Ciéncias o and finite elements on manifolds

research |
day2021 Ity with /f/a/(/'/[f/f/

AUTHORS: Cristian Barbarosie, Anca-Maria Toader, Sérgio Lopes FCTFunda«;ag |

R&D UNIT: CMAF-CIO CONTACT: cabarbarosie@fc.ul.pt

What is ManiFEM ?

Finite Elements in ManiFEM

We present an example about the Laplace operator with non-homogeneous Dirichlet boundary conditions. The domain is an annulus (a disk with a hole). The current approach is rather low-level.
We are working hard to make ManiFEM understand statements describing variational formulations given as C++ objects. When this part of the code is done, the programming style will become
much more elegant and compact.

The notion of a finite element is quite complex. The purpose of a FiniteElement is to build a list of functions, say, ¢, defined on our mesh. The linear span of these functions will be a
discretized Hilbert space. It isthe FiniteElement’s job to replace, in the variational formulation, the unknown function by one ¢ , the test function by another ¢ and, by evaluating the
integrals, obtain the coefficients of a system of linear equations. Some external solver (Eigen) will then solve the system, and it is the job of the finite element to transform back the vector
produced by the solver into a function defined on our mesh. Computing each integral is a somewhat separate process; it’s the job of an Integrator which could be a Gauss quadrature or some
other procedure like symbolic integration. When a Gauss quadrature is used, the separation between a FiniteElement’s job and the Itegrator’s job is not very sharp because often the
Gauss quadrature is perfomed not on the physical cell but rather on a master element which is built and handled by the FiniteElement. The authors of ManiFEM have tried to separate these
two concepts as much as possible, especially because some users may want to use a FiniteElement with no master element, or an Integrator acting directly on the physical cell. Thus, there is
a base class FiniteElement and a derived class FiniteElement::withMaster which keeps, as an extra attribute, the map transforming the master element to the current physical

ManiFEM is a C++ library for solving partial differential equations through the finite element method. The name comes from “finite elements on
manifolds”. ManiFEM has been designed with the goal of dealing with very general meshes, in particular meshes on Riemannian manifolds, even
manifolds which cannot be embedded in R? | like the torus R? /Z2 . Also, it has been written with the goal of being conceptually clear and easy

to read. We hope it will prove particularly useful for users who want fine control on the mesh, e.g. for implementing their own meshing or remeshing
algorithms. ManiFEM is free software; it is copyrighted by Cristian Barbarosie under the GNU Lesser General Public Licence.

The home page of ishttp: /[/manifem.rd.ciencias.ulisboa.pt (where the manual can be found).

The source code can be found at https: //github.com/cristian-barbarosie/manifem.

The manual is divided in 13 sections describing ManiFEM with increasing degree of technical detail :

