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Brief description of the Adjoint Method

The state equation, which may be a PDE with the variational

formulation
A@(U@, V) — IQ(V),\V/V - H, (P@)

gives the dependency between u and 6.

® H is a Hilbert space,

e Ay family of bilinear forms that are continuous and coercive,

® /o family of linear continuous forms.
Acording to [F. Murat & L. Tartar 1985] and [J. Céa 1986], the
variation of the state wuy can be described in terms of the variation
of the control 6 , under convenient differentiability hypothesis on
the families of forms Ay and /y with respect to 6 .



Brief description of the Adjoint Method

The total derivative of J involves the derivative of w1y with
respect to 0 :

dJ . aj aj du@
@(9)7’— 89 (9,U9)T‘|— au (H,UQ)%

The Adjoint Method allows one to transform the implicit

(0) . (dJ)

d
dependency in the term ﬁ(@)T in an explicit one with respect
to 7T
Consider the adjoint problem in the form
0
Ag(pg, W) — a—{(@, U@)W,\V/W c H, (PA@)

the solution py € H is called the adjoint state.



Brief description of the Adjoint Method
Deriving the state equation (FPy) yields, for all v € H,

0 g0y 7+ A 0) 7 v) = Do)

Under symmetry hypothesis on the operators Ay it is possible to
prove that the implicit term in the expression of (dJ) has the
following explicit form :

%Z(Q UH)ZUQ (0) 7 = Ag(ps, — o 7 (0)7) = AH(%(Q)T’ Po)

= <—%(U9,P9) + %(Pd)

The total derivative of J has the following expression, where the
dependency on 7 is explicit :

L (aj dAg dly

1 Y. (0, ug) — W(Ueype) + @(PM) T



Pontryagin's Principle

Classical control problem
The state y € H*(0, T; R™) is solution of

{ﬂ(t)A(t, y(t),6(t)), t€o, Tl

where the control 6 € L*°(0, T;[0,1]) .
The problem is to find 6 that minimizes the functional

i
F(0) = /O B(t,y(t), 6(t))dt



Pontryagin's Principle
® A:[0, T] x R™ x [0, 1] — R™ — continuously differentiable in
y and 6, linear in 6 and continuous in t
® B:[0, T] x R™ x [0,1] — R — continuously differentiable in y
and 6, convex in # and continuous in t

If 6 € L°(0, T;[0,1]) is a solution of the above
minimization problem, then for almost all t € [0, T] the
application

T € [0,1] = p(t)A(t, y(t), 7) + B(t, y(t), )

atains its minimum in 7 = 6*(t) , where

denotes the which is solution of the adjoint problem
( dp 0A 0B
. 0 0
[~ (56 + s (6 00p(s) ) = 5 (5.5(5).0(5))




Lagrange Multipliers on Banach Spaces

The following general result may be applied in order to obtain the
p in the previous control problem

Theorem. [E. Zeidler - Springer 1995] Let X and Y be two real
Banach spaces and let U C X , open. Consider two continuously
differentiable applications, f : U — R (the functional to
minimize/maximize) and g : U+ Y (a constraint). If wug is an
extremal point of f when restricted to g *(0) and if

Dg(up) € L(X, Y) is onto, then there exists an application

A€ L(Y,R), called Lagrange multiplier, with the property

Df (ug) = Ao Dg(up).



Lagrange Multipliers on Banach Spaces
Consider f : HY(0, T;R™) x L>(0, T) ~ R,

.
(r.0)= [ Bley().00)et
and g: HY(0, T;R™) x L*°(0, T) — L?(0, T; R™) x R™,

£0,) = (0~ Al (0).6()). ¥(0) o

Then

Dg(y()a 80)(6.)/7 58) —

0 20001 0003y — St 0().0(2))50
0y(0)



Lagrange Multipliers on Banach Spaces

Applying the Theorem there exists a Lagrange multiplier
A= (A1, \0) € L(L?(0, T;R™) x R™:R) , with the property

}
[ ()| 509)(0) = G (e300 60(£)3y — St yu(e). ()]

+)\25y(0) — A [gi(t yo(t) (90(1'))5)/ + gg(t,yo(t),eo(t))&g]

for all dy € HY(0, T;R™) and all §0 € L>(0, T) .
Then X1 € HY(0, T;IR™) and satisfies the adjoint problem

( A(T) =
1= (G20 + Sl b D)) = 52 s.30(5).0a(s)) in 0.

and the condition \» = A\1(0) .



