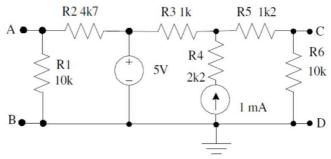
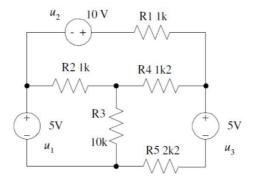
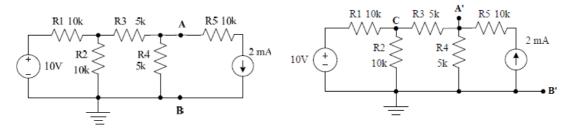

Circuitos Elétricos e Sistemas Digitais & Circuitos e Eletrónica

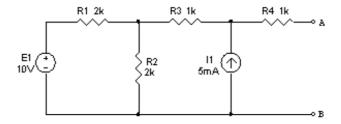

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Mestrados Integrados em Engª. Biomédica e Engª. Física e Licenciatura em Física 1.º Semestre 20/21

Teórico-prática n.º 4 Teoremas de Thévenin e de Norton.


1. Calcule os equivalentes de Thévenin e de Norton aos terminais A e B dos circuitos abaixo. R: $V_{\text{TH}}=5 \text{ V e } Z_{\text{TH}}=9 \text{ k}\Omega$, $I_{\text{N}}=0.56 \text{ mA e } Z_{\text{N}}=9 \text{ k}\Omega$; 6 V e 5 k Ω , 1,2 mA e 5 k Ω ; 10 V e 1,5 k Ω , 6,7 mA e 1,5 k Ω ; 33,3 V e 3,3 k Ω , 10, 0 mA e 3,3 k Ω ; 6 V e 5 k Ω , 1,2 mA e 5 k Ω .

2. Considere o circuito da figura seguinte. Determine os equivalentes de Thévenin e de Norton aos terminais AB e CD. R: 3,4 V e 3,2 k Ω , 4,9 V e 1,8 k Ω .


3. Determine a potência dissipada na resistência R5 e a potência fornecida pela fonte de tensão u_2 . R: 11,3 mW e 49,3 mW.


Circuitos Elétricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 20/21

TP 4

4. Considere os circuitos da figura abaixo. i) Determine o equivalente de Thévenin da parte do circuito da esquerda, à esquerda dos portos AB. ii) Calcule o equivalente de Thévenin do circuito da direita "visto" do porto A'B'. R: 1,65 V e 3,3 k Ω ; 8,3 V e 3,3 k Ω .

- 5. a) Usando o princípio da sobreposição, determine o equivalente de Thévenin aos terminais A e B do circuito da figura que se segue.
 - b) Um voltímetro com uma resistência interna de 100 k Ω é utilizado para medir a tensão entre os nós A e B do circuito. Determine o valor lido no voltímetro.
 - c) Considere uma resistência de carga R_L ligada entre A e B. Determine para que valor de R_L a potência fornecida à carga é máxima. R: 15 V e 3 k Ω ; 14,6 V; 3 k Ω .

JF FCUL 2 de 2