kI4 

k

2
k1024  

 = 4V 

 

 or using voltage division 

 

V4

6

1
24

k2k10

k2
VV
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 Knowing V2, I5 can be derived using Ohm’s law 

 

mA
3

4

k3

V
I 2

5

 

 and also 

 

mA
3

2

k4k2

V
I 2

6

 

 

 current division can also be used to find I5 and I6. 
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3
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 and 
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mA
3

2

k4k2k3

k3
II

46

 

 

 Finally V3 can be obtained using KVL or voltage division 
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V
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2.6 The network is labeled with all currents and voltages in Fig. S2.6. 
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Fig. S2.6 

 

 Given the 3mA current in the 4k  resistor, the voltage 

 

V12k4
k

3
V

1
 

 

 Now knowing V1, I1 and I2 can be obtained using Ohm’s law as 

 

 mA2
k6
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V
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V
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2
 

 

 Applying KCL at node B 
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mA6

II
k

3
I

213  

 Then using Ohm’s law 

 

V2 = I3 (1k) 

= 6V 

 

 KVL can then be used to obtain V3 i.e. 

 

V3 = V2 + V1 

 = 6 + 12 

 = 18V 

 

 Then 

 

mA9

k2

V
I 3

4  

 

 And 

 

mA15

k

9

k

6

III
435

 

 

 using Ohm’s law 

 

V4 = (2k) I5 

 = 30V 

 

 and finally 

 

VS = V4 + V3 

 = 48V 
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CHAPTER 4 PROBLEMS 
 
4.1 Derive the gain equation for the nonideal noninverting op-amp configuration and show 

that it reduces to the ideal gain equation if Ri and A are very large, i.e. greater than 106. 
 
4.2 Determine the voltage gain of the op-amp circuit shown in Fig. 4.2. 
 

+

-

25kΩ

50kΩ

6kΩ3kΩ
50kΩ

25kΩ

vo
vs

+
-

+
-

 
 

Fig. 4.2 
 
4.3 Using the ideal op-amp model show that for the circuit shown in Fig. 4.3, the output 

voltage is directly related to any small change ∆R. 
 

+

-

R

∆RR

R

R vovs

+

-

+
-

 
 

Fig. 4.3 
 
4.4 Given an op-amp and seven standard 12kΩ resistors, design an op-amp circuit that will 

produce an output of  
 

210 v
2
1 - 2v-  v =  
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CHAPTER 4 SOLUTIONS 
 
4.1 The noninverting op-amp circuit is shown in Fig. S4.1(a). 
 

vo

v1N

RF

RI

+
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Fig. S4.1(a) 
 
 The nonideal model is 
 

+

-
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v-
v1N

v+ ve Ri
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Fig. S4.1(b) 
 
 or 
 

+          -

RI vov1N

+

-

ve v1

Ri

Ave
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+
- +
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Fig. S4.1(c) 
 
 The node equations for this circuit are 
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R

 v- v
  

R
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 Following the development on page 141 of the text yields 
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 assuming Ri → ∞, the equation reduces to  
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 Now dividing both numerator and denominator by A and using A → ∞ yields 
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 which is the ideal gain equation. 
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4.2 The network in Fig. 4.2 can be reduced to that shown in Fig. S4.2(a) by combining 
resistors. 

 

vo
vs

+

-

25kΩ
50kΩ

2kΩ
75kΩ

+-

+

-

 
 

Fig. S4.2(a) 
 
 v+ is determined by the voltage divider at the input, i.e. 
 

ss  v
4
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75k 25k 
75k  v v =⎥⎦

⎤
⎢⎣
⎡

+
=+  

 
 The op-amp is in a standard noninverting configuration and the gain is 26  2k

50k  1 =+ . 

 
 Therefore 
 

( ) ( )so  v4
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19.5  
v
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4.3 The node equations for the circuit in Fig. 4.3 are 
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4.4 A weighted-summer circuit shown in Fig. S4.4(a) can be used to produce an output of the 

form 2
2

1
1

o  v
R
R -  v

R
R-  v = . 
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Fig. S4.4(a) 

 
 Note that 
 

2
1  

R
R   and   2  

R
R

21

==  

 
 Therefore if 
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  R = 24kΩ (two 12kΩ resistors in series) 
 
  R1 = 12kΩ 
 
  R2 = 48kΩ (four 12kΩ resistors in series) 
 
 then the design conditions are satisfied. 
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CHAPTER 5 PROBLEMS 

 

5.1 Find 
0

V  in the circuit in Fig. 5.1 using the Principle of Superposition. 