The Adjoint Method in my research

The Adjoint Method in Shape Optimization
The Generalized Adjoint Method
The Adjoint Method in Topology Optimization

The Adjoint Method in Optimization of Eigenvalues and
Eigenmodes

The Adjoint Method in the framework of Bloch waves

The Adjoint Method in Optimization - other frameworks



The Adjoint Method in Shape Optimization

One seeks to minimize an objective functional J(£2) when the
domain Q C R/ varies, while the volume is constant equal to a

given V >0

inf  J(€2, u(Q2
Jinf J(Q, (),

where U,y iIs the set of admissible domains and the state u is the
solution of

(—div(Ae(u)) = f in Q,
< u=0onIp,
Ae(u)n = g on [y.

\



The Adjoint Method in Shape Optimization

Consider a reference domain
Qg of C*! regularity and the
set of admissible shapes ob-
tained by deformation of ()

Ug ={Q C D,/ dx =V, s.t. exists T € T with Q = T(Q9)},
Q

where T is the space of diffeomorphisms given by

T = {T such that T € W_°(RY;RY), T71 ¢ W (RN, RV)}.



The Adjoint Method in Shape Optimization
If 0 c Who(RN; RV) verifies
161 .00 RNy < 1,

the function T = [+ @ is invertible and belongs to 7T .
Given J:U,qy — R, Jis called differentiable with respect to the

domain, in (g , if the function
0 — J((I +60)2)

Is differentiable in 6 =0 .
The J is defined as the of

the above application, that is a linear continuous form L on
W1Loo (RN RNV that satisfies :

J((I +6)(Q)) = J(Q) + L(0) + 0(0). with lim ‘ Téi’)’ =0,

where L = J'(Qp).



The Adjoint Method in Shape Optimization

Property. Given a differentiable function J: Z/{;d — Rin g, if
01,0, € WH(RN, RVY verify 6, — 60, € CHRY; RV) and

@1-n:(92-n0n 8Q0,
the shape derivative J'(€g) satisfies

J(Q20)(61) = J'(20)(62)-



The Adjoint Method in Shape Optimization

Classical cases 1. If J: Z/{ald — R is defined as

with £ € WHL(RN) | then Jis differentiable in Qg and

J(20)(0) = /Q div(0(x)f(x))dxy = /89 0(x) - n(x)f(x)ds,
for all 6§ ¢ WL>(RN;RN)

2. For fe W2(RVN) define J:U!, — R by

J(Q2) = /6{2 f(x)dx.

Then J is differentiable in Qg and for all § € Who(RN; RY)
, of _
J(€0)(0) = — +divnf | 6 - nds.

Q0 on



The Adjoint Method in Shape Optimization

Assuming that f ¢ HY(Q))V | g€ H*(Q)N and v e H?*(Q)V,
where u is the solution of

(—div(Ae(u)) = f in Q,

X u=0onIp,

Ae(u)n =g on Iy,

\

the shape derivative in g of the compliance functional

J1(Q2) :/ f - udx+/ g - uds
Q Y
is the following (see [G. Allaire, F. Jouve & A-M T , JCP 2004])

J(Q0)(7) = /FON [2 (0(%,-711) “Hg-u+f- u)] ronds—

— (Ae(u) - e(u)) T - nds +/ (Ae(u) - e(u)) T - nds

[on oD

where H = div n is the mean curvature of 0{) .



