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Abstract. We study, within the framework of intuitionistic logic, two well-known general results of

(classical logic) bounded arithmetic. Firstly, Parikh’s theorem on the existence of bounding terms for the

provably total functions. Secondly, the result which states that adding the scheme of bounded collection

to (suitable) bounded theories does not yield new Π2 consequences.
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1 Introduction

The theory I∆0 is that subsystem of Peano Arithmetic in which the scheme of induction is restricted
to bounded formulas. These are the formulas generated from atomic formulas via the successive
applications of Boolean connectives and bounded quantifications, i.e., quantifications of the form
∀y ≤ t(x) (. . .) or of the form ∃y ≤ t(x) (. . .), where t(x) is any term of the language in which the
variable y does not occur (we are abbreviating a sequence of variables x1, . . . , xk by x). In 1971,
Rohit Parikh proved in [6] the following theorem:

Theorem. If I∆0 � ∀x∃yA(x, y), where A is a bounded formula, then there is a term t(x) such
that I∆0 � ∀x∃y ≤ t(x)A(x, y).

The conclusion is false if A is not restricted to bounded formulas. For instance, I∆0 proves
the sentence ∀x∃y∀z(Exp(x, z) → y = z), where Exp(x, z) is a bounded formula that suitable
formalizes the relation 2x = z. Observe that there can be no bounding term for y. However,
classical reasoning (in the form of a use of the excluded middle) seems to be needed to argue for
the above sentence. As a matter of fact, it follows from Theorem I below that the above sentence
is not provable intuitionistically in I∆0 (nor even in I∆0 supplemented with the law of excluded
middle for bounded formulas).

In 1980, Jeff Paris in [7] showed that the theory I∆0 plus the collection scheme BΣ0 for bounded
formulas is a Π2-conservative extension of I∆0. In other words:

Theorem. If I∆0 +BΣ0 � ∀x∃yA(x, y), where A is a bounded formula, then I∆0 � ∀x∃yA(x, y).

Here, BΣ0 is the scheme

∀u ≤ x∃yA(u, y)→ ∃w∀u ≤ x∃y ≤ wA(u, y)

where A is any bounded formula that may contain additional free variables as parameters.
A compactness argument yields a very simple proof of the earlier theorem. This argument

readily generalizes to other bounded theories of arithmetic, such as those introduced by Samuel
∗This research was partially supported by CMAF (Fundação da Ciência e Tecnologia) and PRAXIS XXI.
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Buss in his doctoral dissertation [2]. The original proof of the latter theorem does not extend to
more general situations, although the theorem still holds for a wide class of bounded theories of
arithmetic. This was stated and shown by Samuel Buss in [3].

In this paper, we envisage studying the above two theorems within the intuitionistic setting.
We will place ourselves in a rather general framework, since our results (as well as the classical
results) need not be framed in theories of arithmetic. Results such as the above two theorems –
and their intuitionistic versions – depend solely on some general features of the binary relation ≤
and of the provable structure of the terms (however, see the final section).

We shall be concerned with intuitionistic theories formulated in first-order recursively presented
languages (this condition is here for convenience only, and can be discarded – we will comment on
this in the final section) which include a distinguished binary relation symbol �. A quantification
is bounded if it is of the form ∀x(x � t → . . .) or of the form ∃x(x � t ∧ . . .), where t is a term
of the language in which x does not occur. These quantifications are abbreviated by ∀x � t (. . .)
and ∃x � t (. . .), respectively. A formula is called ∃Ω-free if all its existential quantifications are
bounded. Note that bounded formulas are ∃Ω-free.

The following definition is an adaptation to our setting of a definition of Samuel Buss in [3]:

Definition. Let Γ be a theory in a first-order language as above. We say that Γ is a term-sufficient
theory if there is a binary term maj, a unary term trans, and for each n-ary functional symbol f
there is a n-ary term σf , such that:

(1) Γ �i ∀x (x � x);

(2) Γ �i ∀x∀y (x � maj(x, y) ∧ y � maj(x, y));

(3) Γ �i ∀x∀y � x∀z � y (z � trans(x));

(4) for any function symbol f(x) of the language, Γ �i ∀x∀y � x (f(y) � σf (x)),

where �i denotes intuitionistic provability. For convenience, we also demand that there is at least
a constant c in the language. We say that Γ is a ∃Ω-free term-sufficient theory if it is a term
sufficient theory and if it is recursively axiomatized by a set of ∃Ω-free formulas.

