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Introduction
Ontology matching1 is a key interoperability enabler for the semantic web, as well

as a useful tactic in some classical data integration tasks dealing with the semantic

heterogeneity problem. It takes ontologies as input and determines as output an align-

ment, that is, a set of correspondences between the semantically related entities of

those ontologies. These correspondences can be used for various tasks, such as ontol-

ogy merging, data translation, query answering or navigation over knowledge graphs.

Thus, matching ontologies enables the knowledge and data expressed with the matched

ontologies to interoperate.

The workshop had three goals:

• To bring together leaders from academia, industry and user institutions to assess

how academic advances are addressing real-world requirements. The workshop

strives to improve academic awareness of industrial and final user needs, and

therefore, direct research towards those needs. Simultaneously, the workshop

serves to inform industry and user representatives about existing research efforts

that may meet their requirements. The workshop also investigated how the on-

tology matching technology is going to evolve, especially with respect to data

interlinking, process mapping and web table matching tasks.

• To conduct an extensive and rigorous evaluation of ontology matching and in-

stance matching (link discovery) approaches through the OAEI (Ontology Align-

ment Evaluation Initiative) 2018 campaign2.

• To examine new uses, similarities and differences from database schema match-

ing, which has received decades of attention but is just beginning to transition to

mainstream tools, or the emerging process matching task.

The program committee selected 5 submissions for oral presentation, treated as

long technical papers in the proceedings, and 9 submissions for poster presentation,

out of which 3 are treated as short technical papers and 6 as posters in the proceed-

ings. 19 matching systems participated in this year’s OAEI campaign. Further infor-

mation about the Ontology Matching workshop can be found at: http://om2018.
ontologymatching.org/.

1http://www.ontologymatching.org/
2http://oaei.ontologymatching.org/2018
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Abstract. Top-level ontologies play an important role in the construction and

integration of domain ontologies, providing a well-founded reference model that

can be shared across domains. While most efforts in ontology matching have been

particularly dedicated to domain ontologies, the problem of matching domain and

top-level ontologies has been addressed to a lesser extent. This is a challenging

task in the field, specially due to the different levels of abstraction of these on-

tologies. This paper addresses this problem by proposing an approach that relies

on existing alignments between WordNet and top-level ontologies. Our approach

explores word sense disambiguation and word embedding models. We evaluate

our approach in the task of matching DOLCE and SUMO top-level ontologies to

ontologies from three different domains.

1 Introduction

Guarino [7] classifies ontologies according to their “level of generality”, in particular:

(i) top-level ontologies describe very general concepts (e.g., space, time, object, etc.),

which are independent of a particular problem or domain. These ontologies, also named

upper or foundational ontologies [33], are equipped with a rich axiomatic layer; (ii)
domain ontologies that describe the entities and other information related to a generic

domain (e.g., biology or aeronautic). While the rich semantics and formalization of top-

level ontologies are important requirements for ontology design [18], they act as well

as semantic bridges supporting very broad semantic interoperability between ontologies

[15,16]. In that sense, they play a key role in ontology matching.

Whereas the area of ontology matching [3] has developed fully in the last decades,

matching ontologies from different levels of abstraction as domain and top-level on-

tologies is still an early tackled challenge. This is a complex task, even manually, that

requires the deep identification of the semantic context of concepts and, in particular,

the identification of subsumption relations. The latter is largely neglected by most state-

of-the-art matchers. The main problem of matching top-level and domain ontologies

using these matching systems is that, despite the variety of approaches, most of them

typically rely on string-based techniques as an initial estimate of the likelihood that two

elements refer to the same real world phenomenon, hence the found correspondences

represent equivalences with concepts that are equally or similarly written. However, in

many cases, this correspondence is wrong [32]. In fact, when having different levels of

1



2 Daniela Schmidt∗, Rafael Basso∗, Cassia Trojahn†, Renata Vieira∗

abstraction it might be the case that the matching process is rather capable of identify

subsumption correspondences than equivalence, since the top ontology has concepts at

a higher level. Approaches dealing with this task are mostly based on manual matching

[1,18].

This paper proposes an approach to match domain and top-level ontologies that

exploits existing alignments between top-level ontologies and WordNet [20]. These

alignments act as bridges for aligning domain and top-level ontologies. The notion of

context of concepts is used for disambiguating the senses that better express the mean-

ing of domain ontology entities in this external resource. Contexts are constructed from

the available terminological information about a domain ontology entity (e.g., entity

naming, annotations, and information on the neighbours of entities1). Here, we exploit

two similarity measures for synset disambiguation : (1) an adaptation of the Lesk mea-

sure [13] and (2) word embeddings [19]. Once the domain synset has been selected, we

exploit the relation between this synset and a top-level concept via existing alignments

between WordNet and the top-level ontologies. Most strategies we apply here, in partic-

ular indirect matching [9,8,39], WordNet-based matching [14,38], the classical notion

of context [37,30,2] and word-sense disambiguation [21], have been already exploited

in different ways in the field. However, we argue that the novelty of our approach re-

lies on their combination, which remains unexplored in the specific task of matching

top-level and domain ontologies. The use of word embedding for the matching task is,

however, less studied [40,36]. Here, we focus on DOLCE and SUMO top-level ontolo-

gies and on their alignments to WordNet [6,23]. This choice is motivated by the fact

that they are the most used top-level ontologies and serve as a reference model for the

modelling and integration of ontologies [24]. We align them to ontologies from three

domains (SSN2, CORA [28], and OAEI Conference ontologies3).

The main contributions of our paper can be summarised as follows : (i) to the best of

our knowledge, our approach is the first attempt to automatically match domain and top-

level ontologies; (ii) we provide an evaluation of our approach and compare how state-

of-the-art matching results can be improved by exploiting existing alignments between

WordNet and top-level ontologies; and (iii) our results may form a baseline for an OAEI

task since there is no current track involving this kind of challenge.

The rest of the paper is organised as follows. §2 introduces top-level ontologies,

WordNet and existing alignments to WordNet. §3 discusses the main related work. §4

presents our matching approach. §5 presents the experiments and discusses the results.

Finally, §6 concludes the paper and presents future work.

2 Background

2.1 Top-level ontologies

A top-level ontology is a high-level and domain independent ontology. The concepts

expressed are intended to be basic and universal to ensure generality and expressive-

ness for a wide range of domains. It is often characterized as representing common

1 Here, we do not exploit restrictions and other axioms (e.g., disjointness)
2 https://www.w3.org/TR/vocab-ssn/
3 http://oaei.ontologymatching.org/2017/conference/index.html
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Matching top and domain ontologies 3

sense concepts and is limited to concepts which are meta, generic, abstract and philo-

sophical. Several top-level ontologies have been proposed in the literature. The reader

can refer to [15] for a review of them. Here, we briefly introduce DOLCE and SUMO,

which are further used in our experiments. DOLCE [5,17] (Descriptive Ontology for

Linguistic and Cognitive Engineering) was designed to include the most reusable and

widely applicable upper-level categories, rigorous in terms of axiomatization and exten-

sively researched and documented. It is an ontology of particulars which has four top-

level concepts: endurant, perdurant, quality, and abstract. Endurants represent objects

or substances while perdurants correspond to events or processes. The main relation

between endurants and perdurants is that of participation, e.g., a person which is an

endurant, may participate in a discussion, which is a perdurant. Qualities can be seen

as the basic entities that we can perceive or measure, e.g., shapes, colors, sizes, etc. Ab-
stracts do not have spatial or temporal qualities, and they are not qualities themselves.

DOLCE has many variations, such as DOLCE-Lite [6], which is an OWL-DL fragment

of DOLCE. DOLCE-Lite has been extended in modules for representing information,

communication, plans, and with some domain information for representing e.g. legal,

biomedical notions. The combination of DOLCE-Lite and the mentioned additional

modules is called DOLCE-Lite-Plus4.

SUMO [22] (Suggested Upper Merged Ontology) provides definitions for general-

purpose terms and acts as a foundation for more specific ontologies. It is being used for

research and applications in search, linguistics and reasoning. It is an ontology of partic-

ulars and universals which has two top-level concepts: physical and abstract. Physical
represent an entity that has a location in space-time. An abstract can be said to exist in

the same sense as mathematical objects such as sets and relations, but they cannot exist

at a particular place and time without some physical encoding or embodiment.

2.2 WordNet and its alignments to top-level ontologies

WordNet [20] is a general-purpose large lexical database of English frequently adopted

as an external resource in automatic ontology matching between domain ontologies

[38,37,30]. In the following, we discuss its alignments to top-level ontologies.

DOLCE to WordNet alignment (OntoWordNet) Gangemi et al. [6] developed the

OntoWordNet, a resource which expresses the alignment between WordNet 1.6 ver-

sion and DOLCE-Lite-Plus. The authors assume that the hyponymy relation could be

aligned to the subsumption relation and the synset notion could be aligned to the no-

tion of concept. In OntoWordNet, the named concepts were normalized to obtain one

distinct name for each synset. Hence, if a synset had a unique noun phrase, it is used as

a concept name (e.g. Document Written Document Papers). If the noun phrase was

polysemous, the concept was numbered (e.g. Writting 1, Writting 2). Figure 1 presents

a fragment of WordNet synsets (as concepts) linked to DOLCE-Lite-Plus concepts.

The first-level concepts (in lower case) correspond to a DOLCE-Lite-Plus concept. The

upper case concepts represent WordNet synsets. Each concept in OntoWordNet is asso-

ciated to an annotation containing the corresponding gloss of the synset in WordNet.

4 http://www.loa.istc.cnr.it/old/ontologies/DLP 397.owl
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Fig. 1. Example of WordNet synsets linked to DOLCE.

SUMO to WordNet alignment Niles and Pease [23] construct an alignment between

SUMO and WordNet 1.6 (a more recent release considers WordNet 3.0). For each iden-

tified correspondence, the synset of WordNet is augmented with three information : (i)
a prefix (&%) that indicates that the term is taken from SUMO; (ii) the SUMO concept;

and (iii) a suffix indicating the kind of relation. The suffix ‘=’ indicates that the cor-

respondence relation is synonymy. ‘+’ indicates that the concept is a hypernym of the

associated synset. The instantiation relation is indicated by the suffix ‘@’. An exam-

ple of the structure of a correspondence representing a synonymy relation can be seen

below. In the example, “02761392 06 n 03 automaton 0 robot 0 golem” corresponds

to the synset. The gloss is defined as “a mechanism that can move automatically”, the

prefix “&%” indicates that the term is taken from SUMO. “Device” corresponds to the

SUMO concept and the signal “+” is the suffix indicating the hyponymy relation.

02761392 06 n 03 automaton 0 robot 0 golem — a mechanism that can move automatically

&%Device+

There are other efforts that provide alignments of WordNet to top-level ontologies

(as Cyc and BFO). The reader can be refer to [29,34] for details.

3 Related work

This section discusses works on aligning domain and top-level ontologies, Wordnet as

background knowledge in the matching task, and word embeddings.

Domain and top-level ontology matching. We see a growing importance of aligning

domain and top-level ontologies. In [26], correspondences between DBPedia ontol-

ogy and DOLCE-Zero [4] are used to identify inconsistent statements in DBPedia. In

that sense, in [18], a domain ontology describing web services (OWL-S) is manually

aligned to DOLCE-Lite-Plus, in order to overcome conceptual ambiguity, poor axiom-

atization, loose design and narrow scope of the domain ontology. In [35] an alignment

between an upper ontology (BFO) and a biomedical ontology (GO) is used for filtering

out correspondences at domain level that relate two different kinds of ontology entities.

Analysing the impact of using top ontologies as semantic bridges has been done in [16],

where a set of algorithms exploiting such bridges are applied and the circumstances

under which upper ontologies improve matching approaches are studied. A close ap-

proach to ours in terms of data set has been proposed by [25], where OAEI Conference

ontologies were manually aligned to UFO, adopting a set of patterns grounded by UFO

ontology. There are also works concerning alignment between different top ontologies.

In [10,11], the ROMULUS repository aims at improving semantic interoperability be-

tween foundational ontologies (DOLCE, BFO and GFO), which are aligned with each

4



Matching top and domain ontologies 5

other in a semi-automatic way using available matching tools, whose results have been

manually evaluated. While these proposals mainly generate manual alignments between

top level and domain ontologies, here we propose an approach to automatise this task.

A preliminar study is presented in [31].

WordNet as a resource to ontology matching and contexts. Background knowledge

from resources such as WordNet has been largely exploited in ontology matching. In

[12], a lexical measure considers aggregating sets including names of ontology entities

and WordNet synset’s words (including hypernyms and meronyms relations). In [38],

a set of twelve element-level matchers using WordNet as background knowledge is

proposed. The use of WordNet is frequently coupled with the notion of context. In [30],

virtual documents (context) represent the meaning of ontology entities and WordNet

entries and entities are coupled according to their document similarities. The notion of

context has also been exploited in [37], where semantic description documents refer

to the information about concept hierarchies, related properties and instances, or in [2]

where a bag of words describing a concept is exploited within a mining approach. On

the other hand, the use of context is very common in the Word Sense Disambiguation,

which can be carried out using a diversity of approaches [21]. Here, we adapt the [13]

Word Sense Disambiguation to the task of synset disambiguation.

Word embeddings in ontology matching. Word embedding has been largely adopted in

several tasks of NLP [19]. It is an umbrella name for a set of NLP language modelling

and feature learning techniques which represent words as vectors in a semantic space.

Models are trained to produce a vector space and reconstruct the linguistic contexts of

words. Each unique word in the corpus is assigned a corresponding vector in the space.

Word vectors are positioned in the vector space such that words that share common con-

texts in the corpus are located in close proximity to one another in the space. The sim-

ilarity between words is calculated using functions as the cosine similarity, Euclidean

distance. Such approach represents an alternative to WordNet similarities, which may

fail due to the low WordNet coverage of specific domains. To the best of our knowledge,

few works have exploited word embeddings in ontology matching [40,36]. In [40], a

hybrid approach combines word embeddings and lexical similarities. The performance

of edit distance, WordNet, Latent Semantic Analysis (LSA), word embeddings (using

Wikipedia Word2Vec trained model) and the hybrid method were compared, showing

that the performance of the hybrid method outperforms the others. In [36], the approach

relies on word-to-word similarities exploiting the GloVe model. The hypothesis is that

two entities can be matched based on the words in their names using the word-to-word

similarity provided by the model. Close to [40], but for a different task, we combine

WordNet and word embeddings.

4 Our approach

Our matching approach has two main steps. The first step disambiguates the domain

concept, selecting the most appropriated WordNet synset; and the second matches the

domain concept to the top-level concept via existing correspondences between WordNet

and the top-level ontologies, as detailed below.

5
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4.1 Synset disambiguation

In order to select the synset that better expresses the meaning behind the ontology con-

cept, we adopt the notion of context. A context is constructed from all information

available about an ontology entity, including entity naming (ID), annotation proper-

ties (usually labels and comments) and information on the neighbours (super and sub-

concepts). Given Sup(e) and Sub(e), the sets of terms denoting the super-concepts and

sub-concepts of the entity e, and Ann(e) the set of terms from its annotations, a naive

strategy for building a context (context) considers these sets as a bag of words :

context(e) = {e,w|w ∈ Sup(e)∪w ∈ Sub(e)∪w ∈ Ann(e)}

This context is used to find the closer synset using two strategies, as above.

Lesk measure The Lesk measure for word sense disambiguation [13] relies on the

calculation of the word overlap between the sense definitions of two or more target

words. Given a word w, it identifies the sense of w whose textual definition has the

highest overlap with the words in the context of w :

scoreLesk(S) = |contextLesk(w)∩gloss(S)|

where contextLesk(w) is the bag of all content words in a context window around the

target word w. Here, we overlap the contexte with the context of each WordNet synset :

context(synset) = {w|w ∈ Terms(synset)∩w ∈ Gloss(synset)}

where Terms(synset) the set of terms in a synset and Gloss(synset) the correspond-

ing set of terms from the gloss (i.e, textual description containing definitions and exam-

ples) associated to the synset. We hence retrieve the highest overlap between context(e)
and context(synset)

score′Lesk(e) = |context(e)∩ context(synset)|

Word embeddings The second similarity measure compares contexts of entities context(e)
and of WordNet synsets context(synset) (represented as vectors of words). The com-

parison is based on the distance of contexts in vector spaces. This method adopts the

cosine distance between two words generated by the word embedding model to iden-

tify the similarity between them. We retrieve the similarity between context(e) and

context(synset), then we calculate the average similarity. After calculating this average

to all elements of the context, we calculate the average of the context, considering the

context length. The synset with the higher average is selected.

4.2 Identification of correspondences to top-level ontologies

In this step we perform the identification of the top concept. This step relies on the

representation of the given existing alignments.
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DOLCE correspondence identification This step uses existing alignments between

DOLCE-Lite-Plus and WordNet 1.6. For each concept of the domain ontology, we use

the selected synset (step 1) to identify the corresponding concept in OntoWordNet. To

select the concept in OntoWordNet we compare the WordNet synset with each concept

c in OntoWordNet (recall that concepts are represented by the concatenation of words).

A bag of words for the OntoWordNet concept is created from the concatenated words

and gloss, i.e., context(c). Then, we overlap the synset and c.

score′Lesk(c) = |context(c)∩ context(synset)|

After finding the OntoWordNet concept c corresponding to the synset, the higher

level concept hc of c is retrieved,. hc corresponds to the DOLCE concept (Figure 1).

SUMO correspondence identification Similarly to the correspondence identification

in DOLCE, this step uses existing alignments between SUMO and WordNet 3.0, in

order to identify the domain and top concepts correspondences. As SUMO-WordNet

alignment is a file containing the synset ID, terms, gloss, and the alignment to top

concept (§2.2), we search for the domain selected synset in this file and, if the synset is

found, we match the domain concept with the top-level concept related to the synset.

As described above, our approach depends on the availability of alignments be-

tween the background knowledge resource (here, WordNet) and the top-level ontolo-

gies. Hence, we are able to exploit other top-level ontologies in case such alignments

exist. This leads also to the question on the maintenance of these alignments with the

evolution of the ontologies and the given resource, which is out of the scope of this

work.

5 Experiments

5.1 Material and methods

Domain ontologies We consider a set of ontologies from three different domains. First,

SSN (W3C Semantic Sensor Network Ontology) describes sensors, devices, observa-

tions, measurements and other terms, enabling reasoning of individual sensors and the

connection of them. A recent version of SSN includes a lightweight core ontology called

SOSA (Sensor, Observation, Sample, and Actuators). SSN is aligned to SOSA and both

ontologies are aligned to DOLCE Ultralite (DUL). SSN is composed of 18 first level

concepts, from those, 8 concepts are aligned to the top ontology DUL. CORA (Core

Ontology for Robotic and Automation) [28] specifies the main concepts, relations, and

axioms of robotics and automation domains. Second, CORA is aligned with SUMO top

ontology. CORA ontology, considering all its modules (CoraX, Cora, RParts, and POS)

is composed of 34 first level concepts, from which 29 of them are aligned to SUMO.

Finally, seven ontologies from the OAEI Conference data set5 have been used (Cmt,

ConfTool, Edas, Ekaw, Iasted, Sigkdd, SofSem). These ontologies are involved in ref-

erence alignments. These ontologies sum up 501 concepts, however, we consider in our

5 http://oaei.ontologymatching.org/2017/conference/index.html
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experiments the first-level concept of the hierarchies, what corresponds to 70 concepts

(assuming that the other concepts will inherit their alignment with top ontologies from

their roots). The choice for these ontologies is motivated by the fact that they are either

widely adopted in real world scenarios or in experiments regarding automatic ontology

matching approaches.

WordNet top-level alignments We use DOLCE, SUMO, and existing WordNet to top-

level ontology alignments (§2). These previous alignments have been developed by spe-

cialists, hence if the selected synset is correct, the top-level concept (aligned as super-

concept of that synset) is assumed to be a super-concept of the domain concept.

Word embedding models We used pre-trained models, GloVe [27] and GoogleNews6.

GloVe is an unsupervised learning algorithm to obtain vector representations for words7.

The training phase uses the Wikipedia 2014 and Gigaword5 corpora. It has 6 billions to-

kens, 400 thousand vocabulary size and neural network dimension of 200. The Google-

News model is trained on part of Google News dataset (about 100 billion words). The

model contains 300-dimensional vectors for 3 million words and phrases.

OAEI 2017 tools Our baseline corresponds to the results of a set of matching tools par-

ticipating in OAEI 2017, with exception only of those specialised in instance matching

(Legato, I-match and njuLink) and one specialised in the bio domain (Yam-bio). The

matchers that were tested in our experiment are: ALIN, AML, CroLOM, KEPLER,

LogMap, LogMap-Lite, ONTMAT, POMap, SANOM, WikiV3, WikiMatch and XMap.

The reader can refer to OAEI papers8 for a detailed description of them. All tools were

run with their default configuration settings. All generated correspondences are avail-

able in https://github.com/danielasch/top-match.

5.2 Results and discussion

We run our system with the Lesk similarity (lesk) and word embedding models (WE-
GloVe and WE-GloogleNews) and the OAEI tools for 16 matching tasks (SSN and DLP,

CORA and SUMO, and 7 Conference ontologies with DLP and SUMO). All alignments

generated by our approach are available online9. They have been evaluated in terms of

precision and recall. With respect to the reference alignments, for the pairs involving

SSN and CORA, given that these ontologies are already aligned to the top ontologies,

we adopt these existing alignments as reference. We note that SSN is originally aligned

with a different version of DOLCE. We hence consider the results in an interpreted way

which consists at looking each generated correspondence and identify if they are the ex-

act correspondence or related to the previous alignment via a subsumption relation. In

the same way, we observe that some found correspondences from CORA and SUMO,

were not exact the same of the adopted reference, however, they are hierarchically re-

lated, hence, we also adopted the interpreted evaluation.

For the Conference data set, which is not equipped with reference alignments to

DOLCE and SUMO, the generated correspondences were manually evaluated by three

6 https://code.google.com/archive/p/word2vec/
7 https://nlp.stanford.edu/projects/glove/
8 http://www.om2017.ontologymatching.org/#ap
9 https://github.com/danielasch/top-match
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specialists. Firstly, one evaluator analysed each correspondence, after, the results were

discussed with all evaluators, maintaining or changing the initial analysis. For this data

set, we made the hypothesis that, for each top domain concept, a corresponding Word-

Net synset exists. Hence, we are able to compute both precision and recall. As shown

in Figure 2, the best results were obtained for the conference domain, with .80 of F-

measure with WE-GloogleNews. We observe that overall WE-GloogleNews performs

better than Lesk and WE-GloVe. However, looking at the SSN and CORA domain

ontologies, the obtained results are lower than for Conference. Our hypothesis is that

concepts from the conference ontology are more general (common sense) than these

other domains. Note that the selected word embedding models were trained with gen-

eral domain texts. The better performance obtained with the WE-GoogleNews model

over the WE-GloVe model could be explained by the larger coverage of the first with

respect to the training set.

Fig. 2. Precision, recall and F-measure for each synset disambiguation strategy.

Regarding the number of correspondences, our approach was able to find 69 out

of 70 correspondences from the Conference ontologies (we were not able to find the

correspondences for 1 concept, for which there is no entry in WordNet) Considering

Lesk and WE-GloVe, 51 correct correspondences were found when aligned to SUMO

and 49 correct with DOLCE. This number increased up when using WE-GloogleNews

(57 and 56, respectively). For SSN-DOLCE, we have 5 correct correspondences out of

8 considering Lesk, and 3 correct with WE-GloVe and WE-GloogleNews. For CORA-

SUMO, 12 correct in a total of 29 correspondences considering Lesk, 11 correct with

WE-GloVe and 6 correct with WE-GloogleNews.

Although our approach was able to found a high number of correspondences for the

three domains, in some cases, the generated correspondences were wrong. First, as we

adopt the context of concepts, this seems not to be enough to disambiguate the sense of

the domain concept (Conference domain ontologies are not equipped of comments and

labels). This can be improved by enriching the terminological layer. Second, we can

observe that word embedding based on Google News model contributes to the disam-

biguation step, mainly with the Conference ontologies. However, for SSN and CORA it

is still not able to retrieve the right synsets. In order to overcome this weaknesses, one

9



10 Daniela Schmidt∗, Rafael Basso∗, Cassia Trojahn†, Renata Vieira∗

direction is to use domain-specific embedding models. Third, the word sense disam-

biguation here is still based on the overlapping of words, and word sense disambigua-

tion techniques could be used instead.

OAEI 2017 matching tools Only 4 tools (AML, LogMap, LogMapLite, and POMap)

were able to find correspondences for 6 pairs of ontologies. Considering the correspon-

dences found by these tools, 13 domain concepts from conference (out of 70) were

aligned. Regarding the number of correspondences, AML was able to find 12 corre-

spondences, and 7 of them were correct. POMap found 7 correspondences, and 6 were

correct. LogMap and LogMapLite found 6 correspondences respectively, and 5 of them

were correct. Figure 3 presents precision, recall and F-measure for each tool (including

our evaluated techniques). Related to CORA, 1 correspondence was correctly found

by POMap. As shown, our approach outperforms all system in terms of Recall and

F-measure. Looking at WE-GloogleNews, the results are quite similar in terms of preci-

sion and better than all in terms of recall and F-measure. As somehow expected, while

the tools perform well in terms of precision, they retrieve a limited number of corre-

spondences.

Fig. 3. Precision, recall and F-measure from each matching tool.

6 Concluding remarks and future work

This paper presented an approach to match domain and top-level ontologies, exploiting

alignments between WordNet and top ontologies. Our evaluation was based on ontolo-

gies from three domains with DOLCE and SUMO top-level ontologies. Overall, we

consider that existing top-level and WordNet alignments is a valuable resource for the

task, at least for certain general domains. For most of the concepts from the domain

ontologies we found a correspondence with the top ontology. We have evaluated OAEI

matching tools in this task and, as expected, our approach outperforms all of them.

Even though they were not exactly developed for that purpose, their results were the

only available for comparison, and we set that as a baseline. To the best of our knowl-

edge, our approach is the first attempt towards automatizing the process of aligning top

and domain ontologies. As future work, we plan to provide a reference alignment in-

volving the OAEI Conference dataset and DOLCE and SUMO ontologies with the aim

10
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of proposing a OAEI track for this task involving top and domain ontologies. We plan

as well to combine Wordnet measures with other distributional semantics approaches

and adopt other background knowledge resources as BabelNet.

This work will be published as part of the book “Emerging Topics in Semantic Tech-
nologies”. ISWC 2018 Satellite Events. E. Demidova, A.J. Zaveri, E. Simperl (Eds.),
ISBN: 978-3-89838-736-1, 2018, AKA Verlag Berlin.
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Abstract. Large ontologies still pose serious challenges to state-of-the-art on-
tology alignment systems. In this paper we present an approach that combines a
lexical index, a neural embedding model and locality modules to effectively di-
vide an input ontology matching task into smaller and more tractable matching
subtasks. We have conducted a comprehensive evaluation using the datasets of
the Ontology Alignment Evaluation Initiative. The results are encouraging and
suggest that the proposed methods are adequate in practice and can be integrated
within the workflow of state-of-the-art systems.

1 Introduction
Large-scale ontology matching tasks still pose serious challenges to ontology alignment
systems. For example, only 6 out of 10 systems participating in the OAEI 2017 largebio
track were able to complete the largest tasks [2]. OAEI systems are typically able to
cope with small and medium size ontologies, but fail to complete large tasks in a given
time frame and/or with the available resources (e.g., memory). Prominent examples
across the OAEI campaigns are: (i) YAM++ version 2011 [3] (best results in conference
track, but failed to complete the anatomy task); (ii) CODI version 2011.5 [4] (best
results in anatomy but could not cope with the largebio track); (iii) MAMBA version
2015 [5] (top system in the conference track but could not complete the anatomy track);
(iv) FCA-Map version 2016 [6] (completed both anatomy and phenotype tasks but did
not complete the largest largebio tasks); and (v) POMap version 2017 [7] (one of the
top systems in anatomy but could not finish the largest largebio tasks).

In this paper we propose a novel method to effectively divide the matching task into
several (independent) smaller subtasks. This method relies on an efficient lexical index
(as in LogMap [8]), a neural embedding model [9] and locality modules [10]. Unlike
other state-of-the-art approaches, our method provides guarantees about the preserva-
tion of the coverage of the relevant ontology alignments as defined in Section 2.2.

2 Preliminaries
In this section we introduce the background concepts that are used throughout the paper.

� An extended version of this paper is available in arXiv.org [1].
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2.1 Basic definitions
A mapping (also called match or correspondence) between entities1 of two ontologies2

O1 and O2 is typically represented as a 4-tuple 〈e1, e2, r, c〉 where e1 and e2 are en-
tities of O1 and O2, respectively; r ∈ {	,
,≡} is a semantic relation; and c is a
confidence value, usually, a real number within the interval (0, 1]. In our approach we
simply consider mappings as a pair 〈e1, e2〉. An ontology alignment is a set of mappings
M between two ontologies O1 and O2.

An ontology matching task MT is composed of a pair of ontologies O1 (typically
called source) and O2 (typically called target) and possibly an associated reference
alignment MRA. The objective of a matching task is to discover an (implicit) over-
lapping of O1 and O2 in the form of an alignment M. The size or search space of a
matching task is typically bound to the size of the Cartesian product between the en-
tities of the input ontologies: |Sig(O1)| × |Sig(O2)| being Sig(O) the signature (i.e.,
entities) of the ontology O.

An ontology matching system is a program that, given as input the ontologies O1

and O2 of a matching task, generates an ontology alignment MS .
The standard evaluation measures for an alignment MS are precision (P), recall (R)

and f-measure (F) computed against a reference alignment MRA as follows:

P =
|MS ∩MRA|

|MS | , R =
|MS ∩MRA|

|MRA| , F = 2 · P ·R
P +R

(1)

2.2 Matching subtasks and quality measures: size ratio and coverage
We denote division of an ontology matching task MT , composed by the ontologies O1

and O2, as the process of finding matching subtasks MTi = 〈Oi
1,Oi

2〉 (with i=1,. . . ,n),
where Oi

1 ⊂ O1 and Oi
2 ⊂ O2. The size of the matching subtasks aims at being smaller

than the original task in terms of search space. Let Dn
MT = {MT1, . . . ,MTn} be the

result of dividing a matching task MT . The size ratios of the matching subtasks MTi
and Dn

MT are computed as follows:

SizeRatio(MTi,MT ) =
|Sig(Oi

1)| × |Sig(Oi
2)|

|Sig(O1)| × |Sig(O2)|
(2)

SizeRatio(Dn
MT ,MT ) =

n∑
i=1

SizeRatio(MTi,MT ) (3)

The ratio SizeRatio(MTi,MT ) is expected to be less than 1.0 while the aggre-
gation

∑n
i=1 SizeRatio(MTi,MT ), being n the number of matching subtasks, can be

greater than 1.0 (as matching subtasks may overlap).
The coverage of the matching subtask aims at providing guarantees about the preser-

vation of the (potential) outcomes of the original matching task (i.e., information loss).
That is, it indicates if the relevant ontology alignments in the original matching task can
still be computed with the matching subtasks. The coverage is calculated with respect
to a relevant alignment M, possibly the reference alignment MRA of the matching task
if it exists. The formal notion of coverage is given in Definitions 1 and 2.

1 We refer to (OWL 2) classes, data and object properties and named individuals as entities.
2 We assume ontologies are expressed in OWL 2.
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Definition 1 (Coverage of a matching task). Let MT = 〈O1,O2〉 be a matching
task and M an alignment. We say that a mapping m = 〈e1, e2〉 ∈ M is covered by
the matching task if e1 ∈ Sig(O1) and e2 ∈ Sig(O2). The coverage of MT w.r.t.
M (denoted as Coverage(MT ,M)) represents the set of mappings M′ ⊆ M cov-
ered by MT .

Definition 2 (Coverage of the matching task division). Let the result of dividing a
matching task MT be Dn

MT = {MT1, . . . ,MTn} and M an alignment. We say that
a mapping m ∈ M is covered by DMT if m is at least covered by one of the matching
subtask MTi (with i=1,. . . ,n) as in Definition 1. The coverage of DMT w.r.t. M (de-
noted as Coverage(DMT ,M)) represents the set of mappings M′ ⊆ M covered by
DMT . The coverage is often given as a ratio with respect to the (covered) alignment:

CoverageRatio(Dn
MT ,M) =

|Coverage(DMT ,M)|
|M| (4)

2.3 Locality-based modules in ontology alignment
Logic-based module extraction techniques compute ontology fragments that capture the
meaning of an input signature with respect to a given ontology. In this paper we rely on
bottom-locality modules [10], which will be referred to as locality-modules or simply
as modules. Locality modules play an important role in ontology alignment tasks. For
example, they provide the context, i.e., sets of semantically related entities [10], for the
entities in a given mapping or set of mappings as formally presented in Definition 3.

Definition 3 (Context of a mapping and an alignment). Let m = 〈e1, e2〉 be a
mapping between two ontologies O1 and O2. We define the context of m (denoted
as Context(m,O1,O2)) as a pair of modules O′

1 ⊆ O1 and O′
2 ⊆ O2, where O′

1

and O′
2 include the semantically related entities to e1 and e2, respectively [10]. Simi-

larly, the context for an alignment M between two ontologies O1 and O2 is denoted
as Context(M,O1,O2) = 〈O′

1,O′
2〉, where O′

1 and O′
2 are modules including the se-

mantically related entities for the entities e1 ∈ Sig(O1) and e2 ∈ Sig(O2) in each
mapping m = 〈e1, e2〉 ∈ M.

2.4 Context as matching task
The context of an alignment between two ontologies represents the (explicit) overlap-
ping of these ontologies with respect to the aforesaid alignment. Intuitively, the ontolo-
gies in the context of an alignment cover all the mappings in that alignment. Definition 4
formally presents the context of an alignment as the overlapping matching task to dis-
cover that alignment.

Definition 4 (Overlapping matching task). Let M be an alignment between O1 and
O2, and Context(M,O1,O2) = 〈O′

1,O′
2〉 the context of M. We define MT M

O1-O2
=

〈O′
1,O′

2〉 as the overlapping matching task for M. A matching task MT = 〈O1,O2〉
can be reduced to the task MT M

O1-O2
= 〈O′

1,O′
2〉 without information loss in terms of

finding M.

A matching system should aim at computing M with both the original matching
task MT and the reduced task MT M

O1-O2
. For example, in the small OAEI largebio

tasks [2] systems are given, instead of the original matching task (e.g., whole FMA
and NCI ontologies), the context of the reference alignment as a (reduced) overlapping
matching task (e.g., MT RA

fma-nci = Context(MRA
fma-nci, OFMA,ONCI) = 〈O′

FMA,O′
NCI〉).
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Table 1: Inverted lexical index LexI (left) and entity index (right). For readability, stem-
ming techniques have not been applied and index values have been split into elements
of O1 and O2. ‘-’ indicates that the ontology does not contain entities for that entry.

Index key Index value
Entities O1 Entities O2

{ acinus } 7661,8171 118081

{ mesothelial, pleural } 19987 117237

{ hamate, lunate } 55518 -

{ feed, breast } - 113578,111023

ID URI
7661 O1:Serous acinus
8171 O1:Hepatic acinus
19987 O1:Mesothelial cell of pleura
55518 O1:Lunate facet of hamate
118081 O2:Liver acinus
117237 O2:Pleural Mesothelial Cell
113578 O2:Breast Feeding
111023 O2:Inability To Breast Feed

3 Methods
The approach presented in this paper relies on an ‘inverted’ lexical index (we will refer
to this index as LexI), commonly used in information retrieval applications, and also
used in ontology alignment systems like LogMap [8].

3.1 The lexical index LexI

LexI encodes the labels of all entities of the input ontologies O1 and O2, including
their lexical variations (e.g., preferred labels, synonyms), in the form of pairs key-value
where the key is a set of words and the value is a set of entity identifiers3 such that
the set of words of the key appears in (one of) the entity labels. Table 1 shows a few
example entries of LexI for two input ontologies.

LexI is created as follows. (i) Each label associated to an ontology entity is split
into a set of words; for example, the label “Lunate facet of hamate” is split into the
set {“lunate”, “facet”, “of”, “hamate”}. (ii) Stop-words are removed, for example,“of”
is removed from the set of words (i.e., {“lunate”, “facet”, “hamate”}). (iii) Stemming
techniques are applied to each word (i.e., {“lunat”, “facet”, “hamat”}). (iv) Combi-
nations of (sub)set of words serve as keys in LexI; for example, {“lunat”, “facet”},
{“hamat”, “lunat”} and so on.4 (v) Entities leading to the same (sub)set of words are
associated to the same key in LexI, for example, the entity O1:Lunate facet of hamate
with numerical identifier 55518 is associated to the LexI key {“hamat”, “lunat”} (see
Table 1). Finally, (vi) entries in LexI pointing to entities of only one ontology are not
considered (see last two rows of LexI in Table 1). Note that a single entity label may
lead to several entries in LexI, and each entry in LexI points to one or many entities.

Each entry in LexI, after discarding entries pointing to only one ontology, is a
source of candidate mappings. For instance the example in Table 1 suggests that there
is a (potential) mapping m = 〈O1:Serous acinus,O2:Liver acinus,≡, c〉 since the en-
tities O1:Serous acinus and O2:Liver acinus are associated to the same entry in LexI
{acinus}. These mappings are not necessarily correct but link lexically-related enti-
ties, that is, those entities sharing at least one word among their labels (e.g., “acinus”).
Given a subset of entries of LexI (i.e., l ⊆ LexI), the function Mappings(l) = Ml

provides the set of mappings derived from l. We refer to the set of all (potential) map-
pings suggested by LexI (i.e., Mappings(LexI)) as MLexI. Note that MLexI represents a
manageable subset of the Cartesian product between the entities of the input ontologies.

3 The indexation module associates unique numerical identifiers to entity URIs.
4 In order to avoid a combinatorial blow-up, the number of computed subsets of words is limited.
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Fig. 1: Pipeline to extract matching subtasks from LexI.

Most of the state-of-the-art ontology matching systems rely, in one way or another,
on lexical similarity measures to either discover or validate candidate mappings [11].
Thus, mappings outside MLexI will rarely be discovered by standard matching systems.

3.2 Creation of matching subtasks from LexI
Considering all entries in LexI (i.e., one cluster) may lead to a very large number of can-
didate mappings MLexI. The context of MLexI leads to (two) large overlapping modules
OLexI

1 and OLexI
2 that, although smaller than the input ontologies O1 and O2, may still

be challenging for many ontology matching systems. A solution is to divide the entries
in LexI in more than one cluster.

Definition 5 (Matching subtasks from LexI). Let MT = 〈O1,O2〉 be a matching
task, LexI the lexical index of the ontologies O1 and O2, and {c1, . . . , cn} n clus-
ters of entries in LexI. We denote the set of matching subtasks from LexI as Dn

MT =
{MT LexI

1 , . . . ,MT LexI
n } where each cluster ci leads to the matching subtask MT LexI

i =
〈Oi

1,Oi
2〉, such that Mappings(ci) = MLexI

i is the set of mappings suggested by the LexI
entries in ci and Oi

1 and Oi
2 represent the context of MLexI

i w.r.t. O1 and O2.

Figure 1 shows an overview of the pipeline where LexI is split into n clusters and
these clusters lead to n matching subtasks Dn

MT = {MT LexI
1 , . . . ,MT LexI

n }.5

Hypothesis 1 If MT = 〈O1,O2〉 is a matching task and MS the mappings computed
for MT by a lexical-based matching system, then, with independence of the clustering
strategy of LexI and the number of subtasks n, Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } will
cover (almost) all the mappings in MS (i.e., CoverageRatio(Dn

MT ,MS) ≈ 1.0).

Hypothesis 1 suggests that a matching system will unlikely discover mappings with
MT = 〈O1,O2〉 that cannot be discovered with Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } .
This intuition is supported not only by the observation that most of the ontology match-
ing systems rely on lexical similarity, but also by the use of the notion of context (see
Definition 3 and Definition 4) in the creation of the matching subtasks.

Intuitively each cluster of LexI leads to a smaller set of mappings MLexI
i (with

respect to MLexI) and to a smaller matching task MT LexI
i (with respect to both MT LexI

and MT ) in terms of search space. Hence SizeRatio(MT LexI
i ,MT ) is expected to

be smaller than 1.0, as mentioned in Section 2.2. Reducing the search space in each
matching subtask MT LexI

i has the potential of enabling the use of systems that can
not cope with the original matching task MT in a given time-frame or with (limited)
computational resources. The aggregation of ratios may be greater than 1.0 and will
depend on the clustering strategy.

5 The number of clusters n is a parameter given as input. See Section 6 for a discussion of
possibles ways of automatically obtaining n.
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Hypothesis 2 Given a matching task MT and an ontology matching system that fails
to complete MT under a set of given computational constraints, there exists a division
of the matching task Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } for which that system is able to
compute an alignment of the individual matching subtasks MT LexI

1 , . . . ,MT LexI
n under

the same constraints.

3.3 Clustering strategies

We have implemented two clustering strategies which we refer to as: naive and neural
embedding. Both strategies receive as input the index LexI and the number of desired
clusters n, and provide as output a set of clusters {c1, . . . , cn} from LexI. As in Defini-
tion 5, these clusters lead to the matching subtasks in Dn

MT = {MT LexI
1 , . . . ,MT LexI

n }.

The choice of strategy, according to Hypothesis 1, will not have an impact on the
coverage; but it may influence the size of the matching subtasks. Note that, neither of
the strategies aims at computing optimal clusters of the entries in LexI, but clusters that
can be efficiently computed.

Naive strategy. This strategy implements a very simple algorithm that randomly splits
the entries in LexI into a given number of clusters of the same size. The matching tasks
resulting from this strategy are expected to have a high overlapping as different entries
in LexI leading to similar set of mappings may fall into different clusters. Although the
overlapping of matching subtasks will impact the global search space, it is still expected
to be smaller than in the original matching task.

Neural embedding strategy. This strategy aims at identifying more accurate clusters,
leading to matching tasks with less overlapping, and thus, reducing the global size of
the computed division of the matching task Dn

MT . It relies on StarSpace toolkit6 and
its neural embedding model [9], which aims at learning entity embeddings. Each entity7

is described by a finite set of discrete features (bag-of-features). The model is trained
by assigning a d-dimensional vector to each of the discrete features in the set that we
want to embed directly. Applied to the lexical index LexI, the neural embedding model
would learn vector representations for the individual words in the index keys, and for the
individual entity identifiers in the index values. Since an index key is a set of words (see
Table 1), we use the mean vector representation of the vectors associated to each word.
Based on these aggregated neural embeddings we then perform standard clustering with
the K-means algorithm.

Hypothesis 3 There exists a number of clusters or matching subtasks ‘n’ for which
the clustering strategies can compute Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } for a given
matching task MT such that SizeRatio(Dn

MT ,MT ) < 1.0.

Hypothesis 3 suggests that there exists a division Dn
MT of MT such that the size

(or search space) of Dn
MT is smaller than MT , and Dn

MT can be computed by the
proposed naive and neural embedding strategies.
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Table 2: OAEI matching tasks. Phenotype ontologies downloaded from BioPortal.
OAEI track Source of MRA Task Ontology Version Size (classes)

Anatomy Manually created AMA-NCIA
AMA v.2007 2,744
NCIA v.2007 3,304

Largebio UMLS-Metathesaurus
FMA-NCI FMA v.2.0 78,989

FMA-SNOMED NCI v.08.05d 66,724
SNOMED-NCI SNOMED v.2009 306,591

Phenotype
Consensus alignment
(vote=2) [12]

HPO-MP
HPO v.2016-BP 11,786
MP v.2016-BP 11,721

DOID-ORDO
DOID v.2016-BP 9,248
ORDO v.2016-BP 12,936

4 Evaluation

In this section we support Hypothesis 1-3 (Section 3). We rely on the datasets of the On-
tology Alignment Evaluation Initiative (OAEI) [2], more specifically, on the matching
tasks provided in the anatomy, largebio and phenotype tracks (see Table 2).