+
-

12V

6k 8k

6mA

4k

+

-

0
V

 
Fig. 5.1 

 

5.2 Solve problem 5.1 using source transformation. 

 

5.3. Find 
0

V  in the network in Fig. 5.3 using Thevenin’s Theorem. 

6k

2k

4mA

4k
+

-

0
V

3k
+
-

 
Fig. 5.3 

 

5.4 Find 
0

I  in the circuit in Fig. 5.4 using Norton’s Theorem. 

+
- 6k2k 2mA

3k
12V

0
I

 
Fig. 5.4 

 

5.5 For the network in Fig. 5.5, find RL for maximum power transfer and the maximum 

power that can be transferred to this load. 
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Fig. 5.5 
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CHAPTER 5 SOLUTIONS 

 

5.1 To apply superposition, we consider the contribution that each source independently 

makes to the output voltage 
0

V .  In so doing, we consider each source operating alone 

and we zero the other source(s).  Recall, that in order to zero a voltage source, we replace 

it with a short circuit since the voltage across a short circuit is zero.  In addition, in order 

to zero a current source, we replace the current source with an open circuit since there is 

no current in an open circuit. 

 

 Consider now the voltage source acting alone.  The network used to obtain this 

contribution to the output 
0

V  is shown in Fig. S5.1(a). 
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Fig. S5.1(a) 

 

 Then 
0

V  (only a part of 
0

V ) is the contribution due to the 12V source.  Using voltage 

division 

V
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k8k6k4

k4
12V
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 The current source’s contribution to 
0

V  is obtained from the network in Fig. S5.1(b). 
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Fig. S5.1(b) 

 

 Using current division, we find that 
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k4k8k6
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6
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 Then 
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V8

kI4V
00  

 Then superposition states that 

 

V
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16
8

3
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VVV
000

 

 

5.2 Recall that when employing source transformation, at a pair of terminals we can 

exchange a voltage source VS in series with a resistor RS for a current source Ip in parallel 

with a resistor Rp and vice versa, provided that the following relationships among the 

parameters exist. 

 

S

S

p
R

V
I  

 Rp = RS 

 

 Now the original circuit is shown in Fig. S5.2(a). 

+
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6k 8k

6mA

4k
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0
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Fig. S5.2(a) 

 

 Note that we have a 12V source in series with a 6k  resistor that can be exchanged for a 

current source in parallel with the resistor.  This appears to be a viable exchange since we 

will then have two current sources in parallel which we can add algebraically.  

Performing the exchange yields the network in Fig. S5.2(b). 

6k

8k

4k

+

-
0

Vk

6

k

2

 
Fig. S5.2(b) 

 

 Note that the voltage source was positive at the bottom terminal and therefore the current 

source points in that direction.  Adding the two parallel current sources reduces the 

network to that shown in Fig. S5.2(c). 
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6k

8k

4k

+

-

0
V

k

4

 
Fig. S5.2(c) 

 

 At this point we can apply current division to obtain a solution.  For example, the current 

in the 4k  resistor is 

 

mA
3

4

k4k8k6

k6

k

4
I

k4

 

 

 Then 

 

V
3

16

k4IV
k40

 

 

 However, we could also transform the current source and the parallel 6k  resistor into a 

voltage source in series with the 6k  resistor before completing the solution.  If we make 

this exchange, then the network becomes that shown in Fig. S5.2(d). 

+
-24V

6k 8k

4k

+

-

0
V

 
Fig. S5.2(d) 

 

 Then using voltage division 

 

V
3

16

k8k6k4

k4
24V

0

 

 

5.3 Since the network contains no dependent source, we will simply determine the open 

circuit voltage, 
c0

V , and with the sources in the network made zero, we will look into the 
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open circuit terminals and compute the resistance at these terminals, RTH.  The open 

circuit voltage is determined from the network in Fig. S5.3(a). 

