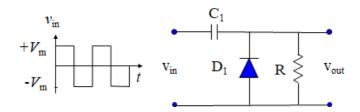
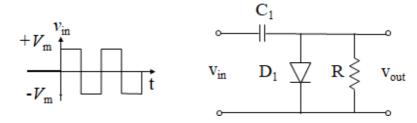

Circuitos Elétricos e Sistemas Digitais & Circuitos e Eletrónica

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Mestrados Integrados em Engª. Biomédica e Engª. Física e Licenciatura em Física 1.º Semestre 20/21

Teórico-prática n.º 9 Regime transitório em <u>circuitos</u> RC, RL, e RLC. [Regime transitório]


- 1. Considere o circuito de carga de um condensador de $100~\mu F$, formado por uma fonte de tensão contínua de f.e.m. 30~V, e uma resistência de $2~k\Omega$. O terminal positivo da fonte está ligado ao terminal da resistência através de um interruptor. Represente o diagrama do circuito. a) Determine a constante de tempo do circuito; b) Estime a queda de tensão no condensador nos instantes de tempo correspondentes a 1, 2, 3, 5 e 10 constantes de tempo após se fechar o interruptor. c) Represente graficamente a tensão aos terminais do condensador em função do tempo. d) Tendo presente a representação anterior e a expressão matemática que permite calcular a tensão aos terminais do condensador, esboce graficamente a corrente através do condensador em função do tempo. e) Se após 7 constantes de tempo curto-circuitarmos a fonte de tensão, quanto tempo leva o condensador a descarregar? R: 0,2 s; 18,96 V; 25,94 V; 28,5 V, 29,97 V; 29,98; $\sim 5RC$ s.
- 2. Um condensador de 10 μ F apresenta aos seus terminais a d.d.p. de 5 V. Se se ligar uma fonte de tensão de f.e.m. 20 V e resistência interna 4 $k\Omega$ às suas armaduras, qual será a d.d.p. aos terminais do condensador um minuto após ligarmos a fonte? R: 20 V.
- 3. Liga-se, através de um interruptor, uma bateria, com f.e.m. 12 V, a uma bobine de coeficiente de autoindução de 3 H e resistência interna 6 Ω. Calcule: a) a constante de tempo do circuito; b) A corrente no circuito e a tensão aos terminais da bobine, 0,2 s após se fechar o interruptor. c) A tensão aos terminais da bobine e corrente no circuito decorrido um minuto. R: 0,5 s; 0,66 A; 2 A.
- **4.** Esboce a forma de onda aos terminais de R em resposta ao estímulo representado pela tensão Vin indicada, e descreva sucintamente o funcionamento do circuito.


5. Esboce a forma de onda aos terminais de R em resposta ao estímulo representado pela tensão Vin indicada, e descreva sucintamente o funcionamento do circuito.

Circuitos Eléctricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 20/21

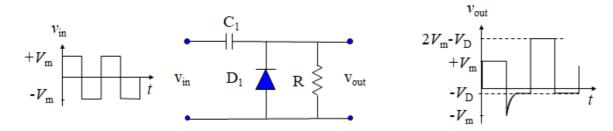
TP 2

6. Represente a forma de onda aos terminais de R em resposta ao sinal representado pela tensão Vin indicada, e descreva sucintamente a operação do circuito.

JF FCUL 2 de 4

TP 2

Soluções


Soluções:

4 – a) $V_1 = 0$ V; $I_1 = 0.5$ mA; $V_2 = 5$ V; $I_2 = 0.23$ mA; $V_3 = 4$ V; $I_3 = 0.1$ mA; $V_4 = 2$ V; $I_4 = 0.25$ mA. b) $V_1 = 0.7$ V; $I_1 = 0.43$ mA; $V_2 = 4.3$ V; $I_2 = 0.2$ mA; $V_3 = 3.4$ V; $I_3 = 0.09$ mA; $V_4 = 2$ V; $I_4 = 0.18$ mA.

 $5 - V_1 = 5.78 \text{ V}$; $I_1 = 0.27 \text{ mA}$; $V_2 = 7.14 \text{ V}$; $I_2 = 0.28 \text{ mA}$.