The methods have been implemented in Java8 and Python9 and were tested on a
Ubuntu Laptop with an Intel Core i7-4600U CPU@2.10GHz (4 cores). Up to 15 Gb of
RAM was allocated. The next sections present the performed experiments.10

4.1 Adequacy of the clustering strategies

We have evaluated the adequacy of the clustering strategies to compute divisions Dn
MT

= {MT LexI
1 , . . . ,MT LexI

n } for each of the matching tasks in Table 2 with respect to the
available reference alignments. We report results in terms of coverage (as in Equation 4)
and size (as in Equation 3) of the resulting division Dn

MT of the matching tasks.
We have compared the two strategies for different number of clusters or resulting

matching subtasks n ∈ {2, 5, 10, 20, 50, 100, 200}. For the naive strategy, as a random
split of LexI is performed, we run 10 experiments for each of the values of n to evalu-
ate the effect of different random selections. The variations in the size of the obtained
matching tasks was negligible. Results represent the average of the 10 experiments

Coverage ratio. Figure 2 shows the coverage of the different divisions Dn
MT of the

matching task for the naive (left) and neural embedding (right) strategies. The cover-
age ratio is very good, being 0.927 in the worst case (n = 200 in SNOMED-NCI)
and 0.99 in the best case (n = 2 in FMA-NCI). This means that, in the worst case,
almost 93% of the available reference mappings are covered by the matching subtasks
in Dn

MT . The differences in terms of coverage between the naive and neural embedding
strategies are minimal, with the neural embedding strategy providing slightly better re-
sults on average. These results reinforce Hypothesis 1 as the coverage with respect to
system-generated mappings is expected to be even better.

6 StarSpace: https://github.com/facebookresearch/StarSpace
7 Note that in the context of neural embedding models the term entity refers to objects of differ-

ent kind, e.g., a word, a sentence, a document or even an ontology entity.
8 Java codes: https://github.com/ernestojimenezruiz/logmap-matcher
9 Python codes: https://github.com/plumdeq/neuro-onto-part

10 Extended evaluation material in [1] and https://doi.org/10.5281/zenodo.1214149
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(b) Neural embedding strategy

Fig. 2: CoverageRatio of Dn
MT with respect to the number of matching subtasks n.
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Fig. 3: SizeRatio of Dn
MT with respect to the number of matching subtasks n.

Size ratio. The results in terms of the size (i.e., search space) of the selected divi-
sions Dn

MT are presented in Figure 3 for the naive (left) and neural embedding (right)
strategies. The results with the neural embedding strategy are extremely positive, while
the results of the naive strategy, although slightly worse as expected, are surprisingly
very competitive. Both strategies improve the search space with respect to the origi-
nal MT for all cases with the exception of the naive strategy in the AMA-NCIA case
with n < 50, and the SNOMED-NCI case with n > 20, which validates Hypothesis 3.
SNOMED-NCI confirms to be the hardest case in the largebio track. Here the size ratio
increases with the number of matching subtasks n and gets stable with n > 100.

Size of the source and target modules. The scatter plots in Figures 4 and 5 visu-
alize the size of the source modules against the size of the target modules for the
matching tasks in each division Dn

MT . For instance, the (orange) triangles represent
points

(
|Sig(Oi

1)|, |Sig(Oi
2)|

)
being Oi

1 and Oi
2 the source and target modules (with

i=1,. . . ,5) in the matching subtasks of D5
MT . Figure 4 shows the plots for the AMA-

NCIA case while Figure 5 for the FMA-NCI case, using the naive (left) and neural em-
bedding (right) strategies. The naive strategy leads to rather balanced an similar tasks
(note differentiated cloud of points) for each division Dn

MT for both cases. The neural
embedding strategy has more variability in the size of the tasks within a given divi-
sion Dn

MT . In the FMA-NCI case the tasks generated by the neural embedding strategy
are also less balanced and the target module tends to be larger than the source mod-
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Fig. 4: Source and target module sizes in the computed subtasks for AMA-NCIA.
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Fig. 5: Source and target module sizes in the computed subtasks for FMA-NCI.

ule. Nonetheless, on average, the (aggregated) size of the matching tasks in the neural
embedding strategy are significantly reduced as shown in Figure 3.

Computation times. The time to compute the divisions of the matching task is tied to
the number of locality modules to extract, which can be computed in polynomial time
relative to the size of the input ontology [10]. The creation of LexI does not add an
important overhead, while the training of the neural embedding model in the advance
strategy ranges from 21s in AMA-NCI to 224s in SNOMED-NCI. Overall, for example,
the required time to compute the division with 50 matching subtasks ranges from 2s in
AMA-NCIA to 413s in SNOMED-NCI with the naive strategy, and from 24s (AMA-
NCIA) to 647s (SNOMED-NCI) with the neural embedding strategy.

4.2 Evaluation of OAEI systems

In this section we support Hypothesis 2 by showing that the division of the alignment
task enables systems that, given some computational constraints, were unable to com-
plete an OAEI task. We have selected the following five systems from the latest OAEI
campaigns: MAMBA [5], GMap [13], FCA-Map [6], KEPLER [14], and POMap [7].
MAMBA and GMap failed to complete the OAEI 2015 Anatomy track [2] with 8Gb
of allocated memory, while FCA-Map, KEPLER and POMap could not complete the
largest tasks in the largebio track within a 12 hours time-frame (with 16Gb of allocated
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Table 3: Evaluation of systems that failed to complete OAEI tasks in the 2015-2017
campaigns. (*) GMap was tested allocating 8Gb of memory. Time reported in hours (h).

Tool Task Year Matching Naive strategy Neural embedding strategy
subtasks P R F t (h) P R F t (h)

GMap (*) Anatomy 2015
5 0.87 0.81 0.84 1.3 0.88 0.82 0.85 0.7
10 0.85 0.81 0.83 1.7 0.86 0.82 0.84 0.8

MAMBA Anatomy 2015
20 0.88 0.63 0.73 2.3 0.89 0.62 0.73 1.0
50 0.88 0.62 0.73 2.4 0.89 0.62 0.73 1.0

FCA-Map FMA-NCI 2016
20 0.56 0.90 0.72 4.4 0.62 0.90 0.73 3.1
50 0.58 0.90 0.70 4.1 0.60 0.90 0.72 3.0

KEPLER FMA-NCI 2017
20 0.45 0.82 0.58 8.9 0.48 0.80 0.60 4.3
50 0.42 0.83 0.56 6.9 0.46 0.80 0.59 3.8

POMap FMA-NCI 2017
20 0.54 0.83 0.66 11.9 0.56 0.79 0.66 5.7
50 0.55 0.83 0.66 8.8 0.57 0.79 0.66 4.1

memory) [2].11 Note that GMap and MAMBA were also tested in the OAEI 2015 with
14Gb of memory. This new setting allowed GMap to complete the task [2].

Table 3 shows the obtained results in terms of computation times, precision, recall
and f-measure over different divisions Dn

MT computed by the naive and neural embed-
ding strategies. For example, MAMBA was run over divisions with 20 and 50 matching
subtasks (i.e., n ∈ {20, 50}). Note that GMap was tested allocating only 8Gb of mem-
ory as with this constraint it could not complete the task in the OAEI 2015. The results
can be summarized as follows:

i) The computation times are encouraging since the (independent) matching tasks
have been run sequentially without any type of parallelization.

ii) Times also include loading the ontologies from disk for each matching task. This
step could be avoided if subtasks are directly provided by the presented framework.

iii) We did not perform an exhaustive analysis, but memory consumption was lower
than 8Gb in all tests; thus, systems like GMap could run under limited resources.

iv) The increase of matching subtasks is beneficial for FCA-Map, KEPLER and POMap
in terms of computation times. This is not the case for MAMBA and GMap.

v) The division generated by the neural embedding strategy leads to smaller compu-
tation times than the naive strategy counterparts, as expected from Figure 3.

vi) The f-measure is slightly reduced as the size of n increases.

Comparison with OAEI results. There are baseline results in the OAEI for the selected
systems [2], with the exception of MAMBA where the results are novel for the anatomy
track. GMap, if 14Gb were allocated, was able to complete the anatomy task and ob-
tained an f-measure of 0.861. KEPLER, POMap and FCA-Map completed the OAEI
task involving small fragments of FMA-NCI (i.e., the overlapping matching task as in
Definition 4) with an f-measure of 0.891, 0.861 and 0.935, respectively. The f-measure
using the divisions of the matching task is slightly lower for GMap. The results are
much lower for the cases of KEPLER, POMap and FCA-Map, but they cannot be fully
comparable as systems typically reduce their performance when dealing with the whole
largebio ontologies [2]. The authors of FCA-Map have also recently reported results
for an improved version of FCA-Map [15]. They completed the FMA-NCI task in near

11 In a preliminary evaluation round a 4 hours time-frame was given, which was later extended.
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7 hours, with a precision of 0.41, a recall of 0.87 and a f-measure of 0.56. The results
obtained with D20

MT and D50
MT are thus very positive, since both strategies lead to much

better numbers in terms of computation times and f-measure.

5 Related work
Partitioning has been widely used to reduce the complexity of the ontology alignment
task. In the literature there are two major categories of partitioning techniques, namely:
independent and dependent. Independent techniques typically use only the structure of
the ontologies and are not concerned about the ontology alignment task when perform-
ing the partitioning. Whereas dependent partitioning methods rely on both the structure
of the ontology and the ontology alignment task at hand. Although our approach does
not compute (non-overlapping) partitions of the ontologies, it can be considered a de-
pendent technique.

Prominent examples of ontology alignment systems including partitioning tech-
niques are Falcon-AO [16], COMA++ [17] and TaxoMap [18]. COMA++ and Falcon-
AO perform independent partitioning where the clusters of the source and target ontolo-
gies are independently extracted. Then pairs of similar clusters (i.e., matching subtasks)
are aligned using standard techniques. TaxoMap [18] implements a dependent tech-
nique where the partitioning is combined with the matching process. TaxoMap proposes
two methods, namely: PAP (partition, anchor, partition) and APP (anchor, partition, par-
tition). The main difference of these methods is the order of extraction of (preliminary)
anchors to discover pairs of partitions to be matched (i.e., matching subtasks).

The above approaches, although they present interesting results, did not provide any
guarantees about the coverage (as in Definition 2) of the discovered partitions. In [19]
we performed a preliminary study with the PBM method of Falcon-OA, and the PAP
and APP methods of TaxoMap. The results in terms of coverage with the largebio tasks
were very low, which directly affected the results of the evaluated systems. These rather
negative results encouraged us to work on the approach presented in this paper.

Our dependent approach, unlike traditional partitioning methods, computes over-
lapping self-contained modules (i.e., locality modules). Locality modules guarantee the
extraction of all semantically related entities for a given signature, which enhances the
coverage results and enables the inclusion of the relevant information required by an
alignment system. It is worth mentioning that the need of self-contained and covering
modules was also highlighted in a preliminary work by Paulheim [20].

6 Conclusions and future work
We have developed a novel framework to split the ontology alignment task into several
matching subtasks based on a lexical index and locality modules. We have also pre-
sented two clustering strategies of the lexical index. One of them relies on a simple split-
ting method, while the other relies on a fast (log-linear) neural embedding model. We
have performed a comprehensive evaluation of both strategies. The achieved high cov-
erage (i.e., minimal information loss) in combination with the reduction of the search
space and the small computation times suggests that the computed divisions based on
LexI are suitable in practice. The division of the matching task allowed us to obtain
results for five systems which failed to complete these OAEI matching tasks in the past.

Both the naive and the neural embedding strategies require the size of the number
of matching subtasks or clusters as input. The (required) matching subtasks may be
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known before hand if, for example, the matching tasks are to be run in parallel in a
number of available CPUs. For the cases where the resources are limited or where a
matching system is known to cope with small ontologies, we plan to design an algo-
rithm to estimate the number of clusters so that the size of the matching subtasks in the
computed divisions is appropriate to the system and resource constraints.

As immediate future we plan to extend the conducted evaluation to better understand
the impact of the division over different ontology alignment systems. We also aim at
studying different notions of context tailored to the ontology alignment task.
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Abstract. Interactive Ontology Matching considers the participation
of domain experts during the matching process of two ontologies. An
important step of this process is the selection of mappings to submit
to the expert. These mappings can be between concepts, attributes or
relationships of the ontologies. Existing approaches define the set of
mapping suggestions only in the beginning of the process before expert
involvement. In previous work, we proposed an approach to refine the set
of mapping suggestions after each expert feedback, benefiting from the
expert feedback to form a set of mapping suggestions of better quality.
In this approach, only concept mappings were considered during the
refinement. In this paper, we show a new approach to evaluate the benefit
of also considering attribute mappings during the interactive phase of
the process. The approach was evaluated using the OAEI conference
data set, which showed an increase in recall without sacrificing precision.
The approach was compared with the state-of-the-art, showing that the
approach has generated alignment with state-of-the-art quality.

Keywords: ontology matching, Wordnet, interactive ontology matching,
ontology alignment, interactive ontology alignment

1 Introduction

Ontology matching aims to discover correspondences (mappings) between entities
of different ontologies [1]. One of its strategies is the interactive one. Interactive
ontology matching approaches consider the knowledge of domain experts during
the matching process. The interaction with the user can be used to improve the
results over fully automatic approaches [2]. An important step of this strategy is
the definition of the set of mappings to be submitted to the expert for feedback.
This set to be submitted to the expert was called, in this paper, set of mapping
suggestions. Existing approaches [3][4][5][6][7][8][9][10][11][12][13][14][15] define
this set before the interaction with the expert begins; thus, the approaches do
not use expert feedback to select mappings to the set of mapping suggestions.
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In previous work [16], we combined a structural and a semantic technique
for interactively considering the expert feedback in the revision of the set of
mapping suggestions, but taking into account only concept mappings. However,
considering also the properties of these concepts may bring a better integration
of the ontologies.

In this work, we propose ALINAttr to evaluate the benefit of also considering
attribute mappings during the interactive strategy. The attribute mappings
suggested are associated with the concept mappings evaluated by the expert;
therefore, they are more prone to be correct and potentially increase the recall
compared with existing strategies that automatically include attribute mappings
[14][15].

The evaluation results evidenced the benefit of considering attributes during
the interactive phase, using a heuristic for choosing the attribute mappings in-
spired on the Stable Marriage Problem [17][18]. In addition, the current approach
was compared to the state-of-the-art.

The rest of this paper is organized as follows. Section 2 reviews interactive
ontology matching. Section 3 presents the approach, which is called ALINAttr,
and its implementation. Section 4 describes our evaluation methodology and
discusses experimental results. Finally, section 5 concludes the paper.

2 Interactive Ontology Matching

An interactive ontology matching process is an ontology matching process con-
sidering the involvement of domain experts. In this paper, we consider this
involvement as the domain experts providing feedback about mappings of ontolo-
gies entities, that is, mapping are presented to the expert who replies which of
them should be accepted or rejected. Therefore, the approach takes advantage of
the knowledge of domain experts towards finding an alignment.

The most relevant steps in this process are the selection of the mappings to
receive expert feedback and the propagation of this feedback. Furthermore, the
propagation may also impact the mappings selected for future expert feedback.
The different existing approaches for interactive ontology matching vary in
techniques for these two steps.

In the selection step, the existing approaches of interactive ontology matching
use similarity metrics to select the set of mapping suggestions. The similarity
metric is a function that returns a numeric value, indicating the similarity between
the two entities of a mapping, according to some criterion. An approach can
associate one or several similarity values, each of a different similarity metric, to
a mapping.

In the selection step, the approaches can use multiple matchers, algorithms
that receive, as input, entities and generate, as output, mappings. Each matcher
can use different similarity metrics, among other features. At the end of the selec-
tion step, the results of these matchers can be combined and filtered generating
the set of mapping suggestions [13].
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In the propagation step, user feedback can be used in different ways. Some
approaches automatically classify some mapping suggestions using a threshold, a
value that indicates whether a mapping should be automatically accepted (in
some cases rejected) if its similarity values are greater (or smaller) than it. Expert
feedbacks are used to calculate this threshold [3][4][5][6][7]. Some approaches
automatically classify some mappings of the set of mapping suggestions using a
classifier. These approaches use expert feedbacks to create the training dataset for
learning the classifiers [8][9]. Some approaches use expert feedbacks to modify the
weight of similarity metrics [5][6][10] or to directly change the value of similarity
metrics [11][12]. Expert feedbacks are also used to remove mapping suggestions
from the set of mapping suggestions [13][14][15].

3 The ALINAttr Approach

In this section, we describe our approach, ALINAttr, for interactively matching
two ontologies. ALINAttr, at each interaction, uses expert feedback to remove
mapping suggestions and include new attribute mapping suggestions into the set
of mapping suggestions.

The ALINAttr top-level algorithm (Algorithm 1) starts with a pair of ontolo-
gies (O and O′) and a set of similarity metrics (SoM). Then, it splits in two main
steps. The first one defines the initial mapping suggestions (SMS) and the initial
alignment (A) (line 1 to line 17 of Algorithm 1) and the second one interactively
receives expert feedback to a mapping suggestion and propagate it (lines 18 to
29 of Algorithm 1).

The initialization step starts collecting all concepts of ontology O (SCO)
and O′ (SCO′) and then for each similarity metric (SimM) a set of mapping
suggestions is found using the simple matching algorithm (line 5 of Algorithm
1). This algorithm treats the matching problem as a stable marriage problem
with size list limited to 1 [17][18], i.e., the algorithm only selects one mapping if
similarity value between the two entities of the mapping is the highest considering
all the mappings with at least one of these entities (Algorithm 2). At this moment
only concept mappings, not property mappings, are chosen. The initial set of
mapping suggestions is defined as the union of the mapping suggestions found for
each similarity metric (lines 6 to 10 of Algorithm 1). The mappings in which their
entity names are the same are placed in the alignment and removed from the
set of mapping suggestions (lines 12 to 17 of Algorithm 1). Moreover, ALINAttr

inserts into the set of mapping suggestions attribute mappings associated with
these concept mappings placed in the alignment (line 15 of Algorithm 1). The
approach uses the structural attribute selection technique, which will be explained
later, to choose the attribute mappings.

After defining the initial set of mapping suggestions and the initial alignment,
ALINAttr moves to the interactive step, in which the mapping suggestions
receive the feedback of the expert (line 20 of Algorithm 1). If the expert accepts
a mapping suggestion, then it is included in the alignment (line 23 of Algorithm
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Algorithm 1 ALINAttr Top-level Algorithm

Input: O, O′, SoM
Output: A

/*Initialization step*/
1: A = ∅; SMS = ∅;
2: SCO ← all concepts of O;
3: SCO′ ← all concepts of O′;
4: for each SimM ∈ SoM do
5: M ← Simple Matching Algorithm(SCO,SCO′,SimM);
6: for each m(e, e′) ∈ M do
7: if m(e, e′) �∈ SMS then
8: add m(e, e′) to SMS;
9: end if

10: end for
11: end for
12: for each m(e, e′) ∈ SMS do
13: if name of e = name of e′ then
14: move m(e, e′) from SMS to A;
15: SMS ← Structural Attribute Selection Technique(m(e, e′),SoM);
16: end if
17: end for

/*Interactive step*/
18: while SMS �= ∅ do
19: select m(e, e′) ∈ SMS with the biggest sum of similarity metrics;
20: receive expert feedback on m(e, e′);
21: remove m(e, e′) from SMS;
22: if m(e, e′) is accepted then
23: add m(e, e′) to A;
24: SMS ← Remove Mappings with Equal Entities(SMS,m(e, e′));
25: if m(e, e′) is a concept mapping then
26: SMS ← Structural Attribute Selection Technique(m(e, e′),SoM);
27: end if
28: end if
29: end while
30: return A

1). ALINAttr simulates the expert feedback by accessing a reference alignment.
Session 4 further explains the reference alignment.

Up to this point, as we use several similarity metrics and the set of mapping
suggestions is the union of the formed sets made for each metric there may be
mappings with one of the entities equal. Since we want to generate a one-to-one
alignment, once one of these mappings is accepted, the others will be rejected
and removed from the set of mapping suggestions (line 24 of Algorithm 1) It is
worth noting that ALINAttr uses expert feedback to reject these mappings. If

28



Algorithm 2 Simple Matching Algorithm

Input: SE, SE′, SimM
Output: M
1: for each e ∈ SE do
2: maxe′ ← max

e′∈SE′
SimM(e, e′);

3: maxe ← max
e′′∈SE

SimM(e′′,maxe′);

4: if e = maxe then
5: add m(e,maxe′) to M;
6: end if
7: end for
8: return M;

ALINAttr would automatically reject these mappings, it would probably make
mistakes.

At this point, the ALINAttr approach uses the structural attribute selection
technique which will try to select, based on expert feedback, the best attribute
mappings to be included into the set of mapping suggestions. The assumption
behind the structural attribute selection technique is that if the attributes in an
attribute mapping are attributes of concepts of a concept mapping, then this
attribute mapping is more likely to be correct.

Algorithm 3 describes the structural attribute selection technique. It considers
all attributes of the concepts of the input accepted mapping (lines 1 and 2 of
Algorithm 3) and for each similarity metric it uses the simple matching algorithm
to define attribute mapping suggestions. The output of the algorithm is the union
of the set of attribute mappings found for each similarity metric.

Algorithm 3 Structural Attribute Selection Technique

Input: m(c, c′),SoM
Output: SMS
1: SA ← all attributes of c;
2: SA′ ← all attributes of c′;
3: for each SimM ∈ SoM do
4: M ← Simple Matching Algorithm(SA,SA′,SimM);
5: for each m(a, a′) ∈ M do
6: if m(a, a′) �∈ SMS then
7: add m(a, a′) to SMS;
8: end if
9: end for

10: end for
11: return SMS
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Instead of selecting mappings between concepts of the two ontologies, like
in the ALINAttr top-level algorithm, the structural attribute selection technique
(Algorithm 3) uses the simple matching algorithm (Algorithm 2) to select map-
pings between attributes of the concepts in an accepted mapping. The use of
the simple matching algorithm proved to be efficient in choosing the attribute
mappings to be inserted in the set of mapping suggestions, as will be shown later
in this paper.

ALINAttr was implemented in Java using the following Java APIs: Stanford
coreNLP API [19] with a routine to put a word in canonical form; Simmetrics API
[20], with string-based similarity metrics; HESML API [21], with Wordnet [22]
based linguistic metrics; And the Alignment API [23], which contains routines
for handling ontologies written in OWL. The most frequent synsets of words
are used to calculate semantic similarities. To find this synset is used the WS4J
API3.

4 Experimental Evaluation

In this section, we evaluate our approach for interactive ontology matching
considering attribute mappings.

4.1 Configuration of the experiment

The evaluation is designed towards answering three research questions:

RQ1: Does the consideration of attribute mappings improve the quality of
the final alignment?

RQ2: Does the use of expert feedback for the inclusion of attribute mappings
in the set of mapping suggestions improve the quality of the final alignment?

RQ3: Does the simple matching algorithm between the attributes of the
concepts improve the quality of the final alignment?

The quality of an alignment is generally measured by F-measure, which is the
harmonic mean between recall and precision. In an interactive approach another
quality metric should be taken into account, the number of interactions with the
expert that was necessary to achieve the alignment. The lower the number of
interactions, the better. Thus, the two quality metrics were used to answer the
research questions in this work.

3 ’WS4J’. Available at https://github.com/Sciss/ws4j Last accessed on Jan, 16, 2018.
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Algorithm 4 Attribute Inclusion Technique for ALINAttrAuto

Input: O, O′, SoM
Output: SMS
1: SA ← all attributes of O;
2: SA′ ← all attributes of O′;
3: for SimM ∈ SoM do
4: M ← Simple Matching Algorithm(SA,SA′,SimM);
5: for each m(e, e′) ∈ M do
6: if m(e, e′) �∈ SMS then
7: add m(e, e′) to SMS;
8: end if
9: end for

10: end for
11: return SMS

Algorithm 5 Structural Attribute Selection Technique for ALINAttrFBack

Input: m(c, c′),SoM
Output: SMS
1: SA ← all attributes of c;
2: SA′ ← all attributes of c’;
3: for each a ∈ SA do
4: for each a′ in ∈ SA′ do
5: add m(a, a′) to SMS;
6: end for
7: end for
8: return SMS

Towards answering these questions, some variations of ALINAttr were con-
sidered:

• ALINWAttr: This variation didn’t take into account attribute mappings, i.e.,
only concept mappings compose the set of mapping suggestions. For that, the
ALINWAttr variation removes the calls for the structural attribute selection
technique (Algorithm 3) in line 15 and from line 25 to line 27 of the ALINAttr

top-level algorithm (Algorithm 1).
• ALINAttrAuto: This variation includes the attribute mappings only in the ini-

tialization step, i.e., not considering expert feedback. For that, theALINAttrAuto

variation removes the calls for the structural attribute selection technique
(Algorithm 3) in line 15 and from line 25 to line 27 in the ALINAttr top-level
algorithm (Algorithm 1) and includes a call for attribute inclusion tech-
nique for ALINAttrAuto (Algorithm 4) in the ALINAttr top-level algorithm
(Algorithm 1) after line 17.

• ALINAttrFBack: This variation includes all attribute mappings related to
the accepted concept mapping into the set of mapping suggestions, i.e., this
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variation doesn’t use the simple matching algorithm (Algorithm 2) to reduce
the number of included attribute mappings. For that, the ALINAttrAuto

variation makes a call to the structural attribute selection technique for
ALINAttrFBack (Algorithm 5) instead of a call to the structural attribute
selection technique (Algorithm 3) in lines 15 and 26 of the ALINAttr top-level
algorithm (Algorithm 1).

OAEI provides several data sets, which are sets of ontologies, to be used in
the evaluation of ontology matching tools. From the data sets provided by OAEI,
the only one that contained documentation of attributes and that had size that
allowed the execution of ALINAttr is the conference data set. Therefore, the
conference data set was used to evaluate the approach. OAEI provides reference
alignments, which are alignments that contains the mappings that are believed
to be correct, between the pairs of the ontologies of the conference data set. In
the ALINAttr approach, a reference alignment query simulates the consult to
the expert. The selection of the similarity metrics was based on two criteria:
available implementations and the result of these metrics in assessments, such as
those carried out in [24] and [25]. Based on [24] and [25], ALINAttr uses Jaccard,
Jaro-Wrinkler and n-gram string-based metrics and the Resnick, Jiang-Conrath
and Lin linguistic metrics. Resnick, Jiang-Conrath and Lin are metrics that
require a taxonomy to be computed [24], this taxonomy being provided, in this
algorithm, by Wordnet [22].

4.2 Results

The results in terms of number of interactions (NI), precision, recall and F-measure
can be seen in Table 1.

Table 1. Comparison between different ALINAttr variations executions with Conference
Data Set

Total of questions NI Precision F-measure Recall

ALINWAttr 1183 582 0.921 0.783 0.692
ALINAttrAuto 1574 739 0.905 0.809 0.741
ALINAttrFBack 1321 631 0.924 0.817 0.741

ALINAttr 1242 614 0.924 0.815 0.738

In each interaction with the expert, up to three mapping suggestions can be
presented, since each mapping suggestion has one entity in common with another
mapping suggestion of the interaction [26].

Comparing ALINWAttr with the other three approaches, that considered
attributes mappings, we can see the improvement in the recall, which was expected
since other mappings were evaluated. It is also possible to notice an increase in
the number of interactions with the expert. Therefore, the inclusion of attribute
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mappings without taking into account the expert feedback generates an increase
in the F-measure, but also an increase in the number of interactions with the
expert leading to an inconclusive answer to the RQ1 question.

Comparing ALINAttrAuto, which did not take into account the feedback of the
expert, with ALINAttrFBack and ALINAttr, which considered it, we can observe
an improvement in the F-measure and a decrease in the number of interactions
with the expert. This demonstrates that using expert feedback is a good practice,
answering positively RQ2. It is important to note that it was assumed that the
expert did not make mistakes. Therefore, these results are valid when the expert
makes no mistakes.

Addressing RQ3, i.e., comparing ALINAttr with ALINAttrFBack towards
evaluating the benefit of reducing the number attribute mappings by using the
simple matching algorithm, we observed a decrease in the number of interactions
with almost no loss of quality of the alignment, what answer positively to the
RQ3 question.

4.3 Comparison between tools that participated in the OAEI
interactive conference track

Table 2. Comparison between some the tools of OAEI 2017 Conference Data Set
Interactive Tracking and ALINAttr and ALINAttr+Syn with 100% hit rate

Number of questions NI Precision F-measure Recall

ALINAttr 1242 614 0.924 0.815 0.738
AML [14][27] 270 271 0.912 0.799 0.711

LogMap [15][28] 142 82 0.886 0.723 0.610
XMap [29][30] 4 4 0.837 0.678 0.57
ALINAttr+Syn 443 205 0.918 0.782 0.692

OAEI annually provides a comparison between ontology matching tool perfor-
mances, and one ontology group used is the conference dataset, used in this paper
[31]. Table 2 depicts a comparison between some the tools that participated in
the OAEI 2017 interactive conference track and ALINAttr and ALINAttr+Syn.

The tools AML, LogMap, and XMAP (Table 2) are interactive ontology
matching tools. This tools, like ALINAttr, include attribute mappings in the
generated alignment but this inclusion is done in a non-interactive way, not
taking into account the expert feedback.

The Table 2 depicts results with the expert hitting 100% of the answers. The
results showed that ALINAttr generated a high level result when running the
conference data set when the expert hit 100% of the answers, but with a very
large number of interactions when compared to the other tools.

To verify the quality of ALINAttr if it uses a number of interactions more
compatible with the other tools, two techniques, described in [16], were added to
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ALINAttr. In [16], these techniques proved to be very efficient in reducing the
number of interactions without significantly reducing quality. The inclusion of
the two techniques generates the results shown on line ’ALINAttr+Syn’ of Table
2 and shows that, as the quality as the number of interactions, ALINAttr+Syn is
good when compared to other tools.

5 Conclusion

Ontology matching is a necessary step for establishing interoperation among
semantic web applications. Its purpose is to discover mappings between the
entities of at least two ontologies. The quality of an alignment generated by a
matching approach is generally measured by F-measure, which is the harmonic
means between recall and precision. Another quality metric, when the ontology
matching process is interactive, is the number of interactions with the expert.

An important step in the process of interactive ontology matching is the
definition of the set of mapping suggestions, that is, the set of mappings that
will be shown to the expert. The problem seen in this paper is how to efficiently
include attribute mappings into the set of mapping suggestions. The ALINAttr

approach includes attribute mappings taking advantage of the expert feedback,
of the structures of the involved ontologies, as well as the use of the simple
matching algorithm. Experimental results showed the benefit of the approach
when assuming that the expert does not make mistakes.

In addition, the quality of the alignment provided by ALINAttr was compared
to state of the art tools that have participated in the track of interactive ontology
matching in OAEI 2017. The results obtained show that ALINAttr generates
an alignment with a good quality in comparison to other tools, with regard
to precision, recall and F-measure, when the expert never makes mistakes, but
with a number of interactions far superior to other tools. When performed with
techniques to decrease the number of interactions, the number of interactions
was compatible with that of the other tools, preserving a good quality.

As future work, one interesting direction is to explore how to reduce the
negative effects of expert mistakes. The ALINAttr generates good results when
the expert does not make mistakes, but because the approach uses the expert
feedback as the input of the structural attribute selection technique, probably
incorrect attribute mappings will be generated when the expert makes a mistake.
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Abstract. In this paper, we examine the possibility of using data col-
lected from millions of tables on the Web to extend an ontology with new
attributes. There are two major challenges in using such a large num-
ber of potentially noisy tables for this task. First, table columns need to
be matched to create groups of columns that represent a new (or exist-
ing) attribute for a particular class in the ontology. Second, the column
groups need to be ranked according to their “usefulness” in augmenting
the ontology. We show several approaches to addressing these challenges
and report on the results of our extensive experiments using Web Tables
from the Web Data Commons corpus, and using the DBpedia Ontology
as our target ontology.

1 Introduction

The Web is a vast source of valuable knowledge that can be used to extend
or augment a given ontology. Knowledge extraction from the Web is a well-
studied problem and an active area of research [5, 7, 11]. While such knowledge
is often extracted from textual (or semi-structured) contents using information
extraction and wrapper induction techniques, there have also been attempts in
using the structured data that is exposed on web pages as HTML tables [5, 14,
13].

In this paper, we examine the possibility of using Web tables to augment
a given ontology with a new set of attributes. Our hypothesis is that for each
class in the given ontology, there are tables on the Web describing instances of
the class and their various attributes. Further, not only a large number of these
attributes are not already captured in the ontology, but many are not considered
“useful”, i.e., may be irrelevant, inaccurate, or redundant.

The approach we take in this work is a two-step process. First, tables are
matched among each other and to the target ontology, to group columns that
refer to the same attribute and align them with classes and existing attributes in
the target ontology. The second step ranks the column groups based on a measure
of quality or usefulness of the group in augmenting the existing attributes in
the target ontology. We perform an empirical study of the performance of this
approach in using Web Tables extracted from the Common Crawl3 to augment
the properties in DBpedia ontology.

3 http://commoncrawl.org/
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2 Related Work

The pioneering work using Web tables to discover new attributes was done by
Cafarella et al. in 2008 [3]. They create the so-called “attribute correlation statis-
tics database (AcsDb)” which contains attribute counts based on the column
headers in a large corpus of Web tables. From these counts, they estimate at-
tribute occurrence probabilities. Applications for this database are a schema
auto-complete function, synonym generation and a tool enabling easy join graph
traversal for end-users. We extend their approach as we use clusters derived from
matched columns instead of columns headers as basic unit for the statistics.

Das Sarma et al. [4] use label- and value-based schema matching methods
to map Web tables to a given query table. For their “Schema Complement”
operation they consider all unmapped columns and rank them using the AcsDb
and the entity coverage of the input table provided by the user. Their goal is to
rank complete tables by their usefulness for the complement task. While they
use a matching of Web table columns to the query table to rule out existing
attributes, when it comes to finding new attributes, they fall back to the AcsDb
approach. In contrast to that, we calculate attribute statistics based on matched
column clusters.

Lee et al. [9] extract attributes from Probase [15], Web documents, a search
engine query log and DBpedia [1] and estimate their typicality using frequencies
of class/attribute and instance/attribute occurrences. The extraction process is
completely label-based. For the merging of attributes, they use synonyms derived
from Wikipedia.

Several systems have been proposed to extend a user-specified query table
with content from a corpus of Web tables [2, 16, 10]. For the task of finding
new attributes, the user can specify a keyword query which describes the new
attribute, so no ranking is required. Alternatively, the InfoGather system [16] and
the Mannheim SearchJoin Engine [10] can generate additional attributes based
on a schema matching, but both systems do not rank the resulting attributes
based on a relevance score.

3 Approach

Our goal is to design an ontology augmentation solution to find new attributes
for an ontology using an external source of structured data, such as a corpus
of web tables. The general idea followed by existing approaches is to count at-
tribute occurrences in the table corpus and use them to estimate probabilities
for encountering these attributes. Based on these probabilities, several different
metrics can be defined to assess the value of adding an attribute to the ontology
(see Section 3.3). These metrics measure how likely a new attribute is to co-occur
with existing attributes (in the ontology) or how consistent the resulting schema
would be if the new attribute is added to the ontology.

Existing methods often consider the use-case of extending a user-provided
data source in an ad-hoc setting. In the case of extending an ontology, however,
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a variety of matching methods can be used to align the schema of the Web
tables with the ontology. We propose to incorporate the mapping created by
such methods by calculating all co-occurrence frequencies based on the mapping.

The relevance of new attributes is measured based on how frequently they
co-occur with known attributes. Using exact string matching, these frequencies
can be obtained from a corpus of web tables by counting, as shown by the ap-
proaches using the AcsDb [3]. When using fuzzy matching methods, however,
the attributes must first be mapped among each other and then be partitioned
according to their similarity values. This results in attribute clusters whose fre-
quency can be determined by adding up the frequencies of all attributes in the
cluster.

3.1 Identifying Equal Attributes

We compare several different approaches of defining attribute similarity, which
will be introduced in the following.

Equality of Known Attributes. For the attributes that already exist in the
ontology, we create a mapping from the web tables to the ontology. For the
results in this paper, we use T2K Match [12] to map Web Tables to DBpedia
ontology. This mapping defines which columns in the web tables correspond to
which property in the ontology. By transitivity, all attributes which correspond
to the same property are equal.

Equality of Unknown Attributes. Based on the mapping produced by T2K
Match, we can group the web tables by their class in the knowledge base (block-
ing step) and then match all un-mapped attributes among each other. For at-
tributes which do not exist in the ontology, we compare the following schema
matching approaches:

Label-based Matching. Using the column headers of web tables as features, we
evaluate using exact column header equality to find matching columns. We re-
fer to this approach as “Exact” in our experiments. We further evaluate “String
Similarity”, which calculates the similarity of the column headers using the Gen-
eralised Jaccard Similarity with Edit Distance as inner similarity function.

Instance-based Equality. We further evaluate similarities which are created by
the instance-based schema matcher of the Helix System [6]. We refer to the
configuration using cosine similarity as “Helix Cosine” and to the configuration
using containment similarity as “Helix Containment”.

Key/Value-based Equality. The Key/Value-based equality “Key/Value Match-
ing” compares only those values of two columns, which are mapped to the same
instance in the ontology. This means, two columns are equivalent only if they
contain similar values for the same instances. To obtain the similarity values, we
use the value-based matching component of T2K Match.
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3.2 Similarity Graph Partitioning

After the calculation of the similarity values, we must decide which set of columns
refers to the same attribute. For attributes that already exist in the ontology,
all columns with a similarity value which is above a threshold are considered to
be equal to the existing attribute. However, for attributes which do not exist
in the ontology, there is no such central attribute. We hence evaluate different
partitioning strategies [8] for the graph that is defined by the similarities among
the columns of the web tables.

Connected Components. We calculate the connected components on the similar-
ity graph. Each resulting component is a cluster.

Center. The Center algorithm uses the list of similarities sorted in descending
order to create star-shaped clusters. The first time a node is encountered in the
sorted list, it becomes the center of a cluster. Any other node appearing in a
similarity pair with this node is then assigned to the cluster having the former
node as center.

MergeCenter. The MergeCenter algorithm is similar to the Center algorithm,
but has one extension. This extension is that if a node is similar to the centers
of two different clusters, these clusters are merged together.

3.3 Attribute Ranking

After defining attribute equality, we can now specify how the relevance of new
attributes is determined. All compared ranking methods are defined based on
attribute cooccurrence probabilities, which we define according to Cafarella et
al. [3].

Let a schema s ∈ S be a set of attributes and S be the set of all schemata. A
table has this schema if its columns correspond to the attributes (based on the
schema mapping), regardless of their order and column header. Let freq(s) be
the number of tables with schema s in the corpus and schema freq(a) be the
number of tables that contain attribute a:

schema freq(a) =
∑

{s|s∈S∧a∈s}
freq(s) (1)

Then the probability of encountering a in any table in the corpus is

p(a) =
schema freq(a)∑

s∈S freq(s)
(2)

The number of tables that contain two attributes a1, a2 is defined analogously
as schema freq(a1, a2). The conditional probability of seeing attribute a1 given
a2 is
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p(a1|a2) =
schema freq(a1, a2)

schema freq(a2)
(3)

And the joint probability is

p(a1, a2) =
schema freq(a1, a2)∑

s∈S freq(s)
(4)

Attribute Ranking Methods. We now define the methods that are used to
calculate a score for each attribute, which is then used to rank all unknown
attributes. A higher score indicates a higher relevance of the attribute for the
schema extension task.

Conditional Probability based on Class. Given the class C in the ontology, how
likely is it to encounter the attribute a [9]. If each schema is mapped to a class
C and schema freq(a, C) is the number of tables mapped to C that contain a,
we can define the conditional probability of encountering an attribute based on
the class as in Equation 5, where SC is the schema of class C. This measure
only considers the class mapping of the web tables, irrespective of the presence
of known attributes in the same web table.

p(a|C) =
schema freq(a, C)∑

a2∈SC
schema freq(a2, C)

(5)

Schema Consistency. This measure reflects the likelihood of seeing a new at-
tribute together with the existing attributes [4]. It is based on the conditional
probability derived from the cooccurrence statistics. This measure considers all
known attributes which co-occur with the new attribute a, i.e., the more known
attributes co-occur, the higher the score.

SchemaConsistency(a, s) =
1

|s| ·
∑
a2∈s

p(a|a2) (6)

Schema Coherency. Based on Point-wise Mutual Information (PMI), schema
coherency is the average of the PMI scores of all possible attribute combinations
[3]. The PMI score of two attributes is positive if the attributes are correlated,
zero if they are independent, and negative if they are negatively correlated.

SchemaCoherency(a, s) =
1

|s| ·
∑
a1∈s

npmi(a1, a) (7)

npmi(a1, a2) = − 1

log p(a1, a2)
· log p(a1, a2)

p(a1) · p(a2)
(8)
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4 Experiments

4.1 Experiments on T2D Gold Standard

Our first set of experiments are performed on the T2D Gold Standard [12], which
was originally developed to evaluate systems for the web table to knowledge base
matching task (using DBpedia as the knowledge base).

Identifying equal Attributes We evaluate the different matching and parti-
tioning approaches introduced in Section 3.1. The gold standard contains map-
pings from the web table columns to properties in the ontology. As we are in-
terested in finding partitions of columns which represent the same attribute, we
create one partition for each property in the ontology, which contains all columns
which are mapped to this property. We then apply the different methods to all
columns of the web tables in the gold standard and measure the degree to which
we can reconstruct these partitions.

Figure 1 shows a comparison of the different partitioning approaches. The x-
axis depicts the similarity threshold and the y-axis shows the resulting F1-score.
We can see that the best performance is achieve with rather low thresholds and
the Center algorithm.

Fig. 1. Evaluation of similarity graph partitioning methods.

Figure 2 shows the quality of the Clusterings using different matching ap-
proaches. Again, the x-axis depicts the similarity threshold and the y-axis shows
the resulting F1-score. We see that the label-based matching with string simi-
larity outperforms the instance-based approaches. The reason for the good per-
formance of the label-based approach is that the web tables are grouped by the
class in the ontology to which they are mapped, and hence column headers are
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in most cases not ambiguous. The rather bad performance of the instance-based
approaches is explained by the fact that web tables usually only have very few
rows and there might not be enough overlap among the columns from different
tables.

Fig. 2. Evaluation of matching methods.

Combining the instance-based and label-based approach into a hybrid matcher
did not significantly improve the performance compared to the label-based ap-
proach. Closer inspection of the results showed that this is due to the used gold
standard, which contains mostly tables with columns labels of high quality.