We are using some obvious abbreviations; for instance, ∀y � x abbreviates ∀y1 � x1 . . . ∀yk � xk.
Condition (3) is complicated because we are striving for generality. In many cases � will be a
transitive relation and (3) comes automatically by taking trans(x) := x. Also, in many theories of
bounded arithmetic, the function symbols of the language are (provably) monotonous and, thus,
σf can be taken to be f itself. This is the case with the function symbols of the theories I∆0, Si

2,
T i

2, etc.
In our discussion, we will need two simple facts concerning term-sufficient theories. Their proofs

are simple and we omit them:

Lemma. In a term-sufficient theory Γ, for each positive natural number k there is an k-ary term
majk(x1, . . . , xk) of the language such that:

Γ �i ∀x1 . . .∀xk∀y1 � x1 . . .∀yk � xk

k∧
i=1

(yi � majk(x1, . . . , xk)).

Lemma. Let Γ be a term-sufficient theory. For each term t(x) of the language there is a term
ρt(x) such that, Γ �i ∀x∀y � x∀w � t(y) (w � ρt(x)).

The main aim of this paper is to prove the following two theorems:
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Theorem I. If Γ is a ∃Ω-free term-sufficient theory and if Γ �i ∀x∃yA(x, y), where A is any
(first-order) formula, then there is a term t(x) of the language such that Γ �i ∀x∃y � t(x)A(x, y).

The scheme of ∃Ω-free collection, denoted by B∃Ω, consists of all formulas

∀u � x∃y A(u, y)→ ∃w∀u � x∃y � wA(u, y)

where A is a ∃Ω-free formula, possibly with parameters.

Theorem II. If Γ is a ∃Ω-free term-sufficient theory and if Γ + B∃Ω �i ∀x∃yA(x, y), where A is
∃Ω-free, then Γ �i ∀x∃y A(x, y).

The strategy for proving these theorems follows a technique introduced in [5]. This technique
hinges on realizability arguments that take place within theories whose languages permit countable
infinite disjunctions. For the first theorem, the theory is the same as the original theory. For
the second theorem, we need an extra infinitary axiom schema. In the next section, we briefly
describe these infinitary theories and mention the pertinent results concerning them. The third
section introduces infinitary realizability notions convenient to proving the above theorems. The
two theorems themselves are consequences of soundness theorems pertaining to the realizability
notions.

2 The Technical Framework

In the next section, we shall introduce realizability notions framed in a language which permits
countable infinite disjunctions. We deal with these countable infinite disjunctions semantically, by
adding an extra forcing clause in the Kripkean semantics ([9] is a good reference for the intuitionistic
notions used in this paper). Given a Kripke model K of a term-sufficient theory Γ and given a
node α of K we let,

�α

∨
n

Fn := ∃m ∈ ω �α Fm

Now it makes sense to say that Γ forces a sentence A of the extended infinitary language. It
means that the least node (hence, every node) of every Kripke model of Γ forces the sentence A,
and we write Γ � A. With a view of proving Theorem II, we need to consider a special class ΩΓ

of Kripke models of Γ. This class is, by definition, the class of Kripke models of Γ which force the
following infinitary sentences (henceforth called the infinitary axioms):

∀x
(
A(x)→

∨
n

Fn(x)

)
→

∨
n

∀x


A(x)→

∨
k≤n

Fk(x)




where A(x) is a first-order formula and F0(x), F1(x), F2(x), . . . is a recursive enumeration of first-
order formulas with only a finite number of parameters. Given a (first-order or infinitary) sentence
A, we write Γ∞ � A if every Kripke structure of ΩΓ forces A.

The following proposition is crucial:

Proposition (Conservativity). Let Γ be a term-sufficient theory of arithmetic and suppose that

Γ∞ � ∀x
∨
t

∃y � t(x)A(x, y) (�)

where A(x, y) is a first-order formula with its free variables as shown and t ranges over all the
appropriate terms. Then there is a term t of the language such that Γ �i ∀x∃y � t(x)A(x, y).