1 General description A quick overview of ManiFEM’s capabilities 8 More on manifolds Describes manifolds, particularly the projection cell. This map depends of course on the geometry of the cell and thus it must be computed from scratch each time we begin integrating on a new cell. We say that the FiniteElementis
algorithm on implicitly defined manifolds. docked onanew Cell; the method dock on performs this operation. This method is element-specific, each type of finite element having its own class. For instance, the class
2 Meshes and manifolds: patchwork Shows how to build meshes by joining simple shapes, like 9 Cells, meshes, iterators Gives details about neighbourhood relations FiniteElement::Lagrange QI isaclassderived from FiniteElement: :withMaster. Itwill only dock on quadrilaterals (two-dimensional Cells with four sides). When
patches, some of them on manifolds. between cells in a mesh, orientation and iterators. dockingon acell,the FiniteElement: : Lag_range_Q_l Ob]_ect Wl-ll build _four shape fu_nct1ons and a transformation map (a diffeomorphism between a master element occupying the
: : L . . . i . . . square [—1, 1] x [-1, 1] and the current cell). It will also build the jacobian of this transformation map.
3 Progressive mesh generation; knitting Shows how to build meshes starting from their boundary 10 Remeshing Some simple examples showing how to manipulate a mesh. _ , ,
: . : o . . . The four shape functions can be accessed through the method basis function. for (it.reset() ; it.in range(); it++)
alone, some of them on manifolds. 11 Technical details Various implementation detais, programming style, - e - . _ _
) .) . { Cell p = *it; ++counter; numbering [p.core] = counter; }
4 Meshing three-dimensional domains Work in progress. compilation options, frequent errors. :?“CTZ@ mazfil‘“'h } // just a block of code
include "math.h"
5 Fields, functions and variational formulations Some details about functions, a lot of 12 Internal details Mainly drawings intended to support the developer in _
size T size matrix = disk with hole.number of (tag::vertices);
WOl‘k tO dO. Understanding the source COde. #include <fstream> assert (size matrix == numbering.size())~
.. ; #include <Eigen/Sparse> .- " Lo . : non . . - ;
6 Finite elements and integrators Shows two examples of finite element computations, still rudimentary. 13 Frequently asked questions std:ioout << 'global matrix ¥ << size matrix << "x" << size matrix << std:iendl
Eigen::SparseMatrix <double> matrix A (size matrix, size matrix);
7 Quotient manifolds and periodic boundary conditions Describes meshes on quotient manifolds. using namespace maniFEM; Eigen::VectorXd vector b (size matrix), vector sol (size matrix);
using namespace std; vector b.setZero();
Sections 1 to 8 should be accessible to readers who have some knowledge of C++ but are not necessarily experts in C++ programming. Sections 9 and 10 should be useful for users who want void impose value of unknown // run over all triangle cells composing disk with hole
finer control on the mesh, e.g. for implementing their own remeshing algorithms Sections 11 and 12 give technical details, mainly for those interested in developing and extending ManiFEM. (Eigen::SparseMatrix <double> & matrix A, Eigen::VectorXd & vector b, { // Just a block of code for hiding 'it'
size t i, double wval) int counter = 0;
Ce"s and meshes Celllterator it = disk with hole.iterator (tag::over cells of max dim)7
// in a system of linear equations, destroy equation 'i' and impose u(i) = wval for (it.reset(); it.in range(); it++)
// change also column 'i' of the matrix, just to preserve symmetry { Cell small tri = *it;
In ManiFEM, all basic constituents of meshes are called “cells”. Points are zero-dimensional cells, segments are one-dimensional cells, triangles are two-dimensional cells, and so on. Roughly fe.dock_on (small_tri); | |
speaking, a mesh is a collection of cells of the same dimension. A cell of dimension higher than zero is defined by its boundary, which in turn is a mesh of lower dimension. The boundary of a // used for imposing Dirichlet boundary conditions é;ﬁi;iiii TQTI_tﬁiﬁuifiiii&f) fﬁii{iil< tag::over vertices);