Attribute Ranking For a subset of the T2D tables, those mapped to the coun-
try class, we manually label all columns with either “useful” or “not useful”. In
total, this subset contains 207 columns, of which 86 are annotated as “useful”. We
then evaluate the performance of the different ranking methods. Figure 3 shows
the precision@K and recall@K achieved by the different ranking approaches. In
addition to the ranking methods described in Section 3.3, we further evaluate
each of the ranking methods in a variant that is weighted by PageRank. The
intuition is that web pages with a high PageRank likely contain useful content
and hence the web tables on these pages also contain relevant attributes. The
used PageRank values are obtained from the publicly available Common Crawl
WWW Ranking.4 For each partition of columns, we use the maximum PageR-
ank of all source web pages and multiply it with the score that was calculated by
the ranking method. Among the different ranking methods, schema consistency
performs best, followed by schema coherency. The variations with PageRank

4 http://wwwranking.webdatacommons.org/
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perform worst, which might be caused by the rather small number of web sites
in the gold standard.

Fig. 3. Precision@K and Recall@K achieved by the different ranking methods using
the Key/Value matcher.

Remove one Attribute Experiment The assessment of the usefulness of
an attribute can be subjective. Hence we design another experiment, where we
remove one existing attribute from the ontology for several classes. As this at-
tribute was already existing, we can objectively say that it is useful. We then
measure the quality of the first cluster that resembles this attribute and also
the rank at which we can find it in the output. We use the following classes and
attributes in this experiment: Company (industry), Country (population), Film
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(year), Mountain (height), Plant (family), VideoGame (genre). The left chart in
Figure 4 shows the average rank of the first attribute cluster which matches the
removed attribute over all ranking methods by matcher. The bar “No Match-
ing” shows the result of neither using correspondences to the ontology nor any of
the matching approaches, i.e., attributes are equal only if their column headers
match exactly. The results without prior mapping knowledge show the impor-
tance of matching attributes before calculating the ranking functions. Without
mapping knowledge, attribute frequencies are under-estimated, and the respec-
tive attribute is ranked too low. The right chart in Figure 4 shows the average
rank over all matching methods by ranking method. Again, the schema consis-
tency ranking performs best and the variations including PageRank consistently
perform worse.

Fig. 4. Rank of the first cluster matching the removed attribute. Left: by matcher.
Right: by ranking method.

4.2 Experiments on WDC Table Corpus

We now repeat our experiments on the WDC Web Tables Corpus 20125, which
contains 147 million relational web tables. To give an overall impression of the
full corpus, Figure 5 shows the number of new columns and clusters that we can
generate for selected classes. These numbers show the large amount of potentially
new attributes that can be found in the corpus.

Attribute Ranking As we have no gold standard for the full corpus, we man-
ually annotate the top 15 ranked clusters for each ranking method for several
classes with either “useful” or “not useful”. Figure 5 shows the performance
of each method averaged over all classes in terms of precision@15. The results
show again that the schema coherency and consistency measures outperform the
conditional measure. This indicates that attribute co-occurrence is a stronger
signal than pure frequency of attributes, even if conditioned with a class from
the ontology.

5 http://webdatacommons.org/webtables/index.html
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Fig. 5. Left: Number of attributes and clusters, that do not exist in the ontology. Right:
Manual evaluation of the usefulness of new attributes.

Remove one Attribute Experiment Again, to have a more objective view on
the results, we remove one attribute from DBpedia as before and find the top-
ranked attribute cluster which matches the removed attribute. The left chart
in Figure 6 shows the rank of these clusters by matcher and the right chart
by ranking method. Concerning the matching approach, we now find that the
label-based and key/value-based methods achieve comparable results. The dif-
ference here to the experiment on the gold standard is that we take into account
a much larger number of tables and hence have more variety and a more realistic
sample of the data quality. If we compare both of the matching approaches to
a baseline approach (“No Matching”), which does not use the prior knowledge
of the mappings to the ontology, we can again see that the ranking results are
worse. Looking at the different ranking methods, we see a result that differs
from the previous results. The Conditional Probability ranking now performs
best. A possible explanation is that the attributes that we removed are quite
common. Hence, many tables have such attributes and the ranking by frequency
is sufficient. Another interesting fact is that now the PageRank makes a differ-
ence. Although it is still worse than without, we can presume that a reasonable
evaluation of a ranking method incorporating the PageRank requires the use of
a large corpus.

Fig. 6. Left: Rank of the first cluster matching the removed attribute by matcher.
Right: Rank of the first cluster matching the removed attribute.
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5 Conclusion & Future Work

In summary, the results of our experiments show that:

– It is feasible to use a large corpus of structured data from the Web to aug-
ment an ontology. In particular, we are able to augment a general-domain
ontology such as DBpedia with millions of Web Tables extracted from the
Web. We manually verified that a number of attributes ranked highly by our
algorithms were strong candidates for augmenting the DBpedia ontology,
and such augmentations would enable new applications of the ontology.

– Our results comparing different algorithms were mixed and without a clear
winner across all the experiments. The size of the gold standard and the
classes chosen for manual verification clearly affected the relative perfor-
mance of the algorithms. This calls for larger benchmarks, more comprehen-
sive evaluation, and hybrid/ensemble methods that effectively take advan-
tage of the benefits of each of the algorithms.

Future work also includes: 1) extending our framework to include more ad-
vanced matching techniques particularly from recent work in ontology matching
2) evaluation on other sources of structured data (e.g., open data portals such
as data.gov), and other ontologies 3) Extending the augmentation to relations
and classes of the ontology 4) using the same quality metrics for ontology aug-
mentation from textual and semi-structured sources and an evaluation of how
well structured data on the Web can contribute to building and augmenting an
ontology, comparing with the textual and semi-structured sources.
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Michael Röder6, Irini Fundulaki3, Axel-Cyrille Ngonga Ngomo6,

Mohamed Ahmed Sherif6, Amina Annane7,8, Zohra Bellahsene8, Sadok Ben Yahia9,
Gayo Diallo10, Daniel Faria11, Marouen Kachroudi9, Abderrahmane Khiat12,

Patrick Lambrix13, Huanyu Li13, Maximilian Mackeprang12, Majid Mohammadi14,
Maciej Rybinski15, Booma Sowkarthiga Balasubramani16 and Cassia Trojahn17

1 The Alan Turing Institute, London, United Kingdom
2 Department of Informatics, University of Oslo, Norway

3 Institute of Computer Science - FORTH, Greece
4 University of Economics, Prague, Czech Republic

5 Data and Web Science Group, University of Mannheim, Germany
6 Paderborn University, Data Science Group, Pohlweg 51, D-33098 Paderborn, Germany

7 Ecole nationale Superieure d’Informatique, Alger, Algerie
8 LIRMM, Universit de Montpellier, CNRS, Montpellier, France
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13 Linköping University & Swedish e-Science Research Centre, Linköping, Sweden
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Abstract. This paper describes the Ontology Alignment Evaluation Initiative

2017.5 pre-campaign. Like in 2012, when we transitioned the evaluation to the

SEALS platform, we have also conducted a pre-campaign to assess the feasibil-

ity of moving to the HOBBIT platform. We report the experiences of this pre-

campaign and discuss the future steps for the OAEI.

1 Introduction
The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international
initiative which organizes the evaluation of ontology matching systems [1,2]. The main
goal of the OAEI is to compare systems and algorithms openly and on the same basis to
allow anyone to draw conclusions about the best matching strategies. Furthermore, our
ambition is to help tool developers to improve their systems through such evaluations.

The initiative started in 2004, and from 2006 until the present, the OAEI campaigns
were held at the Ontology Matching workshop, collocated with the ISWC conference.
Since 2011, we have been using an environment for automatically processing evalua-
tions which was developed within the SEALS (Semantic Evaluation At Large Scale)

1 http://oaei.ontologymatching.org
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project2. SEALS provided a software infrastructure for automatically executing eval-
uations and evaluation campaigns for typical semantic web tools, including ontology
matching. In the OAEI 2017, a novel evaluation environment called HOBBIT was
adopted for the novel HOBBIT Link Discovery track. In that OAEI campaign, all sys-
tems were executed under the SEALS client in all other tracks.

The good experience of the 2017 Link Discovery (e.g., novel platform, online eval-
uation, automatic generation of result tables, attraction of link discovery developers,
customization of the matching requirements of a benchmark task) track motivated the
interest in assessing the possibility of transitioning the whole OAEI evaluation to HOB-
BIT. To that end, we decided to set-up an OAEI pre-campaign, as happened in the OAEI
2011.5 when the OAEI moved to SEALS,3 to evaluate potential risks and challenges.
The nature of the link discovery tracks is different from the (traditional) OAEI tracks
and we foresaw sources of uncertainty with respect to: (i) the use of a new evaluation
environment, (ii) the adaptation of tracks with multiple tasks (like multifarm), (iii) the
introduction of Docker to organisers and participants, (iv) the inclusion of interactivity
capabilities, and (v) the storage of results. The objective of the Ontology Alignment
Evaluation Initiative 2017.5 pre-campaign was, therefore, to evaluate the feasibility of
moving some (traditional) OAEI tracks to the HOBBIT platform. In this paper, we report
the experiences of this pre-campaign and future steps of the OAEI.

The remainder of the paper is organised as follows. Section 2 introduces the HOB-
BIT platform. In Section 3, we present the overall evaluation methodology that has been
used. Section 4 describes the evaluation data sets and Section 5 the participating sys-
tems. Section 6 overviews the lessons learned from the campaign; and finally, Section 7
summarizes the conclusions of this experience and discusses future plans for the OAEI.

2 HOBBIT platform
The HOBBIT platform is a generic, modular and distributed platform for Big Linked
Data systems. It was designed to enable Big Data practitioners and Linked Data users to
benchmark all steps of the data lifecycle at scale, i.e., with all necessary contemplations
of volume, velocity, value and veracity necessary to benchmark real applications. Some
of its most important features within the context of link discovery include the support of
(i) benchmarks that focus on the evaluation of the quality of a system using single con-
secutive requests as well as (ii) benchmarks aiming at evaluating the efficiency of Big
Linked Data solutions, e.g., by generating distributed parallel requests leading to a high
workload. The HOBBIT project4 designed and develops the HOBBIT platform with the
aim of providing an open-source, extensible, FAIR5 and scalable evaluation platform
(in a fashion akin to GERBIL [3]) along with corresponding benchmarks and mimick-
ing algorithms for real data sources of industrial scale. The platform being open-source
means that it can be downloaded and installed locally for tests. The online instance of
the platform allows (i) running public challenges and (ii) making sure that even people
without the required infrastructure are able to run the benchmarks they are interested in.
The platform, as well as the benchmarks that are designed and implemented in HOBBIT

2 http://www.seals-project.eu
3 http://oaei.ontologymatching.org/2011.5/
4 http://project-hobbit.eu
5 Findable, Accessible, Interoperable and Reusable
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are modelled as actors with which the platform interacts. The use cases relevant for end
users supported by the platform include:

– Benchmarking a System: the user can select a benchmark to test a system. The
platform loads appropriate configuration parameters for the benchmark, as well as
the list of available systems for this benchmark. The user configures the benchmark
and selects one of the available systems to benchmark.

– Showing and Comparing Benchmark Results: the user can view the results of a
single benchmark run or select multiple, e.g., to compare several systems that have
been evaluated with the same benchmark.

– Adding a System: the user adds the system that needs to be benchmarked in the
platform by providing a docker image of the system and a system adapter which
serves as a proxy between the benchmark and the system.

Figure 1 shows the layout of the HOBBIT platform components and how the differ-
ent parts interact. The platform can be separated into two parts. The first part comprises
platform components that are always running (right hand side of Figure 1). The sec-
ond part contains all components that belong to a certain experiment (left hand side of
Figure 1), i.e., the benchmark components as well as the benchmarked system.

Fig. 1. Interaction of the components of HOBBIT Platform

The Platform Controller makes sure that the benchmark chosen by the user can
be started and ensures that all nodes of the cluster are available. It communicates with
the system to be benchmarked, ensures that it is working properly and generates the
benchmark controller that is responsible for producing the data and task generators as
well as the evaluation storage. The Data Generator produces the source dataset that is
sent to the Benchmarked System, and the target dataset as well as the Gold Standard
which are sent to the Task Generator. The Task Generator sends the target dataset to
the Benchmarked System and forwards the Gold Standard to the Evaluation Storage.
When the system finishes its task, it sends the answers to the Evaluation Storage. The
Evaluation Module receives the system and the Gold Standard answers and returns the
Key Performance Indicators (KPIs) for the experiment.
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3 Methodology

The OAEI campaigns are typically divided into three phases: (i) preparation phase
(datasets are prepared), (ii) execution phase (systems are tuned), and (iii) evaluation
phase (systems are evaluated). In this OAEI pre-campaign, we focused on the prepa-
ration and execution phases given the time constraints and the challenges encountered
during the migration to the HOBBIT platform.

3.1 Preparation phase

The preparation phase for the OAEI 2017.5 pre-campaign, unlike recent OAEI cam-
paigns, was more demanding as the OAEI track organisers were required to migrate the
SEALS datasets following the novel HOBBIT specifications. We provided the bench-
mark definitions for the (i) Largebio6 and (ii) Link discovery7 tracks to make the tran-
sition smoother. These (reference) datasets were made available by the end of Jan-
uary 2018. Next, we provide a brief summary of the main components of a HOBBIT

benchmark.

HOBBIT benchmark definition. The HOBBIT workflow and format of benchmarks is
generic as the platform was designed to accommodate benchmarks across the whole
of the Linked Data lifecycle. This flexibility adds some complexity with respect to the
SEALS benchmark generation. Note that, since in the OAEI multi-tasks benchmarks
the source dataset may change, we have slightly modified the general HOBBIT work-
flow depicted in Figure 1. In the OAEI workflow, the TaskGenerator deals with both
the source and target datasets to generate a Task. A benchmark is composed by the
following classes:

BenchmarkController is the main class of the benchmark where the general bench-
mark execution workflow is specified.

DataGenerator generates the benchmark datasets (e.g., input ontologies and align-
ments) and prepares the datasets for the TaskGenerator. For multiple-task bench-
marks it also deals with the preparation of queue names to be sent to the system.

Task includes the information of the source and target datasets and the expected results
together with some other parameters like which type of entity should be matched
(e.g., only classes).

TaskGenerator deals with the generation of the task(s) and sends the task(s) to the
system and the EvaluationModule.

EvaluationModule compares the expected results (e.g., reference alignment) provided
by the TaskGenerator and the computed results by a system, and generates the
KPIs.

Each benchmark is also associated to a metadata file8 where the docker images of
the benchmark are referenced, the KPIs defined, and the name of the benchmark’s API
specified (e.g., bench:LargebioAPI).

6 https://gitlab.com/ernesto.jimenez.ruiz/largebio
7 https://github.com/hobbit-project/SpatialBenchmark/
8 Metadata for largebio: https://git.project-hobbit.eu/ernestoj/largebio
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Table 1. OAEI 2017.5 Benchmarks: HOBBIT APIs and KPIs. Each benchmark has its own API

as they may define different input parameters. Only systems compliant with (i.e., implementing)

the API will be evaluated under a given benchmark.

Track API KPIs
Conference bench:ConferenceAPI Precision, Recall, F-measure

Anatomy bench:AnatomyAPI Precision, Recall, F-measure, Recall+

Largebio bench:LargebioAPI Precision, Recall, F-measure

Spimbench bench:spimbenchAPI Precision, Recall, F-measure

Link discovery bench:LinkingAPI Precision, Recall, F-measure

OAEI 2017.5 tracks. The preparation phase was complete in early March 2018 and led
to four novel tracks running under the HOBBIT platform: conference, anatomy, large-
bio, and instance matching - spimbench. Note that the link discovery track was already
running under HOBBIT in the OAEI 2017 campaign. The benchmarks are (briefly) de-
scribed in Section 4.

3.2 Execution phase

The execution phase also brought the new challenge to developers of implementing a
system compliant with the HOBBIT specifications. We provided the following sources
of instruction to support system developers with the integration with HOBBIT: (i) Gen-
eral HOBBIT instructions,9 (ii) LogMap’s example implementing the interfaces for the
conference, anatomy, largebio and spimbench tracks10, and (iii) the Maven framework
to facilitate the wrapping of systems.11

HOBBIT system definition. The interface of a system is defined via the SystemAdapter
class (e.g., LogMapSystemAdapter). This class receives the dataset definition from the
DataGenerator of a benchmark (e.g. set of tasks and matching requirements) and the in-
dividual tasks (source and target datasets) from the TaskGenerator of a benchmark. The
results (e.g., a file containing the mappings in RDF Alignment format) are sent to the
benchmark’s EvaluationModule. The system adapter class communicates to the bench-
mark classes in a special way since it is submitted to the HOBBIT platform as a docker
image. Each system is also associated to a metadata file,12 which explicitly mentions
the APIs the system implements (e.g. hobbit:implementsAPI bench:LargebioAPI). This
enables the automation of the evaluation of the OAEI benchmarks.

OAEI 2017.5 participation. Ten systems were registered to participate in the OAEI
2017.5 campaign in March 2018. Only eight of them reported results or experiences
during April and May: OntoIdea, LogMap, SANOM, DisMatch, KEPLER, YAM-BIO,
AML and RADON. The participating system and proof-of-concept results are (briefly)
presented in Section 5.

9 https://project-hobbit.eu/challenges/oaei2017-5/oaei2017-5-tasks/
10 LogMap [4]: https://gitlab.com/ernesto.jimenez.ruiz/logmap-hobbit
11 Maven framework: https://github.com/sven-h/ontMatchingHobbit
12 LogMap’s metadata: https://git.project-hobbit.eu/ernestoj/logmapsystem
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4 Benchmarks
The OAEI 2017.5 pre-campaign included five tracks: conference, anatomy, largebio,
instance matching - spimbench, and link discovery. Table 1 provides a summary of
the benchmarks. This pre-campaign did not include the multifarm and the interactive
tracks. In the case of the multifarm track the main restriction was to move thousands of
matching tasks to a new environment. While for the interactive tracks the main limita-
tion was technological as the inclusion of an “oracle” requires significant modifications
on the HOBBIT pipeline. Next we briefly describe the datasets of the OAEI 2017.5
benchmarks.

Anatomy track. This track consists of finding an alignment between the Adult Mouse
Anatomy ontology (AMA) and a part of the National Cancer Institute (NCI) Thesaurus
(NCI-A). This data set has been used since 2007 with some improvements over the
years [5]. The AMA ontology contains 2,744, while the NCI-A contains 3,304 concepts
describing the human anatomy. Systems participating in the anatomy track are evaluated
in terms of runtime, precision, recall and F-measure. In addition, the anatomy track
measures the systems’ ability to find non-trivial correspondences (recall+) and checks
whether the systems generate coherent alignments.

Conference track. This track consists of 21 test cases with ontologies from the domain
of organising conferences. The conference track has been used since 2006 and it was
gradually improved [6]. The advantage of the conference domain is the fact that it is
generally understandable. The ontologies were developed independently and based on
different resources, thus they capture the issues in organising conferences from different
points of view and using different nomenclature. Finally, ontologies within this track are
of small-medium size and relatively rich in OWL 2 axioms.

Largebio track. This track consists of finding alignments between the Foundational
Model of Anatomy (FMA), SNOMED CT, and the National Cancer Institute Thesaurus
(NCI) [7]. These ontologies are semantically rich and contain tens of thousands of
classes. UMLS Metathesaurus has been selected as the basis for the track reference
alignments (see [8] for details). UMLS is currently the most comprehensive effort for
integrating independently-developed medical thesauri and ontologies, including FMA,
SNOMED CT, and NCI. In this track we also put special attention to the number of
unsatisfiabilities led by the mappings computed by a participating system.

SPIMBENCH track. The datasets in this strack are produced using SPIMBENCH bench-
mark generator [9] with the aim to generate descriptions of the same entity where value-
based, structure-based and semantics-aware transformations are employed on a source
dataset in order to create the target dataset(s). The value-based transformations con-
sider mainly typographical errors and different data formats, the structure-based trans-
formations implement transformations applied on the structure of object and datatype
properties and the semantics-aware transformations concern the instance level and take
into account schema information. The latter are used to examine if the matching sys-
tems take into account RDFS and OWL constructs in order to discover correspondences
between instances that can be found only by considering schema information.

Link discovery track. This track is composed of two tasks called: linking and spatial.
The linking task measures how well systems can match traces that have been modified
using string-based approaches along with addition and deletion of intermediate points.
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Fig. 2. Benchmarking LogMap with the FMA-NCI-SMall largebio task.

The original datasets only contain coordinates, thus, we have replaced a number of those
points with labels retrieved from Linked Data spatial datasets using the Google Maps13,
Foursquare14 and Nominatim Openstreetmap15 APIs to be able apply string-based mod-
ifications implemented in LANCE [10]. This task also contains modifications of date
and coordinate formats.
The spatial task measures how well systems can identify the DE-9IM (Dimension-
ally Extended nine-Intersection Model) topological relations between LineStrings and
Polygons in two-dimensional spaces. The supported spatial relations are the following:
Equals, Disjoint, Touches, Contains/Within, Covers/CoveredBy, Intersects, Crosses, Over-
laps. The instances are represented in the Well-Known Text (WKT) format. For each
relation, a different pair of source and target datasets is given to the participants.

5 Participation and proof-of-concept results
In this section we introduce the systems contributing to the OAEI 2017.5 campaign
and provide an overview of how experiments are executed from the HOBBIT public
instance.

5.1 HOBBIT experiments
Experiments can be executed via the HOBBIT public instance16 by following the Bench-
marks menu. Note that, currently, only registered developers who are the owners of a
system which conforms the specification (i.e., API) of one or more benchmarks can run
experiments. Figure 2 shows the interface to select a benchmark and evaluate a system
implementing its API within the HOBBIT platform.

Every experiment is assigned a unique ID and, once they are finalized, registered
users can access its results (see Experiments menu). In addition, one can also select
several experiments for comparison purposes. For example, Figure 3 shows the results
of LogMap for all six tasks of the largebio track.

13 https://developers.google.com/maps/
14 https://developer.foursquare.com/
15 http://nominatim.openstreetmap.org/
16 https://master.project-hobbit.eu/
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Fig. 3. Results of LogMap for all largebio tasks.

5.2 System overview
Table 2 lists the participating systems and links to available proof-of-concept results.
The developers made a great effort adapting their systems to a new platform providing
very useful insights about the feasibility of moving to the HOBBIT platform (see Section
6 for more details). Next, we provide a brief summary of the OAEI 2017.5 systems.

AgreementMakerLight (AML) [11, 12] is an all-purpose ontology alignment system
inspired on AgreementMaker [13] and sharing its focus on flexibility and extensibility
as main design paradigms. While initially primarily focused on the biomedical domain
and on the use of background knowledge, its tool suite and capabilities were gradually
extended to cover the full range of ontology matching tasks evaluated under the OAEI.

DisMatch [14] is an experimental ontology matching system built around the idea of
leveraging the recent advancements in semantic representations of texts within the con-
text of the ontology alignment problem. The lexical matcher uses semantic similarity
calculated from distributional representations of domain-specific words. In the experi-
ments several relatedness measures were tested, based on different text representation
methods, including DomESA [15] and Word2Vec’s Skip-Gram model [16].

Kepler [17] is an ontology alignment system able to deal with normal and large scale
ontologies. Kepler is also able to cope with multilingual ontologies thanks to its trans-
lator module. Kepler exploits the expressiveness of the OWL language to detect and
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Table 2. Systems participating in the OAEI 2017.5. Link to results requires guest log in. Dis-

Match and KEPLER tested the platform but they did not manage to produce results.

System New in OAEI/HOBBIT? Implemented APIs Link to results

AML No/No

bench:ConferenceAPI,

https://goo.gl/ACG3kP

bench:AnatomyAPI,

bench:LargebioAPI,

bench:spimbenchAPI,

bench:LinkingAPI

DisMatch No/Yes
bench:AnatomyAPI,

-
bench:LargebioAPI,

KEPLER No/Yes

bench:ConferenceAPI,

-bench:AnatomyAPI,

bench:LargebioAPI,

LogMap No/Yes

bench:ConferenceAPI,

https://goo.gl/tFDJKB
bench:AnatomyAPI,

bench:LargebioAPI,

bench:spimbenchAPI

OntoIdea No/No bench:LinkingAPI https://goo.gl/mUjBPK

RADON No/No bench:LinkingAPI https://goo.gl/G1nUDY

SANOM No/Yes

bench:ConferenceAPI,

https://goo.gl/D8nrJkbench:AnatomyAPI,

bench:LargebioAPI,

YAM-BIO No/Yes
bench:AnatomyAPI,

https://goo.gl/A496ug
bench:LargebioAPI

compute the similarity between ontology entities through six modules: preprocessing,
partitioning, translation, indexation, candidate selection and final alignment generation.

LogMap [4] relies on lexical and structural indexes to enhance scalability. It also in-
corporates approximate reasoning and repair techniques to minimise the number of
logical errors in the aligned ontology. LogMap comes with two variants: LogMap-
Bio [18], which uses BioPortal [19] as a (dynamic) provider of mediating ontologies;
and LogMapLt, a “lightweight” variant of LogMap that only applies (efficient) string
matching techniques.

OntoIdea [20] is an instance matching tool implementing an enhanced version of the
STRIM algorithm proposed in previous work [21]. The new version of the OntoIdea
system identifies not only the “sameAs” relationships between instances, but also the
“topological” relationships (e.g., contains, equals, overlaps, covers, etc.) on geo-spatial
datasets. The type of relationship is driven by the information associated to the entities
(i.e., text or geometry).

RADON [22] is one of the systems of the LIMES framework. It addresses the efficient
computation of topological relations on geo-spatial datasets, which belong to the largest
sources of Linked Data. The main innovation of the approach is a novel sparse index
for geo-spatial resources based on minimum bounding boxes (MBB). Based on this
index, it is able to discard unnecessary computations for DE-9IM relations. Extensive
experiments show that RADON scales well and outperforms the state of the art by up to
3 orders of magnitude w.r.t. to its runtime.
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SANOM [23] is an ontology alignment system that uses simulated annealing as the
principal technique to find correspondences between two given ontologies. The system
translates the alignment problem into a state optimization and then applies the simulated
annealing to find the optimal alignment of two given ontologies. The optimality of
a state is obtained by a complex fitness function which utilizes different lexical and
structural similarity metrics.

YAM-BIO is an instance of a generic background knowledge based ontology-matching
framework [24] which is publicly available on GitHub17. YAM-BIO instance uses YAM++
[25] as matcher and the two biomedical ontologies UBERON and DOID as background
knowledge. In the OAEI 2017.5, YAM-BIO adopted a derivation with a specific algo-
rithm that reduces the path number by avoiding to reuse the same background knowl-
edge concept more than once, and the rule-based mapping selection estrategy. YAM-
BIO relies on the LogMap-Repair [26] module to eliminate the inconsistent mappings
in the generated alignments.

6 Discussion and lessons learned
We collected feedback from eight platform developers pertaining to the transition from
SEALS to HOBBIT. A common tenor found in most of the feedback from the systems
pertained to the balance between complexity and guarantees. The HOBBIT platform
requires (i) the systems to be implemented using the Docker stack of technologies,
(ii) the implementation of a single interface to ensure a set of standardized communi-
cation processes and (iii) debugging by using log files collected by the platform across
the distributed infrastructure it employs for benchmarking.

The use of Docker and associated technologies was largely regarded positively.
Whereas the developers unfamiliar with Docker suggested that the supplementary effort
necessary to create docker packages was considerable, most developers regarded the use
of this technology as a step towards a better integration of tools and more controlled run
of benchmarks. To ensure that the development with Docker can be carried efficiently,
HOBBIT allows for single Docker files to be ran using different configurations such as
to ease the deployment and use. This feature will be made more prominent to ensure
that developers make more extensive use thereof.

Participating systems had to implement an API defined by the benchmark to receive
the datasets which should be linked and to return the generated results. The participants
found a template for this step very helpful and would like to have an even simpler tem-
plate in the future to reduce the amount of adaptations. Especially when the benchmark
API is adapted to support even more complex tasks like the multifarm task, a provided
template eases the participation. The prepared template could take care of receiving the
different ontologies and storing them in single files following the predefined structure
of the multifarm task before starting the linking process.18 Such an extension would
enable a backwards compatibility to older solutions which are based on the directory
structure. Additionally, a clearer distinction of the necessary and optional steps when
implementing the system adapter was rated as helpful.

The online instance of the HOBBIT platform is based on a cluster infrastructure
and offers its services to a public community. Since the final evaluation is carried out

17 https://github.com/AminaANNANE/GenericBKbasedMatcher
18 https://www.irit.fr/recherches/MELODI/multifarm/
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on this instance, the participants were asked to make sure that their systems can be
deployed on the platform. The development process in itself can however be eased
significantly by testing locally. The HOBBIT platform provides two means for doing so:
a software development toolkit (SDK) and a recipe-based deployment infrastructure.
The HOBBIT SDK19 allows to develop and debug a system adapter locally. To this end,
the SDK simulates a platform running in a cluster and ensure rapid local development
without the overheads (e.g., long waiting times) created by a shared cluster. HOBBIT

also supports complete local deployments (instead of simulations) through the recipe-
based framework Exoframe20 for developers who would prefer not using a simulation.
Therewith, it allows developers to follow a three-step process: (1) install the HOBBIT

SDK or the HOBBIT platform via Exoframe, (2) develop and test your system locally,
(3) upload the system image(s) and execute it (them) using the online instance.

7 Conclusions and next OAEI steps
The OAEI 2017.5 pre-campaign was instrumental to understand the strengths of HOB-
BIT but also the challenges into moving to a new platform. The feedback obtained from
system developers has been very valuable for the next steps of the OAEI campaigns and
the future development of the HOBBIT platform (e.g., support for more complex tasks,
storage of computed alignment). The OAEI 2018 campaign21 will continue using the
HOBBIT platform together with the SEALS infrastructure, with some tracks like large-
bio providing a dual evaluation mode (i.e., both HOBBIT and SEALS). This way, system
developers, organisers and HOBBIT developers will have additional time to guarantee
a successful migration to the new evaluation platform. From the infrastructure point
of view, the HOBBIT SDK will make the developing and debugging phase under the
HOBBIT easier. In addition, we will continue offering the Maven-based framework to
facilitate the submission to both HOBBIT and SEALS.
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Abstract. Many approaches to measure the similarity between concepts that exist 
in two different ontologies are used in the matchers of ontology alignment 
systems. These matchers belong to various categories depending on the context 
of the similarity measurement, such as lexical, structural, or extensional 
matchers.   This paper presents a review of various forms of semantic similarity 
measures.  Then it examines cross-ontological semantic similarity and how 
various OA systems have used these along with traditional semantic similarity 
measure on background knowledge sources.  The use of mediating ontologies in 
ontology alignment also may incorporate the use of semantic similarity.       

Keywords: Semantic similarity, ontological similarity, cross-ontological 
similarity, ontology alignment, information content, mediating ontology. 

1   Introduction 

Similarity measurement, an important notion to compare two different objects, 
determines how well they agree or match each other. Ambiguity exists in the meaning 
of the word similarity because of its diverse use in many contexts such as biology, 
statistics, and psychology.  The term semantic similarity has been used to refer to 
measures between lexical words. Natural language processing applications, such as 
word sense disambiguation, text summarization, annotation, and information extraction 
and retrieval have used numerous such measures [Budanitsky, 1999].  The growth of 
the Semantic Web and the explosion of ontologies, the key knowledge representation 
model for the Semantic Web, has renewed interest in measuring similarity.  In this 
paper, the context is ontology alignment (OA). An ontological similarity measure is a 
special kind of semantic similarity measure that uses the structuring relationships 
between concepts in an ontology to determine a degree of similarity between those 
concepts. Semantic similarity is used to include similarity measures that use an 
ontology’s structure or external knowledge sources to determine similarity between 
entities within one ontology or between two different ontologies.  They have become a 
key to aligning ontologies in more sophisticated domains such as biomedical. Most of 
the better performing current OA systems use some background knowledge source or 
mediating ontology and semantic similarity measures to address where simple string 
matching or other OA similarity measures fail at producing mappings.  
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2   Brief Historical Overview of Semantic Similarity 

About 30 years ago, distance in a semantic network was simply the number of edges 
in the path between two concepts [Rada 1989].  This distance is not sensitive to the 
depth of the edge in the network. It assumed a weight of 1 for all edges regardless of 
their hierarchical depth. This weakness has been the focus in [Wu and Palmer, 1994] 
and [Leacock and Chodorow, 1998].   Several pieces of information about the edge are 
used in determining the weight: its depth, density of edges at that depth, and strength 
of connection between parent and child nodes. Edge weights are reduced farther down 
the hierarchy and in dense parts of the graph where edges represent smaller distances.  
Various methods are used to normalize and convert distances into semantic similarity. 

Another approach is based on the insight that conceptual similarity between two 
ontology concepts is related to the amount of information they share [Resnik, 1995]. 
The more shared information, the more similar they are. Information content (IC) is a 
measure of how specific a concept is in a given ontology, i.e., the more specific, the 
higher its IC. In [Resnik, 1995], IC is calculated relative to a selected corpus and uses 
a logarithmic function of the probability of the concept determined by its frequency of 
occurrence in the corpus. Another method [Seco et al., 2004] uses the ontology structure 
itself as a statistical resource; it needs no external corpus. An ontology is assumed to 
be organized in a meaningful, structured way; the more descendants a concept has, the 
less information it expresses. A concept’s IC is a logarithmic function of its number of 
descendants and the maximum number of concepts in the ontology. In [Resnick, 1995] 
similarity between two concepts is a function of the IC of the most specific ancestor to 
both concepts in the hierarchy, i.e., their shared information. In [Jiang and Conrath, 
1997] [Lin, 1998] semantic similarity is determined as a function of both the IC of each 
individual concept with the amount of shared IC of the two concepts. 

Semantic similarity measures can also be determined from a set of features for each 
concept.   The parameterized ratio model of similarity [Tversky 1977] uses the ratio 
between the cardinality of the intersection of their two sets and the sum of the 
cardinality of this intersection and their set symmetric difference. Parameters on the set 
differences depend on which concept is to be emphasized as the reference concept.  The 
Jaccard similarity measure [Jaccard, 1901] weights both set differences by 1 to produce 
the ratio of the intersection cardinality over the union cardinality of the two sets. A 
detailed discussion of semantic similarity is presented in [Cross, 2009].   

3   Measuring Concept Similarity between Different Ontologies 

OA research has typically focused on finding equivalences between two concepts in 
different ontologies.   OA techniques vary greatly depending both on what features, i.e., 
the schema, its instances, etc. and on what background knowledge sources such as 
vocabularies or other ontologies, already existing alignments, free text and search 
engines are used to determine the mappings [Shvaiko and Euzenat, 2013].   

Early on string edit distances between the concept labels were used by OA systems. 
Later research developed more sophisticated similarity for use in OA matchers.  The 
foundation for many of OA matchers can be found in [Rodriguez and Egenhofer, 2003] 
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which relies on Tversky’s parameterized ratio model of similarity.  These matchers 
belong to various categories depending on the context of the similarity measurement, 
such as lexical, structural, or extensional matchers [Sabou et al., 2008].  Determining 
ontological similarity between entity classes a and b uses a matching process over 
several different sets: synonym sets (w), semantic neighborhoods (n), and 
distinguishing features (u). Distinguishing features are further classified into parts, 
functions and attributes. The similarity formula is the same for each set and given as  

 
Sset-type(a,b)=[| A∩B|] / [|A∩B| + α(a,b) |A - B| + (1 – α(a,b)) |B - A|] for 0 ≤ α ≤ 1

  
where A and B are description sets for entity classes a and b and are specified by the 
set-type = w, u, and n. The only variation to Tversky’s parameterized ratio model is the 
setting of α which determines the importance of the non-common characteristics 
between a and b. The α parameter is simply determined from the depth of the entities 
within their respective ontologies. The parameter α is set to the ratio of the depth of a 
over the sum of the depths of a and b.   Using α parameter gives priority to the more 
salient entity, i.e., the one with the greater depth.  The overall similarity assessment of 
a and b is based on a weighted aggregation of the individual matching components Sw, 
Sn, and Su.   Aggregation weights depend on the assessment of the importance of each 
semantic component of the ontologies. Many current OA systems use this approach 
with their matchers for various components or features of entities and then weight the 
similarity of the individual matcher results either manually or through learning 
methods.  Some OA systems employ methods to automatically weight the matchers 
based on an overall assessment of ontology similarity over these various kinds of sets 
[Pirro and Talia, 2010] [Wang et al 2010].    

4   Semantic Similarity in OA Systems  

OA systems have used various semantic similarity measures in a single ontology 
viewed as background knowledge source such as a thesaurus or mediating ontology.   
Concepts from the source and target ontologies are mapped into the background 
knowledge source. The following OA systems presented in order of their appearance 
in the research literature have been described in [Cross et al., 2012] in more detail.  
Recent OA systems use variations of semantic similarity seen in these earlier systems.  

 OLA [Euzenat and Valtchev, 2003] uses the lexical similarity between a pair of 
concept identifiers based on a set of terms for each identifier. Pairs of terms for each 
identifier are located in WordNet.  Their term similarity is calculated using a modified 
Wu-Palmer measure. An aggregated similarity of proximity over all pairs of terms is 
calculated.   iMapper [Su et al., 2004] increases the similarity between two concepts 
based on their distance in WordNet.  The concepts are found in WordNet using their 
labels.  If two terms belong to the same WordNet synset, the path distance is 1. 
Otherwise, the path length from each sense of one to each sense of the other is found 
(Rada distance). The minimum of these lengths is the semantic distance between them.    
If no path is found between them, they are unrelated and their similarity is not increased.  
SAMBOdtf [Lambrix et al., 2008] has the WordNet matcher that finds synonyms for 
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concepts. If the concepts are not synonyms to the same WordNet concept, the hypernym 
relationships between concepts is used to determine their similarity. A domain matcher 
uses the UMLS. If both the source and target concepts are a synonym of the same 
UMLS concept, then the domain knowledge matcher sets the similarity to 0.99; 
otherwise the similarity is set to 0. ASMOV [Jean-Mary and Kabuka, 2008] checks if 
strings are not identical for concept labels and if available, uses WordNet or UMLS. 
Their lexical similarity is set to 0.99 if one label string is a synonym of the other.  If 
one is an antonym of the other, it is set to 0.  If neither and both string labels are in 
WordNet, it is set to Lin semantic similarity measure between the two.   

CIDER [Gracia and Mena, 2008] uses a modified version of a sense semantic 
similarity measure to evaluate similarity between possible senses of a keyword and its 
synonyms to disambiguate.  Semantic similarity in the filtering of mappings is adapted 
from the PowerMap WordNet based algorithm [Lopez et al. 2006].   The Wu-Palmer 
measure is used.  A directional similarity is used. The validity of a mapping between 
concepts A and B is determined in both directions, B to A and A to B.  The similarity 
measure is binary and is a 1 if either direction similarity is a 1 and is based on 
commonality between the synsets of each concept. UFOme [Pirro and Talia, 2010] uses 
a set of matchers; many have been previously developed for numerous OA systems and 
integrated into UFOme. The strategy predictor creates a mapping strategy by selecting 
and ordering the matching components.  One of its matchers, the WordNet matcher, is 
similar to ASMOV’s matcher. It uses the Lin similarity between synsets of concept 
terms when they do not map to the identical lexical concept in WordNet.    

Using a mediating ontology is similar to using a background knowledge source.  The 
difference if the OA system must use a simple matcher to quickly map source and target 
concepts to the mediating ontology, typically domain specific.    Both the source and 
target ontologies are efficiently aligned to the mediating ontology OM to produce a set 
of mappings MSM and MTM, respectively. In [Gross et al., 2011] [Cruz et al., 2011] a 
set of mediated mappings MST is created based on an exact match on the concept in OM 
both the source and target concepts map to.  These mediated mappings may be used 
when the OA process has not found direct mappings between the concepts in the two 
ontologies. The Uberon ontology has been used as the mediating ontology in GOMMA 
and AgreementMaker.  An issue is both source and target concepts must map to the 
identical concept in the mediating ontology.  The Mediating Matcher with Semantic 
Similarity (MMSS) was added as a new matcher to use semantic similarity measures 
between the mapped concepts in OM even if  no exact match exists [Cross et al., 2012].    

5   Conclusions and Possible Future Directions  

Semantic similarity has been reviewed and its important role in the ontology 
alignment task has been emphasized.  Tversky’s parameterized ratio model of similarity 
has been discussed as fundamental to developing similarity measures between concepts 
in different ontologies [Rodriguez and Egenhofer, 2003]. Although semantic similarity 
measures are essential to the OA task, more research needs to be done to determine if 
specific ones have better performance.   The OA task should be used as a benchmark 
for performance evaluations on existing and new measures.  
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1 Introduction

A complex alignment between a source ontology o1 and a target ontology o2 is
a set of correspondences with at least a complex correspondence. Complex cor-
respondences (e.g., o1:GenusRank ≡ ∃ o2:hasRank.{o2:genus}) involve logical
constructors (e.g., property restriction) or transformation functions of literal
values (e.g., string concatenation). Complex matching approaches have emerged
in the literature in the last years [10, 8, 13, 6]. While some rely on statistical
methods [8, 13], others rely on linguistic matching conditions [10] or knowledge
rules [6]. Many of them are based on correspondence patterns [10, 8, 13]. Fol-
lowing a different approach, this paper proposes a complex matching approach
which relies on the notion of Competency Question for Alignment (CQA). CQAs
express the knowledge that an alignment should cover. As for ontology author-
ing, they take the form of NLP questions or SPARQL queries. Our approach
takes as input a set of CQAs translated into SPARQL queries over the source
ontology. The answer to each query is a set of instances retrieved from a knowl-
edge base described by the source ontology. These instances are matched with
those of a knowledge base described by the target ontology. The generation of
the correspondence is performed by matching the graph-pattern from the source
query to the lexically similar surroundings of the target instances. For example,
given the source query SELECT ?x WHERE {?x a o1:GenusRank.}, and an out-
put correspondence o1:GenusRank ≡ ∃ o2:hasRank.{o2:genus}, one could trans-
late the source query into SELECT ?x WHERE {?x o2:hasRank o2:genus.}. Our
approach was evaluated on a set of four knowledge bases about plant taxonomy.

2 Competency questions for alignment

In ontology matching system design, a question that rises is “Are there any
specifications to the matching process ? If so, what are the needs/requirements
that an alignment should meet ?”. Few guidelines in the literature are given
to characterise an alignment and/or the matching process. One of the few ex-
amples is the NeOn methodology [4], which characterises both alignment and
matching process through a set of questions: i) is matching performed under
time constraints ? ii) has matching to be performed automatically ? iii) must
the alignment be correct ? complete ? and iv) what type of operation (merging,
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query, etc.) is to be performed ? Through these questions, qualitative and ap-
plicative characteristics of an alignment and the matching process are defined.
However, they do not help specifying the knowledge the alignment should cover,
i.e. its scope. Here, we extend the notion of “needs” for the alignment as defined
in [4] by proposing the notion of Competency Question for Alignment (CQA).

In order to formalise the knowledge needs of an ontology, competency ques-
tions (CQ) have been introduced as ontology’s requirements in the form of ques-
tions the ontology must be able to answer [5]. Here, a CQA expresses the knowl-
edge that an alignment should cover in the best case (if both ontologies’ scope
can answer the CQA). The first difference between CQA and CQ in ontology
authoring is that the scope of the CQA is limited by the intersection of its
source and target ontologies’ scopes. The second difference is that this maximal
and ideal alignment’s scope is not known a priori (as it is the purpose of the
alignment). Measuring the completeness or the competency of an alignment is,
however, out of the scope of this work.

