Ellipsoïde de John Loewner

Référence : [FGN10] p.229-231.

Théorème 0.1 Soit K un compact d'intérieur non vide de \mathbb{R}^n . Alors il existe un unique ellipsoïde centré en O contenant K de volume minimal.

Démonstration

Étape 1 : Expression du volume de l'ellipsoïde.

On munit \mathbb{R}^n de sa structure euclidienne usuelle. Par définition, un ellipsoïde plein centré en O de \mathbb{R}^n a une équation du type $q(x) \leq 1$ où q est une forme quadratique définie positive, ie :

$$\mathcal{E}_q = \{ x \in \mathbb{R}^n, q(x) \le 1 \}$$

Calculons le volume V_q de \mathcal{E}_q . On sait qu'il existe une base orthonormale $\mathcal{B}=\{e_1,\dots e_n\}$ dans laquelle q s'écrit $q(x)=\sum_{i=1}^n a_i x_i^2$, on obtient alors :

$$V_q = \int \dots \int_{a_1 x_1^2 + \dots + a_n x_n^2 \le 1} dx_1 \dots dx_n$$

On considère le changement de variable :

$$\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$(x_1, \dots, x_n) \longmapsto \left(\frac{x_1}{\sqrt{a_1}}, \dots, \frac{x_n}{\sqrt{a_n}}\right)$$

c'est bien un C^1 -difféomorphisme (C^1 car polynomiale, à réciproque C^1 car polynomiale et bijective car on peut exhiber la réciproque).

Pour tout i = 1, ..., n, on pose les applications coordonnées :

$$\phi_i : \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$(x_1, \dots, x_n) \longmapsto \frac{x_1}{\sqrt{a_1}}$$

Alors pour i, j = 1, ..., n, on a $\frac{\partial}{\partial x_j}(\phi_i) = \frac{1}{\sqrt{a_i}} \delta_{ij}$, d'où le jacobien de ϕ :

$$\det\left(\frac{\partial}{\partial x_j}(\phi_i)\right)_{i,j} = \frac{1}{\sqrt{a_1 \dots a_n}}$$

Ainsi le changement de variable nous donne :

$$V_q = \int \dots \int_{x_1^2 + \dots + x_n^2 < 1} \frac{dx_1 \dots dx_n}{\sqrt{a_1 \dots a_n}} = \frac{V_0}{\sqrt{a_1 \dots a_n}}$$

où V_0 est le volume de la boule unité de \mathbb{R}^n pour la norme euclidienne canonique.

De plus, si S est la matrice de q dans une base orthonormale quelconque, alors $\exists P \in \mathcal{O}_n(\mathbb{R})$ telle que $S = P \operatorname{diag}(a_1, \ldots, a_n)^t P$, on a donc $\det(S) = \det(\operatorname{diag}(a_1, \ldots, a_n)) = a_1 \ldots a_n$. Ce déterminant ne dépend donc pas de la base orthonormale de \mathbb{R}^n choisie, notons-le alors D(q). Le volume se réécrit alors:

$$V_q = \frac{V_0}{\sqrt{D(q)}}$$

Étape 2 : Le problème peut donc se reformuler : il s'agit de montrer que si K est un compact d'intérieur non vide de \mathbb{R}^n , il existe alors une unique forme quadratique définie positive q telle que D(q) soit maximal et que $\forall x \in K, \ q(x) \leq 1$.

On munit l'espace des formes quadratiques de la norme N définie par :

$$N(q) = \sup_{\|x\| \le 1} |q(x)|$$

On considère : $\mathcal{A} = \{q \in \mathcal{Q}_+, \forall x \in K, q(x) \leq 1\}$, où \mathcal{Q}_+ désigne l'ensemble des formes quadratiques positives. Et on va chercher à maximiser D(q) sur ce domaine.

Pour cela montrons que \mathcal{A} est un compact, convexe, non vide de \mathcal{Q} , l'ensemble des formes quadratiques.

1. A convexe

Soient $q, q' \in \mathcal{A}$, soit $\lambda \in [0, 1]$, alors $\forall x \in \mathbb{R}^n$:

$$(\lambda q + (1 - \lambda)q')(x) = \lambda q(x) + (1 - \lambda)q'(x)$$

Comme $q, q' \in \mathcal{Q}_+$, alors $\forall x \in \mathbb{R}^n$, $q(x) \ge 0$ et $q'(x) \ge 0$, d'où $(\lambda q + (1 - \lambda)q')(x) \ge 0$. Comme $\forall x \in K$, $q(x) \le 1$ et $q'(x) \le 1$, alors $(\lambda q + (1 - \lambda)q')(x) \le \lambda + (1 - \lambda) = 1$. D'où la convexité.