The Adjoint Method in Shape Optimization

However in the case where a hydrostatic force is applied on a part
of the boundary the previous result cannot be applied.
(—div(Ae(u)) = f in Q,

X u=0onTp,

Ae(u)n = ppn on Iy

\

the force ppn
. When the domain

varies, the force follows the variations of the domain.
The shape derivative in )y of the compliance functional

J1(Q2) :/ f - udx+/ ppn - uds
Q Iy

is (see [G. Allaire, F. Jouve & A-M T , JCP 2004])
J1(Q)(7) = [2(f - u+ div(pyu)) — Ae(u) - e(u)]r - nds

Fon

+ /I‘OD Ae(u) - e(u)T - nds.



The Adjoint Method in Shape Optimization

Numerical example in Shape Optimization with following forces

Optimal shape under hydrostatic forces with five anchor points and
a concentrated vertical force applied in the center of the base



The Adjoint Method in Shape Optimization
Assuming that f € HY(Q)V , g€ H2(Q)N and u e H*(Q)V,
where u is the solution of
(—div(Ae(u)) = f in Q,
< u=0onIp,

Ae(u)n =g on Iy,

\

the shape derivative in () of the distance type functional

(@) = ( [ kGl - a<x>\a)1/a,

IS given by
J(S20)(7) =
/ @k\u—ma+Ae<p>-e(u>—f-p— e p) —Hg-p)“”
Con 8% 8n

o[ (F2mu -~ de(p) - e(w) 7



The Adjoint Method in Shape Optimization

p is the adjoint state and is the solution of the adjoint problem

(—div(Ae(p)) = —Cok|u — 1|*?(u — @) in Qo,
\ P = 0 on rODa
Ae(p)n =0 on [gy.

\

where (j is a constant given by

Co = ( / KOlu) - a<x)ra)1/a_l |



The Generalized Adjoint Method

The Adjoint Method was generalized in order to treat variational
formulations (that arose in Topology Optimization) written on an
affine manifold of a Hilbert space - A-M T - SIAM, 2011.
Consider V' a Hilbert space, V| a linear closed subspace of V
and K an affine manifold of the form K = ~ + V{ for some
element v of V.

Consider a: V x V — R a bilinear, symmetric continuous form on
/' which is coercive only on Vj , and consider /: V — R a linear
continuous form on V/ . Then the problem

find u € K such that
a(u,v) =1I(v) Vv € W,

has a unique solution.



The Generalized Adjoint Method

Considering a parameter p > 0, the state equation below has a
unique solution u”.

find u” € K such that
ap(u”,v) =1,(v) Vv € V.

Assume that

® 3,: V xV — Ris a family of bilinear, symmetric, uniformly
continuous forms that are uniformly coercive only on Vj

® |,: V= Ris a family of linear, uniformly continuous forms
® 0,:V x V — Ris a bilinear, symmetric and continuous form
® 9,:V — R is a linear continuous form
* lla, — a0 — F(p)dall 2y = o(F(p)),
® |llp =l —1(p)oill vy = of(p))

for a function f : Ry — R, with the property lim, o f(p)=0.

Then the estimation ||u” — u®]| = O(f(p)) holds, where wu°
denotes the solution of the above problem for p =0 .



The Generalized Adjoint Method

The goal is to determine the asymptotic development of a
functional j(p) = J,(u”) .
Assuming that there exists 0, : V' — R such that

Jo(v)=Jo(u) = DJ(u)(v—u)+f(p)ds(u)+o(llv—ull+f(p)),Yu,v e V,

where DJ(u) is the Gateaux derivative of Jy in v,
the J(p) is obtained

J(p) = J(0) + F(p)(6,(u°) + 8a(u”, p) — 8i(p)) + o(F(p)),

where the adjoint state p is solution of the

find p € Vj such that
ao(w, p) = —DJ(u®)w, Yw € V.



The Adjoint Method in Topology Optimization

Topology optimization is another application of the Calculus of
Variations which jointly with the Shape Optimization completes
the general framework of structural optimization.

o™

If in Shape Optimization the variations of the domain are made in
the same class of homotopy , without changing the topology, in
Topology Optimization the variations allow to change the class of
homotopy. More precisely, the influence of the position of an
infinitesimal perforation in the domain is studied on the functional
to minimize/maximize. This problem arose first in Engineering, at

a macroscopic level and was solved in mathematical rigor by
M. Masmoudi and J. Sokotowski & A. Zochowski in: 2001.




