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Abstract
In Frege’s logicism, numbers are logical objects in the sense that they are exten-

sions of certain concepts. Frege’s logical system is inconsistent, but Richard Heck
showed that its restriction to predicative (second-order) quantification is consis-
tent. This predicative fragment is, nevertheless, too weak to develop arithmetic.
In this paper, I will consider an extension of Heck’s system with impredicative
quantifiers. In this extended system, both predicative and impredicative quanti-
fiers co-exist but it is only permissible to take extensions of concepts formulated
in the predicative fragment of the language. This system is consistent. Moreover,
it proves the principle of reducibility applied to concepts true of only finitely many
objects. With the aid of this form of reducibility, it is possible to develop arithmetic
in a thoroughly Fregean way.

1 Introduction
One of the dicta of Frege was never to lose sight of the distinction between concept and
object. When Frege wrote this maxim in p. x of [8], he was embarking on the project
of reducing arithmetic to logic. The pursuit of this project eventually led him to intro-
duce so-called value-ranges as regulated by his famous Basic Law V. In a sense, the
introduction of value ranges entails that the world of concepts has a counterpart in the
world of objects (by way of their extensions, which are a special kind of value-ranges).
Even though the distinction between object and concept is by no mean obliterated by
the introduction of extensions, the end result is that every concept has an object as a
proxy and this situation proved to be fatal. For our purposes, I take Frege’s system of
the Grundgesetze der Arithmetik [9] as second-order logic (with unrestricted compre-
hension) together with an extension operator – attaching a first-order term x̂.A(x) to
each formula A(x) – regulated by the scheme

x̂.A(x) = x̂.B(x)↔ ∀x(A(x)↔ B(x)).

The above scheme is our version of Frege’s Basic Law V. Frege was aware that this law
could be disputed. In page VII of the foreword to the first volume of the Grundgesetze,
Frege writes that
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research center CMAF-CIO.
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(...) as far as I can see, a dispute can arise only concerning my Basic Law
of value-ranges (V), which perhaps has not yet been explicitly formulated
by logicians although one thinks in accordance with it if, e.g., one speaks
of extensions of concepts. I take it to be purely logical. At any rate, the
place is hereby marked where there has to be a decision.

As it is well-known, Frege met the collapse of his system precisely at this point.
Characteristically of him, Frege was forthright in his comments of Basic Law V and,
after knowing of Russell’s paradox, wrote – in a retrospective and melancholic mood –
that he would have been glad to prescind from value-ranges had he known how to get
by without them:

Hardly anything more unwelcome can befall a scientific writer than to
have one of the foundations of his edifice shaken after the work is finished.

This is the position into which I was put by a letter from Mr. Bertrand
Russell as the printing of this volume was nearing completion. The matter
concerns my Basic Law V. I have never concealed from myself that it is
not as obvious as the others (...). Indeed, I pointed this very weakness in
the foreword to the first volume, p. VII. I would glady have dispensed with
this foundation if I had known of some substitute for it. Even now, I do
not see how arithmetic can be formulated scientifically, how the numbers
can be apprehended as logical objects and brought under consideration, if
it is not – at least conditionally – permissible to pass from concept to its
extension. May I always speak of the extension of a concept, of a class?
And if not, how are the exceptions to be recognised? (Cf. afterword of
volume II of Grundgesetze der Arithmetik.)

Indeed, how are the exceptions to be recognized? Russell’s paradox refutes the
simple and elegant view that there are no exceptions. The logicist view of sets as
“something obtained by dividing the totality of all existing things into two categories”
led to the paradoxes and today has been effectively replaced by the iterative conception
of sets.1 At present, there is no satisfactory set theory based on the logicist view. How-
ever, even it proves impossible to develop a logicist set theory (as I suspect), perhaps
it is possible to develop a logicist arithmetic. By this, I mean founding arithmetic on a
strict logicist view according to which logical objects are extensions (as in Frege), not
numbers (as in neologicism) nor constructed in terms of other kinds of abstractions.

In one of his first attempts to salvage logicism from the wreck of Frege’s system,
Bertrand Russell toyed with so-called zigzag theories. According to him “in a zigzag
theory we start from the suggestion that the propositional functions determine classes
when they are fairly simple, and only fail to do so when they are complicated and re-
condite” ([17], pp. 145–6). If a propositional function (a concept, in Frege’s terms)
does not determine an extension then, given any class (set), there must be either an
element of the class that does not fall under the concept or an element that falls under
the concept but is not in the class. In the pictoresque terminology of Russell, proposi-
tional functions that do not have extensions must zigzag between classes. Russell never

1The citation is from Kurt Gödel in p. 475 of [10].
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worked out a zigzag theory to his own satisfaction and eventually gave up extensions
altogether and adopted a so-called “no-classes” theory.

This paper shows how to set up a zigzag theory which is sufficient to develop full
second-order arithmetic (it is also sufficient to develop a nice theory of finite sets).
The origins of this theory can be traced to an idea of Michael Dummett who blamed
Russell’s paradox not on the extension operator but on the impredicative character of
Frege’s system, viz. on the acceptance of the unrestricted comprehension principle (cf.
pp. 218–9 of [5]). A few years later, Richard Heck proved in [12] that Dummett had
a point: Frege’s system is consistent provided that the comprehension principle is suit-
ably restricted. Let us describe in some detail the theory that Heck proved consistent.
This theory only differs from (our rendering of) Frege’s system by restricting the com-
prehension scheme to formulas without second-order quantifications. So, the restricted
scheme is

∃F∀x(A(x)↔ Fx),

for formulas A(x) in which second-order quantifications do not occur (and in which the
variable F does not occur free). I denote this predicative Fregean theory by H. Heck
showed that this theory is not trivial, in the sense that it is able to interpret Robinson’s
theory Q. However, as was suspected, H is rather weak since it cannot even interpret
primitive recursive arithmetic (see [4] for a proof of this fact).