2. A fermé

Soit $(q_n)_{n\in\mathbb{N}}$ une suite de \mathcal{A} convergeant vers q, alors cela signifie que $N(q_n-q)\longrightarrow 0$ quand $n\longrightarrow \infty$

Or $\forall x \in \mathbb{R}^n$, $|q_n(x) - q(x)| \leq N(q_n - q) \parallel x \parallel$ par définition de la norme N. Donc $|q_n(x) - q(x)| \longrightarrow 0$ quand $n \longrightarrow \infty$.

Or $\forall x \in \mathbb{R}^n$, $q_n(x) \ge 0$ d'où $q(x) \ge 0$ et $\forall x \in K$, $q_n(x) \le 1$, d'où $q(x) \le 1$. Donc $q \in \mathcal{A}$.

3. A borné

Comme K est d'intérieur non vide, alors il existe $a \in K$ et r > 0 tels que $B(a,r) \subset K$. Soit $q \in \mathcal{A}$. Soit $x \in K$. Si $||x|| \le r$, alors $a + x \in K$, donc $q(a + x) \le 1$. De plus, $q(-a) = q(a) \le 1$, alors d'après l'inégalité de Minkowski :

$$\sqrt{q(x)} = \sqrt{q(x+a-a)} \le \sqrt{q(x+a)} + \sqrt{q(a)} \le 2$$

donc $q(x) \leq 4$.

Si $||x|| \le 1$, alors:

$$|q(x)| = q(x) = \frac{1}{r^2}q(rx) \le \frac{4}{r^2}$$

donc $N(q) \leq \frac{4}{r^2}$. D'où \mathcal{A} borné.

4. A non vide

Puisque K est compact, alors il est borné. Soit donc M>0 tel que $\forall x\in K, \parallel x\parallel < M$. Alors si q est définie pour tout $x\in \mathbb{R}^n$ par $q(x)=\frac{\parallel x\parallel^2}{M^2}$, on a $\forall x\in K, q(x)\leq 1$ et $\forall x\in \mathbb{R}^n$, $q(x)\geq 0$. D'où $q\in \mathcal{A}$.

Ainsi, on a montré que A est convexe, compact et non vide.

L'application déterminant est continue donc l'application : $q \longrightarrow D(q)$ l'est aussi sur le compact \mathcal{A} . Elle atteint donc son maximum en un certain q_0 .

Comme \mathcal{A} contient $x \mapsto \frac{\|x\|^2}{M^2}$ qui est définie positive, on a $D(q_0) > 0$, donc $q_0 \in \mathcal{Q}_{++}$ (qui désigne les formes quadratiques définies positives). Nous venons donc de prouver qu'il existe un ellipsoïde \mathcal{E}_{q_0} de volume minimal qui contient K.

Étape 3 Il reste à prouver l'unicité de \mathcal{E}_{q_0} .

Supposons qu'il existe $q \in \mathcal{A}$ telle que $D(q) = D(q_0)$ et $q \neq q_0$.

Soient S et S_0 les matrices respectives de q et q_0 dans la base canonique de \mathbb{R}^n .

Comme \mathcal{A} est convexe alors $\frac{1}{2}(q+q_0) \in \mathcal{A}$ et

$$D\left(\frac{1}{2}(q+q_0)\right) = \det\left(\frac{1}{2}(S+S_0)\right) > (\det(S))^{\frac{1}{2}}(\det(S_0))^{\frac{1}{2}} \ge \det(S_0) \ge D(q_0)$$

ce qui contredit la maximalité de $D(q_0)$.

Remarques:

- Ce résultat est vrai sur un espace vectoriel de dimension finie avec une démonstration similaire.
- Un corollaire : un sous-groupe compact de Gl(E) (E un \mathbb{R} -espace vectoriel) est un sous-groupe du groupe orthogonal pour une structure euclidienne sur E.

