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ABSTRACT 
Motivation:  While several efforts have been made in 
measuring GO-based protein semantic similarity, it is still 
unclear which are the best approaches to measure it and 
furthermore whether electronic annotations should be used. 
Results:  We studied the behaviour of 8 distinct semantic 
similarity measures as function of sequence similarity with 
and without electronic annotations. We  found that 5 of these 
measures shared a cumulative normal distribution pattern, 
which is likely inherent to the relation between functional and 
sequence similarity. We also present a novel graph-based 
measure for protein semantic similarity, which produced bet-
ter results than the other measures studied. 

1 INTRODUCTION  
Since its foundation, the Gene Ontology (GO) has had a 
high impact in gene-product annotation, leading to its adop-
tion by an increasing number of sequence databases. This 
fact, combined with the quality and structure that GO adds 
to annotation, has enabled its use as a background for func-
tional comparison of gene-products. This type of compari-
son, called semantic similarity, is usually based on compar-
ing the GO terms to which gene-products  are annotated. 
To calculate protein semantic similarity, Lord et al. (2003a,b) 
used three semantic similarity measures  developed for 
WordNet and based on the notion of information content 
(IC): Resnik´s (1999), Lin´s (1998) , and Jiang and Con-
rath´s (1999). The authors identified a correlation between  
semantic similarity and sequence similarity, which was 
stronger in the GO molecular function aspect. However, as 
these three measures were developed for comparing single 
terms in a hierarchy, some issues arise when applying them 
to GO-based protein similarity. 
One issue is that GO terms can have several disjoint com-
mon ancestors. Lord et al. (2003a) dealt with this by consid-
ering only the most informative common ancestor between 
two terms , whereas Couto et al. (2005) proposed the GraSM 
approach, to account for all disjoint common ancestors. 
Another issue is that proteins can be annotated with several 
GO terms, so computing the semantic similarity between 
two proteins requires a way of combining the semantic simi-
larity between their terms. To address this, Lord et al. 
(2003b) used the arithmetic average of all term pairs, Sevilla 

  
* To whom correspondence should be addressed.  

et al. (2005) opted for their maximum, and Schlicker et al. 
(2006) introduced a composite average where only the best 
matching term pairs are used. 
A different, graph-based approach was proposed by Gen-
tleman (2005) , who developed two measures for GO-based 
protein semantic similarity, both comparing the portion of 
the GO-graph shared by a pair of proteins. 
Despite several studies, it is still unclear which are the best 
measures and/or approaches to calculate protein semantic 
similarity, and whether electronic annotations should be 
used for this purpose or ignored. 
In this paper, we investigate the behaviour of several seman-
tic similarity measures as function of sequence simila rity, 
using both the whole annotation space and the subset of 
non-electronic annotations. We also introduce a novel 
graph-based measure for protein semantic similarity and 
compare its performance with that of the other measures . 

2 METHODS 

2.1 Semantic similarity measures 
We used three term semantic similarity measures : Resnik´s 
(1999), Lin´s (1998), and Jiang and Conrath´s (1999); and 
combined them with two different approaches to compute 
protein similarity: the average and the best-match average 
(BMA). The former was applied as described by Lord et al. 
(2003b), and the latter was applied as described by Schlicker 
et al. (2006) except that only molecular function GO terms 
are being used. IC and similarity measures were calculated 
as previously described (Faria et. al, 2007). 
We also use two graph-based similarity measures: simUI  
(Gentleman, 2005) and the novel simGIC  (for Graph Infor-
mat ion Content). simUI calculates similarity as the number 
of GO terms shared by two proteins divided by the number 
of GO terms they have together. simGIC is an expansion of 
simUI where instead of counting the terms we sum their IC. 
For two proteins A and B with terms t, simGIC is  given by: 
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2.2 Dataset 
The full protein dataset used was  a subset of 22,067 proteins 
from the Swiss-Prot database, having at least one molecular 
function GO term of IC  0.65 or higher. The goal was to have 
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a dataset that was well characterized functionally but large 
enough to pro vide meaningful results. 
An all-against-all BLAST search was performed, consider-
ing a threshold e-value of 10-4. For each protein pair {A,B} 
with A?B, sequence similarity was defined as: 