The Adjoint Method in Topology Optimization

At the microscopic level, however, although there were several
papers dealing with numerical topology optimization, the
topological derivative was computed with mathematical rigor in
[A-M T - SIAM 2011]. A survey on shape and topology derivatives
of the homogenized coefficients is contained in [C. Barbarosie &
A-M T - SMO 2010 a].

In order to characterize periodic microstructures the following
general notion of periodicity is used :

0 RV — R™is called G-periodic if
o(x+ &) = p(x), xRN Vg € G

where G is an additive subgroup of R" having d linear
independent generators (a lattice).

® the notion does not depend on the set of chosen generators

® cach set of generators defines a periodicity cell



The Adjoint Method in Topology Optimization

Let Y be a periodicity cell. Consider T a compact set having

Lipschitz boundary and such that 7 < Y . Theset Y\ T is filled
with a material having the elastic tensor C while T corresponds

to a hole. R (T)=R"\ U(T+k1§1+---kd§d)

perf
keZN

For a small parameter ¢ >
0, one makes an ¢ zoom of p o O O O 4

N . - - -
R es(T) that is a homoth- > / I N S
ety of ratio . This new per- - S S
forated domain is filled with Y B Y By B

the material of tensor C .

When ¢ — 0, the effective behaviour of the corresponding
microstructure is characterized by the homogenized tensor C'' .
According to the homogenization theory, C" may be
characterized in terms of the solution of the cellular problem.



The Adjoint Method in Topology Optimization

Homogenization Theory. Given a matrix A € MV(R),
symmetric (effective strain), the homogenized tensor C' is
characterized by

1
cChA=— Ce(up)dx
YT

where uy is the solution of the cellular problem :

( —div(Ce(up)) =0 in Rg’erf(T)
\ Ce(up)n=0o0n 0T
Lua(x) = Ax 4+ da(x), ¢a G-periodic function



The Adjoint Method in Topology Optimization

The cellular problem in strain formulation writes

( ua € LP(RQIerf(T))
_diV(Ce(uA)) =01n IR/pYerf(T)
4 Ce(up)n=0o0n 0T
#(/ e(un)dx — / ua v nds(x)) = A
L Y\T oT

where

LP(Rperf( T)) — U LPA(Rperf( T))
Ae M? (R)

LPA(Rperf(T)) A+ H#(Rperf(T)v IRN)

(Rperf(T) RN) denotes the completion in the norm of

Hl(Y\ T,RN) of the space of functions in C“(Rperf(T),RN)
which are G-periodic



The Adjoint Method in Topology Optimization

The cellular problem in stress formulation writes

/"

(

\

wy € LP(R](T)),

—~div(Ce(wy)) = 0 in RY, (T)

Ce(wy)n=00n 0T
‘—\1/, /Y\T Ce(w,)dx = o

For 0 = CPA  which is equivalent to A = Do where

D" = (C")~1 is homogenized compliance tensor, the solutions w4
and w, of the cellular problem in strain and respectively in stress
formulation, are equal.



The Adjoint Method in Topology Optimization

The homogenized tensor C" can also be defined through

(CHAB) = o | (Ce(ua). e(up)) dx.
RENA%N ;

where w1 and wup are solutions of the cellular problem for two
different effective strains A and B. Considering, in particular, the
matrices A and B in a basis of the space of symmetric matrices,
one obtains each one of the homogenized coefficients, i.e. the
entries of the homogenized tensor. In general, for A and B
arbitrarily fixed one studies the functional

, 1
JOYNT) =54 (Ce(ua), e(up)) dx.
Y] I
The above problem is perturbed by creating at a location xp lying
In a zone of material, an infinitesimal hole, typically spherical,
whose radius p tends to 0, and on the boundary of which

homogeneous Neumann conditions are applied.



The Adjoint Method in Topology Optimization

The domain varies with the
parameter p and therefore
the solution of the cellular
problem will depend on p.
These dependencies infer on
the functional ; and we
are interested precisely in its
asymptotic expansion in p :

JOY \ (T UB(x0.p)) = J(Y \ T) + F(p) Drj(x0) + o(F(p)). where

lim,0f(p) =0, f(p) > 0.