Taking into account the characteristics of CQs in the literature, we adapt
them for CQAs. In [9], the authors define a set of CQ characteristics (question
type, element visibility, question polarity, predicate arity, modifier, domain in-
dependent element), as well as a set of competency question patterns. Inspired
from the predicate arity in [9], we introduce the notion of question arity, which
represents the arity of the expected answers to a CQA:
– A unary question expects a set of instances or values, e.g., “What are the

genus taxa?” (Triticum), (Anas).
– A binary question expects a set of instances or value pairs, e.g., “What is

the rank of a taxon?” (Plantae, Kingdom), (Triticum, Genus).
– A n-ary question expects a tuple of size 3 or more, e.g., “In which classifi-

cation is the rank of a taxon defined?” (Triticum, Genus, Linnaeus 1753),
(Plantae, Kingdom, Haeckel 1866).

Concerning the use of CQAs, they can be used for both alignment evaluation by
verifying that an alignment covers a user-defined scope, as in the OA4QA task
[12], and for guiding alignment creation. Our approach falls in the latter case.

3 Proposed approach

The approach takes as input a set of CQAs translated into SPARQL queries over
the source ontology. The answer to each input query is a set of instances, which
are matched with those of a knowledge base described by the target ontology.
The matching is performed by finding the lexically similar surroundings of the
target instances. Here, CQAs are limited to unary questions, (class expressions,
set of instances expected), of selection type, polarity positive and no modifier.
The approach is developed in 11 steps, as depicted in Figure 1:

1 Extract source DL formula es from SPARQL CQA (e.g., o1:Genus)

2 Extract lexical information from the CQA, Ls set labels of atoms from the
DL formula (e.g., ”Genus”, ”genre”)

3 Extract source instances insts (e.g., o1:triticum)
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4 Find equivalent or similar (same label) target instances instt to the source
instances insts (e.g. o1:triticum ∼ o2:wheat)

5 Retrieve description of target instances: set of triples and object/subject type
(e.g. 〈(o2:wheat, o2:genus) : o2:hasRank, o2:genus: o2:Rank〉, 〈(o2:emmer wheat,
o2:wheat) : o2:hasHigherTaxon, o2:emmer wheat: o2:Taxon〉)

6 For each triple, retrieve Lt labels of entities (e.g., o2:hasRank → ”taxonomic
rank”, o2:genus → ”genus”, o2:Rank → ”rank”)

7 Compare Ls and Lt using a string comparison metric (e.g., Levenshtein
distance with a threshold)

8 Keep the triples with the summed similarity of their labels above a threshold
τ . Keep the object(/subject) type if its similarity is better than the one of
the object(/subject). (e.g. sim(o2:genus, Ls) > sim(o2:Rank,Ls) so we only
keep o2:genus in the triple)

9 Express the triple into a DL formula (e.g., ∃ o2:hasRank.{o2:genus})
10 Aggregate the formulas into an explicit or implicit form: if two DL for-

mulas have a common atom in their right member (target member): the
atoms which differed are put together (e.g., ∃ o2:hasRank.{o2:genus} and
∃ o2:hasRank.{o2:kingdom} would give 2 formulae: ∃ o2:hasRank.{o2:genus,
o2:kingdom} and ∃ o2:hasRank.�)

11 Put es and et together in a correspondence (e.g., o1:GenusRank ≡ ∃ o2:hasRank.{o2:genus})
and express this correspondence in EDOAL

CQA es

Ls

insts

et Best Triples

Lt Triple

instt Triples + ob-
ject/subject type

Source

Target
EDOAL cor-
respondence

For each Triple 6 7

1 DL formula

2 URI labels

3 answers

4 sameAs
5 surroundings

composed of

6 labels7 similarity

8 > τ

9 DL formula

10 aggregate

11

Fig. 1: Schema of the general approach.

4 Evaluation

We evaluated our approach on a set of four knowledge bases about plant tax-
onomy: AgronomicTaxon [11], Agrovoc [3], TaxRef-LD [7], and DBpedia [2]. All
except AgronomicTaxon contain thousands of taxa (∼ 32, 000 for Agrovoc, ∼
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500, 000 for TaxRef-LD, ∼ 307, 000 for DBpedia). Their instances are linked with
skos:exactMatch, skos:closeMatch, owl:sameAs and rdfs:seeAlso. Two CQAs were
used in the evaluation i) What are the genus taxa ? ii) What are the taxa ? Each
CQA was manually translated into a SPARQL query for each ontology. All the
source-target combinations of ontologies were tested, resulting in 12 alignment
pairs for each CQA. For each pair, the output correspondences were manually
evaluated. A correspondence was considered correct if their members are se-
mantically equivalent. The evaluation metrics are i) precision: number of correct
output correspondences / number of output correspondences and ii) top-k accu-
racy, as used in the evaluation of [1]: number of CQAs per pair for which at least
a correct correspondence was output. As we do not compare our alignments to a
reference alignment (because one would not cover all possible complex correspon-
dences), we cannot compute recall. Table 1 presents, for each pair of ontologies
and for each CQA, the number of correct correspondences out of the total num-
ber of correspondences generated by the approach. The overall precision is 32.8%
(44/134) and the top-k accuracy is 83.4% (20/24). When the ontologies have a
similar structure, we obtain a better precision (Agrovoc – TaxRef-LD).

Source/Target AgronomicTaxon Agrovoc TaxRef-LD DBpedia

G
en
u
s

AgronomicTaxon 1 / 1 3 / 3 2 / 15
Agrovoc 1 / 3 3 / 5 2 / 8

TaxRef-LD 1 / 6 1 / 2 3 / 10
Dbpedia 1 / 1 1 / 2 4 / 6

T
a
x
a

AgronomicTaxon 0 / 4 4 / 4 4 / 21
Agrovoc 2 / 4 4 / 12 3 / 18

TaxRef-LD 1 / 6 1 / 2 2 / 8
DBpedia 0 / 4 0 / 1 0 / 4

Table 1: Number of correct / number of output correspondences per CQA.

Some found correspondences were totally wrong, such as “a taxon in Agrovoc
(a concept having a taxonomic rank) is something which has been represented
by a statue in Wikidata” (for sake of comprehension, we express the corre-
spondences in natural language). Other found correspondences were not precise
enough such as “a taxon in Agrovoc is something having a taxon below it in a
taxonomy in AgronomicTaxon”, which would be correct with a subsumption re-
lation. For some CQAs, more than one correspondence were evaluated as correct.
The first reason is that some axioms of the ontology are equivalent (inverse prop-
erties, etc.). The second one is that the knowledge bases sometimes import other
ontologies and instances. For example, TaxRef-LD imports data from Agrovoc,
VTO and NCBI. Hence, they share common elements. Finally, as Table 1 shows,
the Taxa CQA with DBpedia as source ontology does not output any correct
correspondence because a taxon in DBpedia is an instance of the dbo:Species
class. The source SPARQL query only contains this URI. Therefore, the query
labels on which the lexical similarity is based are those of dbo:Species which do
not contain anything related to Taxon. Most the correspondences found for this
query represent the taxa having specy as taxonomic rank.
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5 Conclusion and perspectives

This paper introduced the notion of competency questions for alignment (CQAs)
and proposed a complex matching approach guided by CQAs. As the approach
relies on the labels from the SPARQL query, the similarity of the ontologies’
lexical layers impacts the output correspondences. As perspectives, we plan to
perform the instance matching phase using key detection techniques, to use more
linguistic evidence in the matching process, to consider binary CQAs, and work
on the semantics of the confidence of complex correspondences.

Acknowledgements We would like to thank Catherine Roussey and Nathalie
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Abstract. A System-of-Systems (SoS) is a set of independent informa-
tion systems that must communicate with each other towards providing
a specific service. Therefore, effectively integrating these systems is de-
manding. Considering that each system is conceptually described by a
unique ontology, the conceptual support for the whole SoS demands the
alignment of all ontologies, deriving a network of ontologies. Existing
ontology matching techniques may be used for the task; however, due to
the recently increasing size of the ontologies and the potential number of
ontologies being aligned, current approaches may suffer from scalability
and performance issues. In this paper, we introduce an approach to re-
duce the number of potential correspondences, therefore optimizing the
process of creating a network of ontologies. A preliminary experiment
was conducted, showing the potential of the proposed approach.

Keywords: network of ontologies · network matching · data integration

1 Introduction

A System-of-Systems (SoS) is defined as a set of independent information systems
(IS), providing functionalities derived from the interoperability among them [2].
The development and research on SoS have been gaining increasing attention
due to the relevance of several domains such as smart cities, health, emergency
response systems, and crisis management systems [6]. Considering that each
IS within a SoS is conceptually described by a unique ontology describing its
domain, the conceptual support for the whole SoS demands the interoperation of
its composing IS, thus requiring the alignment of all the corresponding ontologies.
Moreover, a single SoS may embrace several domains, thus requiring by itself a
network of ontologies as its conceptual support. Therefore, there is an increasing
need for aligning networks of ontologies, a problem called internetwork matching.

Traditional solutions for ontology matching may be applied for solving the
internetwork matching problem, either using a pairwise or a holistic strategy
[8]. While the former interactively matches one pair of ontologies from different

� Partially funded by Unirio (PQ-UNIRIO N01/2018)
�� Partially funded by CNPq (401505/2014-6)
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networks at a time, the latter considers all the network at once. In both cases,
all pairs of entities from each ontology that composes the networks are analyzed,
which poses a severe restriction in terms of scalability since the required number
of comparisons for computing the alignments grows exponentially to the number
and size of each ontology. Therefore, there is a need for optimized solutions to
this problem [9].

This work proposes an optimized approach for the internetwork matching
challenge [1] that tries to reduce the number of pairs to be evaluated during
the matching process, thus avoiding unneeded computation while preserving
the alignment quality. We evaluated the proposed approach in a preliminary
experiment using an OAEI dataset.

This work is organized as follows: Section 2 defines the internetwork matching
problem. Our proposed approach is detailed in Section 3. Preliminary evaluation
results are in Section 4. Finally, section 5 concludes and points to future work.

2 Problem Definition

A network of ontologies is formally defined as Γ =< Ω,Λ >, where Ω is a finite
set of ontologies and Λ(O,O′) is a set of alignments between pairs of ontologies
belonging to Ω [5]. Given a set of two or more networks of ontologies Ψ =
{Γ1, Γ2, ..., Γn}, the internetwork matching problem searches for a final network
of ontologies Γf resulting from the alignments of the networks in Ψ . For instance,
Figure 1 depicts two networks of ontologies, each one with 3 ontologies, describing
two Systems-of-Systems. The goal is to match these two networks, finding a
unique network of ontologies.

One of the approaches for matching networks of ontologies is pairwise. Given
a set of networks of ontologies, the pairwise internetwork matching sequentially
computes the alignment of each pair of ontologies from each pair of networks from
this set. For example, given two networks of ontologies Γ =< Ω,Λ > and Γ ′ =<
Ω′, Λ′ >, in which Ω = {O1, O2} and Ω′ = {O3}, the pairwise internetwork
matching is obtained by computing (((O1 ×O2)∪ (O1 ×O3))∪ (O2 ×O3)). That
is, the pairwise internetwork matching approach computes all matchings between
all pairs of ontologies inside each network that is being aligned.

Networks frequently have isomorphisms and trivial alignments that may cause
the pairwise approach to find the same alignments more than once, thus requiring
an additional step to merge the resulting matches at the end. In the case of
isomorphisms, identical correspondences between same entities may be generated
(for instance, in Figure 1 a matcher tool may find A1,1′ = {< O1.a1, O

′
1.a

′
1,=>

,< O1.b1, O
′
1.b

′
1,=>}). The case of a trivial alignment occurs when a group of

entities, that was previously aligned in a network, appears in another network.
For instance, a pairwise matcher that receives the networks Γ and Γ ′ and has
previously computed the intra-network alignments A1,2 =< O1.b1, O2.d2,	>

and A1′,2′ =< O′
1.b

′
1, O

′
2.d

′
2,	> will work unnecessarily to produce A1,2′ =<

O1.b1, O
′
2.d

′
2,	> and A1′,2 =< O′

1.b
′
1, O2.d2,	>, which are trivial alignments.
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The main weakness of pairwise approach is the number of comparisons needed
to compute all alignments and the lack of ability to handle isomorphisms and
intra-network alignments.

Fig. 1: Internetwork matching of networks Γ and Γ ′.

3 Proposed Approach

Given the limitations discussed in Section 2, we propose SubInterNM, a new
subsumed approach for the Internetwork matching problem. SubInterNM avoids
unnecessary computation by identifying and reusing trivial and subsumed align-
ments already computed in the networks of ontologies that are being aligned. In
such cases, as the intersection among the networks becomes larger, the set of
evaluated correspondences during the alignment process tends to get smaller.

For instance, consider the example depicted in Figure 1. The networks Γ and
Γ ′ were aligned using an internetwork matcher. Since O2 and O′

2 are identical,
they do not need to be exhaustively compared. Also, both pairs of ontologies
O1 and O′

1 and O3 and O′
3 share some subset of entities, thus common parts

could be eliminated to compute the final network of ontologies resulted from the
internetwork matching problem scenario.

Casanova et al. [3] proposed operations over lightweight ontologies. They
define lightweight ontologies as ontologies restricted to DL-Lite core with arbitrary
number restrictions. They use a MEG (minimal equivalent graph) approach to
create a constraint graph in polynomial time if the graph is acyclic. If the graph
is complete, then the problem is NP-Hard. To avoid that, a normalization step is
conducted to simplify the graph structure and keep them lightweight.

Our proposed approach SubInterNM uses a combined set of lightweight
operations from [3] to verify the existence of isomorphisms. We extrapolate the
original idea to use in networks environments, instead of just single ontologies.

73



4

4 Preliminary Results

Our proposed approach was evaluated in a preliminary experiment using ontolo-
gies from the OAEI conference dataset. We experimented 5 distinct scenarios,
and in each of them we specified two networks of ontologies to be aligned. The
experiments were defined by increasing the number of ontologies in the network,
as well as varying the ontologies and the number of common ontologies between
the networks, in order to assess how well our approach would handle the existence
of trivial and subsumed alignments:

– 2x2: Ω = {conference, cmt} and Ω′ = {cmt, sigkdd};
– 3x2: Ω = {conference, cmt, ekaw} and Ω′ = {cmt, sigkdd};
– 3x3: Ω = {conference, cmt, ekaw} and Ω′ = {cmt, sigkdd, conference};
– 4x3: Ω = {conference, cmt, dblp, ekaw} and Ω′ = {cmt, sigkdd, conference};
– 4’x3: Ω = {conference, cmt, edas, ekaw} and Ω′ = {cmt, sigkdd, conference}.
In order to compare our proposed SubInterNM approach against the pairwise

internetwork matching approach, we implemented the pairwise approach using
the existing matching system ALIN [4] in all experiments. ALIN was selected
due to the good results achieved on OEAI 2017, and due to our access to the
code [10]. To use ALIN as a blackbox (i.e., without having to change its code),
for each internetwork matching experiment, we built all the pairs of ontologies
to be aligned and interactively invoked ALIN. SubInterNM was implemented

Table 1: Total number of comparisons computed by each approach
Experiment Pairwise SubInterNM % of reduction

2x2 14,138 5,608 60.3
3x2 22,236 10,027 54.9
3x3 38,893 27,039 30.4
4x3 42,319 27,039 36.1
4’x3 57,497 43,420 24.4

using operations defined by Casanova et al. [3], initially considering only the
isomorphisms. After, the ALIN matching system[4] was also invoked to compute
the alignments between the results from Ω and Ω

′
. So we computed:

Ω as O1 ∪O2... ∪On −O1 ∩O
′
1 −O1 ∩O

′
2 − ...−On ∩O

′
n

Ω
′
as O

′
1 ∪O

′
2... ∪O

′
n −O

′
1 ∩O1 −O

′
1 ∩O2 − ...−O

′
n ∩On

Table 1 shows the number of pairs analyzed (i.e., comparisons) by pairwise
and subsumed approach to compute alignments in each experiment. It is possible
to verify that SubInterNM reduces the number of comparisons needed to the
matching process by at least 24%, therefore representing a successful way to deal
with large networks in the internetwork matching problem.

Future work will try to reduce even more the number of comparisons with the
detection of intra-network alignments. All the data gathered in the experiment is
available at (https://bit.ly/2M3jIYS).
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5 Conclusion

This work addressed the problem of internetwork ontology matching, a natural
evolution of the classical ontology matching problem for highly interconnected
scenarios of Systems of Systems, which are of increasing popularity and relevance.
We proposed SubInterNM, an approach for internetwork ontology matching
that optimizes the required computation of correspondences by identifying and
reusing trivial and subsumed alignments. Preliminary evaluation results showed
the potential of the approach and opportunities for improvement, in scenarios
using lightweight ontologies. The computation of subsumed networks posed an
overhead computation since it is a well-known NP-Hard problem [7]. Therefore,
further implementations may compute trivial alignments, using it as background
knowledge for the matching process [9].

In future work, we expect to improve our implementation, including parallel
programming and infrastructure. We also plan to move forward exploring trivial
alignments in newer versions of the tool.
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Abstract. The Ontology Alignment Evaluation Initiative (OAEI) aims at com-

paring ontology matching systems on precisely defined test cases. These test

cases can be based on ontologies of different levels of complexity (from simple

thesauri to expressive OWL ontologies) and use different evaluation modalities

(e.g., blind evaluation, open evaluation, or consensus). The OAEI 2018 campaign

offered 12 tracks with 23 test cases, and was attended by 19 participants. This

paper is an overall presentation of that campaign.

1 Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international

initiative, which organizes the evaluation of an increasing number of ontology matching

systems [18, 20]. The main goal of the OAEI is to compare systems and algorithms

openly and on the same basis, in order to allow anyone to draw conclusions about

the best matching strategies. Furthermore, our ambition is that, from such evaluations,

developers can improve their systems.

Two first events were organized in 2004: (i) the Information Interpretation and In-

tegration Conference (I3CON) held at the NIST Performance Metrics for Intelligent

Systems (PerMIS) workshop and (ii) the Ontology Alignment Contest held at the Eval-

uation of Ontology-based Tools (EON) workshop of the annual International Semantic

Web Conference (ISWC) [45]. Then, a unique OAEI campaign occurred in 2005 at the

workshop on Integrating Ontologies held in conjunction with the International Con-

ference on Knowledge Capture (K-Cap) [4]. From 2006 until the present, the OAEI

campaigns were held at the Ontology Matching workshop, collocated with ISWC [1–3,

6–8, 11, 14–17, 19], which this year took place in Monterey, CA, USA2.

Since 2011, we have been using an environment for automatically processing eval-

uations (§2.1) which was developed within the SEALS (Semantic Evaluation At Large

Scale) project3. SEALS provided a software infrastructure for automatically executing

evaluations and evaluation campaigns for typical semantic web tools, including ontol-

ogy matching. Since OAEI 2017, a novel evaluation environment called HOBBIT (§2.1)

was adopted for the HOBBIT Link Discovery track, and later extended to enable the

evaluation of other tracks. Some tracks are run exclusively through SEALS and others

through HOBBIT, but several allow participants to choose the platform they prefer.

This paper synthesizes the 2018 evaluation campaign and introduces the results

provided in the papers of the participants. The remainder of the paper is organized as

follows: in §2, we present the overall evaluation methodology; in §3 we present the

tracks and datasets; in §4 we present and discuss the results; and finally, §5 concludes

the paper.

1 http://oaei.ontologymatching.org
2 http://om2018.ontologymatching.org
3 http://www.seals-project.eu
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2 Methodology

2.1 Evaluation platforms

The OAEI evaluation was carried out in one of two alternative platforms: the SEALS

client or the HOBBIT platform. Both have the goal of ensuring reproducibility and

comparability of the results across matching systems.

The SEALS client was developed in 2011. It is a Java-based command line inter-

face for ontology matching evaluation, which requires system developers to implement

a simple interface and to wrap their tools in a predefined way including all required

libraries and resources. A tutorial for tool wrapping is provided to the participants, de-

scribing how to wrap a tool and how to run a full evaluation locally.

The HOBBIT platform4 was introduced in 2017. It is a web interface for linked

data and ontology matching evaluation, which requires systems to be wrapped inside

docker containers and include a SystemAdapter class, then being uploaded into the

HOBBIT platform [31].

Both platforms compute the standard evaluation metrics against the reference align-

ments: precision, recall and F-measure. In test cases where different evaluation modali-

ties are required, evaluation was carried out a posteriori, using the alignments produced

by the matching systems.

2.2 OAEI campaign phases

As in previous years, the OAEI 2018 campaign was divided into three phases: prepara-

tory, execution, and evaluation.

In the preparatory phase, the test cases were provided to participants in an initial

assessment period between June 15th and July 15th, 2018. The goal of this phase is to

ensure that the test cases make sense to participants, and give them the opportunity to

provide feedback to organizers on the test case as well as potentially report errors. At

the end of this phase, the final test base was frozen and released.

During the ensuing execution phase, participants test and potentially develop their

matching systems to automatically match the test cases. Participants can self-evaluate

their results either by comparing their output with the reference alignments or by using

either of the evaluation platforms. They can tune their systems with respect to the non-

blind evaluation as long as they respect the rules of the OAEI. Participants were required

to register their systems and make a preliminary evaluation by July 31st. The execution

phase was terminated on September 9th, 2018, at which date participants had to submit

the (near) final versions of their systems (SEALS-wrapped and/or HOBBIT-wrapped).

During the evaluation phase, systems were evaluated by all track organizers. In

case minor problems were found during the initial stages of this phase, they were re-

ported to developers, who were given the opportunity to fix and resubmit their systems.

Initial results were provided directly to the participants, whereas final results for most

tracks were published on the respective pages of the OAEI website by October 8th.

4 https://project-hobbit.eu/outcomes/hobbit-platform/
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3 Tracks and test cases

This year’s OAEI campaign consisted of 12 tracks gathering 23 test cases, all of which

were based on OWL ontologies. They can be grouped into:

– Schema matching tracks, which have as objective matching ontology classes and/or

properties.
– Instance Matching tracks, which have as objective matching ontology instances.
– Instance and Schema Matching tracks, which involve both of the above.
– Complex Matching tracks, which have as objective finding complex correspon-

dences between ontology entities.
– Interactive tracks, which simulate user interaction to enable the benchmarking of

interactive matching algorithms.

The tracks are summarized in Table 1.

Table 1. Characteristics of the OAEI tracks.

Track
Test Cases

Relations Confidence Evaluation Languages Platform
(Tasks)

Schema Matching

Anatomy 1 = [0 1] open EN SEALS

Biodiversity
2 = [0 1] open EN SEALS

& Ecology

Conference 1 (21) =, <= [0 1] open+blind EN SEALS

Disease &
2 =, <= [0 1] open+blind EN SEALS

Phenotype

Large Biomedical
6 = [0 1] open EN both

ontologies

Multifarm 2 (2695) = [0 1] open+blind

AR, CZ, CN,

SEALS
DE, EN, ES,

FR, IT, NL,

RU, PT

Instance Matching

IIMB 1 = [0 1] open+blind EN SEALS

Link Discovery 2 (9) = [0 1] open EN HOBBIT

SPIMBENCH 2 = [0 1] open+blind EN HOBBIT

Instance and Schema Matching

Knowledge Graph 9 = [0 1] open EN both

Interactive Matching

Interactive 2 (22) =, <= [0 1] open EN SEALS

Complex Matching

Complex 4 = [0 1] open+blind EN, ES SEALS

Open evaluation is made with already published reference alignments and blind evaluation is

made by organizers, either from reference alignments unknown to the participants or manually.

79



3.1 Anatomy

The anatomy track comprises a single test case consisting of matching two fragments

of biomedical ontologies which describe the human anatomy5 (3304 classes) and the

anatomy of the mouse6 (2744 classes). The evaluation is based on a manually curated

reference alignment. This dataset has been used since 2007 with some improvements

over the years [13].

Systems are evaluated with the standard parameters of precision, recall, F-measure.

Additionally, recall+ is computed by excluding trivial correspondences (i.e., correspon-

dences that have the same normalized label). Alignments are also checked for coher-

ence using the Pellet reasoner. The evaluation was carried out on a server with a 6

core CPU @ 3.46 GHz with 8GB allocated RAM, using the SEALS client. However,

the evaluation parameters were computed a posteriori, after removing from the align-

ments produced by the systems s expressing relations other than equivalence, as well

as trivial correspondences in the oboInOwl namespace (e.g., oboInOwl#Synonym =

oboInOwl#Synonym). The results obtained with the SEALS client vary in some cases

by 0.5% compared to the results presented below.

3.2 Biodiversity and Ecology

The new biodiversity track features two test cases based on highly overlapping ontolo-

gies that are particularly useful for biodiversity and ecology research: matching the

Environment Ontology (ENVO) to the Semantic Web for Earth and Environment Tech-

nology Ontology (SWEET), and matching the Flora Phenotype Ontology (FLOPO)

to the Plant Trait Ontology (PTO). The track was motivated by two projects, namely

GFBio7 (The German Federation for Biological Data) and AquaDiva8, which aim at

providing semantically enriched data management solutions for data capture, annota-

tion, indexing and search [32]. Table 2 summarizes the versions and the sizes of the

ontologies used in OAEI 2018.

Table 2. Versions and number of classes of the Biodiversity and Ecology track ontologies.

Ontology Version Classes

ENVO 2017-08-22 6909

SWEET 2018-03-12 4543

FLOPO 2016-06-03 24199

PTO 2017-09-11 1504

The reference alignments for the two test cases were produced through a hybrid

approach that consisted of (1) using established matching systems to produce an au-

5 http://www.cancer.gov/cancertopics/cancerlibrary/
terminologyresources/

6 http://www.informatics.jax.org/searches/AMA_form.shtml
7 www.gfbio.org
8 www.aquadiva.uni-jena.de
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tomated consensus alignment (akin to those used in the Disease and Phenotype track)

then (2) manually validating the unique results produced by each system (and adding

them to the consensus if deemed correct), and finally (3) adding manually generated

correspondences. The matching systems used were the OAEI 2017 versions of AML,

LogMap, LogMapBio, LogMapLite, LYAM, POMap, and YAMBio, in addition to the

alignments from BioPortal [38].

The evaluation was carried out on a Windows 10 (64-bit) desktop with an Intel Core

i5-7500 CPU @ 3.40GHz x 4 with 15.7 Gb RAM allocated, using the SEALS client.

Systems were evaluated using the standard metrics.

3.3 Conference

The conference track features a single test case that is a suite of 21 matching tasks corre-

sponding to the pairwise combination of 7 moderately expressive ontologies describing

the domain of organizing conferences. The dataset and its usage are described in [47].

The track uses several reference alignments for evaluation: the old (and not fully

complete) manually curated open reference alignment, ra1; an extended, also manu-

ally curated version of this alignment, ra2; a version of the latter corrected to resolve

violations of conservativity, rar2; and an uncertain version of ra1 produced through

crowd-sourcing, where the score of each correspondences is the fraction of people in

the evaluation group that agree with the correspondence. The latter reference was used

in two evaluation modalities: discrete and continuous evaluation. In the former, corre-

spondences in the uncertain reference alignment with a score of at least 0.5 are treated

as correct whereas those with lower score are treated as incorrect, and standard evalu-

ation parameters are used to evaluated systems. In the latter, weighted precision, recall

and F-measure values are computed by taking into consideration the actual scores of

the uncertain reference, as well as the scores generated by the matching system. For

the sharp reference alignments (ra1, ra2 and rar2), the evaluation is based on the stan-

dard parameters, as well the F0.5-measure and F2-measure and on conservativity and

consistency violations. Whereas F1 is the harmonic mean of precision and recall where

both receive equal weight, F2 gives higher weight to recall than precision and F0.5 gives

higher weight to precision higher than recall.

Two baseline matchers are use to benchmark the systems: edna string edit distance

matcher; and StringEquiv string equivalence matcher as in the anatomy test case.

The evaluation was carried out on a Windows 10 (64-bit) desktop with an Intel

Core i7–8550U (1,8 GHz, TB 4 GHz) x 4 with 16 GB RAM allocated using the SEALS

client. Systems were evaluated using the standard metrics.

3.4 Disease and Phenotype

The Disease and Phenotype is organized by the Pistoia Alliance Ontologies Mapping

project team9. It comprises 2 test cases that involve 4 biomedical ontologies cov-

ering the disease and phenotype domains: Human Phenotype Ontology (HP) versus

9 http://www.pistoiaalliance.org/projects/ontologies-mapping/

81



Mammalian Phenotype Ontology (MP) and Human Disease Ontology (DOID) ver-

sus Orphanet and Rare Diseases Ontology (ORDO). Currently, correspondences be-

tween these ontologies are mostly curated by bioinformatics and disease experts who

would benefit from automation of their workflows supported by implementation of on-

tology matching algorithms. More details about the Pistoia Alliance Ontologies Map-

ping project and the OAEI evaluation are available in [23]. Table 3.4 summarizes the

versions of the ontologies used in OAEI 2018.

Table 3. Disease and Phenotype ontology versions and sources.

Ontology Version Source
HP 2017-06-30 OBO Foundry

MP 2017-06-29 OBO Foundry

DOID 2017-06-13 OBO Foundry

ORDO v2.4 ORPHADATA

The reference alignments used in this track are silver standard consensus alignments

automatically built by merging/voting the outputs of the participating systems in 2016,

2017 and 2018 (with vote=3). Note that systems participating with different variants

and in different years only contributed once in the voting, that is, the voting was done

by family of systems/variants rather than by individual systems. The HP-MP silver

standard thus produced contains 2232 correspondences, whereas the DOID-ORDO one

contains 2808 correspondences.

Systems were evaluated using the standard parameters as well as the number of

unsatisfiable classes computed using the OWL 2 reasoner HermiT [36]. The evaluation

was carried out in a Ubuntu 18 Laptop with an Intel Core i9-8950HK CPU @ 2.90GHz

x 12 and allocating 25 Gb RAM.

3.5 Large Biomedical Ontologies

The large biomedical ontologies (largebio) track aims at finding alignments between

the large and semantically rich biomedical ontologies FMA, SNOMED-CT, and NCI,

which contain 78,989, 306,591 and 66,724 classes, respectively. The track consists of

six test cases corresponding to three matching problems (FMA-NCI, FMA-SNOMED

and SNOMED-NCI) in two modalities: small overlapping fragments and whole ontolo-

gies (FMA and NCI) or large fragments (SNOMED-CT).

The reference alignments used in this track are derived directly from the UMLS

Metathesaurus [5] as detailed in [29], then automatically repaired to ensure logical

coherence. However, rather than use a standard repair procedure of removing prob-

lem causing correspondences, we set the relation of such correspondences to “?” (un-

known). These “?” correspondences are neither considered positive nor negative when

evaluating matching systems, but are simply ignored. This way, systems that do not

perform alignment repair are not penalized for finding correspondences that (despite

causing incoherences) may or may not be correct, and systems that do perform align-

ment repair are not penalized for removing such correspondences. To avoid any bias,
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correspondences were considered problem causing if they were selected for removal

by any of the three established repair algorithms: Alcomo [34], LogMap [28], or AML

[39]. The reference alignments are summarized in Table 4.

Table 4. Number of correspondences in the reference alignments of the large biomedical ontolo-

gies tasks.

Reference alignment “=” corresp. “?” corresp.

FMA-NCI 2,686 338

FMA-SNOMED 6,026 2,982

SNOMED-NCI 17,210 1,634

The evaluation was carried out in a Ubuntu 18 Laptop with an Intel Core i9-8950HK

CPU @ 2.90GHz x 12 and allocating 25 Gb of RAM. Evaluation was based on the

standard parameters (modified to account for the “?” relations) as well as the number

of unsatisfiable classes and the ratio of unsatisfiable classes with respect to the size of

the union of the input ontologies. Unsatisfiable classes were computed using the OWL

2 reasoner HermiT [36], or, in the cases in which HermiT could not cope with the input

ontologies and the alignments (in less than 2 hours) a lower bound on the number of

unsatisfiable classes (indicated by ≥) was computed using the OWL 2 EL reasoner ELK

[33].

3.6 Multifarm

The multifarm track [35] aims at evaluating the ability of matching systems to deal with

ontologies in different natural languages. This dataset results from the translation of 7

ontologies from the conference track (cmt, conference, confOf, iasted, sigkdd, ekaw and

edas) into 10 languages: Arabic (ar), Chinese (cn), Czech (cz), Dutch (nl), French (fr),

German (de), Italian (it), Portuguese (pt), Russian (ru), and Spanish (es). The dataset

is composed of 55 pairs of languages, with 49 matching tasks for each of them, taking

into account the alignment direction (e.g. cmten →edasde and cmtde →edasen are dis-

tinct matching tasks). While part of the dataset is openly available, all matching tasks

involving the edas and ekaw ontologies (resulting in 55 × 24 matching tasks) are used

for blind evaluation.

We consider two test cases: i) those tasks where two different ontologies

(cmt→edas, for instance) have been translated into two different languages; and ii)

those tasks where the same ontology (cmt→cmt) has been translated into two differ-

ent languages. For the tasks of type ii), good results are not only related to the use of

specific techniques for dealing with cross-lingual ontologies, but also on the ability to

exploit the identical structure of the ontologies.

The reference alignments used in this track derive directly from the manually cu-

rated Conference ra1 reference alignments. Systems are evaluated using the standard

parameters. The evaluation was carried out on a Ubuntu 16.04 machine configured with

16GB of RAM running under a i7-4790K CPU 4.00GHz x 8 processors, using the

SEALS client.
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3.7 IIMB

The new IIMB (ISLab Instance Matching Benchmark) track features a single test case

consisting of 80 instance matching tasks, in which the goal is to match an original

OWL Abox to an automatically transformed version of this Abox using the SWING

(Semantic Web INstance Generation) framework [22]. SWING consists of a pool of

transformation techniques organized as follows:

– Data value transformations (DVL) are based on changes of cardinality and content

of property values belonging to instance descriptions (e.g. value deletion, value

modification through random character insertion/substitution).
– Data structure transformations (DST) are based on changes of property names and

structure within an instance description (e.g. string value splitting, property name

modification).
– Data semantics transformations (DSS) are based on changes of class/type proper-

ties belonging to instance descriptions (e.g. property type deletion/modification).

The IIMB dataset has been generated by relying on a seed of linked-data instances

I ′ extracted from the web. A set of manipulated instances I ′′ has been created from I ′

and inserted in IIMB by applying a combination of SWING transformation techniques

according to the following schema:

– Tasks ID 001-020: DVL transformations
– Tasks ID 021-040: DST transformations
– Tasks ID 041-060: DSS transformations
– Tasks ID 061-080: DVL, DST, and DSS transformations

Within a group of tasks, the complexity of applied transformations increases with

the task ID. In each task, the reference alignment corresponds to the correspondence-set

generated by SWING between the instances of the original and transformed Abox.

The evaluation has been performed on an Intel Xeon E5/Core i7 server with 16GB

RAM, the Ubuntu operating systems equipped with the SEALS client.

3.8 Link Discovery

The Link Discovery track features two test cases, Linking and Spatial, that deal with

link discovery for spatial data represented as trajectories i.e., sequences of longi-

tude, latitude pairs. The track is based on two datasets generated from TomTom10 and

Spaten [10].

The Linking test case aims at testing the performance of instance matching tools

that implement mostly string-based approaches for identifying matching entities. It can

be used not only by instance matching tools, but also by SPARQL engines that deal

with query answering over geospatial data. The test case was based on SPIMBENCH

[40], but since the ontologies used to represent trajectories are fairly simple and do

not consider complex RDF or OWL schema constructs already supported by SPIM-

BENCH, only a subset of the transformations implemented by SPIMBENCH was used.

10 https://www.tomtom.com/en_gr/
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The transformations implemented in the test case were (I) string-based with different

(a) levels, (b) types of spatial object representations and (c) types of date representa-

tions, and (II) schema-based, i.e., addition and deletion of ontology (schema) properties.

These transformations were implemented in the TomTom dataset. In a nutshell, instance

matching systems are expected to determine whether two traces with their points anno-

tated with place names designate the same trajectory. In order to evaluate the systems

we built a ground truth containing the set of expected links where an instance s1 in

the source dataset is associated with an instance t1 in the target dataset that has been

generated as a modified description of s1.

The Spatial test case aims at testing the performance of systems that deal with topo-

logical relations proposed in the state of the art DE-9IM (Dimensionally Extended nine-

Intersection Model) model [44]. The benchmark generator behind this test case imple-

ments all topological relations of DE-9IM between trajectories in the two dimensional

space. To the best of our knowledge such a generic benchmark, that takes as input tra-

jectories and checks the performance of linking systems for spatial data does not exist.

For the design, we focused on (a) on the correct implementation of all the topological

relations of the DE-9IM topological model and (b) on producing large datasets large

enough to stress the systems under test. The supported relations are: Equals, Disjoint,

Touches, Contains/Within, Covers/CoveredBy, Intersects, Crosses, Overlaps. The test

case comprises tasks for all the DE-9IM relations and for LineString/LineString and

LineString/Polygon cases, for both TomTom and Spaten datasets, ranging from 200 to

2K instances. We did not exceed 64 KB per instance due to a limitation of the Silk

system11, in order to enable a fair comparison of the systems participating in this track.

The evaluation for both test cases was carried out using the HOBBIT platform.

3.9 SPIMBENCH

The SPIMBENCH track consists of matching instances that are found to refer to the

same real-world entity corresponding to a creative work (that can be a news item,

blog post or programme). The datasets were generated and transformed using SPIM-

BENCH [40] by altering a set of original linked data through value-based, structure-

based, and semantics-aware transformations (simple combination of transformations).

They share almost the same ontology (with some differences in property level, due

to the structure-based transformations), which describes instances using 22 classes, 31

Data Properties, and 85 Object Properties. Participants are requested to produce a set

of correspondences between the pairs of matching instances from the source and tar-

get datasets that are found to refer to the same real-world entity. An instance in the

source dataset can have none or one matching counterparts in the target dataset. The

SPIMBENCH task is composed of two datasets12 with different scales (i.e., number of

instances to match):

– Sandbox (380 INSTANCES, 10000 TRIPLES). It contains two datasets called

source (Tbox1) and target (Tbox2) as well as the set of expected correspondences

(i.e., reference alignment).

11 https://github.com/silk-framework/silk/issues/57
12 Although the files are called Tbox1 and Tbox2, they actually contain a Tbox and an Abox.
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– Mainbox (1800 CWs, 50000 TRIPLES). It contains two datasets called source

(Tbox1) and target (Tbox2). This test case is blind, meaning that the reference

alignment is not given to the participants. In both datasets, the goal is to discover

the correspondences among the instances in the source dataset (Tbox1) and the

instances in the target dataset (Tbox2).

The evaluation was carried out using the HOBBIT platform.

3.10 Knowledge Graph

The new Knowledge Graph track consists of nine isolated graphs generated by running

the DBpedia extraction framework on nine different Wikis from the Fandom Wiki host-

ing platform13 in the course of the DBkWik project [24, 25]. These knowledge graphs

cover three different topics, with three knowledge graphs per topic, so the track consists

of nine test cases, corresponding to the pairwise combination of the knowledge graphs

in each topic. The goal of each test case is to match both the instances and the schema

simultaneously. The datasets are summarized in Table 5

Table 5. Characteristics of the Knowledge Graphs in the KG track, and the sources they were

created from.

Source Hub Topic #Instances #Properties #Classes
RuneScape Wiki Games Gaming 200,605 1,998 106

Old School RuneScape Wiki Games Gaming 38,563 488 53

DarkScape Wiki Games Gaming 19,623 686 65

Marvel Database Comics Comics 56,464 99 2

Hey Kids Comics Wiki Comics Entertainment 158,234 1,925 181

DC Database Comics Lifestyle 128,495 177 5

Memory Alpha TV Entertainment 63,240 326 0

Star Trek Expanded Universe TV Entertainment 17,659 201 3

Memory Beta Books Entertainment 63,223 413 11

The evaluation was based on a gold standard14 of correspondences both on the

schema and the instance level. While the schema level correspondences were created

by experts, the instance correspondences were crowd sourced using Amazon MTurk.

Since we do not have a correspondence for each instance, class, and property in the

graphs, this gold standard is only a partial gold standard.

The evaluation was executed on a virtual machine (VM) with 32GB of RAM and

16 vCPUs (2.4 GHz), with Debian 9 operating system and Openjdk version 1.8.0 181,

using the SEALS client. It was not executed on the HOBBIT platform because few sys-

tems registered in HOBBIT for this task and all of them also had a SEALS counterpart.

We used the -o option in SEALS (version 7.0.5) to provide the two knowledge

graphs which should be matched. We used local files rather than HTTP URLs to cir-

cumvent the overhead of downloading the knowledge graphs. We could not use the

13 https://www.wikia.com/
14 http://dbkwik.webdatacommons.org
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”-x” option of SEALS because we had to modify the evaluation routine for two rea-

sons. First, we wanted to differentiate between results for class, property, and instance

correspondences, and second, we had to change the evaluation to deal with the partial

nature of our gold standard.

The alignments were evaluated based on precision, recall, and f-measure for classes,

properties, and instances (each in isolation). Our partial gold standard contained 1:1

correspondences, as well as negative correspondences, i.e., correspondences stating that

a resource A in one knowledge graph has no correspondence in the second knowledge

graph. This allows to increase the count of false positives if the matcher nevertheless

finds a correspondence (i.e., maps A to a resource in the other knowledge graph). We

further assume that in each knowledge graph, only one representation of the concept

exists. This means that if we have a correspondence in our gold standard, we count a

correspondence to a different concept as a false positive. The count of false negatives

is only increased if we have a 1:1 correspondence and it is not found by a matcher. The

whole source code for generating the evaluation results is also available15.

As a benchmark, we employed a simple string matching approach with some out of

the box text preprocessing to generate a baseline. The source code for this approach is

publicly available16.

3.11 Interactive Matching

The interactive matching track aims to assess the performance of semi-automated

matching systems by simulating user interaction [37, 12]. The evaluation thus focuses

on how interaction with the user improves the matching results. Currently, this track

does not evaluate the user experience or the user interfaces of the systems [26, 12].

The interactive matching track is based on the datasets from the Anatomy and Con-

ference tracks, which have been previously described. It relies on the SEALS client’s

Oracle class to simulate user interactions. An interactive matching system can present

a collection of correspondences simultaneously to the oracle, which will tell the system

whether that correspondence is correct or not. If a system presents up to three corre-

spondences together and each correspondence presented has a mapped entity (i.e., class

or property) in common with at least one other correspondence presented, the oracle

counts this as a single interaction, under the rationale that this corresponds to a sce-

nario where a user is asked to choose between conflicting candidate correspondences.

To simulate the possibility of user errors, the oracle can be set to reply with a given

error probability (randomly, from a uniform distribution). We evaluated systems with

four different error rates: 0.0 (perfect user), 0.1, 0.2, and 0.3.

In addition to the standard evaluation parameters, we also compute the number of

requests made by the system, the total number of distinct correspondences asked, the

number of positive and negative answers from the oracle, the performance of the system

according to the oracle (to assess the impact of the oracle errors on the system) and

finally, the performance of the oracle itself (to assess how erroneous it was).