segment is a (zero-dimensional) mesh made of two points. The boundary of a triangle is a one-dimensional mesh made of three segments. Thus, a segment is essentially a pair of points, a triangle C oise t cire malrix = matrix A inmerSise) Celllterator it? = small tri.boundary().iterator (tag::over vertices)
Is essentially a triplet of segments, and so on. Cells and meshes are oriented. siie bomie i _A. ; for (itl.reset(); itl.in range(); itl++)
An orientation of a mesh is just an orientation for each of its component cells Oriented segment . for (size t § = 0; § < size matrix; j++) f°r (‘: i%tef’f‘ft"l; ;tz-if}éa“ge”" ireet)
. . . _ A e = *] ’ = *] N
(of course these orientations must be mutually compatible). An oriented point and oriented pentagon / O @ matr?it;l);;i%;;iiﬂ:({eif ‘il;) ’1 - Function psiV = fe.basis function (V),
can be conceived simply as a point with a sign attached (1 or -1). The orientation A for (size € j = 0 j’< size matrix: j++) psiW = fe.basis_function (W),
.) .))) .) : T) i - d psiV dx = psiV.deriv(x),
of a cell of dimension higher than zero is given by an orientation of its boundary, { if (i ==7]) continue; d psiV dy = psiv.deriv(y),
. vector b(j) -= matrix A.coeffRef (j, 1) * wval; o _ .)
which is a lower-dimensional mesh. We can think of an oriented segment as an arrow pointing from its negative extremity (base) towards its positive extremity (tip). We can think of an oriented int main () d_psifl_dx = psiW.derivix),
polygon as having an arrow attached to each of it sides, or we can imagine a small oriented circle inside the polygon. Apsil_dy = peiW.deriviv) i - |
i i i // '"fe' is already docked on 'small tri' so this will be the domain
{ Manifold RR2 (tag::Euclid, tag::of dim, 2); .] -
. . . - // of integration
]]]))))) Function xy = RRZ2.build coordinate system (tag::Lagrange, tag::of degree, 1); trix A.coeffRef (numbering[V.corel-1, numbering[W.core]l-) +=
A one-dimensional oriented mesh can A two-dimensional oriented triangular mesh can be thought of as a web of triangles, Function x = xy[01, vy = xy[l1; e rfa ot (4 by a ’ A _vgd e b ey
e.integrate psiV dx _psiW dx psiV dy _psiW dy);
be thought of as a chain of arrows, each each triangle having a small oriented circle inside. The orientations of neighbour e 4= b}
ou e = . ; .
one pointing to the next segment’s base. cells must be compatible : each segment must be seen in opposite orientations from b // Just a block of code
the point of view of its two neighbor triangles. Manifold cirele = RR2.implicit (x¥x + yky == 1.); . // impose Dirichlet boundary conditions u = xy
. . . . Mesh outer (tag::progressive, tag::entire manifold, circle, tag::desired length, d); { // just a block of code for hiding 'it'
// builds a circle with an eccentric hole]]]
i i . . i . i Celllterator it = outer.iterator (tag::over vertices);
Note also that an orientation of a mesh defines an orientation of its boundary. This double y0 = 0.367 for (it.reset(); it.in range(); it++)
. . i #include "maniFEM.h" Manifold ellipse = RRZ2.implicit (x*x + (y-y0)*(y-y0) + 0.3%x*y == 0.25); { Cell P = *it: -
Conventlon. 1s used by St?kes thCOI’eHT- - - using namespace maniFEM; Mesh inner (tag::progressive, tag::entire manifold, ellipse, tag::desired length, d); size t i = numbering[P.core]-1;
Outer and inner boundaries of a domain are first meshed and should have compatible impose value of unknown (matrix A, vector b, i, 0.); }
orientation, that is the inner boundary should be reversed, in order to permit a ot main () Mesh circles (tag::join, outer, inner.reverse()); } { // just a block of code for hiding 'it'
))))) . CellIterator it = inner.iterator (tag::over vertices);
consistent meshing of the domain. In the case of a disk with a hole, the ManiFEM { Manifold RR2 (tag::Euclid, tag::of dim, 2); RRZ.set_as working manifold() ; for (it.reset(); it.in range(); ittt)
COde IOOkS ||ke the one on the rlght Function xy = RR2.build coordinate system (tag::Lagrange, tag::of degree, 1); Mesh disk with hole (tag::progressive, tag::boundary, circles, tag::desired length, d); { Cell P = *it;
Function x = Xy[o] , y = Xy[l]; sizeit i= numbering[P.core]—l;
// declare the type of finite element impose value of unknown (matrix A, vector b, i, y(P)); }
MaanEM generates the regular triangUIar meSh double d = 0.065; FiniteElement fe (tag::with master, tag::triangle, tag::Lagrange, tag::of degree, 1); }