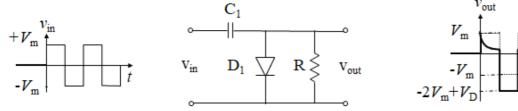
6 - a) $v_{in} = 2.1 \text{ V}$; b) $v_{in} = 2.3 \text{ mA}$; $v_{out} = 0.78 \text{ mV}$.

Solução 4:

Funcionamento do circuito:

Quando a tensão de entrada passa de zero a $+V_m$, a tensão no cátodo do díodo, sobe de zero para $+V_m$, porque a tensão no condensador não pode variar instantaneamente, fazendo com que a subida de tensão na armadura esquerda ocorra também na armadura direita. Assim, estando a armadura direita ao potencial $+V_m$, o díodo não conduz, e a tensão na saída é igual à tensão da entrada.

Quando a tensão v_{in} diminui de $+V_m$ para $-V_m$, pelas razões já expostas, a tensão no cátodo do díodo passa para $-V_m$. Agora, o díodo está polarizado diretamente e se $-V_m$ for inferior a $-V_D$, o díodo entra em condução, permitindo que o condensador carregue, com a constante de tempo $t=R_DC$. (onde R_D representa a resistência do díodo em condução), que é, em geral, muito pequena quando comparada com o período do sinal de entrada. A tensão no condensador será $V_C=V_m-V_D$, em que a armadura da direita está a um potencial superior à da esquerda, igual a $-V_D$ (o potencial na armadura da esquerda é $-V_m$).


Quando o sinal de entrada, passa de $-V_m$ para $+V_m$, o potencial na armadura da esquerda sobe $2V_m$, e como a ddp aos terminais do condensador não pode variar instantaneamente, a tensão na armadura da direita sobe de $-V_D$ para $2V_m-V_D$, o que polariza inversamente o díodo. A tensão de saída mantém-se igual a $2V_m-V_D$ até que a tensão de entrada comute novamente para $-V_m$, o que faz com a tensão no cátodo do díodo desça para $-V_D$ (= $2V_m-V_D-2V_m$), mantendo-se em $-V_D$, até que a tensão de entrada comute novamente.

JF FCUL 3 de 4

Circuitos Eléctricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 20/21

TP 2

Solução 6:

Funcionamento do circuito (díodo ideal):

Quando a tensão de entrada passa de zero a $+V_m$, a tensão na armadura direita do C passa também de zero para $+V_m$, porque a tensão aos terminais do C não pode variar instantaneamente. Então, a tensão no cátodo do díodo (D) sobe de zero para $+V_m$. Se V_m for maior que V_D , o díodo entra em condução, carregando o C com a constante de tempo $t=r_DC << T/2$ (onde r_D representa a resistência do díodo em condução).

Uma vez em condução o D assegura que a tensão na saída é igual a V_D =0,7 V, enquanto o D conduzir. A tensão no condensador será V_C = V_m - V_D , em que a armadura da direita está a V_D =0,7 V e a da esquerda, que está a + V_m .

Quando a tensão v_{in} decresce de $+V_m$ para $-V_m$, a tensão na armadura da direita sofre a mesma variação de tensão que a esquerda $(-2V_m)$, passando de $+V_D$ para $-2V_m+V_D$. O díodo fica polarizado inversamente, impedindo que o condensador descarregue com a constante de tempo $t=r_DC << T/2$. O C praticamente não descarrega através da R porque t=RC >> T/2.

Quando o sinal de entrada passa de $-V_m$ para $+V_m$, o potencial na armadura da esquerda do C sobe $2V_m$ e, como a ddp aos seus terminais não pode variar instantaneamente, a tensão na armadura da direita sobe $-2V_m+V_D$ para $+V_D$, o que polariza diretamente o D. Agora a tensão de saída é igual a V_D , até que a tensão de entrada comute novamente para $-V_m$, o que faz com a tensão no cátodo do díodo desça para $-2V_m+V_D$, mantendo-se em $-2V_m+V_D$, até que a tensão de entrada comute novamente e assim sucessivamente (ver figura).

JF FCUL 4 de 4