12V +
-

6k

4k

+

-

C0
V

3k

+

-

2
V

+-
1

V

1
I

2
I

k

4

 
Fig. S5.3(a) 

 

 Note the currents and voltages labeled in the network.  First of all, note that 

 

21C0
VVV  

 

 Therefore, we need only to determine these voltages.  Clearly, the voltage V1 is 

 

V1 = I1 (4k) = 16V 

 

 However, to find V2 we need I2.  KVL around the loop I2 yields 

 

-12 + 6k (I2 – I1) + 3kI2 = 0 

 

 or 

 

mA4
k

4
I

0kI3)
k

4
I(k612

2

22

 

 

 Now 

 

V28

kI3kI4

VVV

21

21C0

 

 

 The Thevenin equivalent resistance is found by zeroing all sources and looking into the 

open circuit terminals to determine the resistance.  The network used for this purpose is 

shown in Fig. S5.3(b). 
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6k 4k

TH
R3k

 
Fig. S5.3(b) 

 

 From the network we see that the 6k and 3k Ohm resistors are in parallel and that 

combination is in series with the 4k  resistor.  Thus 

 

RTH = 4k + 3k  6k 

 = 6k  

 

 Therefore, the Thevenin equivalent circuit consists of the 28V source in series with the 

6k  resistor.  If we connect the 2k  resistor to this equivalent network we obtain the 

circuit in Fig. S5.3(c). 

6k
2k

+

-

0
V28V

+
-

 
Fig. S5.3(c) 

 

 Then using voltage division 

 

V7

k6k2

k2
28V

0
 

 

5.4 In this network, the 2k  resistor represents the load.  In applying Norton’s Theorem we 

will replace the network without the load by a current source, the value of which is equal 

to the short-circuit current computed from the network in Fig. S5.4(a), in parallel with the 

Thevenin equivalent resistance determined from Fig. S5.4(b). 

3k
6k

SC
I12V

+
- k

2

 
Fig. S5.4(a) 
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3k

6k
TH

R

 
Fig. S5.4(b) 

 

 with reference to Fig. S5.4(a), all current emanating from the 12V source will go through 

the short-circuit.  Likewise, all the current in the 2mA current source will also go through 

the short-circuit so that 

 

mA2
k

2

k3

12
I

SC
 

 

 If this statement is not obvious to the reader, then consider the circuit shown in Fig. 

S5.4(c). 

I

R SC
I

 
Fig. S5.4(c) 

 

 Knowing that the resistance of the short-circuit is zero, we can apply current division to 

find ISC 

 

I

0R

R
II

SC
 

 

 indicating that all the current in this situation will go through the short-circuit and none of 

it will go through the resistor.  From Fig. S5.4(b) we find that the 3k and 6k Ohm 

resistors are in parallel and thus 

 

RTH = 3k  6k = 2k  

 

 Now the Norton equivalent circuit consists of the short-circuit current in parallel with the 

Thevenin equivalent resistance as shown in Fig. S5.4(d). 

2mA 2k

 
Fig. S5.4(d) 



 39

 

 Remember, at the terminals of the 2k  load, this network is equivalent to the original 

network with the load removed.  Therefore, if we now connect the load to the Norton 

equivalent circuit as shown in Fig. S5.4(e), the load current 
0

I  can be calculated via 

current division as 

 

mA1

k2k2

k2

k

2
I

0
 

 

2k2k
k

2

0
I

 
Fig. S5.4(e) 

 

5.5 The solution of this problem involves finding the Thevenin equivalent circuit at the 

terminals of the load resistor RL and setting RL equal to the Thevenin equivalent 

resistance RTH. 

 

 To determine the Thevenin equivalent circuit, we first find the open circuit voltage as 

shown in Fig. S5.5(a). 

+
-

12
3k 6k

+ -

+
- X

V2

X
V

C0
V

+

-
 

Fig. S5.5(a) 

 

 We employ the prime notation on the control variable Vx since the circuit in Fig. S5.5(a) 

is different than the original network.  Applying KVL to the left side of the network 

yields 

 

-12 +Vx  + 2Vx  = 0 

 Vx  = 4V 

 

 Then the open circuit voltage is 

 

V8

V2V
XC0  

 

 since there is no current in the 6k  resistor and therefore no voltage drop across it. 
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 Because of the presence of the dependent source we cannot simply look back into the 

open circuit terminals, with all independent sources made zero, and determine the 
Thevenin equivalent resistance.  We must determine the short-circuit current, ISC and 
determine RTH from the expression 

 

SC

C0
TH I

V
R =  

 
 ISC is found from the circuit in Fig. S5.5(b). 