The second term in the asymptotic expansion involves the so called
D+j in xp . Using the language of control

theory, the homogenized coefficients are controlled by the location

xo of the center of a virtual newly created hole B(xg, p) , of

infinitesimal radius p — 0.




The Adjoint Method in Topology Optimization

The perturbed cellular problem has the form

[ —div(Ce(uy)) =0in Rglerf(T U B(xo, p))
Ce(u)n=00n 0T
Ce(uy)n =0 on 0B(xo, p)

LU (x) = Ax + ¢4 (x), ¢’y G-periodic function.

u ——— n




The Adjoint Method in Topology Optimization

The variational formulation of the perturbed problem above is

perf(T U B(xo, R)z) such that
ap(uh,v) =0, Vv € HL(RY (T U B(x, R)),RV)

per

{ find ufy € LPA(RY

and the solution wug of the unperturbed problem is solution of the
variational problem

perf(T U B(Xo, R))) such that

ao(ug,v) =0, Vv € H#(RN (T U B(xp, R)),RM)

{ find up € LPa(RY
perf

Then the estimation

lui = wollLpn , (TuB(o.RY) = O(P"):

holds.



The Adjoint Method in Topology Optimization

The adjoint problem is

{ find p € Hy (R} (T U B(x, R)),R") such that
ao(w, p) = —DJo(up)w, Yw € H#(]Rg’erf(T J B(xg, R)),RM).

where the Gateaux derivative of Jp is

DJo(u)w = ‘27’ Y\T<Ce(u), e(w))dx

Note that DJy(ug)w = 0O for all

w € H#(Rglerf(T U B(xp, R)),RN) . Therefore ag(w,p) = 0 for

all w € H;E(RN (T UB(xp, R)),RV) , consequently p = 0. The

per
problem is null-adjoint.



The Adjoint Method in Topology Optimization

Theorem. The functional

(o) = = (Ce(uf), e(u)) dx
Y] Sy (TUB (o)

has the following asymptotic expansion

Jj(p) = j(0) + p" Drj(x0) + o(p").

where the topological derivative Dtj in xg writes in terms of the
operator T as

1

D -
ri0) = 1Y] JoB(x.R)

O Ug Upds(x)

with ug solution of the unperturbed problem.



The Adjoint Method in Topology Optimization

Corollary. Consider that the elastic tensor C corresponds to an

Isotropic material with Lamé constants A and . Consider the
1

- (Ce(uly), e(ug))dx where u)
Y1y \(TUB(o0.0))

and upB are the corresponding solutions of the cellular problem for

the effective strains A and B . Then j admits the asymptotic
development j(p) = j(0) + p" D1j(x0) + o(p"). where the
topological derivative D) in xg for d =2, has the form :

Dri(0) = ~ i 3 [Ane(ualo)e(us (o)) +

(N2 + 22t — 12) /] tr e(ua(x0)) tr e(us (%))

For d = 3 the topological derivative has the form

Dri(0) = 7 3 a [ 40e(ua(0) s (o)) +

[(9N2 + 20 — 42) /1] tr e(ua(xo)) tr e(uB(xo))} .

functional j(p) :=




The Adjoint Method in Topology Optimization

The topological derivative was implemented in an algorithm of

shape and topology optimization of microstructures [C. Barbarosie
& A-M T - SMO 2009 Il and [C. Barbarosie & A-M T - MAMS
2011|. Maximization of the bulk modulus — parallelogram cell
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The Adjoint Method in Optimization of
Eigenvalues and Eigenmodes

Consider the eigenvalue problem in Q C R3 .

(—div(Ce(u)) = Au in Q,
< u=0 onlp,
L Ce(u) - n=0 on .

This problem models the behaviour of a dam fixed on [p and
with an empty reservoir (there are no forces applied on [y ).
The elastic tensor C = C(s) depends on a vectorial parameter s
that models the material coefficients. The eigenvalues \;(s) and
the eigenvectors (eigenmodes of vibration) wu;(s) depend on s .
Goal : s

(physically measured in the dam), see [S.
Oliveira, A-M T & P. Vieira, NAn:RWAp 2012].