15 http://oaei.ontologymatching.org/2018/results/knowledgegraph/
kg_track_eval.zip

16 http://oaei.ontologymatching.org/2018/results/knowledgegraph/
string_baseline_kg-source.zip
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The evaluation was carried out on a server with 3.46 GHz (6 cores) and 8GB RAM

allocated to the matching systems. Each system was run ten times and the final result

of a system for each error rate represents the average of these runs. For the Conference

dataset with the ra1 alignment, precision and recall correspond to the micro-average

over all ontology pairs, whereas the number of interactions is the total number of inter-

actions for all the pairs.

3.12 Complex Matching

The complex matching track is meant to evaluate the matchers based on their abil-

ity to generate complex alignments. A complex alignment is composed of com-

plex correspondences typically involving more than two ontology entities, such as

o1:AcceptedPaper ≡ o2:Paper � o2:hasDecision.o2:Acceptance. Four datasets with

their own evaluation process have been proposed [46].

The complex conference dataset is composed of three ontologies: cmt, conference

and ekaw from the conference dataset. The reference alignment was created as a con-

sensus between experts. In the evaluation process, the matchers can take the simple

reference alignment ra1 as input. The precision and recall measures are manually cal-

culated over the complex equivalence correspondences only.

The Hydrography dataset consists of matching four different source ontologies

(hydro3, hydrOntology-translated, hydrOntology-native, and cree) to a single target on-

tology (SWO). The evaluation process is based on three subtasks: given an entity from

the source ontology, identify all related entities in the source and target ontology; given

an entity in the source ontology and the set of related entities, identify the logical re-

lation that holds between them; identify the full complex correspondences. The first

subtask was evaluated based on precision and recall and the latter two were evaluated

using semantic precision and recall.

The GeoLink dataset derives from the homonymous project, funded under the U.S.

National Science Foundation’s EarthCube initiative. It is composed of two ontologies:

the GeoLink Base Ontology (GBO) and the GeoLink Modular Ontology (GMO). The

GeoLink project is a real-world use case of ontologies, and instance data is available.

The alignment between the two ontologies was developed in consultation with domain

experts from several geoscience research institutions. More detailed information on this

benchmark can be found in [48]. Evaluation was done in the same way as with the

Hydrography dataset. The evaluation platform was a MacBook Pro with a 2.6 GHz

Intel Core i5 processor and 16 GB of 1600 MHz DDR3 RAM running macOS Mojave

version 10.14.2.

The Taxon dataset is composed of four knowledge bases containing knowledge

about plant taxonomy: AgronomicTaxon, AGROVOC, TAXREF-LD and DBpedia. The

evaluation is two-fold: first, the precision of the output alignment is manually assessed;

then, a set of source queries are rewritten using the output alignment. The rewritten tar-

get query is then manually classified as correct or incorrect. A source query is consid-

ered successfully rewritten if at least one of the target queries is semantically equivalent

to it. The proportion of source queries successfully rewritten is then calculated (QWR

in the results table). The evaluation over this dataset is open to all matching systems
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(simple or complex) but some queries can not be rewritten without complex correspon-

dences. The evaluation was performed with an Ubuntu 16.04 machine configured with

16GB of RAM running under a i7-4790K CPU 4.00GHz x 8 processors.

4 Results and Discussion

4.1 Participation

Following an initial period of growth, the number of OAEI participants has remained

approximately constant since 2012, at slightly over 20. This year we observed a slight

decrease to 19 participating systems. Table 6 lists the participants and the tracks in

which they competed. Some matching systems participated with different variants

(AML, LogMap) whereas others were evaluated with different configurations, as re-

quested by developers (see test case sections for details).

Table 6. Participants and the status of their submissions.
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Confidence - - � � � � � � - � � � � - � � � � � 14

Anatomy � � � � � � � � � � � � � � � � � � � 14

Biodiversity & Ecology � � � � � � � � � �� � � � � � � � � � 8

Conference � � � � � � � � � � � � � � � � � � � 12

Disease & Phenotype � � � � � � � � � �� � � � � � � � � � 9

Large Biomedical Ont. � �� � � � � � � � �� � � � � �� � � � � 10

Multifarm � � � � � �� �� � � �� � � � � � � � � � 6

IIMB � � � � � � � � � � � � � � � � � � � 2

Link Discovery � � � � � � � � � � � � � � � �� � �� � 3

SPIMBENCH � � � � � � � � � � � � � � � � � � � 3

Knowledge Graph � � �� � � � � � � � � �� � � � � � � � 7

Interactive Matching � � � � � � � � � � � � � � � � � � � 4

Complex Matching � �� �� �� �� �� � �� �� �� � �� �� �� �� � � � �� 13

total 3 4 12 1 1 7 1 4 4 7 5 11 6 7 6 1 2 1 8 65

Confidence pertains to the confidence scores returned by the system, with � indicating that they

are non-boolean; � indicates that the system did not participate in the track; � indicates that it

participated fully in the track; and �� indicates that it participated in or completed only part of the

tasks of the track.

A number of participating systems use external sources of background knowledge,

which are especially critical in matching ontologies in the biomedical domain. LogMap-

Bio uses BioPortal as mediating ontology provider, that is, it retrieves from BioPortal
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the most suitable top-10 ontologies for each matching task. LogMap uses normaliza-

tions and spelling variants from the general (biomedical) purpose SPECIALIST Lexi-

con. AML has three sources of background knowledge which can be used as mediators

between the input ontologies: the Uber Anatomy Ontology (Uberon), the Human Dis-

ease Ontology (DOID) and the Medical Subject Headings (MeSH). XMAP and Lily

use a dictionary of synonyms (pre)extracted from the UMLS Metathesaurus. In addi-

tion Lily also uses a dictionary of synonyms (pre)extracted from BioPortal.

4.2 Anatomy

The results for the Anatomy track are shown in Table 7.

Table 7. Anatomy results, ordered by F-measure. Runtime is measured in seconds; “size” is the

number of correspondences in the generated alignment.

System Runtime Size Precision F-measure Recall Recall+ Coherent

AML 42 1493 0.95 0.943 0.936 0.832
√

LogMapBio 808 1550 0.888 0.898 0.908 0.756
√

POMAP++ 210 1446 0.919 0.897 0.877 0.695 -

XMap 37 1413 0.929 0.896 0.865 0.647
√

LogMap 23 1397 0.918 0.88 0.846 0.593
√

SANOM 487 1450 0.888 0.865 0.844 0.632 -

FCAMapX 118 1274 0.941 0.859 0.791 0.455 -

KEPLER 244 1173 0.958 0.836 0.741 0.316 -

Lily 278 1382 0.872 0.832 0.795 0.518 -

LogMapLite 18 1147 0.962 0.828 0.728 0.288 -

ALOD2Vec 75 987 0.996 0.785 0.648 0.086 -

StringEquiv - 946 0.997 0.766 0.622 0.000 -

DOME 22 935 0.997 0.761 0.615 0.009 -

ALIN 271 928 0.998 0.758 0.611 0.0
√

Holontology 265 456 0.976 0.451 0.294 0.005 -

Of the 14 systems participating in the Anatomy track, 11 achieved an F-measure

higher than the StringEquiv baseline. Three systems were first time participants

(ALOD2Vec, DOME, and Holontology) and showed modest results in terms of both

F-measure and recall+, with only ALOD2Vec ranking above the baseline. Among the

five systems that participated for the second time, SANOM shows increases in both

F-measure (from 0.828 to 0.865) and recall+ (from 0.419 to 0.632), KEPLER and Lily

have the same performance as last year, and both POMAP++ (POMap in 2017) and

FCAMapX (FCA Map in 2016) have decreases in F-measure and recall+. Long-term

systems showed few changes in comparison with previous years with respect to align-

ment quality (precision, recall, F-measure, and recall+), size or run time. The exceptions

were LogMapBio which increased in both recall+ (from 0.733 to 0.756) and alignment

size (by 16 correspondences) since last year, and ALIN that had a substantial increase

of 412 correspondences since last year.
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In terms of run time, 6 out of 14 systems computed an alignment in less than 100

seconds, a ratio which is similar to 2017 (5 out of 11). LogMapLite remains the system

with the shortest runtime. Regarding quality, AML remains the system with the high-

est F-measure (0.943) and recall+ (0.832), but 4 other systems obtained an F-measure

above 0.88 (LogMapBio, POMap++, XMap, and LogMap) which is at least as good as

the best systems in OAEI 2007-2010. Like in previous years, there is no significant cor-

relation between the quality of the generated alignment and the run time. Five systems

produced coherent alignments, which is the same as last year.

4.3 Biodiversity and Ecology

Of the 8 participants registered for this track, 7 systems (AML, LogMap, LogMapBio,

LogMapLt, Lily, XMap and POMap) managed to generate a meaningful output in 4

hours, and only KEPLER did not. Table 8 shows the results for the FLOPO-PTO and

ENVO-SWEET tasks.

Table 8. Results for the Biodiversity & Ecology track, ordered by F-measure.

System Size Precision F-measure Recall

FLOPO-PTO task

AML 233 0.88 0.86 0.84

LogMap 235 0.817 0.802 0.787

LogMapBio 239 0.803 0.795 0.787

XMap 153 0.987 0.761 0.619

LogMapLite 151 0.987 0.755 0.611

POMap 261 0.663 0.685 0.709

LiLy 176 0.813 0.681 0.586

ENVO-SWEET task

AML 791 0,776 0,844 0,926

LogMap 583 0,839 0,785 0,738

POMap 583 0,839 0,785 0,738

XMap 547 0,868 0,785 0,716

LogMapBio 572 0,839 0,777 0,724

LogMapLite 740 0,732 0,772 0,817

LiLy 491 0,866 0,737 0,641

Regarding the FLOPO-PTO task, the top 3 ranked systems in terms of F-measure

are AML, LogMap and LogMapBio, with curiously a similar number of generated cor-

respondences among them. Among these, AML achieved the highest F-measure (0.86)

and a well-balanced result, with over 80% recall and a still quite high precision.

Regarding the ENVO-SWEET task, AML ranked first in terms of F-measure, fol-

lowed by a three-way tie between LogMap, POMAP and XMap. AML had a less bal-

anced result in this test case, with a very high recall and significant larger alignment

than the other top systems, but a comparably lower precision. LogMap and POMap
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produced alignments of exactly equal size and quality, whereas XMap had the highest

precision overall, but a lower recall than these.

Overall, in this first evaluation, the results obtained from participating systems are

quite promising, as all systems achieved more than 0.68 in term of F-measure. We

should note that most of the participating systems, and all of the most successful ones

use external resources as background knowledge.

4.4 Conference

The conference evaluation results using the sharp reference alignment rar2 are shown

in Table 9. For the sake of brevity, only results with this reference alignment and con-

sidering both classes and properties are shown. For more detailed evaluation results,

please check conference track’s web page.

With regard to the two baselines we can group the twelve participants into four

groups: six matching systems outperformed both baselines (SANOM, AML, LogMap,

XMap, FCAMapX and DOME); three performed the same as the edna baseline (ALIN,

LogMapLt and Holontology); two performed slightly worse than this baseline (KE-

PLER and ALOD2Vec); and Lily performed worse than both baselines. Note that two

systems (ALIN and Lily) do not match properties at all which naturally has a negative

effect on their overall performance.

The performance of all matching systems regarding their precision, recall and F1-

measure is plotted in Figure 1. Systems are represented as squares or triangles, whereas

the baselines are represented as circles.

With respect to logical coherence [42, 43], only three tools (ALIN, AML and

LogMap) have no consistency principle violation (in comparison to five tools last year

and seven tools two years ago). This year all tools have some conservativity principle

violations (in comparison to one tool having no conservativity principle violation last

year). We should note that these conservativity principle violations can be “false pos-

itives” since the entailment in the aligned ontology can be correct although it was not

derivable in the single input ontologies.

The Conference evaluation results using the uncertain reference alignments are pre-

sented in Table 10.

Among the twelve participating alignment systems, six use 1.0 as the confidence

value for all matches they identify (ALIN, ALOD2Vec, DOME, FCAMapX, Holontol-

ogy, LogMapLt), whereas the remaining six have a wide range of confidence values

(AML, KEPLER, Lily, LogMap, SANOM and XMap).

When comparing the performance of the matchers on the uncertain reference align-

ments versus that on the sharp version (with the corresponding ra1), we see that in

the discrete case all matchers except Lily performed the same or better in terms of F-

measure (Lily’s F-measure dropped by 0.01). The changes in F-measure ranged from

-1 to 15 percent over the sharp reference alignment. This was predominantly driven by

increased recall, which is a result of the presence of fewer ’controversial’ matches in

the uncertain version of the reference alignment.

The performance of the matchers with confidence values always 1.0 is very sim-

ilar regardless of whether a discrete or continuous evaluation methodology is used,

because many of their correspondences are ones that the experts had high agreement
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Table 9. The highest average F[0.5|1|2]-measure and their corresponding precision and recall for

each matcher with its F1-optimal threshold (ordered by F1-measure). Inc.Align. means number

of incoherent alignments. Conser.V. means total number of all conservativity principle violations.

Consist.V. means total number of all consistency principle violations.

System Prec. F0.5-m. F1-m. F2-m. Rec. Inc.Align. Conser.V. Consist.V.

SANOM 0.72 0.71 0.7 0.69 0.68 9 103 92

AML 0.78 0.74 0.69 0.65 0.62 0 39 0

LogMap 0.77 0.72 0.66 0.6 0.57 0 25 0

XMap 0.76 0.7 0.62 0.56 0.52 4 53 14

FCAMapX 0.64 0.62 0.59 0.56 0.54 11 124 273

DOME 0.74 0.66 0.57 0.5 0.46 3 106 10

edna 0.74 0.66 0.56 0.49 0.45
ALIN 0.82 0.69 0.56 0.48 0.43 0 2 0

Holontology 0.73 0.65 0.56 0.49 0.45 3 66 10

LogMapLt 0.68 0.62 0.56 0.5 0.47 5 96 25

ALOD2Vec 0.67 0.62 0.55 0.5 0.47 6 124 27

KEPLER 0.67 0.61 0.55 0.49 0.46 12 123 159

StringEquiv 0.76 0.65 0.53 0.45 0.41
Lily 0.54 0.53 0.52 0.51 0.5 9 140 124

rec=1.0 rec=.8 rec=.6 pre=1.0pre=.8pre=.6

F1-measure=0.5

F1-measure=0.6

F1-measure=0.7

FCAMapX

AML

KEPLER

LogMap

LogMapLt

DOME

Holontology

ALOD2Vec

XMap

Lily

SANOM

ALIN

edna

StringEquiv

Fig. 1. Precision/recall triangular graph for the conference test case. Dotted lines depict level

of precision/recall while values of F1-measure are depicted by areas bordered by corresponding

lines F1-measure=0.[5|6|7].
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Table 10. F-measure, precision, and recall of matchers when evaluated using the sharp (ra1),

discrete uncertain and continuous uncertain metrics. Sorted according to F1-m. in continuous.

System
Sharp Discrete Continuous

Prec. F1-m. Rec. Prec. F1-m. Rec. Prec. F1-m. Rec.

AML 0.84 0.74 0.66 0.79 0.78 0.77 0.80 0.77 0.74

SANOM 0.79 0.74 0.69 0.71 0.74 0.78 0.65 0.72 0.81

ALIN 0.88 0.60 0.46 0.88 0.69 0.57 0.88 0.70 0.59

XMap 0.81 0.65 0.54 0.66 0.74 0.83 0.74 0.70 0.66

DOME 0.79 0.60 0.48 0.79 0.68 0.60 0.78 0.69 0.62

Holontology 0.78 0.59 0.48 0.78 0.68 0.60 0.78 0.68 0.61

ALOD2Vec 0.71 0.59 0.50 0.71 0.66 0.62 0.71 0.67 0.63

LogMap 0.82 0.69 0.59 0.77 0.73 0.70 0.80 0.67 0.57

LogMapLt 0.73 0.59 0.50 0.73 0.67 0.62 0.72 0.67 0.63

FCAMapX 0.68 0.61 0.56 0.65 0.66 0.67 0.64 0.66 0.68

KEPLER 0.76 0.59 0.48 0.76 0.67 0.60 0.58 0.63 0.68

Lily 0.59 0.56 0.53 0.52 0.55 0.59 0.59 0.32 0.22

about, while the ones they missed were more controversial. AML produces a fairly

wide range of confidence values and has the highest F-measure under both the con-

tinuous and discrete evaluation methodologies, indicating that this system’s confidence

evaluation does a good job of reflecting cohesion among experts on this task. Of the re-

maining systems, four (KEPLER, LogMap, SANOM and XMap) have relatively small

drops in F-measure when moving from discrete to continuous evaluation. Lily’s perfor-

mance drops drastically under the continuous evaluation methodology. This is because

the matcher assigns low confidence values to some correspondences in which the labels

are equivalent strings, which many experts agreed with unless there was a compelling

reason not to. This hurts recall, but using a low threshold value in the discrete version

of the evaluation metrics ’hides’ this problem.

Overall, in comparison with last year, the F-measures of most returning matching

systems essentially held constant under both the sharp and uncertain evaluations. The

exceptions were ALIN and SANOM, whose performance improved substantially. In

fact, the latter improved its performance so much that it became the top system with re-

gard to F-measure according to the sharp evaluation. We can conclude that all matchers

perform better on the fuzzy versus sharp version of the benchmark and that the perfor-

mance of AML against the fuzzy reference alignment rivals that of a human evaluated

in the same way.

4.5 Disease and Phenotype Track

In the OAEI 2018 phenotype track 9 systems were able to complete at least one of the

tasks with a 6 hours timeout. Tables 11 show the evaluation results in the HP-MP and

DOID-ORDO matching tasks, respectively.

Since the consensus reference alignments only allow us to assess how systems per-

form in comparison with one another, the proposed ranking is only a reference. Note

that some of the correspondences in the consensus alignment may be erroneous (false
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Table 11. Results for the HP-MP and DOID-ORDO tasks based on the consensus reference

alignment.

System Time (s) # Corresp. # Unique
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

HP-MP task

LogMap 31 2,130 1 0.88 0.86 0.84 0 0.0%

LogMapBio 821 2,178 37 0.86 0.85 0.84 0 0.0%

AML 70 2,010 279 0.89 0.84 0.80 0 0.0%

LogMapLt 7 1,370 3 0.99 0.76 0.61 0 0.0%

POMAP++ 1,668 1,502 214 0.86 0.69 0.58 0 0.0%

Lily 4,749 2,118 733 0.68 0.66 0.65 0 0.0%

XMap 20 704 2 0.99 0.48 0.31 0 0.0%

DOME 46 689 0 1.00 0.47 0.31 0 0.0%

DOID-ORDO task

LogMap 25 2,323 0 0.94 0.85 0.78 0 0.0%

LogMapBio 1,891 2,499 91 0.90 0.85 0.80 0 0.0%

POMAP++ 2,264 2,563 174 0.87 0.83 0.80 0 0.0%

LogMapLt 7 1,747 16 0.99 0.76 0.62 0 0.0%

XMap 15 1,587 37 0.97 0.70 0.55 0 0.0%

KEPLER 2,746 1,824 158 0.88 0.70 0.57 0 0.0%

Lily 2,847 3,738 1,167 0.59 0.67 0.78 206 1.9%

AML 135 4,749 1,886 0.51 0.65 0.87 0 0.0%

DOME 10 1,232 2 1.00 0.61 0.44 0 0.0%

positives) because all systems that agreed on it could be wrong (e.g., in erroneous corre-

spondences with equivalent labels, which are not that uncommon in biomedical tasks).

In addition, the consensus alignments will not be complete, because there are likely to

be correct correspondences that no system is able to find, and there are a number of

correspondences found by only one system (and therefore not in the consensus align-

ments) which may be correct. Nevertheless, the results with respect to the consensus

alignments do provide some insights into the performance of the systems.

Overall, LogMap is the system that provides the closest set of correspondences

to the consensus (not necessarily the best system) in both tasks. It has a small set

of unique correspondences as most of its correspondences are also suggested by its

variant LogMapBio and vice versa. By contrast, Lily and AML produce the highest

number of unique correspondences in HP-MP and DOID-ORDO respectively, and the

second-highest inversely. All systems produce coherent alignments except for Lily in

the DOID-ORDO task.

4.6 Large Biomedical Ontologies

In the OAEI 2018 Large Biomedical Ontologies track, 10 systems were able to com-

plete at least one of the tasks within a 6 hours timeout. Seven systems were able to

complete all six tasks.17 Since the reference alignments for this track are based on the

17 Check out the supporting scripts to reproduce the evaluation: https://github.com/
ernestojimenezruiz/oaei-evaluation
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Table 12. Results for the whole ontologies matching tasks in the OAEI largebio track.

System Time (s) # Corresp. # Unique
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

Whole FMA and NCI ontologies (Task 2)

AML 55 2,968 311 0.84 0.86 0.87 2 0.014%

LogMap 1,072 2,701 0 0.86 0.83 0.81 2 0.014%

LogMapBio 1,072 2,860 39 0.83 0.83 0.83 2 0.014%

XMap2 65 2,415 52 0.88 0.80 0.74 2 0.014%

FCAMapX 881 3,607 443 0.67 0.74 0.84 8,902 61.8%

LogMapLt 6 3,458 250 0.68 0.74 0.82 5,170 35.9%

DOME 12 2,383 10 0.80 0.73 0.67 596 4.1%

Whole FMA ontology with SNOMED large fragment (Task 4)

FCAMapX 1,736 7,971 1,258 0.82 0.79 0.76 21,289 57.0%

AML 94 6,571 462 0.88 0.77 0.69 0 0.0%

LogMapBio 1,840 6,471 31 0.83 0.73 0.65 0 0.0%

LogMap 288 6,393 0 0.84 0.73 0.65 0 0.0%

XMap2 299 6,749 1,217 0.72 0.66 0.61 0 0.0%

LogMapLt 9 1,820 56 0.85 0.33 0.21 981 2.6%

DOME 20 1,588 1 0.94 0.33 0.20 951 2.5%

Whole NCI ontology with SNOMED large fragment (Task 6)

AML 168 13,176 1,230 0.90 0.77 0.67 ≥517 ≥0.6%

FCAMapX 2,377 15,383 1,670 0.80 0.73 0.68 ≥72,859 ≥85.5%

LogMapBio 2,942 13,098 231 0.85 0.72 0.63 ≥3 ≥0.004%

LogMap 475 12,276 0 0.87 0.71 0.60 ≥1 ≥0.001%

LogMapLt 11 12,864 720 0.80 0.66 0.57 ≥74,013 ≥86.9%

DOME 24 9,702 42 0.91 0.63 0.49 ≥53,574 ≥62.9%

XMap2 427 16,271 4,432 0.64 0.61 0.58 ≥73,571 ≥86.4%

UMLS-Metathesaurus, we disallowed the use of this resource as a source of background

knowledge in the matching systems that used it, XMap and Lily. XMap was still able

to produce competitive results, while Lily produced an empty set of alignments. The

evaluation results for the largest matching tasks are shown in Tables 12.

The top-ranked systems by F-measure were respectively: AML and LogMap in Task

2; FCAMapX and AML in Task 4; and AML and FCAMapX in Task 6.

Interestingly, the use of background knowledge led to an improvement in recall from

LogMap-Bio over LogMap in all tasks, but this came at the cost of precision, resulting

in the two variants of the system having very similar F-measures.

The effectiveness of all systems decreased from small fragments to whole ontolo-

gies tasks.18 One reason for this is that with larger ontologies there are more plausible

correspondence candidates, and thus it is harder to attain both a high precision and a

high recall. In fact, this same pattern is observed moving from the FMA-NCI to the

FMA-SNOMED to the SNOMED-NCI problem, as the size of the task also increases.

Another reason is that the very scale of the problem constrains the matching strategies

18 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2018/results/
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that systems can employ: AML for example, forgoes its matching algorithms that are

computationally more complex when handling very large ontologies, due to efficiency

concerns.

The size of the whole ontologies tasks proved a problem for a number of systems,

which were unable to complete them within the allotted time: POMAP++, ALOD2Vec

and KEPLER.

With respect to alignment coherence, as in previous OAEI editions, only three dis-

tinct systems have shown alignment repair facilities: AML, LogMap and its LogMap-

Bio variant, and XMap (which reuses the repair techniques from Alcomo [34]). Note

that only LogMap and LogMap-Bio are able to reduce to a minimum the number of

unsatisfiable classes across all tasks, missing 9 unsatisfiable classes in the worst case

(whole FMA-NCI task). XMap seems to deactivate the repair facility for the SNOMED-

NCI case.

As the results tables show, even the most precise alignment sets may lead to a huge

number of unsatisfiable classes. This proves the importance of using techniques to as-

sess the coherence of the generated alignments if they are to be used in tasks involving

reasoning. We encourage ontology matching system developers to develop their own

repair techniques or to use state-of-the-art techniques such as Alcomo [34], the repair

module of LogMap (LogMap-Repair) [28] or the repair module of AML [39], which

have worked well in practice [30, 21].

4.7 Multifarm

This year, 6 matching systems registered for the MultiFarm track: AML, DOME,

EVOCROS, KEPLER, LogMap and XMap. This represents a slight decrease from the

last two years, but is within an approximately constant trend (8 in 2017, 7 in 2016, 5 in

2015, 3 in 2014, 7 in 2013, and 7 in 2012). However, a few systems had issues when

evaluated: i) KEPLER generated some parsing errors for some pairs; ii) EVOCROS

took around 30 minutes to complete a single task (we have hence tested only 50 match-

ing tasks) and generated empty alignments; iii) DOME was not able to generate any

alignment; iv) XMap had problems dealing with most pairs involving the ar, ru and cn

languages. Please refer to the OAEI papers of the matching systems for a detailed de-

scription of the strategies employed by each system, most of which adopt a translation

step before the matching itself.

The Multifarm evaluation results based on the blind dataset are presented in Ta-

ble 13. They have been computed using the Alignment API 4.9 and can slightly dif-

fer from those computed with the SEALS client. We do not report the results of non-

specific systems here, as we could observe in the last campaigns that they can have

intermediate results in the “same ontologies” task (ii) and poor performance in the “dif-

ferent ontologies” task (i).

With respect to run time, we observe large differences between systems due to the

high number of matching tasks involved (55 x 24). Note as well that the concurrent

access to the SEALS repositories during the evaluation period may have an impact on

the time required for completing the tasks.
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Table 13. MultiFarm aggregated results per matcher, for each type of matching task – different

ontologies (i) and same ontologies (ii).

System Time #pairs
Type (i) – 22 tests per pair Type (ii) – 2 tests per pair

Size Prec. F-m. Rec. Size Prec. F-m. Rec.

AML 26 55 6.87 .72 (.72) .46 (.46) .35 (.35) 23.24 .96 (.95) .27 (.27) .16 (.16)

KEPLER 900 53 9.74 .40 (.42) .27 (.28) .21 (.22) 58.28 .85 (.88) .49 (.51) .36 (.37)

LogMap 39 55 6.99 .72 (.72) .37 (.37) .25 (.25) 46.80 .95 (.96) .41 (.42) .28 (.28)

XMap 22 26 94.72 .02 (.05) .03 (.07) .07 (.07) 345.00 .13 (.18) .14 (.20) .19 (.19)

Time is measured in minutes (for completing the 55 × 24 matching tasks); #pairs indicates the

number of pairs of languages for which the tool is able to generate (non-empty) alignments; size

indicates the average of the number of generated correspondences for the tests where an (non-

empty) alignment has been generated. Two kinds of results are reported: those not distinguishing

empty and erroneous (or not generated) alignments and those—indicated between parenthesis—

considering only non-empty generated alignments for a pair of languages.

In terms of F-measure, AML remains the top performing system in task (i), followed

by LogMap and KEPLER. In task (ii), AML has relatively low performance (with a

notably low recall) and KEPLER has the highest F-measure, followed by LogMap.

With respect to the pairs of languages for test cases of type (i), for the sake of brevity,

we do not present the detailed results. Please refer to the OAEI results web page to

view them. The language pairs in which systems perform better in terms of F-measure

include: es-it, it-pt and nl-pt (AML); cz-pt and de-pt (KEPLER); en-nl (LogMap); and

cz-en (XMap). We note also some patterns behind the worst results obtained by systems:

ar-cn for AML, and some pairs involving cn for KEPLER and LogMap)

In terms of performance, the F-measure for blind tests remains relatively stable

across campaigns. AML and LogMap keep their positions and have similar F-measure

with respect to the previous campaigns, as does XMap. As observed in previous cam-

paigns, systems privilege precision over recall, and the results are expectedly below

the ones obtained for the original Conference dataset. Cross-lingual approaches re-

main mainly based on translation strategies and the combination of other resources

(like cross-lingual links in Wikipedia, BabelNet, etc.) while strategies such as machine

learning, or indirect alignment composition remain under-exploited.

4.8 IIMB

Only two systems participated in the new IIMB track: AML and LogMap. The obtained

results are summarized in Table 1419.

In the results of both AML and LogMap, we note that high-quality performances

are provided on test-cases based on DVL transformations. We note that the evaluation

results on this kind of matching issues have been improved in the recent years (for in-

stance, see [3] for a comparison against the 2012 version of the IIMB dataset). As a

matter of fact, recognition of similarities across instance descriptions with data-value

19 A detailed report of test-case results is provided on https://islab.di.unimi.it/
im_oaei_2018/.

98



Table 14. Summary of the IIMB results.

System Runtime (s) Precision Recall F-measure

Data Value Transformations

AML 1828 0.893 0.789 0.828

LogMap 4.2 0.896 0.893 0.889

Data Structure Transformations

AML 2036 0.419 0.433 0.424

LogMap 5.7 0.934 0.985 0.959

Data Semantics Transformations

AML 6.2 0.747 0.889 0.796

LogMap 4.6 0.855 0.947 0.893

Mixed Transformations

AML 2083 0.334 0.294 0.295

LogMap 6.5 0.920 0.758 0.819

heterogeneities represents a sort of consolidated matching capability that can be con-

sidered as a standard functionality of the current state-of-the-art tools. We also note that

promising results are also provided by both the participating tools on test-cases based

on DSS transformations. We argue that such a kind of result is due to the capability of

both AML and LogMap to cope with incoherence, thus reducing the number of false-

positive results. As a final remark, we observe that recall is usually lower than precision.

Maybe, the cause is the non-uniform quality of expected automatically-generated cor-

respondences. Expected correspondences are created by applying a sequence of trans-

formations with different length (i.e., number of transformations) and different degree

of complexity (i.e., strength of applied data manipulations). Sometimes, the applied

SWING transformations produce correspondences that are more difficult to agree with,

rather than to detect. Measuring the quality of automatically-generated alignments as

well as pruning of excessively-hard ones from the set of expected results is a challeng-

ing issue to consider in future research work (see Section 5).

4.9 Link Discovery

This year the Link Discovery track counted one participant in the Linking test case

(AML) and three participants in the Spatial test case: AML, Silk and RADON.

In the Linking test case, AML perfectly captures all the correct links while not

producing wrong ones, thus obtaining perfect precision and a recall (1.0) in both the

Sandbox and Mainbox datasets. It required 6.8s and 313s, respectively, to complete the

two tasks.

We divided the Spatial test cases into four suites. In the first two suites (SLL and

LLL), the systems were asked to match LineStrings to LineStrings considering a given

relation for 200 and 2K instances for the TomTom and Spaten datasets. In the last two

tasks (SLP, LLP), the systems were asked to match LineStrings to Polygons (or Poly-

gons to LineStrings depending on the relation) again for both datasets. Since the pre-

cision, recall and f-measure results from all systems were equal to 1.0, we are only
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presenting results regarding the time performance. The time performance of the match-

ing systems in the SLL, LLL, SLP and LLP suites are shown in Figures 2-3.

In the SLL suite, RADON has the best performance in most cases except for the

Touches and Intersects relations, followed by AML. Silk seems to need the most time,

particularly for Touches and Intersects relations in the TomTom dataset and Overlaps
in both datasets.

In the LLL suite we have a more clear view of the capabilities of the systems with

the increase in the number of instances. In this case, RADON and Silk have similar

behavior as in the the small dataset, but it is more clear that the systems need much

more time to match instances from the TomTom dataset. RADON has still the best

performance in most cases. AML has the next best performance and is able to handle

some cases better than other systems (e.g. Touches and Intersects), however, it also hits

the platform time limit in the case of Disjoint.
In the SLP suite, in contrast to the first two suites, RADON has the best performance

for all relations. AML and Silk have minor time differences and, depending on the case,

one is slightly better than the other. All the systems need more time for the TomTom

dataset but due to the small size of the instances the time difference is minor.

In the LLP suite, RADON again has the best performance in all cases. AML hits the

platform time limit in Disjoint relations on both datasets and is better than Silk in most

cases except Contains and Within on the TomTom dataset where it needs an excessive

amount of time.

Taking into account the executed test cases we can identify the capabilities of the

tested systems as well as suggest some improvements. All the systems participated in

most of the test cases, with the exception of Silk which did not participate in the Covers
and Covered By test cases.

RADON was the only system that successfully addressed all the tasks, and had the

best performance for the SLP and LLP suites, but it can be improved for the Touches
and Intersects relations for the SLL and LLL suites. AML performs extremely well in

most cases, but can be improved in the cases of Covers/Covered By and Contains/Within
when it comes to LineStrings/Polygons Tasks and especially in Disjoint relations where

it hits the platform time limit. Silk can be improved for the Touches, Intersects and

Overlaps relations and for the SLL and LLL tasks and for the Disjoint relation in SLP

and LLP Tasks.

In general, all systems needed more time to match the TomTom dataset than the

Spaten one, due to the smaller number of points per instance in the latter. Comparing the

LineString/LineString to the LineString/Polygon Tasks we can say that all the systems

needed less time for the first for the Contains, Within, Covers and Covered by relations,

more time for the Touches, Instersects and Crosses relations, and approximately the

same time for the Disjoint relation.

4.10 SPIMBENCH

This year, the SPIMBENCH track counted three participants: AML, Lily, and LogMap.

The evaluation results of the track are shown in Table 15.

Lily had the best performance overall both in terms of F-measure and in terms

of run time. Notably, its run time scaled very well with the increase in the number of
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Fig. 2. Time performance for TomTom & Spaten SLL (top) and LLL (bottom) suites for AML

(A), Silk (S) and RADON (R).

instances. Both Lily and AML had a higher recall than precision, with the former having

full recall. By contrast, LogMap had the highest precision but lowest recall of the three

systems. AML and LogMap had a similar run time for the Sandbox task, but the latter

scaled better with the increase in the number of instances.
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Fig. 3. Time performance for TomTom & Spaten SLP (top) and LLP (bottom) suites for AML

(A), Silk (S) and RADON (R).
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Table 15. SPIMBENCH track results.

System Precision Recall F-measure Time (ms)
Sandbox (100 instances)

AML 0.835 0.896 0.865 6220

Lily 0.849 1.0 0.919 1960

LogMap 0.938 0.763 0.841 5887

Mainbox (5000 instances)

AML 0.839 0.884 0.860 37190

Lily 0.855 1.0 0.922 3103

LogMap 0.893 0.709 0.791 23494

4.11 Knowledge Graph

We evaluated all SEALS participants in the OAEI (even those not registered for the

track) on a very small matching example20. This revealed that not all systems were able

to cope with the task, and in the end only the following systems were evaluated: AML,

POMap++, Hontology, DOME, LogMap (in its KG version), LogMapBio, LogMapLt.

Of these systems, the following were able output results for all nine test cases:

POMAP++, Holontology, DOME, LogMapBio and the baseline. AML ran out of time

(12 hours) on some tracks, LogMap needed more than the given 32 GB RAM for the

bigger knowledge graphs, and LogMapLt created alignment files bigger than 1GB (up

to 50 GB in some runs).

Table 16 shows the aggregated results for each system, including the number of

tasks in which it was able to generate a non-empty alignment (#tasks) and the av-

erage number of generated correspondences in those tasks (size). In addition to the

global average precision, F-measure, and recall results, in which tasks where systems

produced empty alignments were counted, we also computed F-measure and recall ig-

noring empty alignments (note that precision is the same) which are shown between

parentheses in the table, where applicable.

All systems were able to generate class correspondences, but only the three tasks

from the Games topic have enough classes to be meaningfully matched. The base-

line has an F-Measure of 0.79 which is surpassed by AML, Holontology, LogMap and

LogMapBio (when considering only completed tracks).

DOME was the only system able to produce property correspondences (in addition

to the baseline). The remaining systems do not return any property correspondences,

probably because all properties are typed as rdf:Property and not subdivided into

owl:DatatypeProperty and owl:ObjectProperty. However, this cannot be

done easily in a preprocessing step because the usage of the properties is not strict, i.e.,

some properties are used both with literals and resources as their object. Given that a

system that matches only OWL properties of the same type would not be able to handle

such cases as this, an improvement of these matching systems would be to include also

the ability of correspondence rdf:Property in case no more types are defined.

20 http://oaei.ontologymatching.org/2018/results/knowledgegraph/
small_test.zip
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Table 16. Knowledge Graph track results, divided into class, property, instance, and overall cor-

respondences.

System Time (s) # tasks Size Prec. F-m. Rec.

Class performance

AML 88448 5 11.6 0.85 0.64 (0.87) 0.51 (0.88)

POMAP++ 438 9 15.1 0.79 0.74 0.69

Holontology 318 9 16.8 0.80 0.83 0.87

DOME 13747 9 16.0 0.73 0.73 0.73

LogMap 14083 7 21.7 0.66 0.77 (0.80) 0.91 (1.00)

LogMapBio 2340 9 22.1 0.68 0.81 1.00

LogMapLt 500 6 22.0 0.61 0.72 (0.76) 0.87 (1.00)

Baseline 412 9 18.9 0.75 0.79 0.84

Property performance

AML 88448 5 0.0 0.00 0.00 0.00

POMAP++ 438 9 0.0 0.00 0.00 0.00

Holontology 318 9 0.0 0.00 0.00 0.00

DOME 13747 9 207.3 0.86 0.84 0.81

LogMap 14083 7 0.0 0.00 0.00 0.00

LogMapBio 2340 9 0.0 0.00 0.00 0.00

LogMapLt 500 6 0.0 0.00 0.00 0.00

Baseline 412 9 213.8 0.86 0.84 0.82

Instance performance

AML 88448 5 82380.9 0.16 0.23 (0.26) 0.38 (0.63)

POMAP++ 438 9 0.0 0.00 0.00 0.00

Holontology 318 9 0.0 0.00 0.00 0.00

DOME 13747 9 15688.7 0.61 0.61 0.61

LogMap 14083 7 97081.4 0.08 0.14 (0.15) 0.81 (0.93)

LogMapBio 2340 9 0.0 0.00 0.00 0.00

LogMapLt 500 6 82388.3 0.39 0.52 (0.56) 0.76 (0.96)

Baseline 412 9 17743.3 0.59 0.69 0.82

Overall performance

AML 88448 5 102471.1 0.19 0.23 (0.28) 0.31 (0.52)

POMAP++ 438 9 16.9 0.79 0.14 0.08

Holontology 318 9 18.8 0.80 0.17 0.10

DOME 13747 9 15912.0 0.68 0.68 0.67

LogMap 14083 7 97104.8 0.09 0.16 (0.16) 0.64 (0.74)

LogMapBio 2340 9 24.1 0.68 0.19 0.11

LogMapLt 500 6 88893.1 0.42 0.49 (0.54) 0.60 (0.77)

Baseline 412 9 17976.0 0.65 0.73 0.82

With respect to instance correspondences, AML, DOME, LogMap, LogMapLt were

able to produce them (as was the baseline) whereas POMAP++, Holontology and

LogMapBio were not, since they are not designed for instance matching. The base-

line was unsurpassed by any system in this category in either F-measure or recall. One

reason for this is that the baseline had the highest F-measure among systems able to

match both classes and instances, and had a higher F-measure than DOME at matching
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properties, given that the alignment of instances is conditioned by the correct alignment

of classes and properties. Furthermore, many of the matching systems return n:m corre-

spondences and thus a lot of false positive correspondences, resulting in low precision.

We analyzed the errors for a specific task, namely

darkscape-oldschoolrunescape. For this task, the baseline could not

find the following correspondences: Lumbridge and Draynor Tasks =
Lumbridge & Draynor Diary and Cupric sulphate = Cupric sulfate.

The matcher AML does not find Translated notes = Translated notes,

even if the label (wiki page name) is exactly the same. False positive correspondences

for the LogMap matcher are Ancient Magicks = Carrallangar Teleport
and Ancient Magicks = Kharyrll Teleport. For AML one example is

Customs Officer = Gang boss.

Regarding runtime, AML was the slowest system, followed by DOME and LogMap.

POMAP++ and Holontology were quite fast, but only return class correspondences.

4.12 Interactive matching

This year, the same four systems as last year participated in the Interactive matching

track: ALIN, AML, LogMap, and XMap. Their results are shown in Table 17 and Figure

4 for both Anatomy and Conference datasets.

The table includes the following information (column names within parentheses):

– The performance of the system: Precision (Prec.), Recall (Rec.) and F-measure (F-

m.) with respect to the fixed reference alignment, as well as Recall+ (Rec.+) for the

Anatomy task. To facilitate the assessment of the impact of user interactions, we

also provide the performance results from the original tracks, without interaction

(line with Error NI).

– To ascertain the impact of the oracle errors, we provide the performance of the

system with respect to the oracle (i.e., the reference alignment as modified by the

errors introduced by the oracle: Precision oracle (Prec. oracle), Recall oracle (Rec.

oracle) and F-measure oracle (F-m. oracle). For a perfect oracle these values match

the actual performance of the system.

– Total requests (Tot Reqs.) represents the number of distinct user interactions with

the tool, where each interaction can contain one to three conflicting correspon-

dences, that could be analysed simultaneously by a user.

– Distinct correspondences (Dist. Mapps) counts the total number of correspondences

for which the oracle gave feedback to the user (regardless of whether they were

submitted simultaneously, or separately).

– Finally, the performance of the oracle itself with respect to the errors it introduced

can be gauged through the positive precision (Pos. Prec.) and negative precision

(Neg. Prec.), which measure respectively the fraction of positive and negative an-

swers given by the oracle that are correct. For a perfect oracle these values are equal

to 1 (or 0, if no questions were asked).

The figure shows the time intervals between the questions to the user/oracle for the

different systems and error rates. Different runs are depicted with different colors.
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Table 17. Interactive matching results for the Anatomy and Conference datasets.

Tool Error Prec. Rec. F-m. Rec.+
Prec.
oracle

Rec.
oracle

F-m.
oracle

Tot.
Reqs.

Dist.
Mapps

Pos.
Prec.

Neg.

Prec.