In assertion (�), if Γ were instead of Γ∞, a single compactness argument would suffice to
prove the proposition. In the general case, we need a compactness argument on top of multiple
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compactness arguments (in fact, on top of a recursive saturation argument). The framework for
making these arguments consists in looking (sic) “at Kripke models from outside, as a complicated
concoction of classical structures, and hence as a classical structure itself” (Dirk van Dalen, page
264 of [8]). We will not describe the procedure of associating to each Kripke structure K its
corresponding classical structure Kc. We refer the reader to the above mentioned work of van
Dalen. For the present purposes, it is sufficient to say that the language Lc supporting Kc is a
modification of the original language L tailored to describe the structure of the original Kripke
structure K and, conversely, that we restrict ourselves to classical structures M which validate a
number of (first-order) laws so conceived as to permit the extraction fromM of a natural Kripke
structureMi. In actual fact, we have (Mi)c ≈M and (Kc)i ≈ K.

By making a detour through the classical structures as described above, we can mimic the
recursive saturation argument of the proof of the main lemma of section 3 of [5] and obtain,

Lemma. Suppose that K is a (countable) Kripke model of Γ for which the associated classical
structure Kc is recursively saturated. Then K ∈ ΩΓ.

We are now ready to prove the conservativity result.

Proof of the Proposition : Suppose that the conclusion is false. Let t(x) be a term of the
language (to simplify notation, we work with a single variable x). Then, Γ ��i ∀x∃y � t(x)A(x, y).
By the Kripke completeness theorem, there is a (rooted) Kripke model Kt such that,

��0 ∀x∃y � t(x)A(x, y)

where 0 is the root of Kt. This means that there is a node α of Kt and an element d in the domain
D(α) of the node α such that

∀d′ ∈ D(α) (�α d′ � t(d) → ��α A(d, d′))

Consider the theory Σ consisting of Γ plus the following sentences (one for each appropriate
term t):

k ∈ D(κ) ∧ ∀y ∈ D(κ) (�κ y � t(k) → ��κ A(k, y))

where k and κ are new constant symbols. (We are abusing language in the above definition of Σ:
in rigour, the sentences of Σ should have been stated in the language Lc discussed earlier.) Using
the first lemma after the definition of a term-sufficient theory, it is easy to argue that every finite
subset of Σ has a (classical) model. Hence, by compactness, Σ has a countable (classical) model
M. Let M∞ be a recursively saturated structure elementarily equivalent to M. From M∞ we
can read-off a Kripke structure K∞ =Mi

∞. By the previous lemma, this structure is in the class
ΩΓ. Thus, by hypothesis, the following (infinitary) sentence is forced in K∞:

∀x
∨
t

∃y � t(x)A(x, y)

However, by construction, K∞ has a node α and an element d ∈ D(α) such that, for every term
t:

∀d′ ∈ D(α) (�α d′ � t(d) → ��α A(d, d′))

This yields a contradiction. ✷
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3 Notions of Infinitary Realizabiliy

With the help of the conservativity result of the previous section, Theorems I and II are corollaries
of soundness theorems for suitable notions of realizability. In the following definition, we introduce
the two notions of realizibility that we need.

Definition. Let L be the (first-order) language of a term-sufficient theory Γ. To each (first-order)
formula A of L we associate a new formula zrA of the extended infinitary language according to
the following clauses (z is a new variable):

1. zrA is A, if A is an atomic formula;

2. zr(A ∧B) is ∃z0 � z ∃z1 � z (z0rA ∧ z1rB);

3. zr(A ∨B) is ∃w � z (wrA ∨ wrB);

4. zr(A→ B) is ∀x(xrA→ ∨
t ∃w � t(z, x)wrB);

5. zr∀xA(x) is ∀x∨
t ∃w � t(z, x)wrA(x);

6. zr∃xA(x) is ∃x0 � z ∃x1 � z (x0rA(x1));

where t ranges over appropriate terms. The notion of q-realizability has the same clauses as
r-realizability, except for an extra requirement in the case of implication:

4*. zq(A→ B) is (A→ B) ∧ ∀x(xqA→ ∨
t ∃w � t(z, x)wqB).