The theory H cannot be considered a zigzag theory. Even though it restricts the
existence of extensions to predicative concepts, the restriction is accomplished by the
drastic move of allowing only predicative concepts in the language. In fact, all con-
cepts of the predicative theory have extensions. There is no zigzagging in a landscape
in which every available concept has an extension.2 Nevertheless, the toll for adopting
this frugal landscape (obtained via a restriction of the comprehension scheme) is very
high because H is proof-theoretically very weak. If we follow Russell’s idea that con-
cepts that have extensions must be fairly simple and if we equate recondite and compli-
cated concepts with the impredicative ones, then the theory H falls short of these terms
because it does not make room for impredicative concepts. What one needs is a theory
in which impredicative concepts can be formed but in which only predicative concepts
admit extensions. The business of the next section is to define such a theory, prove its
consistency, and show how to develop arithmetic in it in a thoroughly Fregean way. In
doing this, we isolate a certain weak form of finite reducibility. In Section 4, we prove
the full form of finite reducibility: Every concept which is true of only finitely many
elements is co-extensive with a predicative concept. This form of reducibility can be
used to develop a workable theory of finite sets. The paper also includes two sections
of commentary.

2 The zigzag theory
Let us consider a second-order language with a sort for first-order variables, written
in lower case Latin letters x, y, z, . . ., and two sorts for second-order variables: the
predicative sort, given by capital Latin letters F,G,H, . . . and the impredicative sort

2Later on, in Secion 5, we will discuss a purported distinction between sets and extensions.
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given by Gothic letters F,G,H, . . .. Formulas of this second-order language are defined
as usual, with both kinds of second-order variables behaving syntactically like unary
predicates. I also allow both kinds of second-order quantifiers ∀F , ∃F and ∀F, ∃F.
Typical of Fregean theories, an extension operator is included. This operator is, in
our case, restricted: the expression x̂.A(x) is a well-formed (first-order) term only if
impredicative variables do not occur (at all) in the formula A(x). Note that the fragment
of the language in which second-order impredicative variables do not occur is exactly
the language of the predicative theory H. We are now ready to state the axioms of
our theory PE (an acronym for predicative extensions). The theory PE is framed in
classical logic and its proper axioms are those of H complemented with the following
unrestricted (impredicative) comprehension scheme:

∃F∀x(A(x)↔ Fx),

for any formula A(x) of the language (in which the variable F does not occur free).
Therefore, PE includes two forms of comprehension. The above impredicative form,
and the (already discussed) predicative comprehension scheme that comes from the
theory H:

∃F∀x(A(x)↔ Fx),

for a formulas A(x) in the language of H and in which second-order predicative quan-
tifications do not occur (note that neither second-order bound impredicative variables
nor second-order impredicative parameters are allowed). By impredicative comprehen-
sion, we have ∀F∃F∀x(Fx ↔ Fx), i.e., the Gothic variables have a wider range of
values than the Latin variables. Basic Law V is as before, with the said restriction that
terms of the form x̂.A(x) only make sense for formulas A(x) in which second-order
impredicative variables do not occur (neither free, nor bound).

The theory PE is defined in the spirit of the systems discussed by John Burgess in
section 2.3d of his book [2]. The difference lies in the fact that the predicative system H
over which impredicative variables of PE “float” is based on a variable-binding term-
forming operator (the extension operator) and not, as in Burgess’s above mentioned
systems, on an extension symbol which applies to concept variables. This has the
effect that – contrary to Burgess’s systems – the Humean operator “number of” can be
defined along Fregean lines (see the definition of card below).3

It is easy to see that the theory PE is consistent. Take Heck’s model of the theory
H. It consists of a first-order domain M (in Heck’s model, this domain is actually the
natural numbers), a second-order domain S ⊆ P(M) where the second-order variables

3In [1], Francesca Boccuni proposed a system with two kinds of second-order variables (plural vari-
ables and concept variables) and, like us, a variable-binding term-forming operator for getting extensions.
Comprehension for plural variables is unrestricted, as with our impredicative variables. However, Boccuni’s
comprehension for concept variables differs from ours and cannot be understood as a predicative restriction
in the traditional sense (because Boccuni’s system admits comprehension for certain formulas with bound
plural variables). Also, the extension operator of Boccuni is different. In particular, one cannot form the
extensions of concepts given by formulas with bound concept variables, a feature which seems to prevent
– as in Burgess – the definition of the operator “number of” in a Fregean manner. As a consequence, the
development of arithmetic by Boccuni in [1] (and by Burgess in section 2.3d of [2]) is un-Fregean, being a
mere Dedekindian development (i.e., based solely on the fact that a simply infinite system is present within
a theory enjoying full impredicative comprehension).
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range, and a carefully defined function that provides the interpretation of the extension
operator. If we expand this structure by saying that the impredicative variables of PE
range over the full power set P(M) of M , then it is clear that one obtains a model of
PE. This simple construction proves the consistency of the theory PE.4,5

The blunt addition of the impredicative sort to the theory H, with apparently no
interference on the predicative fragment, looks like adding a pointless idle running of
language. This is not the case, however. The impredicative sort not only allows a new
and important means of expression, but also increases the proof-theoretic power of the
theory immensely because PE is able to interpret full second-order arithmetic. This
should be compared with the theory H, which is not even able to interpret primitive re-
cursive arithmetic. How can this be, given that (according to our conjecture in footnote
5) PE is conservative over H? The answer lies in the fact that, within the new theory,
one is able to define properly (impredicatively) the concept of natural number and that,
of course, arithmetic is developed for the objects falling under this concept.

Let Eq(F,G) abbreviate the formula which states that the (predicative) concepts F
and G are equinumerous via a predicative bijection:

∃R[∀x(Fx→ ∃1y(Gy ∧R〈x, y〉)) ∧ ∀y(Gy → ∃1x(Fx ∧R〈x, y〉))].

For the sake of simplicity, I formulated second-order logic with only unary concepts.
We apparently need a binary predicate R in the above definition. It is nevertheless
well known that R can be taken to be unary because there is a definable ordered pair
operation, namely:

〈x, y〉 := ẑ.(z = ŵ.(w = x ∨ w = y) ∨ z = ŵ.(w = x)).

The cardinality operator is defined in the Fregean way. The number of elements falling
under the concept F is the extension formed by all the extensions of concepts equinu-
merous with F . Formally:

card(F ) := ẑ.∃H(Eq(H,F ) ∧ z = ŵ.Hw).

As Heck observed in [12], Hume’s principle can be proved in H (and, hence, in PE),
i.e.,

PE ` ∀F∀G(card(F ) = card(G)↔ Eq(F,G)).