Anatomy Dataset

ALIN

NI 0.998 0.611 0.758 0.0 – – – – – – –

0.0 0.994 0.826 0.902 0.543 0.994 0.826 0.902 602 1448 1.0 1.0

0.1 0.914 0.802 0.854 0.482 0.994 0.833 0.906 578 1373 0.731 0.965

0.2 0.848 0.784 0.815 0.436 0.994 0.839 0.91 564 1343 0.561 0.931

0.3 0.784 0.757 0.77 0.369 0.995 0.843 0.912 552 1307 0.419 0.875

AML

NI 0.95 0.936 0.943 0.832 – – – – – – –

0.0 0.964 0.948 0.956 0.862 0.964 0.948 0.956 240 240 1.0 1.0

0.1 0.952 0.946 0.948 0.857 0.965 0.95 0.957 268 268 0.719 0.97

0.2 0.938 0.941 0.939 0.849 0.965 0.95 0.957 272 272 0.52 0.935

0.3 0.92 0.938 0.929 0.843 0.966 0.951 0.958 299 299 0.379 0.905

LogMap

NI 0.918 0.846 0.88 0.593 – – – – – – –

0.0 0.982 0.846 0.909 0.595 0.982 0.846 0.909 388 1164 1.0 1.0

0.1 0.961 0.832 0.892 0.568 0.964 0.801 0.875 388 1164 0.742 0.966

0.2 0.945 0.823 0.88 0.552 0.944 0.761 0.842 388 1164 0.567 0.927

0.3 0.932 0.819 0.872 0.543 0.922 0.725 0.812 388 1164 0.434 0.878

XMap

NI 0.929 0.865 0.896 0.647 – – – – – – –

0.0 0.929 0.867 0.897 0.653 0.929 0.867 0.897 35 35 1.0 1.0

0.1 0.929 0.867 0.897 0.653 0.929 0.866 0.896 35 35 0.601 0.978

0.2 0.929 0.867 0.897 0.653 0.929 0.865 0.896 35 35 0.4 0.965

0.3 0.929 0.867 0.897 0.653 0.929 0.863 0.895 35 35 0.298 0.946

Conference Dataset

ALIN

NI 0.88 0.456 0.601 – – – – – – – –

0.0 0.921 0.721 0.809 – 0.921 0.721 0.809 276 698 1.0 1.0

0.1 0.725 0.686 0.705 – 0.934 0.753 0.834 264 674 0.538 0.987

0.2 0.601 0.648 0.623 – 0.942 0.773 0.849 260 657 0.341 0.967

0.3 0.495 0.624 0.552 – 0.951 0.796 0.866 259 645 0.226 0.95

AML

NI 0.841 0.659 0.739 – – – – – – –

0.0 0.912 0.711 0.799 – 0.912 0.711 0.799 270 270 1.0 1.0

0.1 0.838 0.698 0.762 – 0.923 0.733 0.817 277 277 0.691 0.971

0.2 0.769 0.676 0.719 – 0.928 0.747 0.827 271 271 0.533 0.922

0.3 0.715 0.663 0.688 – 0.931 0.758 0.836 270 270 0.459 0.885

LogMap

NI 0.818 0.59 0.686 – – – – – – – –

0.0 0.886 0.61 0.723 – 0.886 0.61 0.723 82 246 1.0 1.0

0.1 0.85 0.596 0.7 – 0.858 0.576 0.69 82 246 0.71 0.978

0.2 0.82 0.588 0.685 – 0.831 0.547 0.66 82 246 0.507 0.941

0.3 0.793 0.583 0.672 – 0.808 0.518 0.631 82 246 0.366 0.907

XMap

NI 0.716 0.62 0.665 – – – – – – – –

0.0 0.719 0.62 0.666 – 0.719 0.62 0.666 16 16 0.0 1.0

0.1 0.719 0.62 0.666 – 0.719 0.617 0.665 16 16 0.0 1.0

0.2 0.718 0.62 0.666 – 0.72 0.613 0.662 16 16 0.2 1.0

0.3 0.718 0.62 0.666 – 0.721 0.613 0.662 16 16 0.1 1.0

NI stands for non-interactive, and refers to the results obtained by the matching system in the

original track.
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Fig. 4. Time intervals between requests to the user/oracle for the Anatomy (top 4 plots) and Con-

ference (bottom 4 plots) datasets. Whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1. The labels

under the system names show the average number of requests and the mean time between the

requests for the ten runs.
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The matching systems that participated in this track employ different user-

interaction strategies. While LogMap, XMap and AML make use of user interactions

exclusively in the post-matching steps to filter their candidate correspondences, ALIN

can also add new candidate correspondences to its initial set. LogMap and AML both

request feedback on only selected correspondences candidates (based on their similar-

ity patterns or their involvement in unsatisfiabilities) and AML presents one correspon-

dence at a time to the user. XMap also presents one correspondence at a time and asks

mainly about incorrect correspondences. ALIN and LogMap can both ask the oracle to

analyze several conflicting correspondences simultaneously.

The performance of the systems usually improves when interacting with a perfect

oracle in comparison with no interaction. The one exception is XMap, because it is

barely interactive in the datasets. In general, XMap performs very few requests to the

oracle compared to the other systems. Thus, it is also the system that improves the

least with user interaction. On the other end of the spectrum, ALIN is the system that

improves the most, because its high number of oracle requests and its non-interactive

performance was the lowest of the interactive systems, and thus the easiest to improve.

Although system performance deteriorates when the error rate increases, there are

still benefits from the user interaction—some of the systems’ measures stay above their

non-interactive values even for the larger error rates. Naturally, the more a system relies

on the oracle, the more its performance tends to be affected by the oracle’s errors.

The impact of the oracle’s errors is linear for ALIN, AML and for XMap in most

tasks, as the F-measure according to the oracle remains approximately constant across

all error rates. It is supra-linear for LogMap in all datasets.

Another aspect that was assessed, was the response time of systems, i.e., the time

between requests. Two models for system response times are frequently used in the lit-

erature [9]: Shneiderman and Seow take different approaches to categorize the response

times taking a task-centered view and a user-centered view respectively. According to

task complexity, Shneiderman defines response time in four categories: typing, mouse

movement (50-150 ms), simple frequent tasks (1 s), common tasks (2-4 s) and complex

tasks (8-12 s). While Seow’s definition of response time is based on the user expec-

tations towards the execution of a task: instantaneous (100-200 ms), immediate (0.5-1

s), continuous (2-5 s), captive (7-10 s). Ontology alignment is a cognitively demanding

task and can fall into the third or fourth categories in both models. In this regard the re-

sponse times (request intervals as we call them above) observed in all datasets fall into

the tolerable and acceptable response times, and even into the first categories, in both

models. The request intervals for AML, LogMap and XMAP stay at a few milliseconds

for most datasets. ALIN’s request intervals are higher, but still in the tenth of second

range. It could be the case, however, that a user would not be able to take advantage

of these low response times because the task complexity may result in higher user re-

sponse time (i.e., the time the user needs to respond to the system after the system is

ready).

4.13 Complex Matching

The only systems able to generate any kind of complex correspondence in any of the

complex matching test cases were AMLC (in the Conference test suite) and CANARD
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(in the Taxon test case). No systems were capable of generating complex correspon-

dences over either the Hydrography or the GeoLink test cases.

On the Conference test suite, only complex correspondences were being evaluated,

since simple correspondences are already evaluated under the Conference track. In the

case of the Hydrography and GeoLink test cases, all SEALS OAEI participants were

evaluated in subtask 1 of both test cases, wherein they had to simply identify related

entities. On the Taxon test case, all 14 systems which registered to the complex, confer-

ence and/or anatomy track were evaluated, but only 7 could output at least one align-

ment.

The results of the systems on the four test cases are summarized in Table 18.

Table 18. Results of the Complex Track. The precision, recall and F-measure are the average

measures. QWR is the proportion of queries well rewritten.

Conference Hydrography (subtask 1) GeoLink (subtask 1) Taxon
Matcher

Prec. F-meas. Rec. Prec. F-meas. Rec. Prec. F-meas. Rec. Prec. QWR

ABC - - - 0.43 0.18 0.12 - - - - -

ALOD2Vec - - - 0.5 0.09 0.05 0.78 0.19 0.11 - -

AMLC 0.54 0.42 0.34 - - - - - - - -

AML - - - - - - - - - 0.00 0.00

CANARD - - - - - - - - - 0.20 0.13
DOME - - - 0.35 0.09 0.06 0.44 0.17 0.11 - -

FMapX - - - 0.46 0.11 0.07 - - - - -

Holontology - - - - - - - - - 0.22 0.00

KEPLER - - - 0.5 0.09 0.05 - - - - -

LogMap - - - 0.44 0.08 0.05 0.85 0.18 0.1 0.54 0.07

LogMapBio - - - - - - - - - 0.28 0.00

LogMapKG - - - - - - 0.85 0.18 0.1 - -

LogMapLt - - - - - - 0.73 0.19 0.11 0.16 0.10

POMAP++ - - - 0.42 0.06 0.04 0.9 0.17 0.09 0.14 0.00

XMap - - - 0.21 0.09 0.06 0.39 0.15 0.09 - -

With respect to subtask 1 of the Hydrography and GeoLink test cases, the results

show that a simple baseline approach that identifies target entity names within source

entity comments performs better than most existing matchers. This is unsurprising, as

matching systems are configured to find equivalent concepts rather than related ones.

The takeaway from this year is that there is a lot of room for new approaches on this

task.

In the Taxon test cases, only the output of LogMap, LogMapLt and CANARD could

be used to rewrite source queries.

A more detailed discussion of the results of each task can be found in the OAEI page

for this track. For a first edition of complex matching in an OAEI campaign, and given

the inherent difficulty of the task, the results and participation are promising albeit still

modest.
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5 Conclusions & Lessons Learned

The OAEI 2018 counted this year several new tracks, some of which open new per-

spectives in the field, in particular with respect to the generation of more expressive

alignments. We witnessed a slight decrease in the number of participants in comparison

with previous years, but with a healthy mix of new and returning systems. However,

like last year, the distribution of participants by tracks was uneven.

The schema matching tracks saw abundant participation, but, as has been the trend

of the recent years, little substantial progress in terms of quality of the results or run

time of top matching systems, judging from the long-standing tracks. On the one hand,

this may be a sign of a performance plateau being reached by existing strategies and

algorithms, which would suggest that new technology is needed to obtain significant

improvements. On the other hand, it is also true that established matching systems tend

to focus more on new tracks and datasets than on improving their performance in long-

standing tracks, whereas new systems typically struggle to compete with established

ones.

The number of matching systems capable of handling very large ontologies has in-

creased slightly over the last years, but is still relatively modest, judging from the Large
Biomedical Ontologies track. We will aim at facilitating participation in future editions

of this track by providing techniques to divide the matching tasks in manageable sub-

tasks (e.g., [27]).

There has also been progress, but likewise room for improvement, on the ability

of matching systems to match properties, judging from the Conference track. To assist

system developers in tackling this aspect, we plan to provide a more detailed evaluation

in the future, including an analysis of the false positives per matching system.

Less encouraging is the low number of systems concerned with the logical coher-

ence of the alignments they produce, an aspect which is critical for several semantic

web applications. Perhaps a more direct approach is needed to promote this topic, such

as providing a more in-depth analysis of the causes of incoherence in the evaluation or

even organizing a future track focusing on logical coherence alone.

The consensus-based evaluation in the Disease and Phenotype track offers limited

insights into performance, as several matching systems produce a number of unique

correspondences which may or may not be correct. In the absence of a true reference

alignment, future evaluation should seek to determine whether the unique correspon-

dences contain indicators of correctness, such as semantic similarity, or appear to be

noise.

The instance matching tracks and the new instance and schema matching track
counted few participants, as has been the trend in recent years. Part of the reason for

this is that several of these tracks ran on the HOBBIT platform, and the transition

from SEALS to HOBBIT has not been as easy as we might desire. Thus, participation

should increase next year as systems become more familiar with the HOBBIT platform

and have more time to do the migration. Furthermore, from an infrastructure point of

view, the HOBBIT SDK will make the developing and debugging phase easier, and

the Maven-based framework will facilitate submission. However, another factor behind

the reduced participation in the instance matching tracks lies with their specialization.

New schema matching tracks such as Biodiversity and Ecology typically demand very
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little from systems that are already able to tackle long-standing tracks such as Anatomy,

whereas instance matching tracks such as IIMB, Link Discovery and last year’s Process
Model Matching, are so different from one another that each requires dedicated devel-

opment time to tackle. Thus, in future OAEI editions we should consider publishing

new instance matching (and other more specialized) datasets with more time in ad-

vance, to give system developers adequate time to tackle them. Equally critical will be

to ensure stability by maintaining instance matching tracks and datasets over multiple

OAEI editions, so that participants can build upon the development of previous years.

Automatic instance-matching benchmark generation algorithms have been gaining

popularity, as evidenced by the fact that they are used in all three instance matching

tracks of this OAEI edition. One aspect that has not been addressed in such algorithms

is that, if the transformation is too extreme, the correspondence may be unrealistic and

impossible to detect even by humans. As such, we argue that human-in-the-loop tech-

niques can be exploited to do a preventive quality-checking of generated correspon-

dences, and refine the set of correspondences included in the final reference alignment.

We will explore such an approach in future editions of the IIMB track.

The interactive matching track also witnessed a small number of participants,

which have been the same 4 systems over the last three campaigns. This is puzzling

considering that this track is based on the Anatomy and Conference test cases, and

those tracks had 14 participants. The process of programmatically querying the Oracle

class used to simulate user interactions is simple enough that it should not be a deterrent

for participation, but perhaps we should look at facilitating the process further in future

OAEI editions by providing implementation examples.

Finally, the complex matching track opens new perspectives in the field of ontol-

ogy matching, as this is a topic largely unexplored but of growing importance, since

integrating linked datasets often encompasses making complex correspondences. Tack-

ling complex matching automatically is extremely challenging, likely requiring pro-

found adaptations from matching systems, so the fact that there were two participants

able to generate complex correspondences in this track should be seen as a positive

sign of progress to the state of the art in ontology matching. While this year the track

involved different evaluation settings, we will work towards enabling the automatic

evaluation of complex alignments in future editions.

Like in previous OAEI editions, most participants provided a description of their

systems and their experience in the evaluation, in the form of OAEI system papers.

These papers, like the present one, have not been peer reviewed. However, they are full

contributions to this evaluation exercise, reflecting the effort and insight of matching

systems developers, and providing details about those systems and the algorithms they

implement.

The Ontology Alignment Evaluation Initiative will strive to remain a reference to

the ontology matching community by improving both the test cases and the testing

methodology to better reflect actual needs, as well as to promote progress in this field

[41]. More information can be found at: http://oaei.ontologymatching.
org.

111



Acknowledgements

We warmly thank the participants of this campaign. We know that they have worked

hard to have their matching tools executable in time and they provided useful reports

on their experience. The best way to learn about the results remains to read the papers

that follow.

We are grateful to the Universidad Politécnica de Madrid (UPM), especially to Nan-
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11. Zlatan Dragisic, Kai Eckert, Jérôme Euzenat, Daniel Faria, Alfio Ferrara, Roger Granada,
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41. Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art and future challenges.

IEEE Transactions on Knowledge and Data Engineering, 25(1):158–176, 2013.
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Abstract. ALIN is an ontology matching system specialized in the in-
teractive ontology matching, and its main characteristic is the use of
expert feedback to improve the set of mapping suggestions, using se-
mantic and structural techniques to make this improvement. ALIN has
obtained the alignment with the highest quality in the interactive track-
ing for Conference data set. This paper describes its configuration for
the OAEI 2018 competition and discusses its results.
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1 Presentation of the system

Due to the advances in information and communication technologies, a large
amount of data repositories became available. Those repositories, however, are
highly semantically heterogeneous, which hinders their integration. Ontology
matching has been successfully applied to solve this problem, by discovering
mappings between two distinct ontologies which, in turn, conceptually define
the data stored in each repository. Among the various ontology matching ap-
proaches that exist in the literature, interactive ontology matching includes the
participation of domain experts to improve the quality of the final alignment [1].
ALIN is an interactive ontology matching system and has participated in the
OAEI 2016 and OAEI 2017 evaluations.

1.1 State, purpose, general statement

ALIN has the following steps to perform the interactive ontology matching pro-
cess: First, ALIN generates an initial set of mappings. This set is called the
set of mapping suggestions, that are the mappings to receive expert feedback.
After, the interactive phase begins, where, at each interaction, the expert gives
his feedback for some mapping suggestions. After each expert feedback, ALIN
modifies the set of mapping suggestions according to the expert feedback. The
modification of the set of mapping suggestions is by the use of the structural
analysis of ontologies and the use of alignment anti-patterns. The interactions
continue until there are no more mapping suggestions left.
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Algorithm 1 ALIN algorithm

Input: Two ontologies to be aligned, similarity metrics
Output: Alignment between the two ontologies
1: Loading of ontologies
2: Generation of the initial set of mapping suggestions
3: Move of mappings by automatic classification from the set of mappings sug-

gestions to the alignment
4: Move of mappings by the low value of semantic similarity from the set of

mapping suggestions to a backup set
5: while Set of mapping suggestions is not empty do
6: Choose mapping from the the set of mapping suggestions to submit to

the expert
7: Receive expert feedback to chosen mapping and remove it from the set

of mapping suggestions
8: if Mapping is accepted then
9: Remove mappings in an alignment anti-pattern with accepted map-

ping from the set of mapping suggestions
10: Insert some data property and object property mappings related to

the accepted mapping into set of mapping suggestions
11: Move some mappings related to the accepted mapping from the

backup set to the set of mapping suggestions
12: end if
13: end while

1.2 Specific techniques used

The steps of ALIN algorithm (Algorithm 1) are the following:

– Line 1. ALIN loads the ontology classes, object properties, and data prop-
erties through the Alignment API [2]. For each entity, some data are stored
such as name and label. ALIN saves the class superclasses and disjunctions.
ALIN also saves information about the object properties, like their hyper-
nyms and their associated classes, and information about the data properties,
like their associated class. ALIN does not use instances. The ALIN can only
work with ontologies whose entity names are in English.

– Line 2. For each similarity metric, ALIN finds a set of mappings using a sim-
ple matching algorithm. The simple matching algorithm treats the matching
problem as a stable marriage problem with size list limited to 1 [3], i.e., the
algorithm only selects one mapping if similarity value between the two enti-
ties of the mapping is the highest considering all the mappings with at least
one of these entities. ALIN uses six metrics and runs six times, once for each
one, giving rise, each execution, to a set of mappings. The union of the sets
gives origin to the initial set of mapping suggestions. ALIN uses the linguist
metrics Jaccard, Jaro-Winkler, n-Gram, Resnick, Jiang-Conrath, and Lin.
Simmetrics API [4] provides the metrics Jaccard, Jaro-Winkler, and n-Gram
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and HESML API [5] the metrics Resnick, Jiang-Conrath, and Lin. HESML
API uses Wordnet. Because ALIN needs the canonical form of the entity
names to use the Wordnet, ALIN uses Stanford CoreNLP API [6]. ALIN
uses the most frequent synsets of words to calculate semantic similarities.

– Line 3. The value of the similarity metrics ( Resnick, Jiang-Conrath, Lin,
Jaccard, Jaro-Winkler, and n-Gram ) varies from 0 to 1 ( 1 is the maximum
value ). When one mapping in the set of mapping suggestions has all the six
metrics with the maximum value, ALIN moves the mapping from the set of
mapping suggestions to the final alignment.

– Line 4. ALIN moves the mappings whose entities has one of its linguistic
metrics less than a given threshold from the set of mapping suggestions to
a backup set. These mappings can return later, by structural analysis, to
the set of mapping suggestions. [7] shows this technique, but with a little
difference, it didn’t use a threshold. It moves the class mappings that are
not in the same Wordnet synset.

– Lines from 5 to 13. At this point, the interactions with the expert begin.
ALIN sorts the mappings in the set of mapping suggestions by the sum of
similarity metric values, greater sum first. ALIN submits the mappings to
the expert. The set of mapping suggestions has, at first, only class mappings.
After each expert feedback, if the expert accepts the mapping, ALIN moves
it from the set of mapping suggestions to the alignment, else ALIN removes
it from the set of mapping suggestions. ALIN can remove mappings (besides
the mappings that received feedback) from the set of mapping suggestions
and can include other mappings into it, depending on the expert feedback.

At each interaction with the expert:

– ALIN removes from the set of mapping suggestions all the mappings that
are in alignment anti-pattern [8][9] with the accepted mapping;

– ALIN inserts into the set of mapping suggestions, data property (like [10])
and object property mappings related to the accepted class mappings.

– ALIN moves from the backup set to the set of mapping suggestions all map-
pings whose both entities are subclasses of the classes of an accepted map-
ping. [7] shows a similar technique.

The interaction phase continues until the set of mapping suggestions is empty.

1.3 Link to the system and parameters file

ALIN is available through Google drive

(https://drive.google.com/file/d/

1v6cxQvAuWVqIBzWQUEIzDuZogoW35fdq/view?usp=sharing) as a pack-
age for running through the SEALS client.
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2 Results

Interactive ontology matching is the focus of the ALIN system. The quality of
the alignment generated by ALIN is dependent on the correct expert feedback.
ALIN has two phases: the non-interactive and the interactive phases. The non-
interactive phase goal is to achieve high precision without worrying about the
recall. In the interactive phase, ALIN modifies the set of mapping suggestions,
including and removing mappings related to the accepted mapping. If the ex-
pert makes a mistake, ALIN is more prone to deteriorate the set of mapping
suggestions, thereby decreasing the F-measure.

The system performs better when the number of data and object properties
documented in the ontologies is proportionately large. In the interactive phase,
the system includes into the set of mapping suggestions mappings related with
accepted class mappings, thus allowing increase the recall. When the number
of properties in the ontologies is small, the system still generates an alignment
with good precision, but its recall tends to be not so good.

2.1 Comments on the participation of the ALIN in non-interactive
tracks

As expected the participation of ALIN in non-interactive matching tracks showed
the following results: high precision and not so high recall when compared to the
other tools, as can be seen in Anatomy track1 (Table 1). The conference track
results can be seen on the OAEI 20182 page.

2.2 Comments on the participation of the ALIN in interactive
tracks

Interactive Anatomy Track In this track, the program ALIN showed the
highest precision among the four evaluated tools when the error rate is zero
(Table 2). When the error rate increases, both the precision as the recall falls,
so falling the F-measure (Table 3). Dependence on expert feedback to ensure
precision and to increase recall explains this decline in quality when the expert
makes mistakes.

As ontologies of the Anatomy Track contains almost no properties, ALIN
cannot utilize some interactive techniques like the selection of property mappings
related to accepted class mappings. Not using these techniques has limited the
increase in recall, which influenced the F-measure.

1 Results for OAEI 2018 - Anatomy track. Available at
http://oaei.ontologymatching.org/2018/results/anatomy/ Last accessed on Oct, 02,
2018.

2 Results of Evaluation for the Conference track within OAEI 2018 . Available
at http://oaei.ontologymatching.org/2018/results/conference/index.html Last ac-
cessed on Oct, 24, 2018.
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Table 1. Participation of ALIN in Anatomy non-interactive track

Tool Precision Recall F-Measure

AML 0.95 0.936 0.943

LogMapBio 0.888 0.908 0.898

POMAP++ 0.919 0.877 0.897

XMap 0.929 0.865 0.896

LogMap 0.918 0.846 0.88

SANOM 0.888 0.844 0.865

FCAMapX 0.941 0.791 0.859

KEPLER 0.958 0.741 0.836

Lily 0.872 0.795 0.832

LogMapLite 0.962 0.728 0.828

ALOD2Vec 0.996 0.648 0.785

StringEquiv 0.997 0.622 0.766

DOME 0.997 0.615 0.761

ALIN 0.998 0.611 0.758

Holontology 0.976 0.294 0.451

Table 2. Participation of ALIN in Anatomy interactive track - Error rate 0.0

Tool Precision Recall F-measure Total Requests

ALIN 0.994 0.826 0.902 602
AML 0.964 0.948 0.956 240

LogMap 0.982 0.846 0.909 388
XMap 0.929 0.867 0.897 35

Table 3. Participation of ALIN in Anatomy interactive track - Error rate 0.1

Tool Precision Recall F-measure Total Requests

ALIN 0.914 0.802 0.854 578
AML 0.952 0.946 0.948 268

LogMap 0.961 0.832 0.892 388
XMap 0.929 0.867 0.897 35

Interactive Conference Track In this track, ALIN stood out, showing the
greatest F-measure among the four tools when the error rate is zero (Table 4),
as with a loss of F-measure when the error rate increases (Table 5).
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Table 4. Participation of ALIN in Conference interactive track - Error rate 0.0

Tool Precision Recall F-measure Total Requests

ALIN 0.921 0.721 0.809 276
AML 0.912 0.711 0.799 270

LogMap 0.886 0.61 0.723 82
XMap 0.719 0.62 0.666 16

Table 5. Participation of ALIN in Conference interactive track - Error rate 0.1

Tool Precision Recall F-measure Total Requests

ALIN 0.725 0.686 0.705 264
AML 0.838 0.698 0.762 277

LogMap 0.85 0.596 0.7 82
XMap 0.719 0.62 0.666 16

Other results, including results with different error rates, can be seen on the
OAEI 20183 page.

2.3 Comparison of the participation to ALIN in OAEI 2018 with
his participation in OAEI 2017

– One modification made in ALIN was the withdrawal of additional criteria for
the automatic classification of mappings. At the beginning of its execution,
ALIN automatically selects mappings with the entities with the same name
to put into the alignment. In the OAEI 2017, ALIN used additional criteria
for that, that is, if a mapping had the two entities with the same name,
but had met one of those criteria, ALIN didn’t put it into the alignment. In
the conference data set, the use of these criteria increased the precision of
the alignment, and thus its quality, but also the number of interactions. In
the Anatomy data set, the use of these criteria increased only the number
of interactions. For OAEI 2018, ALIN focused on reducing its number of
interactions. So, ALIN doesn’t use the additional criteria for the automatic
classification of mappings anymore. This modification reduced the number
of interactions (Total Requests) in both the anatomy track (Table 6) and
the conference track (Table 7), without decreasing the quality (F-measure)
on the anatomy track.

– Another modification was the selection of new mappings to the set of map-
ping suggestions. For OAEI, one interactive matching system can place up
to three related mappings in an interaction. To take advantage of this rule,

3 Results for OAEI 2018 - Interactive Track . Available at
http://oaei.ontologymatching.org/2018/results/interactive/ Last accessed on
Oct, 2, 2018.
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in 2018, ALIN selects new mappings, with at least one entity equal to other
already selected, to put into the set of mapping suggestions. This selection
increases the likelihood of raising the recall. This modification increased the
recall on the anatomy track (Table 6) but not increased enough on the con-
ference track (Table 7) to compensate for the first modification.

– ALIN has stopped using the WS4J API4. ALIN had already stopped using
WS4J to calculate similarity in OAEI 2017, starting to use HESML. ALIN
was only using WS4J to find the most common synset to an entity name,
but now ALIN is directly accessing the Wordnet files.

Table 6. Participation of ALIN in Anatomy interactive track - OAEI
2016[11]/2017[12]/2018- Error rate 0.0

Year Precision Recall F-measure Total Requests

2016 0.993 0.749 0.854 803
2017 0.993 0.794 0.882 939
2018 0.994 0.826 0.902 602

Table 7. Participation of ALIN in Conference interactive track - OAEI
2016[11]/2017[12]/2018- Error rate 0.0

Year Precision Recall F-measure Total Requests

2016 0.957 0.735 0.831 326
2017 0.957 0.731 0.829 329
2018 0.921 0.721 0.809 276

3 General Comments

Evaluating the results it can be seen that the system can be improved towards:

– handling user error rate;

– generating a higher quality (especially w.r.t. recall) initial alignment in its
non-interactive phase;

– reducing the number of interactions with the expert.

4 ’WS4J’. Available at https://github.com/Sciss/ws4j Last accessed on Jan, 16, 2018.
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3.1 Conclusions

The ALIN system stands out in the interactive ontology matching process when
ontologies have some characteristics, such as many documented properties, and
when the expert does not make mistakes.

The second author was partially funding by project PQ-UNIRIO N01/2017
(” Aprendendo, adaptando e alinhando ontologias:metodologias e algoritmos.”)
and CAPES/PROAP.
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Abstract. AgreementMakerLight (AML) is a system for automated ontology

matching that is characterized by its efficiency, extensibility, and ability to in-

corporate external knowledge. In OAEI 2018, AML leveraged these features to

expand its capabilities to tackle the new tracks. Particular effort was put into ex-

tending AML to produce complex mappings, and into improving instance match-

ing approaches. AML was the only system to participate in all OAEI tracks this

year, and was the top performing system, or among the top performing systems,

in most tracks.

1 Presentation of the System

1.1 State, Purpose, General Statement

AgreementMakerLight (AML) is an ontology matching system based on the design

principles of AgreementMaker [1, 2] with an added focus on efficiency, to be able to

tackle large-scale ontology matching problems [7]. Its initial focus was the biomedical

domain, but it has been continually expanded to address a broad range of ontology and

instance matching problems, and it is now a general purpose ontology matching system.

AML relies primarily on lexical matching algorithms [8], but also includes structural

algorithms for both matching and filtering, as well as its own logical repair algorithm

[10]. It makes use of external biomedical ontologies and the WordNet as sources of

background knowledge [6].

This year, our development of AML was mainly focused on tackling complex matching

problems from the new Complex Matching track. Alas, just extending AML to handle

the complex EDOAL alignment format took up most of our development time. When

we were finally able to start developing matching algorithms, it became clear that each

of the numerous types of EDOAL mappings would require its own specialized algo-

rithm, and were only able to develop algorithms for some of the simplest cases, found

in the Conference dataset.

We were also unable to fully integrate the code for complex matching with the main

AML code-base before the OAEI deadline, and thus participated in the Complex Match-

ing track using a different version of AML, AMLC. In addition to this version and the

main AML SEALS version, we participated in the SPIMBENCH and Link Discovery

tracks via the HOBBIT platform. In the case of SPIMBENCH, we participated with the
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HOBBIT adaptation of the main AML code-base. In the case of Link Discovery, we

participated with two specialized versions of AML (AML-Spatial and AML-Linking

for the Spatial and Linking tasks respectively) as had been the case in OAEI 2017, due

to the unique characteristics of these matching tasks and to the unavailability of the

TBox assertions in the HOBBIT datasets.

1.2 Specific Techniques Used

This section describes only the features of AML that are new for the OAEI 2018. For

further information on AML’s matching strategy, we direct the reader to AML’s original

paper [7] as well as to the OAEI results publications of the last three editions [4, 5, 3].

1.2.1 Complex AML

For the complex matching track, we focused on the challenge based on the conference

ontologies. We developed strategies to identify Attribute Occurrence Restrictions and

Attribute Domain Restrictions based on patterns similar to [9]. Attribute Occurrence

Restrictions were detected by (1) computing the lexical similarities between the source

class and the domains/ranges (or superclasses of domains/ranges) of target properties;

(2) selecting target properties with domain/range similarity above a given threshold;

(3) building a complex mapping with a comparator and a non-negative integer for the

properties with similar domain, adding an inverse property restriction for those with

similar range.

Attribute Domain Restrictions were discovered by (1) measuring the lexical simi-

larity between the source class and target classes and selecting target classes above a

threshold; (2) removing the matched words from source labels; (3) matching the remain-

ing source strings to target properties and selecting target properties above a threshold;

(4) composing a complex mapping which is given a score weighted by the two partial

similarities (class and property); (5) selecting complex mappings with scores above a

threshold.

1.2.2 Main AML

We made only a few minor changes to the main AML code-base for this OAEI edition.

Instance Matching

In previous OAEI editions, AML’s matching strategy for instance matching relied only

on Data Property values of individuals and on the relations between individuals. This

year, due to the new Knowledge Graph track in which individual matching is expected

to be mainly based on their annotations, AML added to its instance matching arsenal

the same lexical-based strategy it was already using for class and property matching.

However, due to problems in parsing the datasets with the OWL API before the OAEI

deadline, we were unable to properly configure this matching strategy and ensure its

efficiency.

Interactive Matching

We fixed a bug in AML’s interaction manager that was causing it to forget user feedback
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between the selection and repair steps and thus repeat some questions.

1.3 Adaptations made for the evaluation

As was the case last year, the Link Discovery submissions of AML are adapted to these

particular tasks and datasets, as their specificities (namely the absence of a Tbox) de-

mand a dedicated submission. The same is also true to some extent of AML’s Complex

Matching submission.

As usual, our submission included precomputed dictionaries with translations, to cir-

cumvent Microsoft� Translator’s query limit.

1.4 Link to the system and parameters file

AML is an open source ontology matching system and is available through GitHub:

https://github.com/AgreementMakerLight.

2 Results

2.1 Anatomy

AML’s result was virtually identical to last year’s, with 95% precision, 93.6% recall,

94.3% F-measure, and 83.2% recall++. It was the best ranking system in this track by

F-measure.

2.2 Conference

AML’s result was exactly the same as last year’s, with 74% F-measure according to

the full reference alignment 1, 70% F-measure according to the extended reference

alignment 2, 78% F-measure according to the discrete uncertain reference alignment,

and 77% according to the continuous one. It was the best ranking system in this track or

tied for best by F-measure according to 4 of the 5 sets of reference alignments available.

2.3 Multifarm

AML’s result was the same as last year’s, with 46% F-measure when matching different

ontologies and 27% when matching same ontologies. AML was the best ranking system

in this track by F-measure in the different ontologies modality.

It is noteworthy that the performance in the same ontologies modality is worse than in

the different ontologies, given that the opposite is expected, and indeed was the case for

AML prior to 2016. We are unsure as to what led to this relative drop in performance

and will have to investigate the matter further.
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2.4 Complex Matching

AMLC was configured only for the Conference dataset, in which it obtained 54% pre-

cision, 25% recall, and 34% F-measure. It was the only system to produce complex

(EDOAL) alignments in this track.

2.5 Interactive Matching

AML had a similar performance to last year’s, except that fixing the bug in its inter-

action manager has prevented repeated queries. We did not yet improve our interactive

manager to make feedback requests with sets of conflicting mappings, which would en-

able us to reduce the total number of user requests AML makes. Thus, the increase in

F-measure per user request is relatively low for AML, even if the increase per individual

mapping asked is not. It was the system least affected by user errors for the Anatomy

dataset, but was substantially more affected than LogMap in the case of the Conference

dataset.

2.6 Large Biomedical Ontologies

AML’s results were virtually the same as last year’s in this track, with an F-measure

of 93.3% in FMA-NCI small, 85.5% in FMA-NCI whole, 83.5% in FMA-SNOMED

small, 77.2% in FMA-SNOMED whole, 80.1% in SNOMED-NCI small and 76.8% in

SNOMED-NCI whole. It was the highest ranked system by F-measure in the FMA-NCI

and SNOMED-NCI problems, and the second-highest in the FMA-SNOMED prob-

lems.

2.7 Disease and Phenotype

AML generated 2010 mappings in the HP-MP task, 279 of which were unique. It ranked

second by F-measure according to the 3-vote silver standard, with 85.6%. In the DOID-

ORDO task, it generated by far the most mappings (4749) and the most unique map-

pings (1886), and as a result had a relatively low F-measure according to the 3-vote

silver standard (63.6%).

2.8 Biodiversity and Ecology

AML obtained 86% F-measure in the FLOPO-PTO task and 84.4% F-measure in the

ENVO-SWEET task. It ranked first by F-measure in both tasks of this new track.

2.9 SPIMBENCH

AML obtained an F-measure of 86%, ranking second by F-measure. This performance

was significantly lower than last year’s (92.2%), which was unexpected. We are unsure

of whether this is due to a difference in the dataset.
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2.10 IIMB

AML obtained a global F-measure of 82.8% across the 20 tasks of this new track,

ranking second in F-measure behind LogMap (the only other participating system). It

outperformed LogMap in 4 of the tasks, but had a mediocre performance in 6 others.

2.11 Link Discovery

Like in 2017, AML produced a perfect result (100% F-measure) in the Linking and all

the Spatial tasks.

2.12 Knowledge Graph

Due to our inability to configure AML’s new instance matching strategy prior to the

OAEI deadline due to the issues with parsing the datasets for this track, AML took a

substantial amount of time to run these datasets, and was unable to finish all of them

before the deadline for this manuscript. Nevertheless, for the tasks in which it did com-

plete, it had a high performance in class matching (87% F-measure) but a relatively

poor performance in instance matching (28% F-measure).

3 General comments

3.1 Comments on the results

This year, AML was the only system to rise to the challenge of tackling complex on-

tology matchings, and was the only system to participate in all the tracks. It remained

among the highest ranked systems in most of the tracks in which it participated and

among the most efficient. The few exceptions to AML’s superiority were caused by

our inability to test the datasets before the OAEI deadline. We expect to address the

remaining challenges in the near future.

3.2 Comments on the OAEI test cases

As always, we welcome the addition of new tracks to the OAEI, and laud the efforts of

their organizers, as the effort involved in organizing said tracks cannot be overstated.

Nevertheless, we must comment on some of the issues encountered during this OAEI

edition, and suggest improvements for the future.

In the new Complex Matching track, we found that the tasks were indeed extremely

complex, and in many cases virtually impossible to tackle automatically, as there was

insufficient information in the ontologies to derive the type of mappings that were ex-

pected. We will work with the organizers to make the tasks more realistic for future

OAEI editions, namely by including instance data in the datasets when available.

In the new Knowledge Graph track, the fact that the datasets were not valid OWL (and

thus not parsable with the OWL API) before the OAEI deadline was a substantial issue
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which prevented us (and undoubtedly other participants) from adequately developing

our matching system. For future OAEI editions, we suggest that track organizers test

their datasets using a few of the recurring OAEI participating systems.

In the Link Discovery track, we stress once more the need to incorporate TBox infor-

mation into the datasets so as to enable them to be interpreted automatically without the

need for a dedicated parser.

Last but not least, we remain critic of the evaluation in the Disease and Phenotype track

by means of silver standards generated from the alignments produced by the participat-

ing systems via voting. While we understand that the effort behind building a manually

curated reference alignment can be daunting, the current evaluation strategy is unre-

liable and biased, penalizing systems that are able to find unique mappings that may

well be correct. We would welcome an effort to produce a manually curated reference

alignments using the silver standards as a starting point.

4 Conclusion

Like in 2017, this year AML was the only matching system to participate in all OAEI

tracks, and was among the top performing systems in most of them. AML’s performance

did not improve in any of the recurring OAEI tracks, as most of our development effort

went into tackling new challenges and extending the range of AML. This year, our effort

to tackle complex matchings was not well rewarded, as, despite being the only system to

generate complex mappings, AML was only able to cover a few of the simplest types of

complex mappings. It has become evident that generating such mappings automatically

is an extremely difficult task, which requires more effort than that we could devote at

this time. Thus, we will continue to address this aspect of ontology matching in the near

future.
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Abstract. In this paper, we introduce the ALOD2Vec Matcher, an on-
tology matching tool that exploits a Web-scale data set, i.e., WebIsA-
LOD, as external knowledge source. In order to make use of the data set,
the RDF2Vec approach is chosen to derive embeddings for each concept
available in the data set.
We show that it is possible to use very large RDF graphs as external
background knowledge source for the task of ontology matching.

Keywords: Ontology Matching · Ontology Alignment · External Re-
sources · Vector Space Embeddings · RDF2Vec

1 Presentation of the System

1.1 State, purpose, general statement

The ALOD2Vec Matcher is an element-level, label-based matcher which uses a
large-scale Web-crawled RDF data set of hypernymy relations as background
knowledge. One advantage of that data set is the inclusion of many tail-entities,
as well as instance data, such as persons or places, which cannot be found in
thesauri. In order to make use of the external data set, a neural language model
approach is used to calculate an embedding vector for each concept contained
in it.
Given two entities e1 and e2, the matcher uses their textual labels to link them to
concepts e′1 and e′2 in the external data set. Then, the pre-calculated embedding
vectors ve′1 and ve′2 of the linked concepts (e′1 and e′2) are retrieved and the cosine
similarity between those is calculated. Hence: sim(e1, e2) = simcosine(ve′1 , ve′2).
The resulting alignment is homogenous, i.e., classes, object properties, and data-
type properties are handled separately. In addition, the matcher enforces a one-
to-many matching restriction.

1.2 Specific techniques used

For the alignment process, the matcher retrieves textual descriptions of all ele-
ments of the ontologies to be matched. A filter adds all simple string matches
to the final alignment in order to increase the performance. The remaining la-
bels are linked to concepts of the background data set, are compared, and the
best solution is added to the final alignment. A high-level view of the system is
depicted in figure 1.

� Supported by SAP SE.
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Fig. 1. ALOD2Vec Matching Process

WebIsALOD Data Set When working with knowledge bases in order to ex-
ploit the contained knowledge in applications, a frequent problem is the fact
that less common entities are not contained within the knowledge base. The
WebIsA [7] database is an attempt to tackle this problem by providing a data
set which is not based on a single source of knowledge – like DBpedia [3] – but in-
stead on the whole Web: The data set consists of hypernymy relations extracted
from the Common Crawl1, a freely downloadable crawl of a significant portion
of the Web. A sample triple from the data set is european union skos:broader
international organization2. The data set is also available via a Linked Open
Data (LOD) endpoint3 under the name WebIsALOD [2]. In the LOD data set, a
machine-learned confidence score c ∈ [0, 1] is assigned to every hypernymy triple
indicating the assumed degree of truth of the statement.

RDF2Vec The background data set can be viewed as a very large knowledge
graph; in order to obtain a similarity score for nodes in that graph, the RDF2Vec
[6] approach is used. It applies the word2vec [4,5] model to RDF data: Random
walks are performed for each node and are interpreted as sentences. After the
walk generation, the sentences are used as input for the word2vec algorithm. As
a result, one obtains a vector for each word, i.e., a concept in the RDF graph.
The approach is used here to obtain vectors for all concepts in the WebIsALOD
data set.

1 see http://commoncrawl.org/
2 see http://webisa.webdatacommons.org/concept/european_union_
3 see http://webisa.webdatacommons.org/
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Linking The first step is to link the obtained labels from the ontology to con-
cepts in the WebIsALOD data set. Therefore, string operations are performed
on the label and it is checked whether the label is available in WebIsALOD. If
it cannot be found, labels consisting of multiple words are truncated from the
right, and the process is repeated to check for sub-concepts. For example, the
label United Nations Peacekeeping Mission in Mali cannot be found in WebIsA-
LOD. Therefore, it is truncated until the longest label from the left is found – in
this case United Nations. The process is repeated until all tokens are processed.
The resulting concepts for the given label are: United Nations4, peacekeeping
mission5, and Mali6.

Similarity Calculation As stated before, labels are linked to concepts, their
vectors are retrieved, and the cosine similarity between them is used as similarity
score.

There are cases in which parts of a label cannot be found, however, for exam-
ple in tubule macula and in macula lutea both times only macula can be found
using the WebIsALOD data set. If only the found concepts would be used to
calculate the similarity between the concepts, a perfect score would be obtained
because sim(macula,macula) = 1.0. This is not precise as the approach does
not allow to discriminate between perfect matches due to incomplete linking and
real perfect matches. Therefore, a penalty factor p ∈ [0, 1] is introduced that is
to be multiplied with the final similarity score and which lowers the score for in-
complete links; p = 0 indicates the maximal penalty, p = 1 indicates no penalty.
The calculation of p is depicted in equation 1:

p = 0.5 ∗ |Found Concepts L1|
|Possible Concepts L1|

+ 0.5 ∗ |Found Concepts L2|
|Possible Concepts L2|

(1)

where L1 is the label of the first concept and L2 is the label of the second one;
|Found Concepts Li| is the number of tokens for which a concept could be found
(minus stopwords) and |Possible Concepts Li| is the number of tokens of the
label without stopwords. The penalty score is multiplied with the final similarity
score. Hence, incomplete linkages are penalized.

If two labels were matched to multiple concepts, a resolution is required. In
this case the best average similarity is used:

simaverage =
Σ

|c1|
i∈c1

Max
|c2|
j∈c2

sim(c1i , c2j )

|c1|
(2)

where c1 and c2 represent two individual concepts and c1i , respectively c2j ,
represent the ith and jth sub-concept of c1 and c2; |c1| and |c2| are the number
of sub-concepts of c1 and c2; c1 is the concept with more tokens.