( ) ( ) ( )( )( )ABBBABAVGBAsimSeq scorescore ,,,log, 10=  (2) 
where Bscore is BLAST’s bit-score (which is not symmetric). 
For the resulting 618,146 protein pairs, functional semantic 
similarity was computed with the measures described in 2.1, 
using molecular function GO terms. 
A second dataset of proteins with only non-electronic GO 
annotations was also used. It contained 8,377 proteins which 
lead to 49,480 protein pairs. 
The source data came from the UniProt database (release 
2007-02-20), the GO database (release 2007-02) and the 
GOA-UniProt dataset (release 2007-02). 

2.3 Semantic vs. Sequence Similarity  
Due to large size and high dispersion of the semantic vs. 
sequence similarity raw data, discrete intervals of sequence 
similarity were taken, and average similarity values were 
calculated for each interval. Intervals had constant size ex-
cept where the number of protein pairs in an interval was 
too small (under 200). The procedure was applied to all 
measures for both datasets . 
A cumulative normal distribution curve was fitted to the 
discrete averaged semantic similarity vs. sequence similarity 
data. Non-linear regression was done applying the Newton 
optimization algorithm to solve the least squares method. 
Besides the normal parameters (mean and standard devia-
tion), two additional parameters were  required: a multiplica-
tive scale factor and an additive translation factor (Figure 1). 

3 RESULTS AND DISCUSSION 
The measures using the average approach (Resnik’s, Lin’s, 
and Jiang and Conrath’s) were clearly those which per-
formed worse, being the only measures whose behaviour 
was not monotonically increasing (Figure 1F). This is not 
unexpected since this approach is biased, penalizing protein 
pairs which have several distinct functional aspects in com-
mon. In fact these measures only became decreasing for 
high sequence similarity scores, which correspond to protein 
pairs of larger sequence size, likely to have more than one 
functional aspect. 
The remaining five measures (those with the BMA approach, 
simUI and simGIC) all showed a crescent behaviour with a 
similar topology (Figure 1A-E). We found that topology to 
be well modelled by a scaled cumulative normal distribution 
(Table 1) despite the higher dispersion visible for the non-
electronic dataset, likely due to its smaller size. 
What is most striking in the fitted curves is that the parame-
ters for the normal distribution (mean and standard devia-
tion) are nearly identical between measures, within each 

dataset (Table 1). Considering that these are five distinct 
measures, one of which (simUI) doesn’t even rely on the 
notion of IC, we postulate that a normal distribution curve 
with these parameters is characteristic of the GO term mo-
lecular function annotations themselves. What this means is 
that the ability of molecular function  GO terms to distin-
guish different levels of sequence similarity is given by a 
normal probability density function, which is not altogether 
surprising. It reflects the fact that sequence pairs with either 
very low or very high sequence similarity are hard to distin-
guish functionally, being nearly all unrelated or identical 
respectively. 

Table 1. Regression parameters for the fitted normal distribution curves 

Regression Parameters 
 Measure 

Mean stdev1 scale2 trans3 
Scaled  

Residual4 

simUI 2,2 0,25 0,45 0,48 0,0026 
simGIC 2,2 0,27 0,65 0,26 0,0026 
BMA-R 2,2 0,27 0,51 0,43 0,0029 
BMA-L 2,2 0,27 0,41 0,53 0,0025 

fu
ll 

BMA-JC 2,2 0,27 0,25 0,73 0,0029 

simUI 2,4 0,31 0,43 0,37 0,0084 
simGIC 2,4 0,30 0,56 0,21 0,0078 
BMA-R 2,4 0,30 0,51 0,21 0,0084 

BMA-L 2,4 0,30 0,46 0,30 0,0091 

no
n-

el
ec

tr
on
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BMA-JC 2,4 0,29 0,28 0,58 0,0091 

1 – standard deviation; 2 – multiplicative scale factor; 3 – additive translation factor; 
4 – average residual by point divided by the scale factor, to dilute scale diffe rences. 