The development of arithmetic now proceeds in a thoroughly Fregean manner. The
number zero is defined by 0 := ẑ.(z = x̂.(x 6= x)). It is clear that the theory PE
proves ∀F (card(F ) = 0 ↔ ¬∃xFx). The binary successor relation S(x, y) is given
by the following formula:

∃F∃G(x = card(F ) ∧ y = card(G) ∧ ∃z(Gz ∧ ∀u(Fu↔ Gu ∧ u 6= z))).

4A similar argument appears in [20] while proving the relative consistency of a theory of classes put on
top of Quine’s theory New Foundations.

5We conjecture the stronger statement that PE is conservative over H. A model-theoretic proof of this
fact should follow well known lines. The missing ingredient is a completeness result for theories with the
extension operator.
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With these definitions, it is easy to prove in H (and, therefore, in PE) that 0 is not
the successor of any object, that an object cannot be the successor of two different
objects, and that two different objects cannot be the successor of the same object. For
future reference, I list these properties:

(i) PE ` ∀x¬S(x, 0)

(ii) PE ` ∀x∀y∀z(S(x, z) ∧ S(y, z)→ x = y)

(iii) PE ` ∀x∀y∀z(S(x, y) ∧ S(x, z)→ y = z)

The definition of the concept of natural number can now be made. This concept is
defined impredicatively, as it should be. First, I define the notion of hereditarity with
respect to the successor relation:

Her(F) := ∀x∀y(Fx ∧ S(x, y)→ Fy).

Note that I have defined “hereditarity” for impredicative variables. An inductive con-
cept is a concept which is hereditary and true of 0. A natural number is defined as an
object which falls under every inductive concept (Frege uses the terminology “finite
number”). Formally:

N(x) := ∀F(F0 ∧Her(F)→ Fx).

It is clear that PE proves N(0) and ∀x∀y(N(x) ∧ S(x, y) → N(y)). It is also the case
that PE proves N(y) ∧ S(x, y) → N(x). To see this, assume that ¬N(x) and S(x, y).
By the first assumption, there is G such that G0, Her(G) and ¬Gx. By (impredicative)
comprehension take H such that ∀z(Hz ↔ Gz ∧ z 6= y). By (i) we have H0, and using
(ii) it is easy to argue that Her(H). Clearly, ¬H(y) and, therefore, ¬N(y).

Since full comprehension for the Gothic variables is available, it is immediate to
show that PE proves the full scheme of induction:

A(0) ∧ ∀x∀y(N(x) ∧A(x) ∧ S(x, y)→ A(y))→ ∀x(N(x)→ A(x)),

for any formula A(x) of the language of PE.
If we show that every natural number has a successor, then the concept N defines a

simply infinite structure in the sense of Dedekind. We prove this fact again in a Fregean
manner, using the Fregean trick of showing that the successor of a natural number is
the number of natural numbers less than or equal to that number. The “less than or
equal relation” is defined impredicatively:

x ≤ y := ∀F(Fx ∧Her(F)→ Fy),

i.e., x is less than or equal to y if y falls under any hereditary concept which is true of
x. The following are straightforward:

(iv) PE ` ∀x(x ≤ x)

(v) PE ` ∀x∀y(S(x, y)→ x ≤ y)

(vi) PE ` ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
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Given a natural number x, the concept of being less than or equal to x was defined
impredicatively. However, as will shall see in the end of this section, it can be proved
that this concept is co-extensive with a predicative concept. This is a form of finite
reducibility.

Lemma 1. PE ` ∀x(x ≤ 0↔ x = 0).

Proof. The right-to-left direction is a particular case of (iv) above. For the left-to-right
direction, suppose that x ≤ 0 but x 6= 0. Consider the concept given by the formula
u 6= 0. By (i) this concept is (trivially) hereditary and, by assumption, it is true of x.
By hypothesis, it is therefore true of 0. This is a contradiction.

Lemma 2. PE ` ∀x∀y(S(x, y)→ ∀u(u ≤ y ∧ u 6= y → u ≤ x)).

Proof. Let us suppose that S(x, y), u ≤ y and u 6= y. To see that u ≤ x, consider F a
hereditary concept such that Fu. we must show that Fx. Assume not. By impredicative
comprehension, take a concept G such that ∀v(Gv ↔ Fv ∧ v 6= y). Let v and w be
such that Gv and S(v, w). In particular, Fv. By the hereditarity of F, we also have Fw.
Given that v 6= x (because one has both Fv and, by assumption, ¬Fx), we conclude by
(ii) that w 6= y. Hence Gw. We have argued that G is hereditary. Since u ≤ y and Gu,
we get Gy. This is absurd.

From the above lemma and (iv), (v) and (vi), we readily have

(vii) PE ` ∀x∀y(S(x, y)→ ∀u(u ≤ y ↔ u ≤ x ∨ u = y))

We are busy trying to show that N, together with 0 and the successor, forms a simply
infinite structure. The arguments so far do not use impredicativity in any essential way.
Actually, the arguments so far do not use induction at all and the above statements
are true in the full domain of objects, not only in N. The next results of this section,
however, use induction and are no longer true in the full domain of objects (they hold
in N).

Lemma 3. PE ` ∀x(N(x)→ ¬S(x, x)).

Proof. By induction on x. By (i), ¬S(0, 0). Let us now suppose N(x), ¬S(x, x)
and S(x, y). If we assume that S(y, y) then, by (ii), we would get x = y. This is
absurd.

Lemma 4. PE ` ∀x∀y(N(x) ∧ S(x, y)→ ∀u(u ≤ x→ u 6= y)).

Proof. We show that ∀y(S(x, y) → ∀u(u ≤ x → u 6= y)) for all natural numbers
x. The proof is by induction on x. The base case x = 0 is a consequence of Lemma
1 and (i). To argue the induction step, assume S(x, y) and S(y, z) and, by induction
hypothesis, ∀u(u ≤ x → u 6= y). We must show that ∀u(u ≤ y → u 6= z). Take
u so that u ≤ y. In order to reach a contradiction, assume u = z. Then z ≤ y. By
Lemma 3, z 6= y. Hence, by Lemma 2, z ≤ x. By (v) and (vi), we get y ≤ x. Using
the induction hypothesis, we get the contradiction y 6= y.

From the above lemma and and (v), (vi) and (vii), we get
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(viii) PE ` ∀x∀y(N(x) ∧ S(x, y)→ ∀u(u ≤ x↔ u ≤ y ∧ u 6= y))

Proposition 1. PE ` ∀x(N(x)→ ∃yS(x, y)).