+
-12

3k 6k

+ -

+
- XV2 ′′

XV ′′

SCI

 
Fig. S5.5(b) 

 
 Once again, using KVL 
 

-12 +Vx″ + 2Vx″ = 0 
 Vx″ = 4 
 
 Then, since the dependent source 2Vx″ = 8V is connected directly across the 6kΩ resistor 
 

mA
3
2

k6
V2I X

SC =
″

=  

 
 and 
 

Ω=== k12

k3
2
8

I
V

R
SC

C0
TH  

 
 Hence, for maximum power transfer 
 

RL = RTH = 12kΩ 
 
 And the remainder of the problem involves finding the power absorbed by the 12kΩ load, 

PL.  From the network in Fig. S5.5(c) we find that 
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( )

mW33.1

k12
k24

8

RIP
2

L
2
LL

=

⎟
⎠
⎞

⎜
⎝
⎛=

=

 

+
-

LI12kΩ

12kΩ  = R28V

 
Fig. S5.5(c) 
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CHAPTER 6 PROBLEMS 

 

6.1 If the voltage across a 10 F capacitor is shown in Fig. 6.1, derive the waveform for the 

capacitor current. 

4

2

4 6 80 2
t (ms)

 
Fig. 6.1 

 

6.2 If the voltage across a 100mH inductor is shown in Fig. 6.2, find the waveform for the 

inductor current. 

4

-2

0.2
t(s)

0

0.1

v(t) (mV)

 
Fig. 6.2 

 

6.3 Find the equivalent capacitance of the network in Fig. 6.3 at the terminals A-B.  All 

capacitors are 6 F. 

A

B

eq
C

 
Fig. 6.3 

 

6.4 Find the equivalent inductance of the network in Fig. 6.4 at the terminals A-B.  All 

inductors are 12mH. 
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A

B
 

Fig. 6.4 
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CHAPTER 6 SOLUTIONS 

 

6.1 The equations for the waveforms in the 4 two millisecond time intervals are listed below. 

 

ms8t,0t0

ms8t6t
102

4
16

ms6t4t
102

2
2

ms4t22

ms2t0t
102

2

bmttv

3

3

3

 

 

 Note that within each interval we have simply written the equation of a straight line using 

the expression y = mx + b or equivalently v(t) = mt + b where m is the slope of the line 

and b is the point at which the line intersects the v(t) axis. 

 

 The equation for the current in a capacitor is 

 

dt

tdv
C)t(i  

 

 Using this expression we can compute the current in each interval.  For example, in the 

interval from 0  t  2ms 

 

mA10

ms2t0t
102

2

dt

d
1010ti

3

6

 

 

0

ms4t22
dt

d
1010ti 6

 

 

mA10

ms6t4t
102

2
2

dt

d
1010ti

3

6

 

 

mA20

ms8t6t
102

4
16

dt

d
1010ti

3

6

 

 

 The waveform for the capacitor current is shown in Fig. S6.1. 
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4

-2
4

t(ms)
0 2 6 8

-4

2

i(t) (mA)

 
Fig. S6.1 

 

6.2 The general expression for the current in an inductor is 

 
t

t0
0

dxxvtiti  

 

 In order to evaluate this function we need the equation of the voltage waveform in the 

two time intervals 0  t  0.1s and 0.1  t  0.2s.  In the first case, the voltage function is 

a straight line and the function passes through the origin of the graph.  The equation of a 

straight line on this graph is 

 

v(t) = mt + b 

 

 where m is the slope of the line and b is the point at which the line intersects the v(t) axis.  

Since the slope is 
1.0

104 3

, the equation of the line is 

 

t
1.0

104
tv

3

 

 

 where v(t) is measured in volts and time is measured in seconds i.e., the slope has units of 

volts/sec.  Therefore, 

 

t

0

3

dx
1.0

104

L

1
0iti  

 

 since there is no initial current in the inductor i(t) = 0 and 10
L

1
 

 
t

0

2 dx10410ti  

 

 or 
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mAt200At2.0

2

x
4.0dx4.0ti

22

t

0

t

0

2

 

 

 Since the initial current for the second time interval is determined by the value of the 

current at the end of the first time interval we calculate 

 

mA2

mAt200ti
1.0t

2

1.0t
 

 

 Therefore, in the time interval 0.1  t  0.2s 

 

t

1.0
dxxv

L

1
1.0iti  

 

 Note that in this interval v(x) is a constant –2mV or –2  10
-3

V.  Hence, 

 

mAt204

1020102

dx10210102ti

t

1.0

33

t

1.0

33

 

 

 If we now plot the two functions for the current within their respective time intervals we 

obtain the plot in Fig. S6.2. 