Integrator integ = fe.set integrator (tag::Gauss, tag::tri 6);

. . . . 1 th t £ 14 ti

Manifold circle = RRZ.implicit (x*x + y*y == 1.); . o .) [/ solve ¢ syshen e Hheat cauations
// there will be a more elegant and efficient way of producing the numbering

y Mesh outer (tag::progressive, tag::entire manifold, circle, tag::desired length, d);]] Eigen::ConjugateGradient < Eigen::SparseMatrix<double>,
- - std:imap < Cell::Core *, size T > numbering;

1 Eigen::Lower|Eigen: :Upper > cg;
;f double y0 = 0.36; { // just a block of code for hiding 'it' and 'counter' cg.compute (matrix A);
4‘ ’ r CellTterator it = disk with hole.iterator (tag::over vertices); vector sol = cg.solve (vector b);
i i = i i i * - * (v— kxky == . - - - — — ’
b%A'% Manifold ellipse RRZ2.implicit (x*x + (y-y0)*(y-y0) + O.3%x*y 0.25)7 size t counter = 0;
0.5 ﬂ‘h Mesh inner (tag::progressive, tag::entire manifold, ellipse, tag::desired length, d);)) o)
gah - - disk with hole.export msh ("coroa-Dirichlet.msh", numbering);
‘gﬁzév] o] { // just a block of code for hiding variables
%’%ﬁng JAVAYAY Mesh circles (tag::joln, outer, inner.reverse()); ofstream solution file ("coroa-Dirichlet.msh", fstream::app);
0000243 UK AN lution fil "SNod. " di;
h"MEP N J N]] solution file << NodeData" << endl;
i%i%‘“gﬁﬂg%‘ﬁ%%‘ﬁg%A RR2.set_as_working manifold(); solution file << "1" << endl; // one string follows
&%Kﬁ%‘:iﬁ%aagﬂﬂégv Mesh disk (tag::progressive, tag::boundary, circles, tag::desired length, d); solution file << "\"temperature\"" << endl;
0.5 %x%%gggsaa%ﬁ%’VA% solution file << "1" << endl; // one real follows
'&%gééég%véﬁ‘aiﬁhﬁv disk.export msh ("disk.msh"); solution file << "0.0" << endl; // time [27]
‘a:ggﬁgévévenﬁéx" disk-draW_pS ("disk.eps"); solution file << "3" << endl; // three integers follow
| “h‘éé%ﬁ’ x solution file << "0" << endl; // time step [?27]
0999 _0{5 0_00(;227 0_|5 1| std::cout << "produced files disk.msh and disk.eps" << std::endl; solution file << "1" << endl; // scalar values of u

} solution file << disk with hole.number of (tag::vertices) << endl;

// number of values listed below

Function d = 0.03 + 0.04 * ((x + 0.3) * (x+ 0.3) + (y-0.9) * (y-0.9)); 17 Celllterator it = disk with hole.iterator (tag::over vertices);
for (it.reset(); it.in range(); it++)
Manifold circle = RR2.implicit (x*x + y*y == 1.); { Cell P =xit;
i t i= mberi P. ;
Mesh outer (tag::progressive, tag::entire manifold, circle, tag::desired length, d); 0.5 7 51ze7. * ﬁul er%ng[corel]
- - solution file << i << " " << vector sol[i-1] << std::endl; }

} // just a block of code
double y0O = 0.37;

2 For Homogenization Theory purposes, ManiFEM is prepared for solving periodic problems.
Manifold ellipse = RRZ.implicit (x*x + (y-y0)*(y-y0) + 0.3*%x*y == 0.25); Qm%“'_'«ﬁwﬂ%"

For a given micro geometry, the cellular problem is solved numerically using a mesh on the std::cout << "produced file coroa-Dirichlet.msh® << std::endl;
Mesh inner (tag::progressive, tag::entire manifold, ellipse, tag::desired length, d);
- - quotient torus. Given an effective strain, the following code computes the cellular solutions in return 03
Mesh circles (tag::join, outer, inner.reverse()); -0.499 terms of which the homogenized elastic tensor is expressed. }
RR2.set as working manifold() ; // solve a celullar problem // macroscopic temperature gradient
Mesh disk (tag::progressive, tag::boundary, circles, tag::desired length, d); OE%Q%Q A | . X // square periodicity, triangular elements, circular hole std: :vector < double > macro grad { 1., 0.5 };

Function::Jump jump of solution = macro grad[0] * x.jump() + macro grad[l] * y.jump();
#include "maniFEM.h"

finclude <fstream> // run over all square cells composing 'torus'

#include <Eigen/Sparse> { // just a block of code for hiding 'it'

#include <Eigen/OrderingMethods> CellIterator it = torus.iterator (tag::over cells of max dim);

Organic shapes like
a Physalis (Chinese lantern)

. . using namespace maniFEM; i s 5 i s
can be generated Wlth ManiFEM. g P for (it.reset(); .1t.11.1_range() ;oit++)
{ Cell small tri = *it;
int main () fe.dock on (small tri, tag::spin);

// a physalis-like surface

// run twice over the four vertices of 'small tri'

{ Manifold RRZ (tag::Euclid, tag::of dim, 2); CellIlterator it V = small tri.boundary().iterator (tag::over vertices);
#include "maniFEM.h" Function xy = RR2.build coordinate system (tag::Lagrange, tag::of degree, 1); for (it V.reset(); it V.in range(); it V++)
Function x = xy[0], v = xy[l]; { Cell V = *it V;
// perhaps implement an interator returning a vertex and a segment
using namespace manlbFEM; size t n = 20; Cell seg = small tri .boundary(). cell in front of (V);
double d = 2.6 / double(n); Cell W = V;
double jump V W = 0.;
int main () Cell A (tag::vertex); x(A) = -1.3; y(A) = -1.3; while (true)
Cell B (tag::vertex); x(B) = 1.3; y(B) = -1.3; {assert (W == seg.base().reverse())/
Cell C (tag::vertex); x(C) = 3 y(@) = 1.3; // V may be the same as W, no problem about that
{ Manifold RR3 (tag::Euclid, tag::of dim, 3); Cell D (tag::vertex); x(D) = -1.3; vy(D) = 3. Function psi V = fe .basis function (V),