The Adjoint Method in Optimization of

Eigenvalues and Eigenmodes

From the practical point of view, the resolution of the above
problem would allow for a non-destructive method of identification
of coefficients, that is, it could predict the degree of damage in the
dam by using the eigenvalues and eigenmodes of the dam
measured by installed sensors.

The variational formulation of the eigenvalue problem is

( find A(s) € R and u(s) € V such that
< / C(s)e(u(s)) - e(v)dx = )\(5)/ u(s)-vdx, YvevV,
\ Q Q

where

V ={veH(Q)?: Vi, = 0}.
By a classical result it turns out that there exists an infinite,

countable set of solutions of the above problem with the property
that (\;)j>1 is an increasing sequence and (u;);>1 forms a Hilbert

basis of (L?())3.



The Adjoint Method in Optimization of

Eigenvalues and Eigenmodes
Consider the objective functionals :

Fi(s) =) [Ai(s) — Ail%,
=1
and i
Fa(s) = |Xi(s) = Xil* + [lui(s) — Gil| 72 -
=1

depending on the first n eigenvalues and eigenmodes (\;, u;) of
the elastic model. The physically measured eigenvalues and
eigenmodes are \; and i .

Both functionals F; and F» are non-negative and attain the
minimum value (zero) when the values of the eigenvalues and
eigenmodes calculated in the model and the measured ones
coincide. Therefore it is necessary to derive the functionals with
respect to the parameter s .



The Adjoint Method in Optimization of
Eigenvalues and Eigenmodes

Theorem. Assuming the differentiability of C(s) and that the
problem has only simple eigenvalues then the eigenvalues and
eigenmodes are differentiable with respect to s . One has

j dC . .

dd)s\ = / E(s)e(u;) - €(uj) dx , where the eigenmode is
Q

du; .

normalized in [? . The derivative of the eigenmode e

solution of

( .
find # € < uj >+ such that Vv € V.,
s

LC(S)G(ZL;i)-e(v)dX)\,-/QCZ;;"-vdX

if)\sl/ﬂ uj - vdx — /Q %(s)e(u;) - €(v) dx.

L is the orthogonal complement of the eigenspace

/"

\

where < u; >



The Adjoint Method in Optimization of
Eigenvalues and Eigenmodes

The derivative of Fq is

dF1 5)_22 (Ni(s) — / ‘ng (uj) - e(u;) dx,

and the derivative of F»

dF; dF4

du;
Ce =Tt |

() (ui(s) — ) dx.

dF>
The formula of ——= has little utility since for its implementation is
s

necessary to solve n X k elliptic problems, where n — number of

eigenvalues tooken into account and k — number of parameters
(components of s ).



The Adjoint Method in Optimization of

Eigenvalues and Eigenmodes
The Adjoint Method permits to obtain the derivative of F, by

solving only n problems, independently of the number k of
parameters s .

Theorem. Consider n adjoint problems, for 1 < | < n, of the

form :
( find p; € V, with /Qp,- - ui(s)dx =0s. t. Yw € V,
< [ €s)etp) - clwiae = A(s) [ - wax =
—2/ w - Tjdx + 2/ ui(s) - Zl,-dx/ w - ui(s)dx
\ Q Q Q

The adjoint problems have unique solution in < u; >~ , and

dF dF1
— Z / e(ui(s)) - e(pi) dx.
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The Adjoint Method in Opt

Eigenvalues and Eigenmodes

2-nd mode 2.64 Hz.

1-st mode 2.52 Hz.

4-th mode 3.81 Hz.

3-rd mode 3.75 Hz.