Lemmes utilisés

Lemme 0.1 Soient $A, B \in S_n^{++}(\mathbb{R})$. Soient $\alpha, \beta \in \mathbb{R}_+$ tels que $\alpha + \beta = 1$. Alors $\det(\alpha A + \beta B) \ge (\det A)^{\alpha} (\det B)^{\beta}$. De plus, si $\alpha \in]0,1[$ et $A \ne B$, l'inégalité est stricte.

Démonstration D'après le théorème de réduction simultanée $\exists P \in Gl_n(\mathbb{R}), \exists D = \text{diag}(\lambda_1, \dots, \lambda_n)$ réelles telles que : $A = {}^tPP$ et $B = {}^tPDP$.

Pour tout $i, \lambda_i > 0$ car $B \in S_n^{++}(\mathbb{R})$. On a donc :

$$(\det A)^{\alpha}(\det B)^{\beta} = (\det P^2)^{\alpha}(\det P^2 \det B)^{\beta} = \det P^2(\det D)^{\beta}$$

car $\alpha + \beta = 1$. Ensuite :

$$\det(\alpha A + \beta B) = \det(\alpha^t PP + \beta^t PDP)$$
$$= \det({}^t P(\alpha I + \beta D)P)$$
$$= \det P^2 \det(\alpha I + \beta D)$$

On peut donc se ramener à montrer que : $\det(\alpha I + \beta D) \geq (\det D)^{\beta}$, ie :

$$\prod_{i=1}^{n} (\alpha + \beta \lambda_i) \ge \left(\prod_{i=1}^{n} \lambda_i\right)^{\beta}$$

ie en passant au logarithme:

$$\sum_{i=1}^{n} \log(\alpha + \beta \lambda_i) \ge \beta \sum_{i=1}^{n} \log(\lambda_i)$$

Or $\forall i$, on sait que $\log(\alpha + \beta \lambda_i) \ge \alpha \log(1) + \beta \log(\lambda_i) = \beta \log(\lambda_i)$ par concavité du logarithme, d'où le résultat en sommant.

Pour l'inégalité stricte, il faut utiliser la stricte concavité du logarithme et le fait qu'il existe $\lambda_i \neq 1$.

Lemme 0.2 Comme $q \in \mathcal{Q}_{++}$, alors il existe $(a_i) \in \mathbb{R}$ et $x_i \in \mathbb{R}$ tels que $q = \sum_{i=1}^n a_i x_i^2$.

Démonstration Comme $q \in \mathcal{Q}_{++}$, alors la matrice S associée à q est symétrique définie positive, donc il existe $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(a_1, \ldots, a_n)$ telles que $S = {}^tPDP$. Ainsi la matrice de q dans la base orthogonale est la matrice D (où $a_i = s(e_i, e_i)$, si on note e_i la base orthogonale et s la forme bilinéaire symétrique associée à q). Par conséquent :

$$q(x) = s(x, x) = s\left(\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} a_i x_i^2$$

Lemme 0.3 Soit $q \in \mathcal{Q}$, soit $N(q) = \sup_{\|x\| < 1} |q(x)|$. Alors N est une norme sur \mathcal{Q} .

Démonstration

- Soient $q, q' \in \mathcal{Q}$, soit $x \in \mathbb{R}^n$, $|q(x) + q'(x)| \le |q(x)| + |q'(x)| \le N(q) + N(q')$, puis comme le sup est la plus petit majorant, on obtient $N(q+q') \le N(q) + N(q')$.
- Soit $q \in \mathcal{Q}$, soit $\lambda \in \mathbb{R}$, soit $x \in \mathbb{R}^n$, $|\lambda q(x)| \leq |\lambda| N(q)$, d'où $N(\lambda q) \leq |\lambda| N(q)$, ensuite en posant $q' = \mu q$ et $\lambda = \frac{1}{\mu}$, on obtient $N(\lambda q) = |\lambda| N(q)$.
- Soit $q \in \mathcal{Q}$ telle que N(q) = 0, alors $\forall x \in \mathbb{R}^n$, tel que $||x|| \le 1$, on a q(x) = 0. Maintenant, si $x \ne 0 \in \mathbb{R}^n$, alors $\frac{x}{||x||}$ est de norme inférieure ou égale à 1, d'où $q\left(\frac{x}{||x||}\right) = \frac{1}{||x||^2}q(x) = 0$. D'où q = 0.

Références

[FGN10] Serge Francinou, Hervé Gianella, and Serge Nicolas. Oraux x-ens algèbre 3. Cassini, 2010.