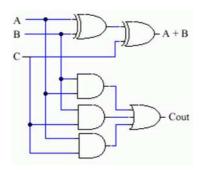
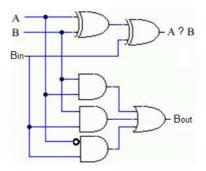
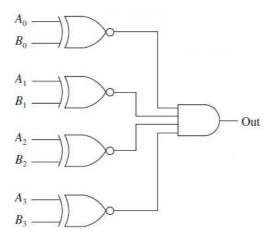


Circuitos Elétricos e Sistemas Digitais & Circuitos e Eletrónica

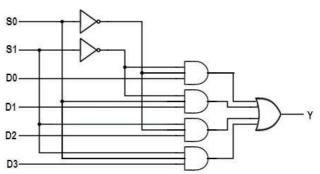

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Mestrados Integrados em Engª. Biomédica e Engª. Física e Licenciatura em Física 1.º Semestre 20/21

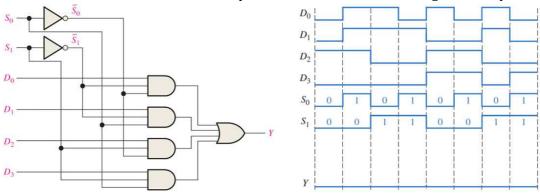

TP8 CESDig

14-09-2020

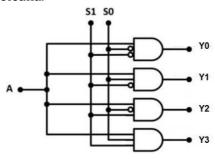

Teórico-prática n.º 12Combinatórios de Média Dimensão

1. i) Mostre que o circuito da esquerda realiza a operação adição de dois números binários A e B, e represente a tabela de verdade do circuito. C e Cout representam o transporte (Carry) de entrada e de saída, respetivamente. ii) Qual será a operação realizada pelo circuito da direita?


- 2. As portas XOR (Ou-Exclusivo) e XNOR (Não-Ou-Exclusivo) são portas comparadoras. Projete um comprador de dois bits cuja saída seja 1 sempre que as entradas sejam iguais entre si. Apresente a tabela de verdade e a respetiva função booleana.
- 3. Considere o circuito abaixo. a) Determine a saída do circuito para as seguintes combinações de entradas A₃A₂A₁A₀ e B₃B₂B₁B₀: i) 1011 e 1011; ii) 0110 e 0111. b) Qual a função das portas X-NOR (Não-Ou-Exclusivo)?


- 4. Projete um circuito capaz de detetar a desigualdade de dois números de 2 bits. Apresente a tabela de verdade e a correspondente função booleana.
- 5. O circuito abaixo representa um multiplexador de 4 entradas e uma saída (4 linhas D0 a D4 para 1 linha Y), com dois sinais de controlo S0 e S1. Determine a tabela de verdade e a correspondente expressão booleana.

Circuitos Elétricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 20/21


TP8 CESDig 14.09.2020

6. Considere o diagrama lógico da figura. i) Indique a função realizada pelo circuito; ii) Determine a forma de onda da saída Y em resposta às formas de onda do diagrama temporal.

7. O circuito abaixo representa um desmultiplexador de 1 entrada e 4 saídas (1 linha – A – para 4 linhas – Y0 a Y3), com dois sinais de controlo S0 e S1. Determine a tabela de verdade e a correspondente expressão booleana.

- 8. Projete um descodificador de 1 linha para 4 linhas cuja saída é habilitada por uma variável ativa no estado alto.
- 9. Mostre, para o caso de três variáveis, que portas NAND podem ser interligadas para formarem o equivalente a uma porta OU.
- 10. Pretende-se implementar um detetor de números primos para valores de entrada entre 0 e 15. Construa a tabela de verdade da função pretendida, deduza a expressão algébrica simplificada e apresente o diagrama lógico do circuito.
- 11. Indique a opção correta: Para a maioria dos trabalhos digitais, um osciloscópio deve ser usado no modo/acoplamento: a) AC; b) DC; GND/Terra; d) Nenhuma das anteriores.

JF FCUL 2020-2021 2 de 4

Circuitos Elétricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 20/21

TP8 CESDig 14.09.2020

Soluções

(Soluções/Resoluções resumidas)

As soluções/resoluções apresentadas incluem, na maior parte dos casos, apenas algumas das componentes da resposta, e devem ser consideradas essencialmente como ajudas para obter a resposta completa.

Ex. 2: Circuito comprador de dois bits – verificar a tabela de verdade.

Ex. 3: Trata-se de um circuito comprador binário de 4 bits. Out=1 se A_i = B_i ; cada porta XNOR verifica a igualdade A_i = B_i .

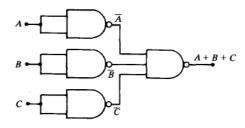
Ex. 4: ver 3.

Ex. 5: ver teórica

$$Y = D0 \overline{S1} \overline{S0} + D1 \overline{S1} S0 + D2 S1 \overline{S0} + D3 S1 S0$$

Ex. 6: ver teórica

Ex. 7:


Ex. 8:

Ex. 9: A função lógica desejada é

$$X = A + B + C$$

Negando esta expressão obtém-se $X = \overline{A + B + C} = \overline{A \cdot \overline{B} \cdot \overline{C}}$

Tendo presente que $\overline{A \cdot A} = \overline{A}$ (o mesmo para B e para C), o circuito lógico correspondente toma a forma:

JF FCUL 2020-2021 3 de 4

Circuitos Elétricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 20/21

TP8 CESDig 14.09.2020

Ex. 10: ver teórica.

Table 12-1 Boolean Algebra Theorems

Number	Theorem	Name	
1	A+B=B+A	commutative law	
'	$A \cdot B = B \cdot A$ $A \cdot B = B \cdot A$	commutative law	
<u> </u>			
2	(A+B)+C=A+(B+C)	associative law	
	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$		
3	$A \cdot (B+C) = A \cdot B + A \cdot C$	distributive law	
	$A + (B \cdot C) = (A + B) \cdot (A + C)$		
4	A + A = A	identity law	
1	$A \cdot A = A$		
5	$\bar{\bar{A}} = A$	negation law	
6	$A + A \cdot B = A$	redundancy law	
	$A \cdot (A+B) = A$,	
7	0+A=A	Boolean postulates	
	$1 \cdot A = A$		
	1 + A = 1		
	$0 \cdot A = 0$		
8	$\bar{A} + A \approx 1$		
	$\bar{A} \cdot A = 0$		
9	$A + \bar{A} \cdot B = A + B$		
	$A\cdot (\bar{A}+B) \approx A\cdot B$		
10	$A + B = \bar{A} \cdot \bar{B}$	DeMorgan's laws	
	$\overline{A \cdot B} = \overline{A} + \overline{B}$		

TABLE	5-2	Boolean Laws and Rules for the Reduction of Combinational Logic Circuits
Laws		
1	1 A + B = B + A	
2	AB =	BA

A + B = B + A AB = BAA + (B + C) = (A + B) + C A(BC) = (AB)CA(B + C) = AB + AC (A + B)(C + D) = AC + AD + BC + BDRules $A \cdot 0 = 0$ $A \cdot 1 = A$ A + 0 = AA + 1 = 1 $A \cdot A = A$ A + A = A $A \cdot \overline{A} = 0$ $A + \overline{A} = 1$ 9 A = A10 (a) $A + \overline{AB} = A + B$ (b) $A + AB = \overline{A} + B$

JF FCUL 2020-2021 4 de 4