2

0.2
t(s)

0 0.1

 
Fig. S6.2 

 

6.3 To begin our analysis we first label all the capacitors and nodes in the network as shown 

in Fig. S6.3(a). 
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A

B

1
C

2
C

3
C

4
C

5
C

6
C

C D

 
Fig. S6.3(a) 

 

 First of all, the reader should note that all the nodes have been labeled, i.e., there are no 

other nodes.  As we examine the topology of the network we find that since C3 and C5 are 

both connected to node D the network can be redrawn as shown in Fig. S6.3(b). 

A

B

1
C 2

C

3
C

4
C

5
C6

C

C D

 
Fig. S6.3(b) 

 

 Clearly, C5 and C6 are in parallel and their combination we will call C56 = C5  C6.  

Combining these two capacitors reduces the network to that shown in Fig. S6.3(c). 

A

B

1
C

2
C

3
C

4
C

56
C

C

D

 
Fig. S6.3(c) 

 

 At this point we find that C2 and C4 are in parallel and their combination, which we call 

C24 = C2  C4, reduces the network to that shown in Fig. S6.3(d). 

A

B

1
C 24

C

3
C

56
C

C D

 
Fig. S6.3(d) 
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 If we now use the given capacitor values, the network becomes that shown in Fig. 

S6.3(e). 

A

B

6 F

6 F

12 F

12 F

 
Fig. S6.3(e) 

 

 Starting at the opposite end of the network from the terminals A-B and combining 

elements we find that 6 F in series with 12 F is 4 F and this equivalent capacitance is in 

parallel with 12 F yielding 16 F, which in turn is in series with 6 F producing a total 

capacitance of 

 

F36.4

F16F6C
eq

 

 

6.4 To aid our analysis, we will first label all inductors and nodes as shown in Fig. S6.4(a). 

A

B

1
L

2
L

3
L

4
L

5
L

6
L

C

 
Fig. S6.4(a) 

 

 Note carefully that all the nodes have been labeled.  Once readers recognize that there are 

no other nodes, they are well on their way to reducing the network since this node 

recognition provides data indicating which elements are in series or parallel.  For 

example, since one end of L4 is connected to node B, the network can be redrawn as 

shown in Fig. S6.4(b). 

A

B

1
L

2
L

3
L

4
L

5
L

6
L

C

 
Fig. S6.4(b) 
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 This diagram clearly indicates that L2 and L5 are in parallel.  In addition, L4 and L6 are in 

parallel.  Therefore, if we combine elements so that L25 = L2  L5 and L46 = L4  L6, then 

the circuit can be reduced to that in Fig. S6.4(c). 

A

B

1
L 25

L

3
L

46
L

C

 
Fig. S6.4(c) 

 

 However, we note now if we did not see it earlier that L25 is in parallel with L46 so that 

the network can be reduced to that shown in Fig. S6.4(d). 

A

B

1
L

2456
L

3
L

C

 
Fig. S6.4(d) 

 

 Where L2456 = L25  L46.  Since all inductors are 12mH, L2456 = 3mH which is in series 

with 12mH and that combination is in parallel with 12mH yielding 

 

LAB = 12mH  15mH = 6.66mH 

 

 



 66

CHAPTER 8 PROBLEMS 

 

8.1 Find the frequency domain impedance Z, shown in Fig. 8.1. 

j1

Z
-j1

 
Fig. 8.1 

 

8.2 If the impedance of the network in Fig. 8.2 is real at f = 60Hz, what is the value of the 

inductor L? 

L

Z 10mF

 
Fig. 8.2 

8.3 Use nodal analysis to find 
0

V  in the network in Fig. 8.3. 

-j4

- +

j2

+

-

V012

0
V

 
Fig. 8.3 

 

8.4 Find 
0

V  in the network in Fig. 8.4 using (a) loop analysis (b) superposition and (c) 

Thevenin’s Theorem. 