Proof. We prove instead the stronger and more explicit sentence

∀x(N(x)→ ∃F (∀u(Fu↔ u ≤ x) ∧ S(x, card(F )))).

(This is a roundabout way of stating that the successor of the natural number x is the
number of numbers less than or equal to x. Formulating the statement this way is not
without advantages because it makes clear that a weak form of finite reducibility is in
operation in the argument below.) The proof is by induction on x.

The case x = 0 follows from Lemma 1, predicative comprehension and the defini-
tions of 0 and S. Suppose N(x) and S(x, y). By induction hypothesis, take a predica-
tive concept F such that ∀u(Fu↔ u ≤ x) and S(x, card(F )). By (iii), y = card(F ).
By predicative comprehension, there is G such that ∀u(Gu ↔ Fu ∨ u = y). Hence,
by (vii), ∀u(Gu ↔ u ≤ y). Also, by (viii), ∀u(Fu ↔ Gu ∧ u 6= y). Given that Gy
holds, we get – by the definition of the successor relation – that S(card(F ), card(G)).
Therefore, S(y, card(G)), as wanted.

As I have commented, a weak form of finite reducibility is in operation in the above
argument. Let us isolate it:

Theorem 1 (Weak finite reducibility). PE ` ∀y(N(y)→ ∃F∀x(Fx↔ x ≤ y)).

Proof. By induction on y. For y = 0, use Lemma 1 and predicative comprehension.
Suppose that N(y), S(y, z) and that there is F such that ∀x(Fx ↔ x ≤ y). By
predicative comprehension, there is a concept G such that ∀x(Gx↔ Fx∨x = z). By
(vii), we conclude that ∀x(Gx↔ x ≤ z).

3 First commentary
We have rehearsed, in our setting, Frege’s development of arithmetic. We defined a
concept N which, together with the successor operation, gives rise to a simply infi-
nite structure (in the sense of Dedekind). By the very way N is defined and by the
availability of unrestricted comprehension, we get induction for every formula of the
language. In effect (by unrestricted comprehension again), we are able to interpret full
second-order arithmetic in PE.

We should distinguish between two different issues when setting up arithmetic.
One issue concerns the definition of a simply infinite structure. Another issue concerns
forming a substructure of the simply infinite structure that satisfies strong forms of
induction. They are mixed together in the above development but, in general, this need
not be so. In the presence of unrestricted comprehension (as it is the case with the
theory PE), the second issue is easily solved in the usual Frege-Dedekind way (by
considering the “smallest” simply infinite structure). However, with restricted kinds of
comprehension, namely forms of predicative comprehension, the definition of natural
number is severely crippled and the availability of induction is very limited (way below
primitive recursive induction: see [3] and [4]).
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Twelve years ago, I tried to amend this kind of situation in order to obtain, within a
predicative setting, the scheme of induction for all arithmetical predicates. The idea
of [6] was simple enough. I worked within Heck’s setting of ramified predicative
arithmetic [12] (a provably consistent theory) and tried to adjoin an axiom of finite
reducibility. Reducibility has a long story in logicism and was introduced by Russell
and Whitehead for purely pragmatic reasons. According to Russell, “[the] axiom [of
reducibility] has a purely pragmatic justification: it leads to the desired results and no
others.”6 This is a justification that clearly departs from a logicist perspective and one
that a logicist cannot rest contented with. In chapter XVII of [18], Russell writes that
“I do not see any reason to believe that the axiom of reducibility is logically necessary,
which is what would be meant by saying that it is true in all possible worlds.” That
notwithstanding, the restriction of the axiom of reducibility which states that a concept
true of only finitely many objects is co-extensive with a predicative concept seems to
be necessary in Russell’s sense. In effect, if a concept is true of only finitely many ob-
jects a1, a2, . . . , an then the concept is co-extensive with the predicative concept given
by the formula (with parameters) ‘x = a1 ∨ x = a2 ∨ . . . ∨ x = an.’ I thought that
a form of logicism was defensible by postulating the axiom of finite reducibility in
Heck’s ramified predicative theory and hoped that that would be enough to develop (in
a Fregean way) first-order Peano arithmetic. This approach was tried in [6] and sub-
jected to serious philosophical criticism in [2] (cf. p. 113). The problem lies in stating
the axiom of finite reducibility. How does one define finiteness within a predicative
theory? One would hope, perhaps, to be satisfied at first with a “deficient” definition
of finiteness and then, after introducing the axiom of finite reducibility, show that the
definition has, after all, the desired properties of the notion of finiteness and proves,
in the end, to be right. Of course, this strategy is very delicate and unstable since the
axiom of finite reducibility would be postulated concerning a prima facie inadequate
definition, which would only be proven right after the postulation. A (hopefully) virtu-
ous circle, as this was classified in [6]. With the benefit of hindsight, the development
of [6] rests upon a presumption that goes beyond finite reducibility. It rest on the pre-
sumption that predicates of the form “there are finitely many w such that A(x,w)” are
predicative for predicative formulas A(x,w). This is a more stringent condition than
that of finite reducibility and lacks an argument supporting it from the logicist view-
point.7 The present paper came about with the realization that if one defines finiteness
impredicatively, then one can actually prove finite reducibility instead of “helping one-
self to intuitions about finitude as axioms, not proved as theorems from logical axioms
and a suitable definition of finitude” (cf. p. 113 of [2]).

Let us now turn to the first issue mentioned above, the one concerning the definition
of a simply infinite structure. There is, in fact, a straightforward manner of obtaining a
simply infinite structure within PE (even within H): the map x ; ẑ.(z = x) is clearly
injective and not surjective (the object ẑ.(z 6= z) is not in the image of the map). Of
course, this is not the way that Frege developed arithmetic. It is an un-Fregean devel-
opment. He would not have rested contented with any old simply infinite structure. He
is no structuralist. For Frege, numbers are extensions formed by extensions of equinu-

6See p. xiv of the introduction to the second edition of volume I of Principia Mathematica [19].
7The condition was made explicit in [6]. My present view is that the arguments in [6] for accepting this

condition are not founded on a logicist point of view (nor on finite reducibility).
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merous concepts. For instance, the number 3 is the extension of all extensions with
exactly three elements. This is an important feature of Frege’s development of arith-
metic. His development is not merely a technical exercise in modeling arithmetic. It
obeys the constraint “that a philosophically satisfactory foundation for a mathematical
theory must somehow intimately build in its possibilities of applications” (cf. p. 91 of
[11]).