Function xyz = RR3.build coordinate system (tag::Lagrange, tag::of degree, 1); psi_i = fe .basis_function (W).
_ _ — d psi V dx = psi V .deriv (x),

Function x = xyz[0], v = xyz[1l]l, z = xyz[2]; Mesh AB (tag::segment, A.reverse(), B, tag::divided in, n); a psiividy = psi V .deriv (v)
Mesh BC (tag::segment, B.reverse(), C, tag::divided in, n); dﬁ _*W*d _*W .d . ()'
— psi X = psi .deriv X
. Mesh CD (tag::segment, C.reverse(), D, tag::divided in, n); - T L . '
Function r2 = x*x + y*y + z%*z; o - d psi Wdy = psi W .deriv (y)/
Mesh DA (tag::segment, D.reverse(), A, tag::divided in, n);
const double pi = 3.1415926536; — // 'fe' is already docked on 'small tri' so this
)) o *) . _ _ _ o // will be the domain of integration
Manifold apple = RR3.implicit (power(rZ2,0.D5) sin(r2-pi/fc.) == z); Manifold circle = RR2.implicit (x*x + y*y == 0.7); double integral = fe.integrate (d psi V dx * d psi W dx
Mesh inner (tag::progressive, tag::entire manifold, circle, tag::desired length, 4d); +dpsiVvdy * dpsiWdy);
Cell A (tag: :VertEX) ; X(A) = O - ; Y(A) = O - ; Z (A) = Std: :Sqrt (2 - *pl/B -) ; Mesh bdry (tag. 'join AB BC CD DA inner reverse()) . matrifo'coeffRef (numbering[v] 4 numbering[w]) += integral;
o ! ! ! ! !) ! vector b numbering [V -= jump V W * integral;
Cell Bl (tag::vertex); x(Bl) = 1.; y(Bl) = 0.; =z(Bl) = 1.; , Pt gtvl) == Jump VW 9
Jump V W += jump of solution (seg.spin())
Cell C1 (tag::vertex); x(Cly = 1.; y(Cl) = 0.; z(Cl) = 0.; RR2.set as working manifold(); W = seq.tip();
apple.project (B1); apple.project (C1); Mesh square (tag::progressive, tag::boundary, bdry, tag::desired length, d); if (V == W) break;
Cell D (tag"vertex) X(D) = 0. y(D) = 0. Z(D) = 0. seg = small tri .boundary() .cell in front of (seg.tip())’
- r - r - r - r
o] Mesh torus = square.fold (tag::identify, AB, tag::with, CD.reverse(), // here Jump V W should be zero again
Mesh ABl1 (tag::segment, A.reverse(), Bl, tag: ‘le1ded—ln’ 10)7 tag::identify, BC, tag::with, DA.reversel(), // but we do not assert that, rounding errors may mess up things
Mesh B1Cl (tag::segment, Bl.reverse(), Cl, tag::divided in, 10); tag::use existing vertices) b}
Mesh C1D (tag::segment, Cl.reverse(), D, tag::divided in, 10); } // just a block of code for hiding "it!
Cell BZ (tag::vertex); x(B2) = 0.70/7; y(B2) = 0.707; =z(B2) = 1.; // declare the type of finite element /) we add, as last equation, the condition of zero average
FiniteElement fe tag::with master, tag::triangle, tag::Lagrange, tag::of degree, 1 ; ’ 4
Cell C2 (tag: ivertex); x(C2) = 0.707; y(C2) = 0.707; z(C2) = 0.7 . (J L ' N ‘ ! J .g 9 d —ed !) // actually, a more rudimentary condition : a line of ones
Integrator integ = fe.set integrator (tag::Gauss, tag::tri 4); ’
// and many other vertices and segments ... - - for (size t i = 0; 1 < size matrix; i++) matrix A.coeffRef (size matrix, 1) = 1.;

// we number all nodes in 'square', not only those belonging to 'torus' .
. .]] matrix A .makeCompressed() ;
RR3.set as working manifold() ; std::map < Cell, size t > numbering;