-
+

j2

+

-

A02

0
V

V012

-j1

 
Fig. 8.4 
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CHAPTER 8 SOLUTIONS 

 

 

8.1. To begin our analysis, we note that the circuit can be labeled as shown in Fig. S8.1. 

1
Z

2
Z 3

ZZ

 
Fig. S8.1 

 

 In this case, Z1 consists of a 1  resistor, Z2 is the series combination of a 1  resistor and 

a j1  inductor and Z2 consists of a –j1  capacitor in series with a 1  resistor.  

Therefore, 

 

  Z1 = 1  

Z2 = 1 + j1  

Z3 = 1 – j1  

 

 Starting at the opposite end of the network from the terminals at which Z is calculated we 

note that Z2 and Z3 are in parallel and their combination is in series with Z1.  Hence 

 

2

2

2
1

j1j1

j1j1
1

ZZZZ
321

 

 

8.2 The general expression for the impedance of this network is 

 

Cj

1
Lj21Z  

 

 In order for Z to be purely resistive, the term 
Cj

1
Lj  must be real, i.e. 

 

ZLC = RLC + j0 

 

 However, since ZLC can be written as 

 

C

1
LjZ

LC
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 it is clearly an imaginary term and RLC = 0.  Therefore, in order for Z to be resistive 

 

0
C

1
L  

 

 or 

 

H6.703

10377

1

C

1
L

22

2

 

 

8.3 The presence of the voltage source indicates that nodal analysis is a viable approach to 

this problem.  The voltage source and its two connecting nodes form a supernode as 

shown in Fig. S8.3. 

V012

+

-
0

V

- +

-j4j

012VV
01 2

V

 
Fig. S8.3 

 Note that there are three non-reference nodes, i.e., V1, V2 and 
0

V .  Because the voltage 

source is tied directly between nodes V1 and 
0

V , 012VV
01

.  This constraint 

condition is one of our three equations required to solve the network.  The two remaining 

equations are obtained by applying KCL at the supernode and the node labeled V2.  For 

the supernode, KCL yields 

 

0
4j

V

1

VV

1

VV

2j

V
020211  

 

 At the node labeled V2, KCL yields 

 

0
1

VV

2

V

1

VV
02212  

 

 Therefore, the three equations that will provide the node voltages are 
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0VVV
2

1
VV

0V
4

1
jVVVVV

2

1
j

12VV

02212

020211

01

 

 

 Substituting the first equation in for the two remaining equations and combining terms 

yields 

 

12V
2

5
V2

6j12V2
4

1
j2V

20

20

 

 

 Solving for V2 in this last equation and substituting it into the one above it, we obtain 

 

6j4.225.0j4.0V
0

 

 

 and hence 

 

V2.3657.13V
0

 

 

8.4  (a) Since the network has two loops, or in this case two meshes, we will need two 

equations to determine all the currents.  Consider the network as labeled in Fig. S8.4(a). 

-
+

j2

+

-

A02

0
V

V012

-j1

1
I

2
I

 
Fig. S8.4(a) 

 

 Note that since I2 goes directly through the current source, I2 must be 2 0 A.  Hence, 

one of our two equations is 

 

I2 = 2 0  

 

 If we now apply KVL to the loop on the left of the network, we obtain 

 

02j4II1j2I12
211
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 These two equations will yield the currents.  Substituting the first equation into the 

second yields 

 

02j422j41j2I12
1

 

 

 and then 

 

A85.135.3
1j6

4j20
I

1
 

 

 Finally, 

 

V57.442.5

2
1j6

4j20
4

II4V
210

 

 

 (b) In applying superposition to this problem, we consider each source acting alone.  If 

we zero the current source, i.e., replace it with an open circuit, the circuit we obtain is 

shown in Fig. S8.4(b). 

-
+

j2

+

-
0

V

V012

-j1

 
Fig. S8.4(b) 

 

 Using voltage division 

 

V
1j6

48

1j22j4

4
12V

0

 

 

 Now, if we zero the voltage source, i.e., replace it with a short circuit, we obtain the 

circuit in Fig. S8.4(c). 
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j2

+

-
0

V

A02

-j1

X
I

 
Fig. S8.4(c) 

 

 Employing current division, the current IX is 

 

A
1j6

2j4

2j4j2

j2
02I

X

 

 

 Then, 

 

1j6

8j16
I4V

X0
 

 

 And finally, 

 

V57.442.5

1j6

8j32

1j6

8j16

1j6

48

VVV
000

 

 