In the above definition we omitted talk of parameters. However, it should be clear from the
context what parameters are permitted in each term. For instance, in clause 5, if u are the
parameters of the matrix A then t ranges over all terms of the form t(z, x, u), where all the
variables are as displayed.

The realizability clauses for bounded quantifications simplify somewhat:

Lemma. In a term-sufficient theory Γ the following holds (intuitionistically):

5’. zr ∀x � s(u)A(x, u) ←→ ∀x � s(u)
∨

t ∃w � t(z, u)wrA(x, u);

6’. zr ∃x � s(u)A(x, u) ←→ ∃x0 � z ∃x′
0 � x0 ∃x1 � z (x1 � t(u) ∧ x′

0rA(u, x1)).

Proof : We will prove the left-to-right implication of 5’. The other three implications are easy.
Suppose zr∀x(x�s(u)→ A(x, u)). Take x with x�s(u). According to the definition of r-realizability,
there is a term q and an element w′ � q(z, x, u) such that

∀v(vr(x � s(u)) →
∨
r

∃w � r(w′, v, x, u) wrA(x, u)).

Taking v := c, we get a term r′ and an element w � r′(w′, x, u) such that wrA(x, u). It is not
difficult to check that the term t(z, u) := ρr′(ρq(z, s(u), u), s(u), u) does the job.

✷

The folowing proposition is handy:

Proposition. Let Γ be a term-sufficient theory. For each ∃Ω-free formula A(x) there is a term
tA(x) such that,

(i) Γ �i ∃y (yrA(x)) → A(x);

(ii) Γ �i A(x) → ∃y � tA(x) yrA(x).

The same holds for the notion of q-realizability.
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Proof : tA is constructed by induction on the complexity of A:

(a) tA(x) := c, if A is an atomic formula;

(b) tA∧B(x) := maj2(tA(x), tB(x));

(c) tA∨B(x) := maj2(tA(x), tB(x));

(d) tA→B(x) := c;

(e) t∀uA(u)(x) := c;

(f) t∃u�s A(u)(x) := maj2(ρtA
(s(x), x), s(x)).

We establish (i) and (ii) simultaneously, by induction on the complexity of A. We will only
check cases (d) and (f). The statements (i) corresponding to these cases are straightforward. Let
us argue for (ii) of case (d). Suppose that A(x) → B(x) and assume that zrA(x). By induction
hypothesis and by Modus Ponens, we get B(x). Again by induction hypothesis, we conclude that
∃w � tB(x)wrB(x). Thus, we have argued that

zrA(x) →
∨
t

∃w � t(x) wrB(x).

This shows that cr(A(x) → B(x)). Let us now check (ii) of case (f). Suppose that there is
u � s(x) such that A(u, x). By induction hypothesis, there is y � tA(u, x) such that yrA(u, x).
Clearly, both u and y are in the relation � with maj2(ρtA

(s(x), x), s(x)). Thus, our conclusion
follows.

Similar (and sometimes more immediate) arguments work for the notion of q-realizability.
✷

The notion of q-realizability is, as in usual realizability notions, r-realizability plus truth. The
following mimics a standard result of the literature:

Lemma. Let Γ be a term-sufficient theory. If z does not occur in the formula A then Γ � (zqA)→
A.

We have the following soundness theorem.

Soundness Theorem I. If Γ is a ∃Ω-free term-sufficient theory and if Γ �i A(x), where A(x) is
a (first-order) formula, then

Γ �
∨
t

∃w � t(x)wrA(x)

where t ranges over all terms whose variables are among the free variables x of A(x). The same is
true for the notion of q-realizability.

Proof : The proof is by induction on the lengths of derivations in a Hilbert-type deduction system.
For determinateness, we work with the deductive system described in page 68 of [9]. By the above
proposition, the mathematical axioms of Γ pose no trouble since, by hypothesis, they are ∃Ω-free.
The equality axioms pose no trouble either. It would be tedious to go throught all the thirteen
logical axioms of our deduction system. All these axioms are – in fact – realized by any element
(by c, in particular), and we will see this for three typical axioms (to make the discussion more
clear, we will usually avoid the consideration of parameters).

