Mecânica Quântica: 2016-2017

6ª Série

1. Considere as matrizes de Pauli, dadas por

$$\sigma_x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \,, \qquad \sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \,, \qquad \sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

- 1.1. Demonstre que estas matrizes são Hermíticas. Determine os seus valores próprios e os vetores próprios (exprimindo a expansão normalizada na base $\{ | + \rangle, | \rangle \}$.
 - 1.2. Prove as seguintes relações:
 - $\det(\sigma_i) = -1 \text{ com } (j = x, y, z);$
 - $\operatorname{Tr}(\sigma_j) = 0$;
 - $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = I$, em que I é a matriz de unidade 2×2 ;
 - $\bullet \ \sigma_x \sigma_y = -\sigma_y \sigma_x = i \sigma_z;$
 - $[\sigma_x, \sigma_y] = 2i\sigma_z$.

(vide CT, complemento A_{IV} .1, 2, págs. 417-418)

2. Considere uma partícula de spin 1/2 e com um momento magnético $\mathbf{M} = \gamma \mathbf{S}$. O espaço de estados de spin é dado pela base dos vetores $|+\rangle$ e $|-\rangle$, que são vetores próprios de S_z , com os valores próprios $+\hbar/2$ e $-\hbar/2$, respetivamente. No instante t = 0, o estado do sistema é dado por:

$$|\psi(t=0)\rangle = |+\rangle \ . \tag{1}$$

- 2.1. Se o observável S_x é medido no instante t = 0, quais são os resultados possíveis e as probabilidades respetivas?
- 2.2. Em vez de efectuar a medição da alínea anterior, permita que o sistema evolua sob a influência de um campo magnético paralelo a Oy, de módulo B_0 . Calcule, na base $\{|+\rangle, |-\rangle\}$, o estado do sistema no instante t.
- 2.3. Neste instante t, medimos os observáveis S_x, S_y e S_z . Quais são os valores possíveis e as probabilidades respetivas? Qual é a relação existente entre B_0 e t, de modo que o resultado de uma das medições seja certa?

(vide CT, complemento J_{IV} , Ex. 1, pág. 476)

- 3. Considere uma partícula de spin 1/2, utilizando a notação da questão anterior.
- 3.1. No instante t=0, efectua-se uma medição de S_y , e obtém-se o resultado $+\hbar/2$. Qual é o vetor $|\psi(0)\rangle$ imediatamente após a medição?
- 3.2. Imediatamente após esta medição, aplica-se um campo magnético uniforme e depedente do tempo, paralelo a Oz. O operador Hamiltoniano do spin, i.e., H(t), é dado por

$$H(t) = \omega_0(t) S_z. \tag{2}$$

Assuma que $\omega_0(t)$ é nulo, para t < 0 e para t > T, e que aumenta linearmente de 0 para ω_0 no intervalo $0 \le t \le T$ (Note que T é um parâmetro, com dimensões de um tempo). Demonstre que, no instante t, o vetor de estado é dado por:

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left[\mathbf{e}^{i\theta(t)} |+\rangle + i\mathbf{e}^{-i\theta(t)} |-\rangle \right].$$
 (3)

Determine a função $\theta(t)$.

3.3. No instante $t = \tau > T$, faz-se uma medição de S_y . Quais são os resultados possíveis, e as probabilidades respetivas? Determine a relação existente entre ω_0 e T, de modo a obter um resultado certo.

$$(vide \ \mathrm{CT}, \ \mathrm{complemento} \ J_{IV}, \ \mathrm{Ex.} \ 2, \ \mathrm{pág.} \ 476)$$

4. Considere uma partícula de spin 1/2, colocada num campo magnético $\mathbf{B_0}$, com as seguintes componentes

$$B_x = \frac{1}{\sqrt{2}} B_0, \qquad B_y = 0, \qquad B_z = \frac{1}{\sqrt{2}} B_0.$$
 (4)

Utilize a mesma notação do exercício 1.