An interesting fact is that it is possible to obtain a simply infinite structure in H
in terms of Frege’s own definition of number. The development of a simply infinite
structure given in Section 2 up to statement (vii) can essentially be formalized in H. For
the remaining bit, it is enough to prove that every object of the form card(F ), for some
F , has a successor. Heck showed in [12] how this can be done (in an un-Fregean way)
by a simple ordered pair trick.8 An even more interesting fact, actually a rather striking
one, is that this remaining bit can also be obtained in a (roughly) Fregean way within
a predicative setting. This can be accomplished within Heck’s ramified predicative
theory described in [12]. In the ramified setting there are several rounds of second-
order variables enjoying acceptable forms of comprehension for the predicativist. The
zeroth round (corresponding to the second-order variables of H), the first round, the
second round, etc. If in the development of arithmetic in Section 2 all the definitions
are given in terms of zeroth round variables except for the definition of the concept of
natural number (which should be defined with first round quantifications), then Lemma
3, Lemma 4, (viii), the proposition and the theorem can be proved when the predicative
variables are rendered by zeroth round variables.9 This was first shown by Heck in [14]
(see, specially, Section 5) and the reader should consult his paper for details.

4 Finiteness and reducibility
Some technical choices which were made in the development of arithmetic in Sec-
tion 2 may be questioned on philosophical grounds. Take, for instance, the definition
of equinumerousity. By definition, Eq(F,G) holds whenever there is a predicative
bijection between the objects falling under F and the objects falling under G. Is this
definition faithful to the meaning of equinumerousity? Why shouldn’t an impredicative
bijection count as a witness of equinumerousity? The problem is compounded because
our definition of equinumerousity was not really a matter of choice. The reader can eas-
ily check that the statement of equinumerousity with an impredicative bijection blocks
the definition of Frege’s cardinality operator card. That notwithstanding, we will see
below that the issues just raised do not really arise as long as we are dealing only with
concepts that are true of only finitely many elements.

In §158 of Grundgesetze der Arithmetik, Frege uses the locution “the cardinal num-
ber of a concept is finite” as a way of expressing that there are only finitely many el-

8The trick can be easily described. The predicate F can be put in bijection with the predicate H under
which fall the ordered pairs of the form 〈x̂.(x 6= x), z〉, with z such that Fz. Now, clearly, x̂.(x 6= x)
does not fall under H . The successor of card(F ) is card(G), where w falls under G if, and only if,
Hw ∨ w = x̂.(x 6= x).

9However, the form of finite reducibility stated in the theorem of Section 2 undergoes a subtle change
of meaning. It becames much weaker because the “less than or equal relation” is defined with zeroth round
quantifiers – one round less than the variables used in the definition of the concept of natural number.
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ements falling under the given concept. This manner of speaking about finitude is not
directly available in PE for impredicative concepts because the cardinality operator is
only defined for predicative concepts. Fortunately, Frege also gives in the Grundgesetze
a characterization of finitude in pure second-order (impredicative) logic – one that does
not need value-ranges (extensions). This characterization provides a Fregean handle for
approaching the questions of the above paragraph. Before directing our attention to this
issue, we need to establish some easy facts about the finitude of predicative concepts.

Proposition 2. The theory PE proves

∀F,G∀z(∀x(Gx↔ Fx ∨ x = z)→ (N(card(F ))↔ N(card(G)))).

Proof. Suppose that ∀x(Gx↔ Fx∨ x = z). If Fz, then card(G) = card(F ) and we
are done. Otherwise, by the definition of the successor relation, S(card(F ), card(G)).
The equivalence N(card(F ))↔ N(card(G)) is now clear by the properties discussed
immediately after the definition of natural number in Section 2.

The above proposition entails that the union and the cartesian product of two finite
(predicative) concepts are still finite concepts. The first statement is formally

∀F,G,H (N(card(F )) ∧ N(card(G)) ∧ ∀x(Hx↔ Fx ∨Gx)→ N(card(H)))

and it is easily proved by induction on card(G) using the above proposition. The
second statment is the universal closure of

N(card(F ))∧N(card(G))∧∀x(Hx↔ ∃u, v(x = 〈u, v〉∧Fu∧Gv))→ N(card(H))

and it is proved by induction on card(G) using the first statement.
We are now ready to discuss finitude in the context of impredicative concepts. In

the sequel, we describe (an adaptation of) Frege’s second-order characterization of
finitude and show that “finite” concepts – according to this characterization – are co-
extensive with predicative concepts of finite cardinality (finite reducibility). We also
argue that impredicative bijections between two “finite” concepts are co-extensive with
predicative ones. In fact, a robust theory of finite sets can be developed in PE.

Frege’s characterization of finitude in terms of pure second-order logic is discussed
between §158 and §179 of the volume I of Grundgesetze der Arithmetik. We will not
follow Frege’s treatment in a strict manner (see Heck’s paper [13] for a discussion
of why Frege sometimes did not chose the simplest way), but opt for a streamlined
analysis adapted to our present purposes. The two theorems of this section can be seen
as versions of Theorems 327 and 348 of Frege’s Grundgesetze adapted to the setting of
PE.

In Section 2, we defined the notion of hereditarity with respect to the successor
relation. We need that notion with respect to an arbitrary relation R:

HerR(F) := ∀x∀y(Fx ∧R〈x, y〉 → Fy),

as well as the associated ancestral relation R∗ of R:

R∗〈x, y〉 := ∀F (Fx ∧HerR(F)→ Fy).
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It is clear that R〈x, y〉 → R∗〈x, y〉 and that the relation given by R∗ is reflexive and
transitive. We will need to rely on some facts about ancestral relations. These are
known facts of pure second-order (impredicative) logic. As a matter of fact, ancestral
relations made their appearance in Frege’s first book [7], where they were studied.

We lay the needed facts in the form of three lemmas and, for the sake of complete-
ness, we provide their proofs in the appendix of this paper.

Lemma 5. PE ` R∗〈x, y〉 ∧ ∀z(R〈x, z〉 → z = x)→ y = x.