The logical axiom A→ (B → A) is r-realized by c if, and only if,

∀z
(
zrA →

∨
t

∃z0 � t(z)∀w
(
wrB →

∨
q

∃w0 � q(z0, w) w0rB)

))
.
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Given z with zrA, take t(z) = z and let z0 = z. Then, given w with wrB, take q(z0, w) = z0
and let w0 = q(z0, w).

Now let us consider the axiom (A → C) → ((B → C) → (A ∨ B → C)). We must see that
zr(A→ C) implies

∨
r

∃z′ � r(z)∀w
(
wr(B → C) →

∨
s

∃z′′ � s(z′, w)∀y
(
yr(A ∨B) →

∨
p

∃z′′′ � p(z′′, y) z′′′rc
))

.

Suppose that zr(A → C), wr(B → C) and yr(A ∨ B). Take y0 � y such that y0rA ∨ y0rB.
Suppose that the first case holds: y0rA. Then there is a term t and there is z0 � t(z, y0) such that
z0rC. On the other hand, if y0rB there is a term q and there is w0 � q(w, y0) such that w0rC. It is
now a matter of simple checking to see that we can take r(z) = z, z′ = z, s(z′, w) = maj2(z′, w),
z′′ = s(z′, w) and p(z′′, y) = maj2(ρt(z′′, y), ρq(z′′, y)).

The third axiom that we consider is ∀x(A(x) → B) → (∃yA(y) → B), where x is not free in
B. We must see that,

zr∀x(A(x)→ B) →
∨
r

∃z′ � r(z)∀w
(
wr∃yA(y)→

∨
p

∃w′ � p(z′, w)w′rB

)
.

Suppose that zr∀x(A(x)→ B) and wr∃yA(y). Then, for some w0 � w and for some w1 � w, we
have w0rA(w1). Hence, there is a term t(z, w1) and an element z0 �t(z, w1) such that z0r(A(w1)→
B). Thus, there exists a term s and an element y0 � s(z0, w0) such that y0rB. It is not difficult to
check that we can take r(z) = z, z′ = z and p(z′, w) = ρs(ρt(z′, w), w).

Let us now consider the two rules of our deduction system: Modus Ponens and Generalization.
Suppose that both,

Γ �
∨
t

∃w � t(x) wrA(x)

and

Γ �
∨
r

∃y � r(x)∀z
(
zrA(x)→

∨
q

∃z0 � q(z, y, x) z0rB(x)

)
.

We reason (intuitionistically) inside Γ. Take t and w � t(x) with wrA(x). We know that there
is a term r and an element y � r(x) such that for some term q and element z0 � q(w, y, x) we have
z0rB(x). Let s(x) := ρq(t(x), r(x), x). It is clear that ∃z0 � s(x) z0rB(x).

Finally, we consider the rule of Generalization:

A(x, u)
∀xA(x, u)

By induction hypothesis,
Γ �

∨
t

∃w � t(x, u) wrA(x, u).

Inside Γ, we must see that,∨
q

∃y � q(u)∀x
∨
s

∃z � s(y, x) zrA(x, u).

Just take q(u) = majk(u1, . . . , uk), y = q(u) and s(y, x) = ρt(x, y, . . . y) (k many y’s), where
u1, . . . , uk is the sequence of variables u.

Although we gave an argument for the result pertaining to the notion of r-realizability, it should
be clear that a similar argument yields the result for the notion of q-realizability.

✷
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We are now ready to prove Theorem I:

Proof of Theorem I: Suppose that Γ is a ∃Ω-free term-sufficient theory and that Γ �i ∃yA(x, y),
where A is a (first-order) formula. By the above soundness theorem for the notion of q-realizability,

Γ �
∨
t

∃w � t(x)∃w0 � w ∃y � w w0qA(x, y).

Since q-realizability implies truth, we get:

Γ �
∨
t

∃y � trans(t(x)) A(x, y).