 (c) In applying Thevenin’s Theorem, we first break the network at the load and determine 

the open-circuit voltage as shown in Fig. S8.4(d). 

j2

+

- C0
V

A02

-j1

V012 +
-

 
Fig. S8.4(d) 
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 Note that there exists only one closed path and the current in it must be 2 0  A.  Note 

also that there is no current in the inductor and therefore no voltage across it.  Hence 
OC

V  

is also the voltage across the current source.  Hence, 

 

V2j8

j2212V
C0

 

 

 The Thevenin equivalent impedance found by zeroing the independent sources and 

looking into the network at the terminals of the load can be determined from the circuit in 

Fig. S8.4(e). 

j2

TH
Z

-j1

 
Fig. S8.4(e) 

 

 This network indicates that 

 

ZTH = 2 – j1 + j2 

 = 2 + j1  

 

 If we now form the Thevenin equivalent circuit and re-connect the load, we obtain the 

network in Fig. S8.4(f). 

TH
Z

j1

+
-

-

+

0
V

C0
V

8+j2V

 
Fig. S8.4(f) 

 

 Applying voltage division yields 

 

V57.442.5

1j6

8j32

1j24

4
2j8V

0

 



 73

CHAPTER 9 PROBLEMS 

 

9.1 Determine the average power supplied by each source in the circuit in Fig. 9.1. 

+
-

j1-j1
V010 A302

 
Fig. 9.1 

 

9.2 Given the circuit in Fig. 9.2, determine the impedance ZL for maximum average power 

transfer and the value of the maximum average power transferred to this load. 

V06

1 1

-j1

V012 L
Z+

+-
-

 
Fig. 9.2 

 

9.3 Calculate the rms value of the waveform shown in Fig. 9.3. 

1 t(s)765432

6
v(t) (V)

 
Fig. 9.3 

 

9.4 Determine the source voltage in the network shown in Fig. 9.4. 

S
V rmsV0240

40 kW

0.78 pf

lagging

60 kW

0.85 pf

lagging

+
-

+

-

0.1 j0.5

 
Fig. 9.4 

 

9.5 A plant consumes 75 kW at a power factor of 0.70 lagging from a 240-V rms 60 Hz line.  

Determine the value of the capacitor that when placed in parallel with the load will 

change the load power factor to 0.9 lagging. 
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CHAPTER 9 SOLUTIONS 

 

9.1 Because the series impedance of the inductor and capacitor are equal in magnitude and 

opposite in sign, from the standpoint of calculating average power the network can be 

reduced to that shown in Fig. S9.1. 

CS
I

A302

+

V010

-

+
- 1

VS
I

1
V

 
Fig. S9.1 

 

 The general expression for average power is 

 

IV
cosVI

2

1
P  

 

 In the case of the current source V1 = 10V, ICS = 2A, V = 0  and I = 30 .  Therefore, the 

average power delivered by the current source is 

 

W66.8

30cos210
2

1
P

CS
 

 

 In order to calculate the average power delivered by the voltage source, we need the 

current IVS.  Using KCL 

 

010
1

V
302I

VS
 

 

 or 

 

IVS = 8.33 -6.9  A 

 

 Now 

 

W34.41

9.60cos33.810
2

1
P

VS  

 

 Therefore, the total power generated in the network is 

 

PT = PCS + PVS 

= 50 W 
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 Let us now calculate the average power absorbed by the resistor.  We know that the 

average power absorbed by the resistor must be 

 

W50

1

10

2

1

R

V

2

1
P

2

2

m

R

 

 

 In addition, the average power absorbed by the resistor can also be determined by 

 

RI
2

1
P 2

mR
 

 

 However, we do not know the current in the resistor.  Using KCL. 

 

 IR = IVS + ICS 

= 8.66 -6.9  + 2 30  

 = 10 0  A 

 

 Now 

 

W50

110
2

1
P

2

R  

 

 Thus, we find that the total average power generated is equal to the average power 

absorbed. 

 

9.2 We will first determine the Thevenin equivalent circuit for the network without the load 

attached.  The open-circuit voltage, V0C, can be determined from the network in Fig. 

S9.2(a). 