- 4.1. Determine a matriz que representa, na base $\{|+\rangle, |-\rangle\}$, o operador H, o Hamiltoniano do sistema.
 - 4.2. Calcule os valores próprios e os vetores próprios de H.
- 4.3. Considere que o sistema no instante t=0 encontra-se no estado $|-\rangle$. Quais os valores da energia, e as probabilidades respetivas?
- 4.4. Determine o vetor de estado $|\psi(t)\rangle$ no instante t. Neste instante, efectua-se uma medição de S_x . Qual o valor médio dos resultados obtidos?

(vide CT, complemento J_{IV} , Ex. 3, pág. 476-477)

- 5. Considere uma partícula de spin 1/2, com um momento magnético $\mathbf{M} = \gamma \mathbf{S}$, colocada num campo magnético $\mathbf{B_0}$. Este último tem as seguintes componentes: $B_x = -\omega_x/\gamma$, $B_y = -\omega_y/\gamma$ e $B_z = -\omega_z/\gamma$, tais que $\omega_0 = -\gamma |\mathbf{B_0}|$.
- 5.1. Demonstre que o operador de evolução desta partícula é dada por $U(t,0) = \mathbf{e}^{-iMt}$, em que M é o operador

$$M = \frac{1}{\hbar} \left[\omega_x S_x + \omega_y S_y + \omega_z S_z \right] = \frac{1}{2} \left[\omega_x \sigma_x + \omega_y \sigma_y + \omega_z \sigma_z \right], \tag{5}$$

e em que σ_x , σ_y e σ_z são as matrizes de Pauli.

Determine M na forma matricial, na base $\{|+\rangle, |-\rangle\}$, ou seja, os vetores próprios de S_z . Demonstre a seguinte relação:

$$M^{2} = \frac{1}{4} \left[\omega_{x}^{2} + \omega_{y}^{2} + \omega_{z}^{2} \right] = \left(\frac{\omega_{0}}{2} \right)^{2}.$$
 (6)

5.2. Prove que o operador de evolução pode ser escrito da seguinte forma:

$$U(t,0) = \cos\left(\frac{\omega_0 t}{2}\right) - \frac{2i}{\omega_0} M \sin\left(\frac{\omega_0 t}{2}\right). \tag{7}$$

5.3. Considere um spin, que no instante t=0, se encontra no estado $|\psi(0)\rangle = |+\rangle$. Demonstre que a probabilidade de o encontrar no estado $|+\rangle$, no instante t, é:

$$\mathcal{P}_{++}(t) = |\langle +| U(t,0) | + \rangle|^2 , \qquad (8)$$

e derive a relação

$$\mathcal{P}_{++}(t) = 1 - \frac{\omega_x^2 + \omega_y^2}{\omega_0^2} \sin^2\left(\frac{\omega_0 t}{2}\right). \tag{9}$$

(vide CT, complemento J_{IV} , Ex. 5, pág. 478)

6. Considere um sistema composto por dois spins de 1/2, $\mathbf{S_1}$ e $\mathbf{S_2}$, e a base de quatro vetores $|\pm\pm\rangle$. O sistema, no instante t=0, encontra-se no estado

$$|\psi(0)\rangle = \frac{1}{2}|++\rangle + \frac{1}{2}|+-\rangle + \frac{1}{\sqrt{2}}|--\rangle.$$
 (10)

6.1. No instante t=0, efetua-se uma medição de S_{1z} . Qual a probabilidade de encontrar o valor $-\hbar/2$? Qual o vetor de estado após esta medição? De seguida, se medirmos S_{1x} , quais os resultados possíveis e as probabilidades respetivas? Responda às mesmas questões para uma medição inicial de S_{1z} , em que o resultado seja $+\hbar/2$.