The conclusion of the theorem follows from the conservativity result. ✷

Soundness Theorem II. If Γ is a ∃Ω-free term-sufficient theory and if Γ + B∃Ω �i A(x), where
A(x) is a first-order formula, then

Γ∞ �
∨
t

∃w � t(x) wrA(x)

where t ranges over all terms whose variables are among the free variables x of A(x).

Proof : We just have to supplement the argument given in proving Soundness Theorem I with
the proof that each instance of the B∃Ω-scheme is r-realized by c within Γ∞. Let

∀u � x∃yA(u, y) → ∃w∀u � x∃y � wA(u, y)

where A is a ∃Ω-free formula, be an instance of the B∃Ω-scheme. We must see that

Γ∞ � ∀z
(
zr∀u � x∃yA(u, y) →

∨
t

∃v � t(z, x) vr∃w∀u � x∃y � wA(u, y)

)
.

We reason (intuitionistically) inside Γ∞. Suppose that zr∀u � x∃yA(u, y). Thus,

∀u � x
∨
q

∃y � q(z, x)∃y0 � y ∃y1 � y y0rA(u, y1).

Since A is an ∃Ω-free formula, the (possibly infinitary) formula “y0rA(u, y1)” can be replaced in
the above by the first-order formula “A(u, y1)”. Using the infinitary axioms (and the first lemma
after the definition of a term-sufficient theory), we may then conclude that there exists a term q
such that,

∀u � x∃y � q(z, x)∃y1 � y A(u, y1).

Using, again, the fact that A is a ∃Ω-free formula, we get,

∀u � x∃y � t(z, x)∃y0 � y ∃y1 � y y0rA(u, y1),

where t(z, x) is the term maj2(q(z, x), ρtA
(x, trans(q(z, x)))). A small amount of detailed checking

shows that this implies:
t(z, x)r∃w∀u � x∃y � w A(u, y).

This yields our result. ✷
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Proof of Theorem II: Suppose that Γ is a ∃Ω-free term-sufficient theory and that Γ + B∃Ω �i

∃yA(x, y), where A is a ∃Ω-free formula. By the above soundness theorem,

Γ∞ �
∨
t

∃w � t(x)∃w0 � w ∃y � w w0rA(x, y).

Since A is a ∃Ω-free formula, r-realizability implies truth. Thus,

Γ∞ �
∨
t

∃y � trans(t(x)) A(x, y).

The conclusion of the theorem follows from the conservativity result. ✷

4 Remarks and Questions

The restriction of the above theorems to recursively presented languages and to recursively ax-
iomatized theories is not necessary. The same arguments hold for any countable language by
relativizing everything to the Turing degree of the theory. Even the restriction to countable lan-
guages is not necessary because the arguments can be localized to the pertinent countable fragment
of the language.

The proofs of this paper are infinitary in nature since they use the semantic apparatus of
Kripke models cum languages which permit infinitary disjunctions. However, if we weaken the
statement of Theorem I to bounded term-sufficient theories and to bounded matrices A, then the
proof-theoretic argument in [2] at the end of chapter 4 readily adapts to the intuitionistic case.
The question is: can we also give a finitistic argument for the general case?

A similar sort of question can be asked for Theorem II. Moreover, Ferreira in [4] presents
a very simple model-theoretic proof of the classical version of Theorem II for theories in which
the structure of terms does not play a prominent role (contrary to Theorem I, the statement of
Theorem II does not mention terms anywhere). Ferreira replaces the second and third clauses of
the definition of a term-sufficient theory by:

(2’) Γ � ∀x∀y∃w (x � w ∧ y � w);

(3’) Γ � ∀x∃w∀y � x∀z � y (z � w),

and also permits axioms of the form “∀x∃w∀u � x∃z � w A(u, z)” where A(u, z) comes from the
bounded formula A(x,w) by substituting the variables x and w by the new variables u and z
(respectively). In this generality, is an intuitionistic counterpart of the theorem in [4] also true? If
so, can a finitistic proof be provided?

Recently and independently, Wolfgang Burr produced some work related to the issues of this
paper using (an adaptation of) Gödel’s functional interpretation. As of now, it is not clear to
us how Burr’s work compares logically to our work. That notwithstanding, we want to draw the
attention of the reader to the last section of [1].
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