4 see http://webisa.webdatacommons.org/concept/united_nations_
5 see http://webisa.webdatacommons.org/concept/peacekeeping_mission_
6 see http://webisa.webdatacommons.org/concept/_mali_
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Typically, there is more than one label to an entity of an ontology. Therefore,
a score-matrix is used: Every label of an entity is linked and compared to every
label of the other entity and the best score is returned.

RDF2Vec Configuration Parameters We generated 100 sentences of depth
8 for each node in the WebIsALOD data set for the training process of the model.
In order to have also sentences for nodes that do not have out-going edges, those
were identified and sentences were generated backwards and afterwards reversed.
The sentences were generated in a biased fashion [1], i.e., high-confidence edges
are followed with a higher probability. Eventually, the embeddings were trained
using the continuous bag of words (CBOW) approach with the parameters of the
original RDF2Vec paper: window size = 5, number of iterations = 5, negative
sampling = true, negative samples = 25, average input vector = true, and
200 dimensional embeddings.

2 Results

2.1 Anatomy

For the Anatomy data set, the matcher achieves a higher recall and F1 score
compared to the baseline solution. However, the true positives are mostly exact
lexical matches or share many common tokens.
Concerning runtime-performance, ALOD2Vec Matcher performs in the upper
half of all matchers that participated in the Anatomy track.

2.2 Conference

On the Conference data set, it can be seen that the matcher is better in aligning
classes than in aligning properties. This is in line with the results reported for
other matchers. In this case, it is due to fewer lexical matches in properties as
well as the higher usage of non-nouns which cannot be properly linked to the
background knowledge source.

2.3 Large BioMed

For the Large BioMed matching tasks, the matcher is capable of aligning the
small fragments within the given time frame of 6 hours. While ALOD2Vec
Matcher performs slightly above the 2017 and 2018 F1 averages on the small
FMA-NCI data set, it perfoms in the lower half for the remaining ones.

2.4 Complex Track

Although the matcher presented here is not capable of generating complex corre-
spondences yet, it could produce results for the entity identification subtask for
two data sets: On GeoLink, ALOD2Vec Matcher achieved the highest F1 score
and recall of all matchers that participated; on Hydrograph, alignments for the
English ontologies could be generated and scored within the median.
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3 General Comments

3.1 Comments on the results

The matcher performs above the given baselines. However, the matches are still
rather trivial and mostly share common tokens.

There are multiple reasons for the mediocre performance. First, the under-
lying data set is very noisy: It contains a lot of wrong information (e.g. fish
skos:broader fisher)7, subjective information (e.g. donald trump skos:broader lu-
natic)8, and is not strictly hierarchical (e.g. live skos:broader quality, and vice
versa)9. In addition, the tail-entity problem is still not solved because very spe-
cific entities are involved in very few hypernymy statements and their resulting
vectors are likely not meaningful (e.g. complex congenital heart defect)10.

Besides the pitfalls of the data set, the matcher cannot handle homonyms,
non-nouns, or non-English labels.

3.2 Discussions on the way to improve the proposed system

There are three ways in which the current research focusing on this approach can
be improved in the future: Firstly, more propositionalization techniques for very
large data sets could be explored. Secondly, the matcher itself can be enhanced to
use more information available in ontologies such as their structure. And lastly,
the data sets to be used can be improved. WebIsALOD is only one Web-scale
RDF data set and still has some pitfalls such as the restriction to hypernymy
relations and noise. More such data sets can be created and used in the future.

4 Conclusion

In this paper, we presented the ALOD2Vec Matcher, a matcher utilizing a Web-
crawled knowledge data set by applying the RDF2Vec methodology to a hyper-
nymy data set extracted from the Web. It could be shown that it is possible to
use very large RDF graphs as external background knowledge and the RDF2Vec
methodology for the task of ontology matching.
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Abstract. This paper presents the results obtained by the CANARD
system in the OAEI 2018 campaign. CANARD can produce complex
alignments. This is the first participation of CANARD in the campaign.
Even though the system has been able to generate alignments for one
only complex dataset (Taxon), the results are promising.

1 Presentation of the system

1.1 State, purpose, general statement

The CANARD (Complex Alignment Need and A-box based Relation Discovery)
system discovers complex correspondences between populated ontologies based
on Competency Questions for Alignment (CQAs). Competency Questions for
Alignment (CQAs) represent the knowledge needs of a user and define the scope
of the alignment [3]. They are competency questions that need to be satisfied over
two or more ontologies. Our approach takes as input a set of CQAs translated
into SPARQL queries over the source ontology. The answer to each query is a set
of instances retrieved from a knowledge base described by the source ontology.
These instances are matched with those of a knowledge base described by the
target ontology. The generation of the correspondence is performed by matching
the graph-pattern from the source query to the lexically similar surroundings of
the target instances.

1.2 Specific techniques used

The CQAs that are taken as input by CANARD are limited to class expressions
(interpreted as a set of instances). The approach is developed in 11 steps, as
depicted in Figure 1:

1 Extract source DL formula es from SPARQL CQA.

2 Extract lexical information from the CQA, Ls set labels of atoms from the
DL formula.

3 Extract source instances insts.

4 Find equivalent or similar (same label) target instances instt to the source
instances insts.
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5 Retrieve description of target instances: set of triples and object/subject
type.

6 For each triple, retrieve Lt labels of entities.

7 Compare Ls and Lt using a string comparison metric (e.g., Levenshtein
distance with a threshold).

8 Keep the triples with the summed similarity of their labels above a threshold
τ . Keep the object(/subject) type if its similarity is better than the one of
the object(/subject).

9 Express the triple into a DL formula et.

10 Aggregate the formulae et into an explicit or implicit form: if two DL formu-

lae have a common atom in their right member (target member), the atoms
which differed are put together.

11 Put es and et together in a correspondence (es ≡ et) and express this corre-

spondence in EDOAL. The average string similarity between the aggregated
formula and the CQA labels gives the confidence value of the correspondence.

CQA es

Ls

insts

et Best Triples

Lt Triple

instt Triples + ob-
ject/subject type

Source

Target
EDOAL cor-
respondence

For each Triple 6 7

1 DL formula

2 URI labels

3 answers

4 sameAs
5 surroundings

composed of

6 labels7 similarity

8 > τ

9 DL formula

10 aggregate

11

Fig. 1: Schema of the general approach.

The instance matching phase (step 4 ) is based on existing owl:sameAs,
skos:closeMatch, skos:exactMatch and exact label matching. The similarity be-

tween the sets of labels Ls and Lt of step 7 is the cartesian product of the
string similarities between the labels of Ls and Lt (equation 1).

sim(Ls, Lt) =
∑
ls∈Ls

∑
lt∈Lt

strSim(ls, lt) (1)

strSim is the string similarity between two labels ls and lt (equation 2). τ is the
threshold for the similarity measure. In our experiments, we have empirically set

139



up τ = 0.5.

strSim(ls, lt) =

⎧⎨
⎩
σ if σ > τ , where σ = 1− levenshteinDist(ls, lt)

max(|ls|, |lt|)
0 otherwise

(2)

The confidence value given to the final correspondence (step 11 ) is the similar-

ity of the triple it comes from or average similarity if it comes from more than
one triple. The confidence value is reduced to 1 if it is initially calculated over 1.

1.3 Adaptations made for the evaluation

Automatic generation of CQAs The CQAs can not be given as input in
the evaluation as none are available in the OAEI datasets. We developed a CQA
generator that was integrated to the version of the system used in the evaluation.
This generator produces two types of SPARQL queries: Classes and Property-
Value pairs.

Classes For each owl:Class populated with at least one instance, a SPARQL
query is created to retrieve all the instances of this class. If <o1#class1> is a
populated class of the source ontology, the following query is created:
SELECT DISTINCT ?x WHERE {?x a <o1#class1>.}

Property-Value pairs Inspired by the approaches of [1,2,4], we create SPARQL
queries of the form

– SELECT DISTINCT ?x WHERE {?x <o1#property1> <o1#Value1>.}
– SELECT DISTINCT ?x WHERE {<o1#Value1> <o1#property1> ?x.}
– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value".}

These property-value pairs are computed as follow: for each property (object or
data property), the number of distinct object and subject values are retrieved.
If the ratio of these two numbers is over a threshold (arbitrarily set to 30)
and the smallest number is smaller than a threshold (arbitrarily set to 20), a
query is created for each of the less than 20 values. For example, if the property
<o1#property1> has 300 different subject values and 3 different object values
("Value1", "Value2", "Value3"), the ratio |subject|/|object| = 300/3 > 30 and
|object| = 3 < 20. The 3 following queries are created as CQAs:

– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value1".}
– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value2".}
– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value3".}

The threshold on the smallest number ensures that the property-value pairs
represent a category. The threshold on the ratio ensures that properties represent
categories and not properties with few instanciations.
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Implementation adaptations In the initial version of the system, Fuseki
server endpoints are given as input. For the SEALS evaluation, we embedded a
Fuseki server inside the matcher. The ontologies are downloaded from the SEALS
repository, then uploaded in the embedded Fuseki server before the matching
process can start. This downloading-uploading phase may take time, in particular
when dealing with large files.

The CANARD system in the SEALS package is available at http://doi.

org/10.6084/m9.figshare.7159760.v1. The generated alignments in EDOAL
format are available at http://oaei.ontologymatching.org/2018/results/

complex/taxon/CANARD.html (link to each pair of task). Note that, as described
below, CANARD was able to generate results for the Taxon track.

2 Results

The CANARD system could only output correspondences for the Taxon dataset
of the Complex track. Indeed, the other datasets of this track do not contain
instances and least of all common instances.

Table 1 shows the run-time of CANARD on all pairs of ontologies in the
Taxon track, as well as the characteristics of the output alignments. As the align-
ment process is directional, we do not obtain symmetrical results for a pair of
ontologies. CANARD is able to generate different kinds of correspondences: (1:1),
(1:n) and (m:n). The best precision was obtained for the pair agronomicTaxon-
agrovoc with a precision of 0.57. CANARD did not output any correspondence
for 4 oriented pairs (in grey in Table 1). These empty results can be due to
the fail of the instance matching phase of our approach. We could observe that
with TaxRef as the source knowledge base, no correspondence could be gen-
erated. The exception is the pair taxref-agrovoc where 8 correspondences were
found but only involving skos:exactMatch or skos:closeMatch properties in the
constructions. The incorrect correspondences of this pair have a low confidence
(between 0.05 and 0.30).

Looking for the query rewriting task in Taxon, CANARD’s alignment was
used to rewrite the most queries (best qwr). As CANARD does not deal with
binary CQAs, none of the 3 binary queries × 12 pairs of ontologies = 36 binary
query cases could be dealt with. Out of the 2 unary queries × 12 pairs = 24
unary query cases, CANARD could deal with 6 unary cases needing a complex
correspondence and 2 needing simple correspondences for a total of (8/24) 33%
of unary query cases.

Overall, for the query cases needing complex correspondences, (0+6/28+16)
14% were covered by CANARD. For all the query cases, the CANARD system
could provide an answer to (8/36+24) 13% of all cases.

3 General comments

The CANARD approach relies on common instances between the ontologies to
be aligned. Hence, when such instances are not available, as for the Conference,
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Test Case ID Run Time (s)
output
corres.

correct
corres.

prec. (1:1) (1:n) (m:n)

agronomicTaxon-agrovoc 37 7 4 0.57 0 7 0

agronomicTaxon-dbpedia 75 17 3 0.18 3 14 0

agronomicTaxon-taxref 87 9 3 0.33 1 8 0

agrovoc-agronomicTaxon 20 0 NaN 0 0 0

agrovoc-dbpedia 128 13 3 0.23 0 0 13

agrovoc-taxref 87 8 0 0 0 0 8

dbpedia-agronomicTaxon 556 0 NaN 0 0 0

dbpedia-agrovoc 236 37 0 0 0 20 17

dbpedia-taxref 333 43 14 0.33 0 17 26

taxref-agronomicTaxon 269 NaN 0 0 0

taxref-agrovoc 283 8 0 0 0 0 8

taxref-dbpedia 351 0 NaN 0 0 0

Global 2468 142 27 0.20 4 66 72

Table 1: Results of CANARD on the Taxon track

GeoLink and Hydrography datasets, the approach is not able to generated com-
plex correspondences. Furthermore, CANARD is need-oriented and requires a
set competency questions to guide the matching process. Here, these “questions”
have been automatically generated based on a set of patterns.

The current version of the system is limited to finding complex correspon-
dences involving classes and properties are not yet taken into account. We plan
to extend the systems to take binary relations in the next version. Another
point that we would like to improve is the semantics of the confidence of the
correspondences.

With respect to the technical environment, as mentioned before, the initial
version of the system receives as input the endpoints of the populated ontolo-
gies. Using SEALS, the large ontologies are stored into repositories. Our systems
hence downloads them and stores them into an embedded Fuseki server. This
configuration is not ideal as we have to deal with large knowledge bases. Further-
more, we struggled with the SEALS dependencies in order to correctly package
our system into the SEALS format.

As we focus on user needs in order to avoid dealing with the whole alignment
space, it could be interesting to having more need-oriented tasks with respect to
the alignments coverage.

4 Conclusions

This paper presented the adapted version of the CANARD system and its prelim-
inary results in the OAEI 2018 campaign. This year, we have been participated
only in the Taxon track, in which ontologies are populated with common in-
stances. CANARD was the only system to output complex correspondences on
the Taxon track.
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Abstract. DOME (Deep Ontology MatchEr) is a scalable matcher which
relies on large texts describing the ontological concepts. Using the doc2vec
approach, these texts are used to train a fixed-length vector representa-
tion of the concepts. Mappings are generated if two concepts are close to
each other in the resulting vector space. If no large texts are available,
DOME falls back to a string based matching technique. Due to its high
scalability, it can also produce results in the largebio track of OAEI and
can be applied to very large ontologies. The results look promising if
huge texts are available, but there is still a lot of room for improvement.

1 Presentation of the system

1.1 State, purpose, general statement

Ontology matching is often based on string comparisons because each resource is
described by URI fragments (last part of an URI after the # sign), rdfs:labels,
and rdfs:comments. The DOME matcher specifically relies on large texts which
describes the resources, and thereby allows to make a better distinction in case
of a similar labels. Especially in knowledge graphs like DBpedia or YAGO, such
texts are easily extracted from the corresponding Wikipedia abstract.

The usual problem with such large texts is the matching with other similar
and long texts. One possible way is to use topic modeling like latent semantic
analysis(LSA [2]) or latent dirichlet allocation (LDA [1]). The extracted topics
can then be used to find overlaps and in the end similar concepts.

DOME uses another approach called doc2vec (also paragraph vector [5])
which is based on word2vec [6]. The idea is to represent a variable-length texts,
like sentences, paragraphs, and documents, as a fixed-length feature vector. This
vector is trained to predict the words appearing in the document. Thus this
vector represents the semantics of the concept when training on texts which
defines the meaning of the concept.

Two approaches for training this vector are established: Distributed Memory
(DM) and Distributed Bag of Words (DBOW). Applied to an example concept
like Harry Potter1 the framework of DM is shown in figure 1. During training,
the algorithm iterates over the given text in a sliding window of a specified and
fixed length. The goal is to predict the last word given the first n words. One

1 http://harrypotter.wikia.com/wiki/Harry_Potter
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Fig. 1. Training of Distributed Memory given the concept Harry Potter and a small
excerpt of the corresponding wiki abstract.

Fig. 2. Training of Distributed Bag of Words. The example is the same as in figure 1
but now the concept URI together with a small subset of text is usbed to predict the
following word.

special vector is the first one which represents the paragraph vector. In our case
this is the URI of the concept. All large texts which define this resource can be
used to train this vector.

Another approach for generating the concept vector is Distributed Bag of
Words (DBOW), shown in figure 2. Instead of using concept vectors for each
word, it tries to predict words from the text as an output.

DOME uses the DM sequence learning algorithm with a vector size of 300
and window size of 5. The training is repeated in 10 epochs. The minimal word
frequency is set to the minimum to allow all words contribute to the concept
vector. We compute a predefined set of properties which contains definitional
texts by two simple rules: 1) directly choose rdfs:comment 2 ) use every property
where the URI ends in “abstract”. This can be further improved in the next
version of DOME.
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Fig. 3. Matching strategy of DOME

The doc2vec model is trained on all texts available in both ontologies. For
each concept in the second ontology, the corresponding concept vector is com-
puted, and the concepts which have the most similar vectors to those from
the first ontology are retrieved. A mapping between two resource is established
when the cosine similarity is above 0.85 (the threshold has been chosen based
on a manual inspection of the results).

The whole matching approach is shown in figure 3. The labels and fragments
of each resource are compared using string based similarity. Specifically, the
texts are tokenized and all punctuation (especially underscores and the like)
are removed. After lowercasing, these values are stored in a hash structure.
A mapping is created when each fragment or label have an exact match. The
confidence value of these alignments are set to 1.0. After this step, the doc2vec
approach is applied to find further matching concepts. We ensured that the
mapping is OWL compliant because we only match instances to instances, classes
to classes, and properties to properties. In the latter case we further distinguish
datatype properties and object properties but also match properties declared as
rdf:properties. With such a setup, the matcher is very scalable and can match
all types of resources.

1.2 Specific techniques used

The main technique used in DOME is the doc2vec approach [5] for comments and
abstracts of concepts. It is only activated when there is enough text to process.
All other matching techniques rely on fast string similarity. Further filtering of
the alignment is not executed but during the matching only one to one mappings
are allowed.

1.3 Adaptations made for the evaluation

DOME is implemented in java and uses the DL4J2 (Deep Learning for Java)
as an implementation of the doc2vec approach. DL4J heavily relies on platform
specific implementations which are stored in multiple JAR files. This allows it
to make use of GPUs to further speed up the computation. DOME relies on the

2 https://deeplearning4j.org
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CPU implementation of DL4J because upfront it is not clear if all evaluation
machines used for OAEI contain a DL4J compatible GPU.

Although the DL4J framework allows for searching for related concepts, it
does not provide the similarity values out of the box. Thus the framework is
modified to also retrieve these value which can be used in the alignment file to
represent the confidence of a mapping. Since the values are already normalized
no further post processing step of the similarity values is needed.

Unfortunately, the packaged SEALS matcher was not able to run under the
SEALS evaluation routine. The SEALS client loads all JAR files in its own
classpath. This is a very secure way of running third-party code, but at the same
time one of the most frequent cauess of matchers not working at OAEI, as in the
case of DOME. The root cause is the custom classloader of SEALS which uses the
JCL library3. The SEALS classloader is a subclass of the AbstractClassLoader
in the JCL library. Both classloaders do not implement all methods (especially
the getPackage method) of the standard classloader. Many other libraries use
such functions to further load operating specific code. This applies to the DL4J
library as well as the sqlite-jdbc library.

We fixed the error by creating an intermediate matcher which calls another
java process. Within that process the classloader is the standard one and the
DL4J library could be loaded without any errors. We released a matching frame-
work which does the SEALS and Hobbit packaging, uploading and creating the
intermediate matcher.4

1.4 Link to the system and parameters file

DOME can be downloaded from
https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0.

2 Results

The following section discusses the results for each track of the OAEI 2018
where DOME is able to produce meaningful results. This includes the anatomy,
conference, largebio, phenotype, and knowledge graph track.

DOME was not able to complete the multifarm track because currently no
translation component is included. This would be possible with cross lingual em-
bedding approaches shown in [8]. For complex and interactive track the matching
system has to produce different type of output mapping or matching strategy
which is not implemented. The tracks biodiv and iimb don’t contain enough free
texts in the selected properties.

3 https://github.com/kamranzafar/JCL
4 https://github.com/sven-h/ontMatchingHobbit
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2.1 Anatomy

In the anatomy track, there are only labels given, thus the doc2vec approach is
not used here. There are some properties like oboInOwl:hasRelatedSynonym or
oboInOwl:hasDefinition which point to resources with more describing text,
but these resources is not recognized by DOME, since we do not implement a
larger list of properties used to point to texts.

Therefore, DOME only utilizes string based matching for this track. The text
is lowercased, tokenized and then matched based on a hashing algorithm. This
results in a high precision of 0.997 (similar to the string equivalence baseline)
and a very low runtime of 22 seconds. Only LogMapLt was 4 seconds faster.

Due to a slightly lower recall of 0.615 (0.07 lower than the baseline) DOME
has a lower F-Measure than the baseline.

In improvement in this track would be to use the additional texts from
oboInOwl:hasRelatedSynonym and oboInOwl:hasDefinition to further increase
the recall. In order not to have to manually maintain such a list, it would also
be possible to incorporate all literals that consist of text of at least a certain
number of words.

2.2 Conference

Within the conference track, DOME is as bit better than the baseline and often
similar to edna (which is a string editing distance matcher adopted from the
benchmark track). Evaluating DOME against the original reference alignment it
performs exactly like edna in the class mappings and a bit better in the property
mappings - both in terms of recall and precision. This results in 0.07 better F-
Measure. But there is room for a lot improvement, because in this year, the best
matcher reached 0.58 F-Measure in this track.

When comparing to the entailed reference alignment DOME has same eval-
uation measures like edna and a bit better when comparing properties. If both
classes and properties are taken into account DOME is only 0.01 better than
edna and 0.15 behind the current best matcher.

In most of the conference ontologies, there are no long natural language
texts. Only in rare cases, some classes are described by a comment. Those were
processed by the doc2vec model but does not yield any new mappings.

2.3 Largebio

In the largebio track, the number of classes is very high. In the case of FMA-
SNOMED this results in matching 78,989 classes to 122,464 classes. Matchers
which compare a string from one ontology to all concepts of the other ontology
have a quadratic runtime and usually can not finish in time. DOME is one of five
matchers (DOME, FCAMapX, LogMap, LogMapBio, XMap) which were able
to return results within the given time limit. It is the fastest one and terminates
within 30 seconds on the largest track. The second fastest is XMap with 7 min-
utes and the slowest one is LogMapBio with 49 minutes. The reason here is the
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same as in the anatomy track. Most resources are only described by a label and
fragment without further textual content. Thus, DOME relies on string compar-
ison with a high precision but low recall. In case of “SNOMED-NCI whole”, this
results in a precision of 0.907 and a recall of 0.485 (F-Measure of 0.632). The
best matcher on this subtrack in terms of F-Measure is FCAMapX with a value
of 0.733.

2.4 Phenotype

The phenotype track is based on a real use case, and the matcher should find
alignments between disease and phenotype ontologies. DOME is also able to
complete this track but with a low F-Measure of 0.483 (HP-MP) and 0.633
(DOID-ORDO). The precision is again the highest among all matchers, but the
recall is below 0.5.

However, some ontologies in this track, like the DOID ontology, have fur-
ther properties containing describing texts like obo:IAO 0000115 (label of the
property is definition). DOME in its current version does not make use of this
property, but, as discussed for the anatomy track above, those could be utilized
by extending the system.

2.5 Knowledge Graph

The knowledge graph track is a new track where classes, properties and instances
should be matched. As already pointed out in [3,4], matching the classes and
properties is easier than the instances. This is also the case for the DOME
matcher.

It returns all three types of mappings and complete on all nine sub tasks. In
average it returns 16 class, 207 property, and 15,912 instance mappings.

DOME achieved an F-Measure of 0.73 in the class correspondences. It is
balanced between recall and precision, but even the baseline has a higher recall.
So there should some room for improvement.

When analyzing the property alignments, only DOME and the baseline can
produce any results. Most likely, the reason is that all properties are typed as
rdf:Property and not subdivided into owl:DatatypeProperty and owl:Object-
Property. As discussed above, DOME is configured to match also rdf:Property.
This results in a F-Measure of 0.84.

Instance matches are generated by AML, DOME, LogMap, LogMapLt and
the baseline. Especially in the instance mapping the doc2vec approach can help
because long comments and abstracts of the resources are available. DOME was
the second best matcher with an F-Measure of 0.61 (the baseline is the best
“matcher” with an F-Measure of 0.69).

Overall, looking at the results for classes, properties, and instances together,
DOME has an F-Measure of 0.68, which is better than all matchers except the
baseline.
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3 General comments

3.1 Comments on the results

The overall results shows that DOME is in a development phase. Sometimes
it can beat at least the baselines in terms of F-measure and sometimes not.
Currently there are not many tracks which provide a large amount of describing
text for each resource, but many ontologies and knowledges graphs exists out
there where this is the case.

3.2 Discussions on the way to improve the proposed system

Based on the evaluation on all kinds of different tracks, we noticed a lot of
further improvements. First of all, some ontologies use properties which connect
a resource to its describing text which are not recognized by DOME. One possible
approach to fix this would be the use all properties which contain long texts by
some heuristic, e.g., strings exceeding a certain number of characters on average.
This would include more text to help the doc2vec model to better differentiate
the concepts.

Another possible improvement is to use pretrained word vectors. Those might
contain more semantics for each word than training it directly on describing texts
for the two ontologies. However, for some very domain-specific ontologies with
large amounts of texts, the generic pre-trained embeddings might even perform
worse, thus, it is an open research question which of the two yields better results.

A third possible approach is to combine the approach of RDF2Vec [7] (i.e.,
computing the word2vec embedding of random walks within knowledge graphs)
and various cross lingual embeddings shown in [8]. One simple approach would
be to learn a linear transformation between the two generated embeddings of
the ontologies.

4 Conclusions

In this paper, we have introduced the DOME matcher, which relies on document
embeddings for texts describing the concepts defined in an ontology. The results
for DOME are analyzed on the different tracks of OAEI. DOME is a highly scale
matching system capable of generating class, property and instance alignments.
On some tracks where a lot of text describing each resource exists, it shows
promising results. However, the matcher is currently in an early state and offers
a lot of room for improvement.
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Abstract. This paper describes EVOCROS, a cross-lingual ontology
alignment system suited to create mappings between ontologies described
in different natural language. Our tool combines semantic and syntac-
tic similarity measures in a weighted average metric. The semantic is
computed via NASARI vectors used together with BabelNet, which is a
domain-neutral semantic network. The tool employs automatic transla-
tion to a pivot language to consider the similarity. EVOCROS was tested
and obtained high quality alignment in the Multifarm dataset. We dis-
cuss the experimented configurations and the achieved results in OAEI
2018. This is our first participation in OAEI.

Keywords: cross-lingual matching · semantic matching · background
knowledge

1 Presentation of the system

There is a growing number of ontologies described in different natural languages.
The mappings among different ontologies are relevant for the integration of
heterogeneous data sources to facilitate the exchange of information between
systems. Although automatic monolingual ontology matching has been exten-
sively investigated [7], cross-lingual ontology matching still demands further in-
vestigations aiming to automatically identify correspondences between ontolo-
gies described in different languages. EVOCROS is our attempt at automatic
cross-lingual ontology matching, inspired from experiments on the influence of
syntactic and semantic similarity measures in ontology matching algorithms [1].
In this section, we describe the system and the implemented techniques.

1.1 State, purpose, general statement

EVOCROS is a cross-lingual ontology alignment tool based on a composed sim-
ilarity measure relying on both syntactic and semantic similarity techniques.
Syntactic similarity may be understood as a score calculated based on string
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analysis (extracted from labels of concepts), whereas the semantic similarity is
computed taking into account background knowledge. Our approach computes
a weighted mean of semantic and syntactic similarities.

1.2 Specific techniques used

The tool is developed in Python 3. It works by comparing the computed similar-
ity between a concept from an ontology (in its automatically translated version)
to another concept from a different ontology. The concept terms are translated to
a pivot natural language aiming to use available external resources such as the-
sauri, corpora, dictionaries, etc. to overcome the language and alphabet barriers.

Figure 1 presents the workflow of the tool. The first step is the pre-processing of
the source and target input ontologies, converting them into owlready23 objects.
Each concept of the source ontology is compared to all concepts of the target
ontology.

Fig. 1. EVOCROS workflow.

3 Python 3 library to manipulate ontologies as objects.
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Syntactic Similarity Measure. For syntactic similarity measure, the concept
labels of both the source and target ontologies are first translated to a pivot
language using automatic translation. We are using English as pivot language
for OAEI 2018 though the tool accepts any language as pivot. The concepts are
then compared by measuring the syntactic similarity via edit distance Leven-
shtein [3]) as a syntactic similarity measure.

Semantic Similarity Measure. Semantic similarity between terms is a met-
ric to evaluate how similar two given terms are considering their meanings in
a certain context. For example, the words “nail” and “hammer” are more sim-
ilar considering the tool context than “nail” and “finger”. On the other hand,
when we consider the anatomy context, “nail” and “finger” are more similar
than “nail” and “hammer”.

For semantic similarity, we use the concept label in its original language, with-
out any translation. There are a lot of algorithms to calculate semantic similar-
ity. These algorithms usually explore an external resource such as vocabulary,
dictionaries or thesauri to help computing the similarity between two words.
EVOCROS explores a Weighted Overlap measure [6] relying on the neutral-
domain semantic network BabelNet [5]. The tool retrieves from Babelnet the
synsets of the concept labels of both source and target ontologies and compare
them to measure the semantic similarity.

Our proposal generates cross-lingual ontology alignments taking into account
the combination of semantic and syntactic similarity by computing the weighted
average as follows:

Definition 1 (Composed Similarity). Let sem(t1, t2) and sin(t1, t2) be the
semantic similarity, and the syntactic one between the terms t1 and t2, respec-
tively. We assume that the similarities are normalized between 0 and 1. Formally:

simC(t1, t2) =
αsin(t1, t2) + βsem(t1, t2)

α+ β
(1)

where α and β are constants.

If the weighted similarity reaches a threshold, the concept pair is recorded to
the output file, generated in RDF format. Otherwise, it is discarded.

1.3 Adaptations made for evaluation

EVOCROS uses a configuration file with the source and target ontologies, and
their respective language. In order to participate in OAEI, we modified the tool
to receive the source and target ontologies as input parameters and retrieve
the ontology language from the lang XML tag. The bridge created for SEALS
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platform is written in Java and executed system calls to run the tool, written in
Python 3. Although the tool executed locally using the SEALS client, there were
issues during evaluation on SEALS platform and only local results are available
in this report.

1.4 Link to the set of provided alignments (in align format)

Alignment results are available at https://github.com/jmdestro/evocros-results.

2 Results

In this section, we describe the results obtained from local experiments using a
sub-set of Multifarm with the same configuration used in OAEI 2018 evaluation.

2.1 Multifarm

Our experiments were based on ontologies from conference domain from theMul-
tiFarm dataset 2015 [4]. We used the reference mappings between the ontologies
described in English and Spanish mapped into those concepts in the Portuguese
Language.

Several weights for similarity measures and different similarity thresholds
were evaluated locally. For OAEI 2018, only the following configuration was sub-
mitted: threshold: 0.66, syntactic similarity weight: 0.75, semantic simi-
larity weight: 0.25. This was the configuration with the most interesting results.
Table 1 presents the used configuration and the results for conference-conference
alignment for languages spanish-portuguese (es-pt) and english-portuguese (en-
pt).

Table 1. Cross-lingual mapping of conference-conference ontologies from MultiFarm.

Languages Threshold
Syntactic
similarity
weight

Semantic
similarity
weight

Precision Recall F-measure

es-pt 0.66 0.75 0.25 0.68 0.33 0.44

en-pt 0.66 0.75 0.25 0.72 0.41 0.52

The choice of weights assigned to each similarity measure played an important
role in the results. Tables 2 and 3 present the obtained results for different
configurations. Considering the syntactical weights as 0.75 and 0.80 generated
the best mappings, that is, they result in alignments with the greatest f-measure.
Thus, our technique may be understood as a good alternative to syntactic or
semantic only methods, and it might perform even better taking into account
the correct parameters.
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Table 2. MultiFarm alignment of Conference [ES] - Conference [PT] ontologies, using
different threshold and weight.

Threshold Syntactic weight Semantic weight Precision Recall F-measure

0.66 0.50 0.50 0.49 0.15 0.23
0.33 0.67 0.40 0.10 0.16
0.25 0.75 0.33 0.15 0.21
0.20 0.80 0.30 0.15 0.20
0.67 0.33 0.69 0.30 0.42
0.75 0.25 0.68 0.33 0.44
0.80 0.20 0.59 0.31 0.40

0.75 0.50 0.50 0.58 0.16 0.25
0.33 0.67 0.48 0.16 0.24
0.25 0.75 0.45 0.18 0.25
0.20 0.80 0.40 0.17 0.24
0.67 0.33 0.65 0.16 0.26
0.75 0.25 0.75 0.31 0.44
0.80 0.20 0.72 0.33 0.45

0.80 0.50 0.50 0.65 0.16 0.26
0.33 0.67 0.58 0.16 0.25
0.25 0.75 0.50 0.17 0.26
0.20 0.80 0.45 0.18 0.25
0.67 0.33 0.65 0.16 0.26
0.75 0.25 0.65 0.16 0.26
0.80 0.20 0.75 0.31 0.44

0.95 0.50 0.50 0.64 0.11 0.18
0.33 0.67 0.67 0.15 0.24
0.25 0.75 0.69 0.16 0.26
0.20 0.80 0.65 0.16 0.26
0.67 0.33 0.64 0.11 0.18
0.75 0.25 0.64 0.11 0.18
0.80 0.20 0.64 0.11 0.18

3 General comments

In this section, we discuss our results and the ways to improve the system.

3.1 Comments on the results (strength and weaknesses)

The tool had satisfactory results but the execution time was exceedingly long
due to constant RestAPI calls to Babelnet. The results showed an influence of
threshold: as the threshold rises, the precision also increases. It may be explained
by considering equivalence of only those concepts with a high level of similar-
ity. However, f-measure declines as the threshold increases because large values
assigned to threshold make the algorithm disregards concepts that are equiva-
lent, but somehow was assigned a lower level of similarity than expected by the
threshold. As a result, the recall drops substantially, because many correct corre-
spondences are ignored, and thus f-measure decreases. Empirically, we concluded
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Table 3. MultiFarm alignment of Conference [EN] - Conference [PT] ontologies, using
different threshold and weight.

Threshold Syntactic weight Semantic weight Precision Recall F-measure

0.66 0.50 0.50 0.57 0.18 0.27
0.33 0.67 0.42 0.21 0.28
0.25 0.75 0.32 0.18 0.23
0.20 0.80 0.28 0.17 0.21
0.67 0.33 0.69 0.34 0.45
0.75 0.25 0.72 0.41 0.52
0.80 0.20 0.68 0.21 0.32

0.75 0.50 0.50 0.60 0.17 0.26
0.33 0.67 0.52 0.23 0.32
0.25 0.75 0.50 0.22 0.31
0.20 0.80 0.43 0.21 0.28
0.67 0.33 0.58 0.21 0.31
0.75 0.25 0.70 0.15 0.25
0.80 0.20 0.75 0.17 0.27

0.80 0.50 0.50 0.58 0.16 0.25
0.33 0.67 0.57 0.23 0.32
0.25 0.75 0.52 0.23 0.32
0.20 0.80 0.50 0.22 0.31
0.67 0.33 0.61 0.21 0.32
0.75 0.25 0.61 0.09 0.15
0.80 0.20 0.73 0.15 0.25

0.95 0.50 0.50 0.64 0.19 0.29
0.33 0.67 0.61 0.21 0.32
0.25 0.75 0.61 0.21 0.32
0.20 0.80 0.61 0.21 0.32
0.67 0.33 0.64 0.19 0.29
0.75 0.25 0.64 0.07 0.13
0.80 0.20 0.64 0.07 0.13

that the thresholds that generate the more accurate mappings were λ = 0.66 and
λ = 0.75.

3.2 Discussions on the way to improve the proposed system

This was the first evaluation of the system and although there was issues during
the evaluation phase of OAEI, preventing the system to be executed in SEALS
platform, the local results are encouraging. Our main goals for future work are:

Reduce execution time: the tool has a long execution time due to constant
RestAPI calls to Babelnet and needs to be optimized with local caches.

Bag of graphs: ontologies can be represented as graphs, thus allowing for parti-
tioning [2] and comparison of sub-graphs. Bag-of-graphs [8] is a graph matching
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approach, similar to bag-of-words. It represents graphs as feature vectors, highly
simplifying the computation of graph similarity and reducing execution time.
We propose as future investigation to use a simple vector-based representation
for graphs and investigate it for cross-lingual ontology matching.

3.3 Comments on OAEI

There were issues during the evaluation phase, preventing the system to partic-
ipate in Multifarm track. For future editions of OAEI, we plan to participate
submitting EVOCROS on the newly available HOBBIT platform, using a docker
image, to ensure system compatibility during evaluation.

4 Conclusion

EVOCROS proposed an approach to cross-lingual ontology matching by com-
bining semantic and syntactic similarity measures. This is the first participation
of the system in OAEI. The evaluation with the Multifarm dataset confirmed
the quality of mappings generated by our technique. For future work, we plan to
improve our cross-lingual ontology alignment proposal considering different com-
binations of background knowledge, such as specific-domain thesauri to evaluate
the semantic similarity. We also plan to further evaluate runtime optimization
aspects to fix issues found during the evaluation phase.
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Abstract. FCAMapX is an automated ontology matching system based
on Formal Concept Analysis, a mathematical model for analyzing indi-
viduals and structuring concepts. FCAMapX has succeeded in partici-
pating in three tracks of 2018 OAEI this year, including the Conference
track, Anatomy, and Large Biomedical Ontologies. Based on our 2016
OAEI submission system FCA-Map which failed some large tasks within
a designated time, we pursue improvements in efficiency and precision in
FCAMapX. Concretely, we optimize the data structures for saving mem-
ory space and implement a more efficient algorithm for computing formal
concept lattices. To favor precision, we tighten the condition for identify-
ing lexical mappings and strengthen the structural validation to retrieve
negative evidence for matches identified lexically and structurally. As a
result, the running time for all the tasks has become less than an hour in
our experimental setting; and in a majority of the cases, the precision and
F-measure are both improved while the recall is lowered. Additionally, in
comparison with other OAEI participants, FCAMapX has achieved the
best or the second best F-measure and recall in most large biomedical
ontology matching tasks.

1 Presentation of the system

Based on our 2016 OAEI participant system FCA-Map [1,3], this edition, called
FCAMapX, pursues to improve the efficiency and precision.

1.1 State, purpose, general statement

In OAEI 2016, we submitted FCA-Map, a novel system based on Formal Con-
cept Analysis to identify and validate mappings across ontologies, including one-
to-one mappings and complex mappings. FCA-Map incrementally generates a
total of three types of formal contexts and extracts mappings from the lattices
derived. First, the token-based formal context describes how class names, labels,
and synonyms share lexical tokens, leading to lexical mappings (anchors) across
ontologies. Second, the relation-based formal context describes how classes are
in taxonomic, partonomic and disjoint relationships with the anchors, leading
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to positive and negative structural evidence for validating the lexical match-
ing. Third, the positive relation-based context can be used to discover structural
mappings. The 2016 OAEI evaluation in the Anatomy, the Large Biomedical On-
tologies, and the Disease and Phenotype track demonstrates the effectiveness of
FCA-Map and its competitiveness with the top-ranked systems. For SNOMED-
NCI(whole), the largest ontology matching task in OAEI, FCA-Map ranks first
for recall and second for F-measure; ranks second for both F-measures of FMA-
NCI and FMA-SNOMED, and obtains the best F-measures for most Disease
and Phenotype tasks [3]. On the other hand, FCA-Map suffers from long running
times due to the high complexity of deriving formal concept lattice in the Formal
Concept Analysis formalism, which is a PSPACE-complete problem. Moreover,
the performance of FCA-Map in terms of precision is relatively poorer than of
recall and F-measure. We intend to address these two issues in the 2018 edition
FCAMapX.

1.2 Specific techniques used

In order to improve the efficiency, we optimize the data structures for saving
memory space and implement a more efficient algorithm Hermes [4] for com-
puting formal concept lattice and Galois sub-hierarchy. The Hermes algorithm
has an efficient running time of O(min{nm, nα}), where n is the number of ob-
jects or attributes, m the size of formal context, and nα the time required to
perform matrix multiplication (currently α = 2.376). To improve the precision,
we tighten the condition for identifying lexical mappings from the token-based
lattice computed in the first step. Moreover, the second step for structural vali-
dation and the third step for structural mapping are swapped so that the positive
and negative evidence can be retrieved for all mappings identified, lexically and
structurally. This can favor precision as mappings with negative evidence are
discarded.

1.3 Adaptations made for the evaluation

Similarly to our previous edition, our SEALS submission included precomputed
word variants originated from UMLS[5] for mapping biomedical ontologies. More-
over, in order to augment the performance of FCAMapX in mapping ontologies in
general purpose domains like those of the Conference track, we used the synsets
of WordNet[6] in the first step for identifying synonymous terms. Property names
in the Conference ontologies are also taken into account when constructing the
token-based formal context for lexical mapping.

1.4 Link to the system and parameters file

SEALS wrapped version of FCAMapX for OAEI 2018 is available at https:

//drive.google.com/open?id=1-0upxrcPbu5OVJAJn-DtTOUMOh3QDriM.
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1.5 Link to the set of provided alignments

The results obtained by FCAMapX for OAEI 2018 are available at https://

drive.google.com/open?id=1DzRD_90O3YwoGpW5FJL9vSy_f1Ia0YZo

2 Results

In this section, we present our evaluation results obtained by running FCAMapX
over the tracks of Anatomy, Conference, and Large Biomedical Ontologies. Tests
were performed using a desktop computer with 16 GB of RAM and Intel R©
CoreTM i7-8700 CPU @ 3.20GHz.

2.1 The OAEI 2018 Anatomy Track

The anatomy track consists of the Adult Mouse Anatomy (2744 classes) and a
fragment of the NCI Thesaurus (3304 classes) for describing the human anatomy.
Compared with our 2016 version, FCAMapX has improved the precision from
0.932 to 0.941, whereas the recall is decreased from 0.837 to 0.791, leading to a
drop of the F-Measure from 0.882 to 0.860, as shown in Table 1).

Table 1. Results for Anatomy track

Task Precision Recall F-Measure Runtime (s)

MA-NCI 0.941 0.791 0.860 11.811

2.2 The OAEI 2018 Conference Track

The Conference 2018 Track contains 16 ontologies describing the domain of con-
ference organizations. These ontologies are of smaller scale with limited classes
and semantic relations, for which our approach can be ineffective, as analyzed
in [3]. In this edition, we add external knowledge source WordNet and the re-
sults are listed in Table 2. Taking advantage of the additional synonyms defined
in WordNet for general purpose domains, FCAMapX has increased the average
recall from 0.52 to 0.582 and the average F-measure from 0.61 to 0.62, while the
precision drops from 0.75 to 0.698.