- 6.2. Considere que o sistema se encontra no estado $|\psi(0)\rangle$, descrito pela Eq. (10). Efetuam-se medições simultâneas de S_{1z} e S_{2z} . Qual a probabilidade de encontrar resultados opostos? E resultados idênticos?
- 6.3. Em vez de efetuar as medições da questão anterior, deixemos que o sistema evolua sob a influência do Hamiltoniano:

$$H = \omega_1 S_{1z} + \omega_2 S_{2z} \,. \tag{11}$$

Qual é o vetor de estado $|\psi(t)\rangle$, no instante t?

(vide CT, complemento
$$J_{IV}$$
, Ex. 6, pág. 478-479)

7. Considere as seguintes matrizes, correspondentes ao momento angular de uma partícula de spin 1:

$$L_x = rac{\hbar}{\sqrt{2}} \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight), \; L_y = rac{\hbar}{\sqrt{2}} \left(egin{array}{ccc} 0 & -i & 0 \ i & 0 & -i \ 0 & i & 0 \end{array}
ight), \; L_z = \hbar \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & -1 \end{array}
ight).$$

- 7.1. Demonstre que as matrizes acima indicadas obedecem às regras de comutação apropriadas e que têm os valores próprios correspondentes às três componentes do momento angular de uma partícula de spin 1:
- 7.2. Obtenha os vetores próprios das matrizes acima representadas. De seguida, determine as probabilidades dos possíveis resultados de uma medição de L_x , supondo que a partícula de spin 1 se encontra, inicialmente, num estado próprio de L_z , com valor próprio \hbar .

8. Analise a separação espectral do estado l=2 de um átomo, com um único electrão, devida aos seguintes efeitos: (i) acoplamento spin-órbita; (ii) efeito de Zeeman com um campo forte; (iii) efeito de Zeeman com um campo fraco.

- 9. Considere o momento angular orbital e o operador correspondente, L.
- 9.1. Os harmónicos esféricos $Y_{lm}(\theta, \phi)$ são funções próprias ortonormalizadas dos operadores \mathbf{L}^2 e L_z . Indique os valores próprios correspondentes.
- 9.2. Verifique explicitamente as propriedades da alínea anterior para o caso de L_z e para as três funções $Y_{lm}(\theta,\phi)$, l=1, m=-1,0,1.

9.3. Os operadores de escada $L_{+}=L_{x}+iL_{y}, L_{-}=L_{x}-iL_{y}$ verificam

$$L_{+} | l m \rangle = \hbar \sqrt{l(l+1) - m(m+1)} | l m+1 \rangle$$

$$L_{-} | l m \rangle = \hbar \sqrt{l(l+1) - m(m-1)} | l m-1 \rangle$$
(12)

$$L_{-}|l m\rangle = \hbar \sqrt{l(l+1) - m(m-1)}|l m-1\rangle$$
 (13)

Use esta propriedade para calcular o valor médio de L_x e de L_x^2 num estado

- 9.4. Para l=1, calcule a representação de L_x na base $|l m\rangle$. Calcule também os valores próprios de L_x e os seus estados próprios na base $|l m\rangle$.
- 9.5. Considere um feixe de partículas sem spin e com momento angular orbital correspondente a l=1. O feixe está dirigido segundo a direção y, e atravessa um dispositivo de Stern-Gerlach com campo magnético médio dirigido segundo o eixo x, que o divide em três feixes aproximadamente coplanares. Um dos feixes exteriores atravessa por sua vez um outro dispositivo de Stern-Gerlach, agora com campo magnético médio dirigido segundo o eixo z. Quantos feixes emergem do segundo dispositivo, e qual é a sua intensidade relativa? Responda às mesmas perguntas supondo agora que é o feixe central que atravessa o segundo dispositivo.
- 10. Seja \vec{J} um operador de momento angular e J_+ o operador de escada associado. Mostre que:
 - 10.1. $J_{+} |kjj\rangle = 0$.
- 10.2. Se m < j, $J_{+}|kjm\rangle$ é um vector próprio de \vec{J}^{2} associado ao valor próprio $\hbar^2 j(j+1)$ e um vector próprio de J_z associado ao valor próprio $\hbar(m+1)$.