{ // Just a block of code for hiding 'it' and 'counter'

Mesh AB1B2 (tag: :triangle , AB1 , B1B2 , AB2.reverse()); Eigen: :SparseQR < Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int> > solver;

Celllterator it = square.iterator (tag::over vertices);

Mesh ABZ2B3 (tag::triangle, ABZ, B2B3, AB3.reverse()); size t counter = 0; solver.compute (matrix A);

// and other triangular patches for (it.reset() ; it.in range(); it++) if (solver.info() != Eigen::Success)
{ Cell V = *it; numberingl[V] = counter; ++counter; } { std::cout << "Eigen solver.compute failed" << std::endl;
assert (counter == numbering.size()) exit (0); }

Mesh B1C1CZ2B2 (tag::quadrangle, BICl, ClC2, B2C2.reverse(), BlB2.reverse(), tag::with triangles);

} // just a block of code
Mesh B2C2C3B3 (tag::quadrangle, B2C2, C2C3, B3C3.reverse(), B2Z2B3.reverse(), tag::with triangles);

vector sol = solver.solve (vector b);
// and other quadrangular parches size t size matrix = numbering.size () ; if (solver.info() != Eigen::Success)
std::cout << "global matrix " << size matrix + | << "x" K<L size matrix << std::endl; { std:icout << "Eigen solver.solve falled® << std::endl;
- - exit (0); }

Eigen::SparseMatrix < double > matrix A (size matrix + 1, size matrix);

Mesh sectl (tag::join, ABIB2, BICIC2B2, C1DC2);

RR2 .set as working manifold();

Mesh sect2 (tag::join, AB2B3, B2C2C3B3, C2DC3); matrix A.reserve (Eigen::VectorXi::Constant (size matrix, 2)); xy = Manifold::working.coordinates() ;
// more sectors .. // since we will be working with a mesh of triangles, x = xy[0]1; v = xy[l];
// there will be, in average, eight non-zero elements per column square.export msh ("cell.msh", numbering) ;

// the diagonal entry plus six neighbour vertices plus the last equation

std::1list € Mesh > Im { sectl, sect?2, sect3, sectd, secth, sectb, sect’], sect8 };
Mesh fisalis (tag::join, 1lm) //

we fill the main diagonal with ones The cellular problem

// then we put zero for vertices belonging to 'torus'
{ // just a block of code for hiding 'it'

for (size t 1 = 0; 1 < size matrix; i++) matrix A.coeffRef (i, 1) = 1.7

std::list<Mesh>::iterator itl;
for (itl = Im.begin(); itl '= Im.end(),; itl++)
{ Mesh sect = *itl;
CellIterator it2 = sect.iterator (tag::over vertices);
for (int i = 1; i < 20; i++)
for (it2.reset(); it2.in range(); 1t2++)
{ Cell ver = *it2;

—div(Ce(up)) = 0in R’;ﬂf
Ce(upm=0o0naT
us(X) = AX + ¢a(X), ¢ periodic function.

Celllterator it = torus.iterator (tag::over vertices);
for (it.reset(); it.in range(); it++)
{ Cell V = *it;

matrix A.coeffRef (numbering[V], numbering[V]) = 0.; } > O O /) 0 /
} // just a block of code for hiding 'it' : L
Eigen::VectorXd vector b (size matrix + 1), vector sol (size matrix); /O O [\ O O
vector b.setZero(); / /

xy = Manifold::working.coocrdinates() ; > O O 0 Q /
x = xy[0]1; vy = xy[1l]; e

Periodically perforated plane Rﬁerf ‘

AKNOWLEDGEMENTS

if (ver.is inner to (sect)) sect.baricenter (ver); } }

fisalis.export msh ("physalis.msh"™);

std: :cout << "produced [ile physalis.msh"™ << std::endl;

The meshing process is done in three steps as illustrated on the right side. Development of ManiFEM is supported by National Funding from FCT — Fundagio para a Ciéncia e a Tecnologia (Portugal), through Faculdade de Ciéncias da Universidade de Lisboa and

Centro de Matematica, Aplicagbes Fundamentais e Investigacdo Operacional, project UID/MAT/04561/2020.
Anabela Silva contributed with drawings and source text coloring.

FACULDADE DE CIENCIAS DA UNIVERSIDADE DE LISBOA | 27 October 2021

https://github.com/cristian-barbarosie/manifem