The Adjoint Method in Optimization of
Eigenvalues and Eigenmodes

——— value of J2 (duration: 12h 14min) |————— % ——— value of E_z (duration: 12h 14min) |———
4000 - I i
3000 | ] ol
| i N .
2000 | . =
: 10 -
1000 [ ] '
0 : | 1 1 | ] 0 -_ _-
E— EE— EE— EE— : PSR SN SR I S TN SR SR NN SN SO S S HN SR SO TR SR S
0 5 10 15 20 0 5 10 15 20
iter iter
— —10 =
b =627 x10 E: o = 6.0
0.5 ———value of nu_zp (duration: 12h 14min) |——— ——— value of G_zp (duration: 12h 14min) ———
0.4[
o 03]
)
=
= 02f
0.1} I
0f 0r §
P TR SN S I S TN S TR RN SR SO S S E SR SO TR S
0 S 10 15 20

iter iter

Vzp gnay — 0-19 Gzp final = 22D




Adjoint method in the framework of Bloch waves

Consider a body in RN (N =2 or 3 ) made of a periodic
material, that is, a material whose inhomogeneities are periodically
distributed. Suppose that the period is small when compared to
the overall size of the body.

An elastic Bloch wave is the superposition of a plane wave of the
form e/*) and a perturbation ¢ which is a G -periodic
function. Thus, a Bloch wave writes :

—

u(x) = e X p(x).

Note that this is equivalent to the following conditions on u :

—

u(x + gj) = e'k8ly(x), Vx e RN Vj=1,...N.



Adjoint method in the framework of Bloch waves

When an elastic Bloch wave propagates through a body made of a
G -periodic material, and supposing that the wavelength is
comparable to the size of the periodicity cell, then the following
problem, called Bloch cellular problem, characterizes the
propagation phenomenon :

(—div(Ce(u)) = Apu in Rg’erf(T),
 Ce(u) - n = 0 onOT,
ulx+g) = ekl y(x), Vx € Rg’erf(T), Vi=1,...N.

(1)

In the above, T is a compact set representing a model hole in the

periodicity cell Y and Rlpyerf(T) is the perforated space defined by

Ry (T)=RY\ | J (T + kg +... knén).
kezZN



Adjoint method in the framework of Bloch waves

Recall that H (Rg’erf( T),CNY is the completion in the norm of

HY(Y\T (CN) of the space of functions in COO(Rperf(T),(CN)
which are G -periodic.

For k € RV arbitrarily fixed, denote by W;(RY

perr( 1)) the set of

Bloch waves having the plane wave in the direction k :

Wﬁ(Rlpyerf( ))
= {u: Rperf(T) — CN | u(x) = €'t ko Jo(x),p € H (Rperf(T),(CN)}.

Thus the last equation in (1) is equivalent to v € W (R perf(T))
Note that Wy(R erf(T)) H? (RN (T),CNY and

erf
W~(R2’erf(T)) is a Hilbert space, obtained from

(Rperf(T)v CN) by multiplication with the fixed function ei (k)



Adjoint method in the framework of Bloch waves

The natural norm || - HL% on the space LQ(RQ’erf(T),(CN) is

induced by the following inner product associated to the function
p € LOO(IR{I’;’erf) representing the specific mass ( p(x) > pg > 0

- N Y.
almost everywhere in R - ):

(u,v) — pu - v dx.
Y\T

In this section, the bar denotes the complex conjugate.



Adjoint method in the framework of Bloch waves

The variational formulation of the Bloch cellular problem (1) is

( find A€ R and u € WE(Rgerf(T)) such that

/ C(s)e(u)-e(v)dx = )\/ pu-vdx, Vv e WE(RQIerf(T)).
AL Y\T

/"




Adjoint method in the framework of Bloch waves

Theorem.[C. Barbarosie & A-M T - RICAM, De Gruyter 2017]
Provided differentiability properties of the elasticity tensor

C = C(s) with respect to a general material parameter s and
assuming that the eigenvalues of the Bloch cellular problem (1) are

simple, then the eigenvalues and the eigenvectors are differentiable
with respect to s .

The derivative of the eigenvalue \; = \i(s) is

dA; — Eseu--eﬂ- X
2 )= [, GO @) o

where the corresponding eigenvector u; is normalized in the L%
2(@N : _
norm of L*(R__ -(T)) . Hu,-HL% =1.



