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In ManiFEM, all basic constituents of meshes are called “cells”. Points are zero-dimensional cells, segments are one-dimensional cells, triangles are two-dimensional cells, and so on. Roughly 

speaking, a mesh is a collection of cells of the same dimension. A cell of dimension higher than zero is defined by its boundary, which in turn is a mesh of lower dimension. The boundary of a 

segment is a (zero-dimensional) mesh made of two points. The boundary of a triangle is a one-dimensional mesh made of three segments. Thus, a segment is essentially a pair of points, a triangle 

is essentially a triplet of segments, and so on. Cells and meshes are oriented. 

An orientation of a mesh is just an orientation for each of its component cells                                              Oriented segment

(of course these orientations must be mutually compatible). An oriented point and oriented pentagon

can be conceived simply as a point with a sign attached (1 or -1). The orientation 

of a cell of dimension higher than zero is given by an orientation of its boundary, 

which is a lower-dimensional mesh. We can think of an oriented segment as an arrow pointing from its negative extremity (base) towards its positive extremity (tip). We can think of an oriented 

polygon as having an arrow attached to each of it sides, or we can imagine a small oriented circle inside the polygon.

A one-dimensional oriented mesh can A two-dimensional oriented triangular mesh can be thought of as a web of triangles, 

be thought of as a chain of arrows, each                                 each triangle having a small oriented circle inside. The orientations of neighbour

one pointing to the next segment’s base.                                     cells must be compatible : each segment must be seen in opposite orientations from

the point of view of its two neighbor triangles.

Note also that an orientation of a mesh defines an orientation of its boundary. This 

convention is used by Stokes’ theorem.

Outer and inner boundaries of a domain are first meshed and should have compatible 

orientation, that is the inner boundary should be reversed, in order to permit a 

consistent meshing of the domain. In the case of a disk with a hole, the ManiFEM

code looks like the one on the right:

ManiFEM generates the regular triangular mesh 

Non-uniform meshes can be obtained in ManiFEM by using desired_length as a 

non constant function.

Organic shapes like 

a Physalis (Chinese lantern) 

can be generated with ManiFEM. 

The meshing process is done in three steps as illustrated on the right side.

ManiFEM is a C++ library for solving partial differential equations through the finite element method. The name comes from “finite elements on

manifolds”. ManiFEM has been designed with the goal of dealing with very general meshes, in particular meshes on Riemannian manifolds, even

manifolds which cannot be embedded in , like the torus . Also, it has been written with the goal of being conceptually clear and easy

to read. We hope it will prove particularly useful for users who want fine control on the mesh, e.g. for implementing their own meshing or remeshing

algorithms. ManiFEM is free software; it is copyrighted by Cristian Barbarosie under the GNU Lesser General Public Licence.

The home page of is http://manifem.rd.ciencias.ulisboa.pt (where the manual can be found). 

The source code can be found at  https://github.com/cristian-barbarosie/manifem. 

The manual is divided in 13 sections describing ManiFEM with increasing degree of technical detail :

1 General description A quick overview of ManiFEM’s capabilities                                                                    8 More on manifolds Describes manifolds, particularly the projection 

algorithm on implicitly                                                                                                                   defined manifolds.

2 Meshes and manifolds; patchwork Shows how to build meshes by joining simple shapes, like                      9 Cells, meshes, iterators Gives details about neighbourhood relations 

patches, some of them on manifolds.                                                                                                                       between cells in a mesh, orientation and iterators.

3 Progressive mesh generation; knitting Shows how to build meshes starting from their boundary 10 Remeshing Some simple examples showing how to manipulate a mesh.

alone, some of them on manifolds.                                                                                                                          11 Technical details Various implementation detais, programming style, 

4 Meshing three-dimensional domains Work in progress. compilation options, frequent errors.

5 Fields, functions and variational formulations Some details about functions, a lot of                                    12 Internal details Mainly drawings intended to support the developer in 

work to do. understanding the source code.

6 Finite elements and integrators Shows two examples of finite element computations, still rudimentary. 13 Frequently asked questions

7 Quotient manifolds and periodic boundary conditions Describes meshes on quotient manifolds.

Sections 1 to 8 should be accessible to readers who have some knowledge of C++ but are not necessarily experts in C++ programming. Sections 9 and 10 should be useful for users who want 

finer control on the mesh, e.g. for implementing their own remeshing algorithms Sections 11 and 12 give technical details, mainly for those interested in developing and extending ManiFEM.

What is ManiFEM ?

Cells and meshes

Finite Elements in ManiFEM

We present an example about the Laplace operator with non-homogeneous Dirichlet boundary conditions. The domain is an annulus (a disk with a hole). The current approach is rather low-level. 

We are working hard to make ManiFEM understand statements describing variational formulations given as C++ objects. When this part of the code is done, the programming style will become 

much more elegant and compact.

The notion of a finite element is quite complex. The purpose of a FiniteElement is to build a list of functions, say, j, defined on our mesh. The linear span of these functions will be a 

discretized Hilbert space. It is the FiniteElement’s job to replace, in the variational formulation, the unknown function by one j , the test function by another j and, by evaluating the 

integrals, obtain the coefficients of a system of linear equations. Some external solver (Eigen) will then solve the system, and it is the job of the finite element to transform back the vector 

produced by the solver into a function defined on our mesh. Computing each integral is a somewhat separate process; it’s the job of an Integrator which could be a Gauss quadrature or some 

other procedure like symbolic integration. When a Gauss quadrature is used, the separation between a FiniteElement’s job and the Itegrator’s job is not very sharp because often the 

Gauss quadrature is perfomed not on the physical cell but rather on a master element which is built and handled by the FiniteElement. The authors of ManiFEM have tried to separate these 

two concepts as much as possible, especially because some users may want to use a FiniteElement with no master element, or an Integrator acting directly on the physical cell. Thus, there is 

a base class FiniteElement and a derived class FiniteElement::withMaster which keeps, as an extra attribute, the map transforming the master element to the current physical 

cell. This map depends of course on the geometry of the cell and thus it must be computed from scratch each time we begin integrating on a new cell. We say that the FiniteElement is 

docked on a new Cell; the method dock_on performs this operation. This method is element-specific, each type of finite element having its own class. For instance, the class 

FiniteElement::Lagrange_Q1 is a class derived from FiniteElement::withMaster. It will only dock_on quadrilaterals (two-dimensional Cells with four sides). When 

docking on a cell, the FiniteElement::Lagrange_Q1 object will build four “shape functions” and a transformation map (a diffeomorphism between a master element occupying the 

square [−1, 1] x [-1, 1] and the current cell). It will also build the jacobian of this transformation map. 

The four shape functions can be accessed through the method basis_function.

For Homogenization Theory purposes, ManiFEM is prepared for solving periodic problems. 

For a given micro geometry, the cellular problem is solved numerically using a mesh on the 

quotient torus. Given an effective strain, the following code computes the cellular solutions in 

terms of which the homogenized elastic tensor is expressed. 
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