Lemma 6. The theory PE proves the universal closure of the conditional formula
whose antecedent is

∀u∀v (R〈u, v〉 ∧R∗〈x, u〉 ∧R∗〈u, y〉 ∧R∗〈x, v〉 ∧R∗〈v, y〉 → Q〈u, v〉),

and whose consequent is R∗〈x, y〉 → Q∗〈x, y〉.
In particular, it proves ∀u∀v(R〈u, v〉 → Q〈u, v〉) ∧R∗〈x, y〉 → Q∗〈x, y〉.

We say that R is functional if ∀x∀y∀z (R〈x, y〉 ∧R〈x, z〉 → y = z), and we write
Func(R).

Lemma 7. The following formulae are provable in PE:

1. Func(R) ∧ x 6= y ∧R∗〈x, y〉 ∧R〈x, z〉 → R∗〈z, y〉.

2. Func(R) ∧R∗〈z, x〉 ∧R∗〈z, y〉 → R∗〈y, x〉 ∨R∗〈x, y〉.

3. Func(R) ∧ x 6= y ∧R∗〈x, y〉 ∧R∗〈y, x〉 ∧R∗〈x, z〉 → R∗〈z, x〉.

Frege’s characterization of finiteness is based on the following definition:

Btw(R, a, b, x) := Func(R) ∧R∗〈a, x〉 ∧R∗〈x, b〉 ∧ ¬∃z(R〈b, z〉 ∧R∗〈z, b〉).

In the words of Frege, according to the translation [9], “x belongs to the R-series
starting with a and ending with b” (see §158 of the Grundgesetze). We also say that x
lies between a and b in the R-series.

Definition. We say that F is Fregean finite, and write Fin(F), just in case

∃R∃a∃b∀x(Fx↔ Btw(R, a, b, x))

or, else, F is an empty concept.

We also use the notation Fin(F ) for predicative variables F . We could have per-
mitted this case in the above definition. Equivalently, we can see it as abbreviating
∃F(∀x(Fx↔ Fx) ∧ Fin(F)).

Lemma 8. PE ` Btw(R, a, b, x)→ ¬∃z(R〈x, z〉 ∧R∗〈z, x〉).

Proof. Suppose that Btw(R, a, b, x) and assume that there is z such that R〈x, z〉 and
R∗〈z, x〉. By definition, x 6= b. Since R∗〈x, b〉, by (3) of Lemma 7, either x = z or
R∗〈b, x〉. If x = z, by the functionality of R and Lemma 5, we get x = b which is
impossible. If R∗〈b, x〉, let y be such that R〈b, y〉: this y exists by Lemma 5. By (1) of
Lemma 7 and the fact that x 6= b, we get R∗〈y, b〉. This contradicts the last clause of
the definition of Btw(R, a, b, x).
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Lemma 9. The theory PE proves the universal closure of the conditional formula
whose antecedent is Btw(R, a, b, x) ∧ Btw(R, a, b, y) ∧ R〈x, y〉 and whose conse-
quent is

∀w(R∗〈a,w〉 ∧R∗〈w, y〉 → R∗〈w, x〉 ∨ w = y).

Proof. Suppose that Btw(R, a, b, x), Btw(R, a, b, y), R〈x, y〉, R∗〈a,w〉 and R∗〈w, y〉.
By (2) of Lemma 7, either R∗〈w, x〉 or R∗〈x,w〉. In the first case, we are done. As-
sume R∗〈x,w〉. By (1) of Lemma 7, either x = w or R∗〈y, w〉. In the former case,
R∗〈w, x〉 and we are done. The following situation remains to be studied: R∗〈x,w〉
and R∗〈y, w〉. If y = w, we are done. Otherwise y 6= w. In this case, by Lemma 5,
there is z with R〈y, z〉. Now, by (1) of Lemma 7, R∗〈z, w〉 and, as a consequence,
R∗〈z, y〉. This is impossible by the previous lemma.

Our version of Theorem 327 of the Grundgesetze der Arithmetik is the result below.
Its formulation necessarily incorporates the principle of finite reducibility:

Theorem 2. PE ` ∀F (Fin(F)→ ∃F (∀x(Fx↔ Fx) ∧ N(card(F )))).

Proof. Let F be such that Fin(F). If F is an empty concept, the conclusion is clear.
Otherwise, take R, a and b such that ∀x(Fx↔ Btw(R, a, b, x)). Using Lemma 6, we
may suppose without loss of generality that

∀u∀v(R〈u, v〉 → R∗〈a, u〉 ∧R∗〈u, b〉 ∧R∗〈a, v〉 ∧R∗〈v, b〉).

By impredicative comprehension, let G be such that for all w, Gw if, and only if,

∃G(N(card(G)) ∧ ∀x(Gx↔ R∗〈a, x〉 ∧R∗〈x,w〉))).

We first claim that HerR(G). To see this, suppose that Gu and R〈u, v〉. Hence,
there is G such that N(card(G)) and ∀x(Gx↔ R∗〈a, x〉∧R∗〈x, u〉). By the previous
lemma, ∀x(R∗〈a, x〉 ∧R∗〈x, v〉 → R∗〈x, u〉 ∨ x = v). Therefore,

∀x(R∗〈a, x〉 ∧R∗〈x, v〉 ↔ Gx ∨ x = v).

By predicative comprehension (and the fact that the sucessor of a natural number is a
natural number), it follows that Gv.

We also claim that Ga holds. This easily follows from

∀x(R∗〈a, x〉 ∧R∗〈x, a〉 → x = a).

To see this, assume that R∗〈a, x〉, R∗〈x, a〉 but x 6= a. By Lemma 5, take z such
that R〈a, z〉. By (1) of Lemma 7, we get R∗〈z, x〉 and, so, R∗〈z, a〉. This contradicts
Lemma 8.

Since R∗〈a, b〉, we conclude Gb. This is what we want.

Theorem 348 of Frege’s Grundgesetze says that “if the cardinal number of a concept
is finite, then the objects that fall under it can be ordered into a simple series running
from a specific object to a specific object” (cf. §172 of [9]). In our setting, this is stated
as ∀F (N(card(F ))→ Fin(F )). For convenience, we prove a stronger property.
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Theorem 3. PE ` ∀F∀H(N(card(F )) ∧ ∀x(Hx→ Fx)→ Fin(H)).