Adjoint method in the framework of Bloch waves

.. du; : : :
The derivative —— of the eigenvector u; = u;(s) is the solution of

the problem below:

du,-
ds

aui u; dx =0 and

)
find in WE(RQIerf(T))v such that /

P
y\7T ds

du; du;
C(s)e(— -EVdX—)\,-/ p— -V dx =
< d)\/Y\T (%) (d5> V) y\T ds

_ dC )
ds (S)/y\TPui - vdx — /Y\T E(s)e(ui) . e(v) dx,

v € WyRW (T)).
(2)



Adjoint method in the framework of Bloch waves

The derivative of a functional F(\;(s), ui(s)) depending on the
first n eigenvalues and on the corresponding n eigenvectors may
be written in terms of n adjoint states p; , as:

dF

n dC _
) = S8 [ G Oue) - (anls)) o

- Z /Y E(5)€(Ui(5)) - €(p;) dx.

I



Adjoint method in the framework of Bloch waves

Each adjoint state p; is the solution of the following adjoint
problem, for 1 </ <n:

)
find p; € WE(RQIerf(T))v with / pp;i - Ui(s)dx = 0 such that
Y\T

F
< / C(s)e(p;) - e(w)dx — Ai(s) ppi - wdx = 0 w,
Y\T Y\T du;

Yw € We(RN, (T)).

(3)



Adjoint method in the framework of Bloch waves

A special interesting case is when the parameter is the vector k

itself. Making variations in k would allow to treat problems of the
form :

max mEin F(\(s), u(s)) (4)

In order to compute the derivatives of \; and wu; with respect to
k , it is preferable to write u(x) in the form of Bloch wave

u(x) = ei<E’X>go(x) . Thus, the cellular problem may be written as :

( find A €R and ¢ € HL(R), (T),C") such that
< /Y\T Capns (6 0n) ple™ ) 5 dx = A /Y\T pPata dx,
\ Vip € HL(R]+(T),C").




Adjoint method in the framework of Bloch waves
The derivative of ), is obtained as

O\ / . _
= 2Re 1Cojrs Ul Ul 5
8/( T jy ol

. . 0 .
while the problem that defines the derivative of o, sl , writes

Ok;

( Jyi I¢ia
fi HL (RN (7). CN) s. /
nd ak E ( Pel’f( )7<C )S t Y\TIO ak

(k) O e —i{k,x 0 Q
/ Caﬁwé (e’<kax> 50/(/ )5(6 (k, >¢7)’5 ax — )\// gpkl Yo dx =
Y\T J Y\T
< 2

8/(1 Y\T
- /¢ Coapys (0gj01ae K (&7 tk0p) 5 — 65(e" ¥V p10) 5 e HX0ap) o)

\T
Vip € Hy (RN (T),CN).

©O1o dx = 0 and

P @/a¢a dx—




Adjoint method in the framework of Bloch waves

Consider the adjoint problem in the form

)
find p; € H#(Rﬁ’erf(T),CN) with / ppip; dx = 0 such that
Y\T

/ Cagrs (€ pra) 5(e™¥4by) 5 dx—
Y\T

—

/"

- OF
_)‘/ PPV dXx = 9 Yo,
Y\T Pa

Vi € HL(RY (T),CN).

perf




Adjoint method in the framework of Bloch waves

Therefore the derivative of the functional F may be expressed as

dF . _
(k)= X7, 2E2Re / i Cos T 5 dx
dk;j Y\T
-2 / i Caprs (5ﬁj¢/aei<k’x>(e'<k’X>ﬁ/v),5
I—1 Y\T

—

—55j(ei<k’x>90/a),5 ei<E’X>ﬁ/7> dx.



The Adjoint Method in Optimization - other frameworks

® Optimization of the homogenized coefficients by varying the
periodicity pattern — C. Barbarosie & A-M T — NHM 2014

® |nverse problems : domain identification using eigenvalues and
eigenmodes - P. Antunes, C. Barbarosie & A-M T — JCP 2017

® Microstructures having minimum Poisson coefficient in several
directions of the plane — C. Barbarosie, A-M T & S. Lopes —
DCDS-B 2020
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