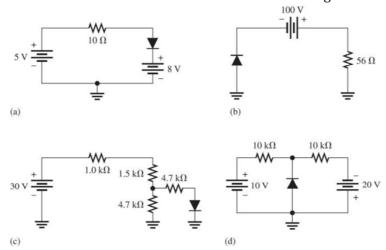
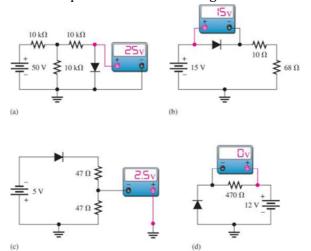
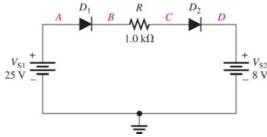
Circuitos Elétricos e Sistemas Digitais & Circuitos e Eletrónica


Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Mestrados Integrados em Engª. Biomédica e Engª. Física e Licenciatura em Física 1.º Semestre 2018/2019

Teórico-prática n.º 6 Circuitos com díodos


15/16 e 22 e 23 de Novembro de 2018

(Ver também os exercícios e exemplos apresentados nos slides das aulas teóricas.)


1. Determinar as correntes e as tensões aos terminais dos díodos da Figura.

2. Verificar se os valores indicados pelos voltímetros na Figura estão corretos.

3. Determinar a tensão nos pontos A, B, C e D relativamente à terra /comum.

Circuitos Eléctricos e Sistemas Digitais Departamento de Física da Faculdade de Ciências da Universidade de Lisboa 1.º Semestre 2018/2019

4. Determine as tensões V_i e as correntes I_i no circuito da figura, nas seguintes condições: a) Supondo os díodos ideais. b) Admitindo uma queda tensão de 0,7 V em cada díodo.

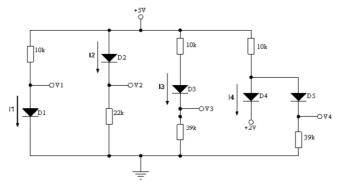


Figura 1

5. Usando o modelo linear por troços com V_D = 0,7 V e R_D = 0 Ω para representar os díodos, determine as tensões V_1 e V_2 e as correntes I_1 e I_2 indicadas nos circuitos da figura 2.

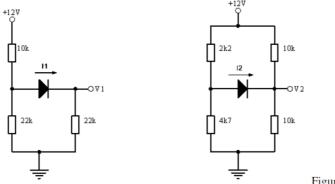


Figura 2

- 6. O circuito da figura 3 opera a 300 K, e a corrente de saturação dos díodos é $I_S = 10^{-13}$ A.
 - i) Calcule o valor da tensão aplicada $v_{\rm in}$ para que a tensão na saída seja $v_{\rm out}$ = 700 mV.
 - ii) Calcule v_{in} e v_{out} quando a corrente em D_1 e D_2 é I_{Dx} = 1 A.

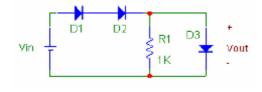


Figura 3

Soluções:

 $5 - V_1 = 5.78 \text{ V}$; $I_1 = 0.27 \text{ mA}$; $V_2 = 7.14 \text{ V}$; $I_2 = 0.28 \text{ mA}$.

 $6 - a) v_{in} = 2.1 V$; b) $v_{in} = 2.3 \text{ mA}$; $v_{out} = 0.78 \text{ mV}$.

JF FCUL 2018-2019 2 de 2