C0
V

V012 +-

1

R
V

1

-
+

-j1

++

-

-

I

V06
 

Fig. S9.2(a) 

 

 This open-circuit voltage can be calculated in a number of ways.  For example, we can 

compute the current I as 
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A
j1

18

j1

06012
I  

 

 Then using KVL, 

 

V
j1

j612

06I1V
C0

 

 or, we could use voltage division to determine the voltage across the 1-Ohm resistor on 

the right, i.e., 

 

V
j1

18

j1

1
06012V

R

 

 

 Then, once again 

 

V56.7149.9

V
j1

j612

06VV
RC0

 

 

 The Thevenin equivalent impedance is obtained by looking into the open-circuit 

terminals with all sources made zero.  In this case, we replace the voltage sources with 

short circuits.  This network is shown in Fig. S9.2(b). 

TH
Z

1 1

-j1

 
Fig. S9.2(b) 

 

 Note that the 1-Ohm resistor on the left is shorted and thus the ZTH is 
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 Hence, for maximum average power transfer 
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 or 
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 Therefore, the network is reduced to that shown in Fig. S9.2(c). 
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Fig. S9.2(c) 

 

 Then 

 

A56.7149.9

2

1
j

2

1

2

1
j

2

1

56.7149.9
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 and the maximum average power transferred to the load is 

 

W90

2

1
49.9

2

1
P

2

L
 

 

9.3 In order to calculate the rms value of the waveform, we need the equations for the 

waveform within each of the distinctive intervals. 

 

 In the interval 0  t  2s, the waveform is a straight line that passes through the origin of 

the graph.  The equation for a straight line in this graph is 

 

v(t) = mt + b 

 

 Where m is the slope of the line and b is the v(t) intercept.  Since the line goes through 

the origin, b = 0.  The slope m is 
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3
s2

V6
m  

 Therefore, in the interval 0  t  2s, 

 

v(t) = 3t 

 

 The waveform has constant values in the intervals 2  t  3s and 3  t  4s, i.e., 

 

v(t) = 6 2  t  3s 

v(t) = 0 3  t  4s 

 

 Since the waveform repeats after 4s, the period of the waveform is 

 

T = 4s 

 

 Now that the data for the waveform is known, 
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 Therefore, in this case 
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9.4 We begin our analysis by labeling the various currents and voltages in the circuit as 

shown in Fig. S9.4. 

S
V

40 kW

0.78 pf

lag

60 kW
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2
I

rmsV0240V
L

 
Fig. S9.4 
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 Our approach to determining VS is straight forward:  We will compute the currents I1 and 

I2; add them using KCL to find IS; determine the voltage across the line impedance and 

finally use KVL to add the line voltage and load voltage to determine the source voltage. 

 

 The magnitude of the current I1 is 

 

.rmsA12.294

85.0240

000,60

pfV

P
I

1L

1

1

 

 

 And the phase angle is 

 

79.31

85.0cos 1

I1  

 

 The negative sign is a result of the fact that the power factor is lagging. 

 

 Thus 

 

I1 = 294.12 -31.79  A rms. 

 

 The magnitude of the current I2 is 

 

.rmsA68.213

78.0240

000,40

pfV

P
I

2L

2

2

 

 

 And the phase angle is 

 

74.38

78.0cos 1

I2  

 

 Thus 

 

I2 = 213.68 -38.74  A rms. 

 

 Using KCL 
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.rmsA25.341.504

74.3868.21379.3112.294

III
21S

 

 

 Then 

 

.rmsV02.2317.460

024044.4404.257

02407.7851.025.341.504

02405.0j1.0IV
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9.5 Since the original power factor is 0.7 lagging the power factor angle is 

 

OLD = cos
-1

 (0.7) 

 = 45.57  

 

 Then 

 

QOLD = POLD tan OLD 

 = 75,000 tan 45.57  

 = 76.52 kvar 

 

 Hence 

 

SOLD = 75,000 + j76,515 

 = 107.14 45.57  kVA 

 

 The new power factor angle we wish to achieve is 

 

NEW = cos
-1

 (new power factor) 

 = cos
-1

 (0.9) 

 = 25.84  

 

 Then 

 

QNEW = POLD tan NEW 

 = 75,000 tan 25.84  

 = 36,324 kvar 

 

 Now the difference between QNEW and QOLD is achieved by the capacitor, i.e., 

 

QCAP = QNEW - QOLD 

 = 36,324 – 76,515 

 = -40,191 kvar 
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 And since 

 

QCAP = - CV
2
 

 

 Then 

 

F8.1850

240377
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