 
By analyzing the regression parameters (Table 1), we see 
that all these measures are capturing the normal behaviour 
with similar accuracy (they have similar scaled residuals 
within each dataset) but with different resolutions, as shown 
by the different scale factors (see Figure 1). 
It is important to note that, while the fitted curves are is o-
morphic (they are inter-convertible through a linear trans-
formation using the scale and translation factors), the actual 
semantic similarity measures are not: only their average 
behaviour is modelled by the curves. One example of this is 
that all 5 measures produce an equal value (of 1) if two pro-
teins have exactly the same GO terms, of which there are 
occurrences in several intervals of sequence similarity. Such 
equality would not be maintained when applying the is o-
morphism between the measures’ curves. 
The choice of the best similarity measure therefore should 
fall to the measure which has the highest resolution, since 
on average that measure translates differences in annotation 
to higher differences in semantic similarity, allowing their 
clearer perception. In this context, the results support the 
choice of the novel simGIC measure, which showed a 
higher resolution than the other measures with both datasets. 
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Fig. 1. Semantic similarity vs. sequence similarity for the 8 measures tested, with both full and non-electronic datasets. A – simUI measure; 
B – simGIC measure; C –  Resnik’s measure with BMA approach; D – Lin’s measure with BMA approach; E – Jiang and Conrath’s meas-
ure with BMA approach; F – Resnik’s, Lin’s and Jiang and Conrath’s measures with the average approach (full dataset only); lines in A-E 
correspond to fitted cumulative normal distribution curves. In addition to mean and standard deviation, which determine the inflexion point 
and width of the curve respectively, two parameters were used to fit the curves: a multiplicative scale parameter to account for the meas-
ures not covering the whole 0-1 scale, and an additive translation parameter to account for their minimum value being greater than 0. 
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However, the only measure which showed a clearly low 
resolution was Jiang and Conrath’s measure. The remain ing 
measures have a resolution not much below that of simGIC, 
with Resnik’s measure being second best. 
As for the differences in the normal distribution parameters 
between the two datasets, they reflect the fact that the non-
electronic annotation space is different from the full space. 
For instance, the average number of annotations per protein 
is smaller in the non-electronic dataset than in the full one 
(4.8 and 5.5 respectively). Also relevant is the fact that there 
are much less proteins with non-electronic annotations (8% 
of the full set), and these could not be representative of the 
whole protein similarity space. 
Despite these differences, the fact remains that the behav-
iour of the two datasets is similar, which suggests that elec-
tronic annotations can not only be reliably used in semantic 
similarity calculations, but also improve their precis ion by 
providing a richer annotation space. 

4 CONCLUSIONS 
We studied the averaged behaviour of several distinct se-
mantic similarity measures as function of sequence simila r-
ity, uncovering an underlying normal distribution-like pat-
tern with constant shape parameters (mean and standard 
deviation). We postulate that this pattern is characteristic of 
the variation of functional similarity (as measured by GO 
molecular function annotations) with sequence similarity. 
We developed a novel graph-based semantic similarity 
measure for proteins, which performed better than the re-
maining measures by translating sequence similarity into a 
greater coverage of the semantic similarity scale. 
We also compared the performance of the similarity meas-
ures with and without electronic annotations, concluding 
that electronic annotations do not significantly affect the 
behaviour of the similarly measures , and actually increase 
their precision. While they may lack the reliability of cu-
rated annotations, electronic annotations are the present and 
future of bioinformatics, constituting an increasingly impor-
tant portion of the annotation space (currently amounting to 
97%). What is more, their precision is improving, with val-
ues of 91-100% having been reported (Camon et al., 2005). 
Future work will include comparing semantic similarity 
with other aspects, such as protein families (Pfam) and En-
zyme Commission classes, as well as using a sequence simi-
larity measure independent of sequence length. We will also 
investigate other semantic similarity measures, such as the 
GraSM approach. 
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