Proof. By induction on card(F ). If card(F ) = 0, H is empty and there is nothing
to prove. Suppose that N(n), S(n,m), card(F ) = m and ∀x(Hx → Fx). Take c
such that Hc (otherwise, H is empty and there is nothing to prove). If G is such that
∀x(Gx ↔ Fx ∧ x 6= c), clearly card(G) = n,. By induction hypothesis, Fin(L),
where L is such that ∀x(Lx ↔ Hx ∧ x 6= c). If L is empty then H is true of only the
element c and the Fregean finiteness of H easily follows. Otherwise, take R, a and b
so that ∀x(Lx ↔ Btw(R, a, b, x)). The idea is clear now: We want to tack c onto the
end of the series given by R, a and b.

As a preliminary step, by Lemma 6, we may suppose that

∀u∀v(R〈u, v〉 → R∗〈a, u〉 ∧R∗〈u, b〉 ∧R∗〈a, v〉 ∧R∗〈v, b〉).

By impredicative comprehension, let Q(x) be defined as

∃u∃v[x = 〈u, v〉 ∧ (R〈u, v〉 ∨ (u = b ∧ v = c))].

We have Func(Q) and, since ¬∃zQ〈c, z〉, a fortiori ¬∃z(Q〈c, z〉 ∧Q∗〈z, c〉). We
argue that ∀x(Hx ↔ Btw(Q, a, c, x)), and this shows that H is Fregean finite. So, we
must argue

∀x ((Btw(R, a, b, x) ∨ x = c)↔ Btw(Q, a, c, x)).

If Btw(R, a, b, x) then, by Lemma 6 (its particular case), Btw(Q, a, b, x). It read-
ily follows that Btw(Q, a, c, x). Of course, Q∗〈a, b〉. Therefore Q∗〈a, c〉, and we get
Btw(Q, a, c, c). Conversely, assume that Btw(Q, a, c, x). We may suppose that x 6= c.
We have Q∗〈a, x〉. By Lemma 6, R∗〈a, x〉. On the other hand, by (2) of Lemma 7,
Q∗〈x, b〉 or Q∗〈b, x〉. In the first case, by Lemma 6, we get R∗〈x, b〉, and we are done.
In the second case, we are in a situation where both Q∗〈b, x〉 and Q〈b, c〉 hold. By (1)
of Lemma 7, either b = x or Q∗〈c, x〉. In the first case, R∗〈x, b〉 and we are done. The
second case is impossible by Lemma 5.

Theorems 2 and 3 permit the development in PE of a very robust theory of finite-
ness. As an illustration, we show that an impredicate bijection between two predicative
concepts of finite cardinality is co-extensive with a predicative concept. So, let us con-
sider R a bijection between concepts F and G of finite cardinality. Of course, R is a
sub-relation of the cartesian product between F and G. The latter has finite cardinality,
as we have observed at the beginning of the present section. Hence, by Theorem 3,
Fin(R). The conclusion follows from an application of Theorem 2.

5 Second commentary
Frege’s system of the Grundgesetze is a theory of extensions (in fact, a theory of value-
ranges). Extensions are, of course, extensions of concepts and they satisfy the form
of extensionality given by Frege’s Basic Law V. Sets, for Frege, are extensions (of
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concepts). They are not autonomous from concepts, nor is their basic relation: mem-
bership. In Frege’s system of the Grundgesetze, membership is a defined notion given
by

x ∈ y :≡ ∃F (y = ẑ.F z ∧ Fx).

This defined notion is fully operational in Frege’s Grundgesetze in the sense that the
law of concretion is derivable:

∀x(x ∈ ẑ.A(z)↔ A(x)),

for every formula of the language A.10 The problem, of course, is that this law leads to
Russell’s paradox. This situation was analyzed in detail by Heck in [12] who observed
that, in the predicative setting H, the law of concretion does not hold. The derivation
from right to left is blocked by lack of concept-comprehension.

It is very instructive to discuss Heck’s theory H because it brings to light some
interesting phenomena. As with Frege’s (inconsistent) theory, in (the consistent) H the
extension operator applies to every formula of the language. Also, extensions satisfy
the form of extensionality given by Frege’s Basic Law V.

Lemma 10. The theory H proves the following form of the law of concretion:

∀F∀x(x ∈ ẑ.F z ↔ Fx).

Proof. Let F be given. Suppose that x ∈ ẑ.F z. By the definition of membership, there
is G such that ẑ.F z = ẑ.Gz ∧ Gx. By Basic Law V, we conclude that Fx. Conversely,
given Fx it is clear (by the definition of membership) that x ∈ ẑ.F z.

The following fact is illuminating:

Proposition 3. The theory H proves ∃y∀x(x ∈ y ↔ A(x)) ↔ ∃F∀x(Fx ↔ A(x)),
for every formula A of the language (in which the variables y and F do not occur free).

Proof. Suppose that there is y such that ∀x(x ∈ y ↔ A(x)). If there is no element
x such that A(x), then clearly ∃F∀x(Fx ↔ A(x)): just take the predicative concept
associated with the formula ‘x 6= x’. Suppose that there is w such that A(w). Hence
w ∈ y and, in particular, there is F such that y = ẑ.F z. We claim that, for this F , one
has ∀x(Fx↔ A(x)). By the above Lemma, ∀x(x ∈ y ↔ Fx). The claim follows.

Let us now assume that there is F such that ∀x(Fx ↔ A(x)). Take y as ẑ.F z.
Applying the above Lemma again, we immediately get ∀x(x ∈ y ↔ A(x)).

The above proposition says that set-comprehension and concept-comprehension go
hand in hand. The right notion of set in H, one abiding by the law of concretion, is to
say that y is a set if ∃F (y = ẑ.F z). In Heck’s predicative setting, one must distin-
guish concepts which are in the range of second-order variables from (more generally)
concepts expressed by a formula of the language. On purely philosophical grounds,

10Frege works with value-ranges, of which extensions are a particular case. The analogue of membership
for value-ranges is Frege’s application operator a as defined in §34 of [9]. The analogue of the law of
concretion for value-ranges is discussed by Frege in the same Section and formally proved in §55 of the
Grundgesetze. The designation ‘law of concretion’ comes from Quine (see p. 16 of [15]).
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the predicativist can accept every concept expressed by the language of H. However,
he is at technical odds to make comprehension available for the latter concepts (but
not to obtain their extensions, since every concept expressed by the language of H has
an extension in H). One must not comprehend these concepts with the same round
of second-order variables (i.e., within the language of H), on pain of falling into im-
predicative comprehension and, indeed, on pain of contradiction. But, of course, these
concepts can be comprehended in an enlargement of the language with a new round of
concept variables. In short, when the predicativist brand of logicism is formalized in
a language, there are concepts which have extensions and which are fit for being sets
(by enlarging the language) but which are not sets according to the language. We may
dub these extensions which are not sets as ‘protosets.’ Interestingly, the existence of
these protosets allows the theory H (and the theory PE) to explore some features of
the (technically) missing corresponding sets. For instance, protosets are instrumental
in defining Frege’s cardinality operator card (in H) and in developing numbers in a
Fregean manner (in PE).

As discussed in the last paragraph, protosets in H may be gathered as sets (via
concept-comprehension) with a new round of second-order variables. Of course, with
this move, new protosets will emerge in the extended language and a further round of
second-order variables is necessary to gather them as sets. Etcetera. Etcetera. One
is led into theories of ramification and into envisaging ramified systems in which the
extension operator applies to every formula of the language and in which Basic Law V
is unrestricted (as Heck does in [12]). If there is a last round of second-order variables,
a most general membership relation can be defined, but the law of concretion fails. If
the ramified theory has no last round of variables, membership relations necessarily
ramify. Even if one takes the position that no formal theory is able to express all the
predicative concepts (presumably because of the inexistence of a natural ordinal bound
for ramification), in this informal theory there is no overall membership relation, but
only local ones for fixed rounds. Be that as it may, we do not get a decent theory of
sets for all extensions (because either there is no global membership relation or the law
of concretion fails for extensions).

How does the theory PE fare with respect to the above issues? Well, PE is essen-
tially a round of impredicative variables on top of H. The membership operation x ∈ y
has to be defined with predicative variables because the alternative ‘∃F(y = ẑ.Fz∧Fx)’
is not a well-formed formula (we remind the reader that the extension operator does not
apply to formulas in which impredicative variables occur). As with H, the theory PE
has extensions which are not sets. However, the situation is quite different for finite ex-
tensions. Let us say that an extension x̂.A(x) is finite if ∃F(Fin(F)∧∀x(Fx↔ A(x))).
This is a well-defined notion for extensions (thanks to Basic Law V). Now, the axiom
of finite reducibility entails that finite extensions are sets. In other words, as long as
we are only dealing with finite extensions, no new round of variables is necessary to
gather finite extensions as sets. There are no finite protosets in PE, and this permits the
development of a robust theory of finite sets.

The main goal of this paper was to convince the reader that arithmetic can be de-
veloped in a strict logicist manner by working on a (consistent) subsystem of Frege’s
original (inconsistent) theory. The restriction is simple and memorable: one is only
allowed to take extensions of predicative concepts. Indeed, on this view of extensions,
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we believe that we have shown that Frege’s own logicist program, when restricted to
arithmetic, is successful.
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7 Appendix
In order to prove Lemma 5, let x and y be given such that R∗〈x, y〉. Suppose that
∀z(R〈x, z〉 → z = x). Take F such that ∀w(Fw ↔ w = x). Clearly, HerR(F) and
Fx. By R∗〈x, y〉, we get Fy, i.e., y = x.

To see Lemma 6, assume the antecedent condition and R∗〈x, y〉. By impredicative
comprehension, let F be such that ∀w(Fw ↔ R∗〈x,w〉 ∧ (R∗〈w, y〉 → Q∗〈x,w〉)).
Fx is immediate. We claim that HerR(F). Suppose Fu and R〈u, v〉. We get R∗〈x, u〉
and, therefore, R∗〈x, v〉. Now, suppose that R∗〈v, y〉. We infer R∗〈u, y〉 and, by Fu,
we also get Q∗〈x, u〉. By the antecedent condition, it is clear that we have Q〈u, v〉.
Hence, Q∗〈x, v〉. We have shown Fv and, therefore, proved HerR(F). Given that we
have R∗〈x, y〉, we may conclude Fy and, hence, Q∗〈x, y〉.

Let us now prove Lemma 7.
For (1), assume Func(R), x 6= y, R∗〈x, y〉 and R〈x, z〉. By impredicative com-

prehension, take F such that ∀w(Fw ↔ (x = w∨R∗〈z, w〉)). We claim that HerR(F).
To see this, take u and v such that Fu and R〈u, v〉. Then either x = u or R∗〈z, u〉. The
latter case obviously entails R∗〈z, v〉 and, therefore, Fv. If x = u, then we have both
R〈x, z〉 and R〈x, v〉. By the functionality of R, v = z. Hence R∗〈z, v〉, as wished.
Now that we have established HerR(F), note that Fx and (by assumption) R∗〈x, y〉.
Therefore, Fy and we are done.
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To see (2), assume Func(R), R∗〈z, x〉 and R∗〈z, y〉. By impredicative compre-
hension, take F such that ∀w(Fw ↔ R∗〈y, w〉 ∨R∗〈w, y〉). We claim that HerR(F).
To see this, take u and v such that Fu and R〈u, v〉. Either R∗〈y, u〉 or R∗〈u, y〉.
The former case entails R∗〈y, v〉. In the latter case, by (1) above, either u = y or
R∗〈v, y〉. Note that u = y together with R〈u, v〉 entails R∗〈y, v〉. In both cases,
R∗〈y, v〉 ∨ R∗〈v, y〉. We have showed Fv and, hence, proved HerR(F). Clearly Fz
and, by assumption, R∗〈z, x〉. Hence Fx, and we are done.

Finally, assume Func(R), x 6= y, R∗〈x, y〉, R∗〈y, x〉 and R∗〈x, z〉. By (2), either
R∗〈z, y〉 or R∗〈y, z〉. In the former case, we get our conclusion R∗〈z, x〉. We study
the case R∗〈y, z〉. By comprehension, take F such that ∀w(Fw ↔ R∗〈w, x〉). We
claim that HerR(F). To see this, take u and v such that Fu and R〈u, v〉. By (1), either
u = x or R∗〈v, x〉 (i.e., Fv). We only need to study the case u = x. We have R〈x, v〉
and, since R∗〈x, y〉 and x 6= y, we get R∗〈v, y〉 by another application of (1). Given
that R∗〈y, x〉, by transitivity, we conclude R∗〈v, x〉 (i.e., Fv). We have just proved
HerR(F). Since R∗〈x, z〉 and Fx, we conclude Fz, i.e., R∗〈z, x〉.
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