2.3 The OAEI 2018 Large Biomedical Ontologies Track

This track consists of finding alignments between the Foundational Model of
Anatomy (FMA), SNOMED CT, and the National Cancer Institute Thesaurus
(NCI). These ontologies are of both large-scale and semantic richness. The results
obtained by FCAMapX are depicted in Table 3. Except for FMA-NCI (small), in
all other five tasks, FCAMapX has managed to increase the precision as well as
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Table 2. Results for Conference track

Task Precision Recall F-Measure Runtime (s)

cmt-conference 0.563 0.600 0.581 1.194
cmt-confOf 0.667 0.375 0.480 0.291
cmt-edas 0.615 0.615 0.615 0.391
cmt-ekaw 0.556 0.455 0.500 0.254
cmt-iasted 0.500 1.000 0.667 0.546
cmt-sigkdd 0.750 0.750 0.750 0.222

conference-confOf 0.818 0.600 0.692 0.243
confenrece-edas 0.600 0.529 0.562 0.355
conference-ekaw 0.619 0.520 0.565 0.273
conference-iasted 0.364 0.286 0.320 0.466
conference-sigkdd 0.750 0.600 0.667 0.223

confOf-edas 0.846 0.579 0.687 0.304
confOf-ekaw 0.857 0.600 0.706 0.24
confOf-iasted 0.857 0.667 0.750 0.403
conOf-sigkdd 1.000 0.571 0.727 0.193
edas-ekaw 0.647 0.478 0.550 0.343
edas-iasted 0.727 0.421 0.533 0.48
edas-sigkdd 0.875 0.467 0.609 0.293
ekaw-iasted 0.462 0.600 0.522 0.467
ekaw-sigkdd 0.778 0.636 0.700 0.235
iasted-sigkdd 0.813 0.867 0.839 0.534

the F-measure while the recall values are lowered. Take FMA-SNOMED (whole)
for example, the precision is 1.8 times of the 2016 version and the F-measure
1.4 times. More importantly, in our own experimental setting, FCAMapX fin-
ished all tasks in the Large Biomedical track within 2 hours as required by 2016
OAEI, whereas our 2016 system failed the three Whole tasks. For the largest task
SNOMED-NCI (whole), our previous version ran about 13 hours as reported in
[3], and by FCAMapX, the time has been downsized to 0.95 hours.

Table 3. Results for Large Biomedical track

Task Precision Recall F-Measure Runtime (s)

FMA-NCI (small) 0.948 0.911 0.929 73.692
FMA-NCI (whole) 0.665 0.841 0.743 1171.62

FMA-SNOMED (small) 0.955 0.815 0.879 125.791
FMA-SNOMED (whole) 0.819 0.762 0.789 2179.924
SNOMED-NCI (small) 0.878 0.703 0.781 1039.138
SNOMED-NCI (whole) 0.796 0.680 0.733 3418.672
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As reported by OAEI 3, out of the six tasks in the track, FCAMapX ranks
first for three and second for two tasks in terms of recall; and for F-measure,
FCAMapX ranks first for two and second for three tasks.

3 General comments

This is the second time that we participate in the OAEI campaign with our
Formal Concept Analysis based systems. The main goal is to improve the effi-
ciency in regard to our 2016 edition which failed to finish within the designated
time for three tasks in Large Biomedical Ontologies track. This has been accom-
plished by FCAMapX. At the same time, strengthening the structural validation
of mappings has yielded higher precisions which can lead to better F-measure
values.

3.1 Comments on the results

FCAMapX has succeeded in participating in three tracks this year, including the
Conference track, Anatomy, and Large Biomedical Ontologies. The running time
for all the tasks has become less than an hour now in our experimental setting.
In a majority of the cases, the precision and F-measure are both improved while
the recall is lowered. That FCAMapX performs unsatisfactorily for FMA-NCI
(small) in comparison with our 2016 system deserves a further explanation.

3.2 Discussions on the way to improve the proposed system

We intended to run FCAMapX on the Disease and Phenotype track where our
previous 2016 system performs competitively [1,3]. The results in our own setting
against the consensus alignments with vote 3 are listed in Table 4, where the
matching tasks involve the Human Phenotype (HP) Ontology, the Mammalian
Phenotype (MP) Ontology, the Human Disease Ontology (DOID), and the Or-
phanet and Rare Diseases Ontology (ORDO). Note that these results cannot be
compared with our 2016 system, as the version and source of the four ontologies
are different from the ones used in 2016 4.

Unfortunately, FCAMapX failed this track with errors as reported by the
OAEI evaluation. This indicates that the quality of the system shall be improved.

Table 4. Results for Disease and Phenotype track

Task Precision Recall F-Measure Runtime (s)

HP-MP 0.848 0.760 0.802 2368.376
DOID-ORDO 0.869 0.729 0.793 450.134

3 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2018/results/
4 http://oaei.ontologymatching.org/2018/phenotype/
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3.3 Comments on the OAEI procedure

With our participating experience this year, we find that OAEI is well organized
in an efficient way and organizers helpful. Various tracks have different levels of
difficulty, which is challenging and appealing, and the SEALS platform is very
convenient to use.

4 Conclusions

In this paper, we present FCAMapX as an improved version of our 2016 OAEI
system FCA-Map. The improvement mainly lies in the efficiency, as illustrated
by the dramatic drop of running times, for instance from 13 to 1 hour for the
largest OAEI task. The second improvement is on the mapping precision which
normally causes the F-measure to rise. Compared with other OAEI participants,
FCAMapX has achieved the best or the second best F-measure and recall in
five out of the six large biomedical ontology matching tasks. Despite these, our
system still has a long way to go in terms of covering all OAEI tracks, especially
those instance matching tasks for which the Formal Concept Analysis formalism
has a potential to prevail with its capability of clustering commonalities among
individuals.
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Abstract. This paper presents the results obtained by the Holontology (Holistic

ontology matcher) system in the OAEI 2018 evaluation campaign. We describe

here the results in the Anatomy, Conference, Taxon and Knowledge Graph tracks.

We report a general discussion on the results and on the future improvements of

the system.

1 Presentation of the system

1.1 State, purpose, general statement

Holontology is a modular system based on the LPHOM system (Linear Program for

Holistic Ontology Matching) [1]. As its predecessor LPHOM, the system remains a

holistic ontology matching system i.e., matching multiple ontologies simultaneously.

Although the system has been designed to deal with holistic matching, it is able as well

to deal with pairwise ontology matching, as we consider this task as a particular case of

the holistic one, as described here.

The system treats the ontology matching problem, at schema-level, as a combinato-

rial optimization problem. The problem is modelled through a linear program extending

the maximum-weighted graph matching problem with linear constraints (matching car-

dinality, structural, and coherence constraints).

1.2 Specific techniques used

The way the system works is detailed in the following steps:

1. The first step of Holontology is to load the ontologies and translate them into an in-

ternal structure, which can be annotated and edited, so that later treatment is done in

an efficient way. Each ontology is loaded independently, and its hierarchical struc-

ture is conserved in a format based on the three possible basic blocks of ontologies:

classes and properties (object and data). Each of them is represented as a Node, and

depending on their subtype, they are subclassed into a ClassNode, ObjectProper-
tyNode or DataPropertyNode. These nodes are then enriched with AnnotationData.

2. The second step consists in a pre-processing step. Here, we expand camel case and

title case into proper names. As the loading of the ontologies is done only once, we

take advantage of Java ways of storing references, so we have no need to translate

and cut matrices. We can use our hierarchies both for storage and computation.
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3. The third step computes a cartesian product between all the entities of same type

(classes and properties) in order to build a similar linear program using the same

framework as LPHOM, as described below.

4. The fourth step leads a second wave of pre-processing, in such a way that new re-

lations are created. For example, this is the step where we compute tense similarity

(seeing whether or not an object property is passive or active towards its classes).

More precisely, for each property, we compute its polarity using tense analysis, e.g.

Author reviews Paper (active) vs. Paper reviewed by Author (passive). This allows

reviews matching reviewed by reversed.

5. The fifth step applies a combination of different similarity measures (exact match,

Levenstein, Jaccard, and Lin), drawing both from the AnnotationData build in the

previous steps, and the constraints based on ontologies themselves.We have tested

the combination of similarity measures and the results reported here are in terms of

‘exact match’ over the pre-processed entity naming and annotations (considering

the exact match between tokens). As expected, we obtain good values in terms of

precision, as better discussed below.

6. The sixth step converts the given constraints in a form that can be used by a solver.

We choose CPLEX for its ability to perform optimizations, and we manage prob-

able thresholds if needed. Unlike LPHOM, we provide all the constraints, and we

do not apply any cutting in this step.

7. In the seventh step, we take the given result from the solver and convert it in an

alignment that can be exported in RDF.

8. In the (optional) eight step, we combine the alignment result and run step five to

seven if needed to reinforce the obtained results.

1.3 Adaptations made for the evaluation

Due to a huge incompatibility between some libraries used in the SEALS client and

ours, we had to create a fully executable jar in the conf/ directory, and call this jar from

the SEALS bridge. The bridge grabbed the URI of the two ontologies passed as argu-

ments, and wrote them to a file called “bridge-ontologies.url”, then called the holon-

tology.jar in the conf directory, waiting for its full execution. holontology.jar opens the

created “ontologies.url”, reads the two URIs, and does the processing. The result is

written in the “result.alignment” file. The bridge then reads the result file and returned

it to the SEALS client.

1.4 Link to the system and parameters file

Holontology, as its predecessor LPHOM, is not available as an open-source. The version

we present here is meant to be more modulable than LPHOM, and handles the problem

differently, by insisting on annotating data and using structures instead of matrices. The

.zip for the SEALS jar can be retrieved at https://cloud.irit.fr/index.
php/s/gReZo8yaRDqdmjk

168



Holontology : results of the 2018 OAEI evaluation campaign 3

1.5 Link to the set of provided alignments

The generated alignments are available at https://cloud.irit.fr/index.
php/s/hv3oALXN6fHuZWi.

2 Results

The reader can refer to the OAEI web pages for the results of Holontology in the

Anatomy, Conference, Taxon and Knowledge Graph tracks as well a comparison with

other participants. Here, we provide a first discussion and comments on our results.

2.1 Anatomy track

Our results for the Anatomy track are summarised in Table 2.1. Compared to the eval-

uation of LPHOM in OAEI 2016 1, we observe that globally the quality of results de-

creases, for instance the F-measure looses 0.3 points. These results can be explained by

two choices in Holontology. First we only use exact match (we observe that Holontol-

ogy returns only 456 alignments compared to LPHOM which returns 1555 alignments).

Second we do not cut results according to that (i.e, we do not apply any threshold).

However, we observe that Holontology is 8 times faster that LPHOM.

Matcher Runtime Size Precision F-Measure Recall Recall+ Coherent
Holontology 265 456 0.976 0.451 0.294 0.005 -

Table 1. Results for Anatomy track.

2.2 Conference track

Our results for the Conference track are summarised in Table 2.2. Contrarily to the

anatomy track, the results of Holontology are better than the results of LPHOM for

the conference track. Globally, Holontology gains in recall for the different tasks in

this track. We can explain that by the different pre-processing strategies that have been

implemented in Holontology compared to LPHOM. By comparing the different tasks,

the tool needs additional efforts to handle data and object properties that occur in the

M2 tasks.

2.3 Complex track (Taxon task)

Hontology is not able to deal with complex matching and has not been initially reg-

istered to this track. However, given that only 3 systems have been registered to the

complex track, the organisers have also run the systems registered to Anatomy and

Conference on the complex datasets. Hence, the results reported for Hontology are in

terms of simple generated alignments.

1 http://oaei.ontologymatching.org/2016/results/anatomy/index.html
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Track Rank Prec. F.5-measure F1-measure F2-measure Recall
ra1-M1 8/13 0.88 0.78 0.67 0.59 0.54

ra1-M2 11/13 0.22 0.17 0.13 0.1 0.09

ra1-M3 10/13 0.78 0.69 0.59 0.52 0.48

ra2-M1 6/13 0.81 0.72 0.62 0.54 0.5

ra2-M2 11/13 0.07 0.05 0.03 0.02 0.09

ra2-M3 7/13 0.74 0.65 0.55 0.48 0.44

rar2-M1 9/13 0.8 0.72 0.63 0.56 0.52

rar2-M2 11/13 0.22 0.17 0.13 0.1 0.09

rar2-M3 9/13 0.73 0.65 0.56 0.49 0.45

Table 2. Results for the Conference track.

Our results for the Taxon task are summarised in Table 2.3. We have been obtained

intermediate results, with a precision up to 0.22. However, for the set of given queries to

be translated with the help of the generated alignments, our alignments were not useful,

QWR (Query Well Rewritten) measure of 0.

Time (s) output corres. eval. corres. correct corres. Global Prec. Average Prec. (1:1) (1:n) (m:n) QWR
965 44 13 3 0.23 0.22 44 0 0 0.00

Table 3. Results for taxon task in the Complex track.

2.4 Knowledge graph track

Our results for the Knowledge graph track are summarized in Tables 2.4 and 2.4. For

this track, Holontology proceeded faster than the other systems (including the base-

line). However, it has not be able to deal with properties, probably, as the track organis-

ers explained, because all properties are typed as rdf:Property and not subdivided into

owl:DatatypeProperty and owl:ObjectProperty).

class overall
Time #tracks Size Prec. F-m. Rec. Size Prec. F-m. Rec.
318 9 16.8 0.80 (0.80) 0.83 (0.83) 0.87 (0.87) 18.8 0.80 (0.80) 0.17 (0.17) 0.10 (0.10)

Table 4. Global results for Knowledge graph track.

3 General comments

Despite the fact that Hontology is an extended version of LPHOM that has participated

in OAEI 2016, for its first participation Hontology has relative intermediate results. Ta-

ble 3 summarises the performance of Hontology in terms of ranking of the best systems

in each task.
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Track Time Size Prec. F-m. Rec.
darkscape∼oldschoolrunescape 23 42 0.75 0.22 0.13

runescape∼darkscape 38 62 0.93 0.25 0.14

runescape∼oldschoolrunescape 35 47 0.62 0.22 0.13

heykidscomics∼dc 67 4 1.00 0.10 0.05

marvel∼dc 26 4 1.00 0.21 0.12

marvel∼heykidscomics 61 4 1.00 0.11 0.06

memory-alpha∼memory-beta 26 2 0.00 0.00 0.00

memory-alpha∼stexpanded 21 2 0.00 0.00 0.00

memory-beta∼stexpanded 21 2 0.00 0.00 0.00

Table 5. Track results for Knowledge graph track.

Track Rank
Anatomy 14/14

Taxon 3/7

Knowledge graph 6/8 (overall)

Knowledge graph 1/8 (classes)

Conference 9.1/13 (average)

Table 6. Global rankings for Holontology per track.

With respect to LPHOM, Hontology is a modular system that optimises the ontol-

ogy structures in memory. As for LPHOM, we model and express the matching problem

through a set of constraints (cardinality, structural, and coherence constraints) applied

on the results of a pre-processing and exact matching steps. We do not have applied

any threshold on the generated alignments. As expected, using an exact match on pre-

processed entity naming and comments may improve precision in detriment of recall.

With respect to these aspects, we plan to improve the criteria of selection of similar-

ity measures and thresholds for our future participation, in particular with the aim of

improving recall.

Other points include the fact that Hontology is a system designed to deal with holis-

tic ontology matching at schema-level. Hence, it was not able to generated alignments

for the tasks involving instance matching. We plan to implement instance matching

strategies in future versions of the system. Furthermore, despite our optimisation over

LPHOM, our system was not able to deal at all with the large ontologies in the Large-

Bio and Phenotype tasks. We note, however, that we could deal with the Complex Taxon

task in terms of volume because we do not treat the instances. We plan to address these

points in the future.

With respect to the OAEI procedure, we focus on the tracks based on SEALS. How-

ever, as stated above, we have encountered problems for dealing with the incompatibili-

ties of package versions in the SEALS dependencies. We have implemented a non-ideal

solution and hope for the next evaluation this kind of issue will be fixed.

Finally, Hontology has been initially designed to deal with hoslistic ontology match-

ing. However, there is no track in the campaign proposing the evaluation of such kind of
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matching approaches. In the future, it could be interesting to have a dedicated holistic

track.

4 Conclusions

This paper has introduced the Hontology system and discussed the main points on the

results of its first participation in the OAEI campaigns. We have as well pointed out

some directions for future improvements.
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Abstract. This paper presents and discusses the results of the KEPLER system

for the 2018 edition of the Ontology Alignment Evaluation Initiative (OAEI

2018). The implemented approach is based on the exploitation of three differ-

ent strategies including Information Retrieval (IR) inspired algorithm for termi-

nological based alignment computation. For scaling up, KEPLER implements a

partitioning approach, while for the management of multilingualism, KEPLER

develops a well-defined strategy based on the use of a translator and structural

alignment computation. This is the second year of participation and the results

are encouraging.

1 Presentation of the system

A substantial growth of the semantic Web users create and update knowledge resources

all over the world using various conceptualizations. These knowledge resources are

used for annotating available online data. This process is nowadays being accelerated

due to few initiatives which encourage to make data available in a comprehensive way

for agents [1]. However, as they are annotated by different conceptual schemes, an effort

is needed to make them interoperable. As of a solution, ontology alignment process is

applied in order to identify bridges between the heterogeneous knowledge resources

(ontologies, structured vocabularies, etc.) which play the role of semantic background

for the available data. This process facilitates the share and reuse of these resources [2].

KEPLER is an ontology alignment system which deals with the key challenges re-

lated to heterogeneous ontologies on the semantic Web. It is grounded from previous

approaches [3–6] and relies on several alignment strategies summarized in the follow-

ing sections. It is designed to discover alignments for both common size and large scale

ontologies as well as computing alignments in a multilingual context.

1.1 State, purpose, general statement

KEPLER exploits, besides classic techniques [7], an external resource, i.e., a translator

in order to deal with multilingualism.
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1.2 Specific techniques used

The main idea of KEPLER is to exploit the expressiveness of the OWL language to

detect and compute the similarity between entities of two given ontologies through six

complementary modules as presented in Figure 1.

Fig. 1. KEPLER workflow.

Entities are described using OWL primitives with their semantics. An ontology is

seen as a semantic graph where entities are nodes connected by links (the predicates).

These links have specified semantics. The alignment workflow is detailed as follows.

Parsing and pretreatment: this module extracts the ontological entities initially

represented by a primary form of lists. In other words, at the parsing stage, the main

goal is to transform an OWL ontology in a well defined structure that preserves and

highlight all the information contained in processed ontology. It has a significant im-

pact on the results of the similarity computation thereafter. The result is a set of entities

names and their associated descriptions.

Partitioning: KEPLER follows a divide and conquer strategy. Therefore, this mod-

ule aims at splitting ontologies into smaller parts to support the alignment task [8].

Consequently, partitioning a set B(C) is to find subsets B1, B2,..., Bn, encompass-

ing semantically close elements bound by a relevant set of relationships, i.e., O =⋃{B1,B2, ...,Bn}, where Bi is an ontological block, and n is the resulting number of

extracted blocks. Hence, we can define an ontological portion as a reduced ontology

that could be extracted from another larger one by splitting up the latter according to its

constituents : structures and semantics. One way to obtain such a partitioning is to max-

imize the relationships inside a block while minimizing the relationship between the
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blocks themselves. The resulting partitioning quality can be evaluated using different

criteria:

– The size of the generated blocks: that must have a reasonable size, i.e., a number of

elements that could be handled by an alignment tool;

– The number of the generated blocks: this number should be as small as possible to

limit the number of block pairs to be aligned latter;

– The compactness degree of a block: a block is said to be substantially compact if

relations (lexical and structural ones) are stronger inside the block and lower out-

side it.

Translation : in order to deal with multilingualism, two alternatives are followed:

i) either considering one of the languages of the input ontologies as a pivot, therefore

translating the second one to this chosen pivot; ii) choosing a pivot language and trans-

late the inputs ontologies to this pivot. Further to these alternatives, an external resource,

i.e., WordNet3 is used. Therefore the pivot language used by KEPLER is the English lan-

guage. The translation process is performed usinig the Microsoft Bing 4 translator.

Indexing : one of the issue in Ontology Alignment is the cost of computing the

similarity between all the entities of the input ontologies. To deal with this issue, the

indexing strategy is one of the novelties of our approach. It consists in reducing the

search space through the use of techniques borrowed from the IR domain. An effective

search strategy is implemented on top of the built indexes of the two input ontologies.

To enable faster searching, the driving idea that was previously used in the ServOMap

system [9] is to perform the analysis of the ontologies in advance and store it in an

optimized format for the search.

Candidate Mappings Identification : the role of this module is to find the enti-

ties in common between the indexes. Once the indexes are set up, the querying step is

activated. To do so, the querying strategy implemented satisfies both the terminology

search and semantic aspects at once. Indeed, the task is querying documents in a vector

space that contains a set of ontological entities and their synonyms obtained via Word-

Net for each Ontology. It is worthy to mention that indexes querying is done in both

senses (each ontology plays successively the role of querying component).

Filtering and Recovery: the filtering module consists of two complementary sub-

modules, each one is responsible of a specific task in order to refine the set of primarily

identified candidates mappings. At this stage, once the list of candidates is ready, the

alignment method uses a first filter. This filter eliminates the redundancy between these

candidates by eliminating possible duplicates. In addition, there is always the concern

about false positives. The second filter eliminates false positives candidates. This filter

is applied to what is called partially redundant entities. An entity is considered as par-
tially redundant if it belongs to two different mappings. Being given three ontological

3 https://wordnet.princeton.edu/
4 https://www.bing.com/translator
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entities e1, e2 and e3, if on the one hand, e1 is aligned to e2, and secondly, e1 is aligned

to e3, this last alignment is qualified as doubtful. As the KEPLER system generates

(1 : 1) mappings, an entity cannot belongs to several mappings. Therefore, given the

topology of two suspicious entities (e3 neighbors with e1 neighbors, e2 neighbors with

e1 neighbors ) with respect to the redundant entity e1, the idea is to retain the couple

having the highest topological proximity value. All candidates are subject to this filter

before to generate the final alignment.

Alignment Generation : The result of the alignment process provides a set of map-

pings, which are serialized in the RDF format.

2 Results

In this section, we present the results obtained by KEPLER system for the OAEI 2018
edition.

2.1 Anatomy track

This track consists in two real world ontologies to be matched, the source ontology

describing the Adult Mouse Anatomy (with 2744 classes) and the target ontology is

the NCI Thesaurus describing the Human Anatomy (with 3304 classes). For this track,

KEPLER succeeded to extract 74% of correct mappings with a precision of 95% and

recall of 74%. KEPLER handled easyly the input ontologies of this track thanks to the

partionning module Ontopart [10, 8]

2.2 Conference track

The conference track consists of 15 ontologies from the conference organization do-

main and each ontology must be matched against every other ontologies. The dataset

describes the domain of organizing conferences from different perspectives. Precision

values for to evaluation settings are respectively 76% and 58%. Recall values are 48%
and 68%.

2.3 Multifarm track

The Multifram dataset is composed of a subset of the Conference track, translated in

nine different languages (i.e., Chinese, Czech, Dutch, French, German, Portuguese,

Russian, Spanish and Arabic). With a special focus on multilingualism, it is possible

to evaluate and compare the performance of alignment approaches through these test

cases. Based on several previous contributions [11–16], the designed main goal of the

MultiFarm track is to evaluate the ability of the alignment systems to deal with multi-

lingual ontologies. It serves the purpose of evaluating the strength and weakness of a

given system across languages. In the different ontologies setting, KEPLER is ranked

second with a recall value of 0.21 and a precision value of 0.40. Whereas in the same
ontologies setting, it lasted at the first place with a recall value of 0.36, and a precision

value of 0.85.
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2.4 Complex track

KEPLER succeeds in the best case, to obtain 27% of recall and a precision of 100%.

2.5 Large Biomedical Ontologies track

In the scalability register, this track consists in finding alignments between the Foun-

dational Model of Anatomy (FMA), SNOMED CT, and the National Cancer Institute

Thesaurus (NCI). These ontologies are semantically rich and contain tens of thousands

of classes. The Large BioMed Track consists of three matching problems, i.e., (1) FMA-

NCI matching problem, (2) FMA-SNOMED matching problem and (3) SNOMED-NCI

matching problem. KEPLER succeeded providing results for the (Task 1: FMA-NCI
small fragments)[Precision : 0.96 / Recall : 0.83] and task 3 of the

track (FMA-SNOMED small fragments) with a Precision of 0.82 and Recall of 0.42.

2.6 Phenotype

In the Phenotype track, the system succeeded in processing only the DOID-ORDO sub-

case by identifying 1824 matches for 1237 expected ones, [Precision : 0.86 /
Recall : 0.59].

3 Conclusion

In this paper, we briefly described the alignment system KEPLER with comments of

the results obtained according to the OAEI 2018 tracks, corresponding to the SEALS

platform evaluation modality. Several observations regarding these results were high-

lighted, in particular the impact of the elimination of any ontological resource on the

similarity values. KEPLER is an ongoing work which borrows its idea from two pre-

vious systems, CLONA [15] and SERVOMAP [9]. It showed promising results for this

second participation. As future work, the idea is to support the instance based ontology

alignment in a wider range and contexts [17]. We have dealt with this issue before [18,

19], but the test base update imposes other challenges in terms of the used ontological

languages and the evolutive semantic description formalisms.
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Abstract. This paper presents the results of Lily in the ontology align-
ment contest OAEI 2018. As a comprehensive ontology matching sys-
tem, Lily is intended to participate in six tracks of the contest: confer-
ence, anatomy, largebio, phenotype, biodiv and spimbench. The specific
techniques used by Lily will be introduced briefly. The strengths and
weaknesses of Lily will also be discussed.

1 Presentation of the system

With the use of hybrid matching strategies, Lily, as an ontology matching sys-
tem, is capable of solving some issues related to heterogeneous ontologies. It can
process normal ontologies, weak informative ontologies [5], ontology mapping de-
bugging [7], and ontology matching tunning [9], in both normal and large scales.
In previous OAEI contests [1–3], Lily has achieved preferable performances in
some tasks, which indicated its effectiveness and wideness of availability.

1.1 State, purpose, general statement

The core principle of matching strategies of Lily is utilizing the useful information
correctly and effectively. Lily combines several effective and efficient matching
techniques to facilitate alignments. There are five main matching strategies: (1)
Generic Ontology Matching (GOM) is used for common matching tasks with
normal size ontologies. (2) Large scale Ontology Matching (LOM) is used for
the matching tasks with large size ontologies. (3) Instance Ontology Matching
(IOM) is used for instance matching tasks. (4) Ontology mapping debugging is
used to verify and improve the alignment results. (5) Ontology matching tuning
is used to enhance overall performance.

The matching process mainly contains three steps: (1) Pre-processing, when
Lily parses ontologies and prepares the necessary information for subsequent
steps. Meanwhile, the ontologies will be generally analyzed, whose characteris-
tics, along with studied datasets, will be utilized to determine parameters and
strategies. (2) Similarity computing, when Lily uses special methods to calculate
the similarities between elements from different ontologies. (3) Post-processing,
when alignments are extracted and refined by mapping debugging.

In this year, some algorithms and matching strategies of Lily have been
modified for higher efficiency, and adjusted for brand-new matching tasks like
Author Recognition and Author Disambiguation in the Instance Matching track.
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1.2 Specific techniques used

Lily aims to provide high quality 1:1 concept pair or property pair alignments.
The main specific techniques used by Lily are as follows.

Semantic subgraph An element may have heterogeneous semantic interpre-
tations in different ontologies. Therefore, understanding the real local meanings
of elements is very useful for similarity computation, which are the foundations
for many applications including ontology matching. Therefore, before similarity
computation, Lily first describes the meaning for each entity accurately. However,
since different ontologies have different preferences to describe their elements,
obtaining the semantic context of an element is an open problem. The semantic
subgraph was proposed to capture the real meanings of ontology elements [4].
To extract the semantic subgraphs, a hybrid ontology graph is used to repre-
sent the semantic relations between elements. An extracting algorithm based on
an electrical circuit model is then used with new conductivity calculation rules
to improve the quality of the semantic subgraphs. It has been shown that the
semantic subgraphs can properly capture the local meanings of elements [4].

Based on the extracted semantic subgraphs, more credible matching clues can
be discovered, which help reduce the negative effects of the matching uncertainty.

Generic ontology matching method The similarity computation is based
on the semantic subgraphs, which means all the information used in the simi-
larity computation comes from the semantic subgraphs. Lily combines the text
matching and structure matching techniques.

Semantic Description Document (SDD) matcher measures the literal similar-
ity between ontologies. A semantic description document of a concept contains
the information about class hierarchies, related properties and instances. A se-
mantic description document of a property contains the information about hier-
archies, domains, ranges, restrictions and related instances. For the descriptions
from different entities, the similarities of the corresponding parts will be calcu-
lated. Finally, all separated similarities will be combined with the experiential
weights.

Matching weak informative ontologies Most existing ontology matching
methods are based on the linguistic information. However, some ontologies may
lack in regular linguistic information such as natural words and comments. Con-
sequently the linguistic-based methods will not work. Structure-based methods
are more practical for such situations. Similarity propagation is a feasible idea
to realize the structure-based matching. But traditional propagation strategies
do not take into consideration the ontology features and will be faced with ef-
fectiveness and performance problems. Having analyzed the classical similarity
propagation algorithm, Similarity Flood, we proposed a new structure-based on-
tology matching method [5]. This method has two features: (1) It has more strict
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but reasonable propagation conditions which lead to more efficient matching pro-
cesses and better alignments. (2) A series of propagation strategies are used to
improve the matching quality. We have demonstrated that this method performs
well on the OAEI benchmark dataset [5].

However, the similarity propagation is not always perfect. When more align-
ments are discovered, more incorrect alignments would also be introduced by
the similarity propagation. So Lily also uses a strategy to determine when to use
the similarity propagation.

Large scale ontology matching Matching large ontologies is a challenge due
to its significant time complexity. We proposed a new matching method for large
ontologies based on reduction anchors [6]. This method has a distinct advantage
over the divide-and-conquer methods because it does not need to partition large
ontologies. In particular, two kinds of reduction anchors, positive and negative
reduction anchors, are proposed to reduce the time complexity in matching.
Positive reduction anchors use the concept hierarchy to predict the ignorable
similarity calculations. Negative reduction anchors use the locality of matching
to predict the ignorable similarity calculations. Our experimental results on the
real world datasets show that the proposed methods are efficient in matching
large ontologies [6].

Ontology mapping debugging Lily utilizes a technique named ontology map-
ping debugging to improve the alignment results [7]. Different from existing meth-
ods that focus on finding efficient and effective solutions for the ontology mapping
problems, mapping debugging emphasizes on analyzing the mapping results to
detect or diagnose the mapping defects. During debugging, some types of map-
ping errors, such as redundant and inconsistent mappings, can be detected. Some
warnings, including imprecise mappings or abnormal mappings, are also locked
by analyzing the features of mapping result. More importantly, some errors and
warnings can be repaired automatically or can be presented to users with revising
suggestions.

Ontology matching tuning Lily adopted ontology matching tuning this year.
By performing parameter optimization on training datasets [9], Lily is able to
determine the best parameters for similar tasks. Those data will be stored. When
it comes to real matching tasks, Lily will perform statistical calculations on the
new ontologies to acquire their features that help it find the most suitable con-
figurations, based on previous training data. In this way, the overall performance
can be improved.

Currently, ontology matching tuning is not totally automatic. It is difficult
to find out typical statistical parameters that distinguish each task from others.

Background Knowledge Matching Lily used matching strategy based on
background knowledge this year. Lily has two sources of background knowledge:
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the UMLS Metathesaurus, two synonyms files which contain a series of synonyms
of many common medical terms and we obtain it via API of bioportal.com in
advance. These two background knowledge sources are all specific to the biomed-
ical domain such as largebio and phenotype track. Using background knowledge
can greatly improve the matching effectiveness and efficiency to some extent.
In the future, Lily will explore more effective background knowledge for other
OAEI tracks or other matching tasks in the real world.

Virtual Document This year Lily used virtual document matching technology
in some matching tasks[12]. Basically, as a collection of weighted words, the
virtual document of a URIref declared in an ontology contains not only the
local descriptions but also the neighboring information to reflect the intended
meaning of the URIref. Document similarity can be computed by traditional
vector space techniques, and then be used in the similarity-based approaches
to ontology matching. Different matching tasks may have different neighbour
information and weighted parameters to tune.

1.3 Adaptations made for the evaluation

For anatomy and conference tasks, Lily is totally automatic, which means Lily
can be invoked directly from the SEALS client. It will also determine which strat-
egy to use and the corresponding parameters. For a specific instance matching
task, Lily needs to be configured and started up manually, so only matching
results were submitted.

1.4 Link to the system

SEALS wrapped version of Lily for OAEI 2018 is available at https://drive.
google.com/open?id=1irGjC4tZdofpG57kHXpblBJcf75ZwUWf.

2 Results

2.1 Anatomy track

The anatomy matching task consists of two real large-scale biological ontologies.
Table x shows the performance of Lily in the Anatomy track on a server with
one 3.46 GHz, 6-core CPU and 8GB RAM allocated. The time unit is second
(s).

Table 1. The performance in the anatomy task

Matcher Precision Recall Recall+ F-Measure

Lily 0.872 0.795 0.518 0.832
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Compared with the result in OAEI 2016 [11], there is no obvious progress(with
0.83 F-Measure). As can be seen in the overall results, Lily lies in the middle posi-
tion of the rank, which indicates that it is still possible to make further progress.
Inside current Lily for anatomy, we used LOM(Large scale ontology matching)
technique as mentioned in PART 1.2. In the future, we will add background
knowledge into Lily for better matching result.

2.2 Conference track

Lily’s performance in the Conference track was exactly the same as OAEI 2016.
Obviously, Lily did not output satisfactory results in this track. The performance
of Lily was even worse than StringEquiv in some tasks, which is a strange phe-
nomenon. We will further analyze this task and our system to find out the reason
later.

2.3 Disease and Phenotype track

Lily participated in this track for the first time. Lily generated almost the most
unique mappings(733 in HP-MP task and 1167 in DOID-ORDO task).

Table 2. The performance in the disease and phenotype task

Matcher Task Mappings Unique Precision Recall F-Measure

Lily HP-MP 2118 733 0.682 0.647 0.664

Lily DOID-ORDO 3738 1167 0.589 0.783 0.672

However, Lily obtained a relatively low F-measure according to the 3-vote
silver standard(0.664 and 0.672 separately). In our matching algorithm, we used
classic virtual document technique and background knowledge matching strat-
egy[12]. For the latter, we used a dictionary of synonyms extracted from Bio-
Portal in advance. The reason why our precision is not high may be that the
threshold of our virtual document was set too low, which caused many incorrect
mappings. In addition, we think current consensus alignment(reference) using
voting strategy is unreasonable to some extent for Lily. Since it may be not
exactly the same as the gold matching results. For example, it perhaps missed
some true mappings. However, these mappings are possible in unique mappings
that Lily output but this voting strategy didn’t count this part possibly, which
led Lily to a low recall value relatively. Anyway, we will further optimize the
algorithm inside Lily to make it cope with biological matching tasks better next
year.
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2.4 Biodiversity and Ecology track

Table 3. The performance in the biodiversity and ecology task

Matcher Task Precision Recall F-Measure

Lily FLOPO-PTO 0.813 0.586 0.681

Lily ENVO-SWEET 0.866 0.641 0.737

Lily obtained 68% F-measure in the FLOPO-PTO task and 73.7% F-measure in
the ENVO-SWEET task. The results are not good because of low recall value
relatively. In this task, we only considered simple text information(localName,
label) for matching and ignored other potential information(structural informa-
tion etc.). Consequently, Lily couldn’t find more true mappings lacking of those
information.

2.5 Spimbench track

This is an instance-mactching track which aims to match instances of creative
works between two boxes. And ontology instances are described through 22
classes, 31 DatatypeProperty and 85 ObjectProperty properties.

There are about 380 instances and 10000 triples in sandbox, and about 1800
CWs and 50000 triples in mainbox.

Table 4. The performance in the spimbench task

Matcher Scale Precision Recall F-Measure

Lily sandbox 0.8494 1.0000 0.9185

Lily mainbox 0.8546 1.0000 0.9216

As is shown in Table 4, Lily utilized almost the same startegy to handle these
two different size tasks. We found that creative works in this task were rich in
text information such as titles, descriptions and so on. Lily could make good use
of it and got the highest F-Measure with shortest time. However, garbled texts
and messy codes were mixed up with normal texts. And Lily relied too much on
text similarity calculation and set a low threshold in this task, which accounted
for the low percision.

3 General comments

In this year, a lot of modifications were done to Lily for both effectiveness and
efficiency. The performance has been improved as we have expected. The strate-
gies for new tasks have been proved to be useful.
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On the whole, Lily is a comprehensive ontology matching system with the
ability to handle multiple types of ontology matching tasks, of which the results
are generally competitive. However, Lily still lacks in strategies for some newly
developed matching tasks. The relatively high time and memory consumption
also prevent Lily from finishing some challenging tasks.

4 Conclusion

In this paper, we briefly introduced our ontology matching system Lily. The
matching process and the special techniques used in Lily were presented, and
the alignment results were carefully analyzed.

There is still so much to do to make further progress. Lily needs more opti-
mization to handle biological ontologies with limited time and better matching
results. Thus, more complex and effective matching algorithms will be applied
to Lily next year. Meanwhile, we have just tried out ontology matching tuning.
With further research on that, Lily will not only produce better alignments for
tracks it was intended for, but also be able to participate in the interactive track.
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E. Jiménez-Ruiz1,2, B. Cuenca Grau3, and V. Cross4

1 The Alan Turing Institute, London, UK
2 Department of Informatics, University of Oslo, Oslo, Norway

3 Department of Computer Science, University of Oxford, Oxford, UK
4 Computer Science and Software Engineering, Miami University, Oxford, OH, United States

Abstract. We present the participation of LogMap and its variants in the OAEI

2018 campaign. The LogMap project started in January 2011 with the objective

of developing a scalable and logic-based ontology matching system. This is our

eight participation in the OAEI and the experience has so far been very positive.

LogMap is one of the few systems that participates in (almost) all OAEI tracks.

1 Presentation of the system

LogMap [11, 13] is a highly scalable ontology matching system that implements the

consistency and locality principles [12]. LogMap also supports (real-time) user inter-

action during the matching process, which is essential for use cases requiring very ac-

curate mappings. LogMap is one of the few ontology matching system that (i) can

efficiently match semantically rich ontologies containing tens (and even hundreds) of

thousands of classes, (ii) incorporates sophisticated reasoning and repair techniques to

minimise the number of logical inconsistencies, and (iii) provides support for user in-

tervention during the matching process.

LogMap relies on the following elements, which are keys to its favourable scalabil-

ity behaviour (see [11, 13] for details).

Lexical indexation. An inverted index is used to store the lexical information contained

in the input ontologies. This index is the key to efficiently computing an initial set of

mappings of manageable size. Similar indexes have been successfully used in informa-

tion retrieval and search engine technologies [2].

Logic-based module extraction. The practical feasibility of unsatisfiability detection

and repair critically depends on the size of the input ontologies. To reduce the size of

the problem, we exploit ontology modularisation techniques. Ontology modules with

well-understood semantic properties can be efficiently computed and are typically much

smaller than the input ontology (e.g. [5]).

Propositional Horn reasoning. The relevant modules in the input ontologies together

with (a subset of) the candidate mappings are encoded in LogMap using a Horn propo-

sitional representation. Furthermore, LogMap implements the classic Dowling-Gallier

algorithm for propositional Horn satisfiability [6]. Such encoding, although incomplete,

allows LogMap to detect unsatisfiable classes soundly and efficiently.

Axiom tracking. LogMap extends Dowling-Gallier’s algorithm to track all mappings

that may be involved in the unsatisfiability of a class. This extension is key to imple-

menting a highly scalable repair algorithm.
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Local repair. LogMap performs a greedy local repair; that is, it repairs unsatisfiabilities

on-the-fly and only looks for the first available repair plan.

Semantic indexation. The Horn propositional representation of the ontology modules

and the mappings is efficiently indexed using an interval labelling schema [1] — an

optimised data structure for storing directed acyclic graphs (DAGs) that significantly

reduces the cost of answering taxonomic queries [4, 19]. In particular, this semantic

index allows us to answer many entailment queries as an index lookup operation over

the input ontologies and the mappings computed thus far, and hence without the need

for reasoning. The semantic index complements the use of the propositional encoding

to detect and repair unsatisfiable classes.

1.1 LogMap variants in the 2018 campaign

As in previous campaigns, in the OAEI 2018 we have participated with two additional

variants:

LogMapLt is a “lightweight” variant of LogMap, which essentially only applies (effi-

cient) string matching techniques.
LogMapBio includes an extension to use BioPortal [8, 9] as a (dynamic) provider of

mediating ontologies instead of relying on a few preselected ontologies [3].

In previous years we also participated with LogMapC5.

1.2 Adaptations made for the 2018 evaluation

LogMap’s algorithm described in [11, 13, 16, 15, 14] has been adapted with the follow-

ing new functionalities:

i HOBBIT adaptation. We have implemented the required interface classes to run

LogMap under the HOBBIT platform.6 LogMap can currently be evaluated in five

different tracks available in the HOBBIT platform.7

ii Ontology division module. This module extends LogMap’s ontology overlapping

estimation module to compute a number of divisions of the input ontologies and to

create a set of smaller matching subtasks [10].
iii Obsolete classes. We have extended the lexical and structural indexation modules

to ignore classes in the ontology annotated as obsolete.

1.3 Link to the system and parameters file

LogMap is open-source and released under GNU Lesser General Public License 3.0.8

LogMap components and source code are available from the LogMap’s GitHub page:

https://github.com/ernestojimenezruiz/logmap-matcher/.

5 LogMapC is a variant of LogMap which, in addition to the consistency and locality principles,

also implements the conservativity principle (see details in [20–22, 18]).
6 https://gitlab.com/ernesto.jimenez.ruiz/logmap-hobbit
7 https://git.project-hobbit.eu/ernestoj/logmapsystem
8 http://www.gnu.org/licenses/
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LogMap distributions can be easily customized through a configuration file contain-

ing the matching parameters.

LogMap, including support for interactive ontology matching, can also be used

directly through an AJAX-based Web interface: http://krrwebtools.cs.ox.
ac.uk/. This interface has been very well received by the community since it was

deployed in 2012. More than 3,000 requests coming from a broad range of users have

been processed so far.

1.4 LogMap as a mapping repair system

Only a very few systems participating in the OAEI competition implement repair tech-

niques. As a result, existing matching systems (even those that typically achieve very

high precision scores) compute mappings that lead in many cases to a large number of

unsatisfiable classes.

We believe that these systems could significantly improve their output if they were

to implement repair techniques similar to those available in LogMap. Therefore, with

the goal of providing a useful service to the community, we have made LogMap’s ontol-

ogy repair module (LogMap-Repair) available as a self-contained software component

that can be seamlessly integrated in most existing ontology matching systems [17, 7].

1.5 LogMap as a matching task division system

LogMap also includes a novel module to divide the ontology alignment task into (inde-

pendent) manageable subtasks [10]. This component relies on LogMap’s lexical index,

a neural embedding model [23] and locality-based modules [5]. This module can be

integrated in existing ontology alignment systems as a external module. The prelimi-

naty results in [10] are encouraging as the division enabled systems to complete some

large-scale matching tasks.

2 General comments and conclusions

Please refer to http://oaei.ontologymatching.org/2018/results/ for

the results of the LogMap family in the OAEI 2018 campaign.

2.1 Comments on the results

As in previous campaigns, LogMap has been one of the top systems and one of the few

systems that participates in (almost) all tracks. Furthermore, it has also been one of the

few systems implementing repair techniques and providing (almost) coherent mappings

in all tracks.

LogMap’s main weakness is that the computation of candidate mappings is based

on the similarities between the vocabularies of the input ontologies; hence, in the cases

where the ontologies are lexically disparate or do not provide enough lexical informa-

tion LogMap is at a disadvantage.
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10. Jiménez-Ruiz, E., Agibetov, A., Samwald, M., Cross, V.: Breaking-down the ontology align-

ment task with a lexical index and neural embeddings. CoRR abs/1805.12402 (2018),

http://arxiv.org/abs/1805.12402
11. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.

In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)
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17. Jiménez-Ruiz, E., Meilicke, C., Cuenca Grau, B., Horrocks, I.: Evaluating mapping repair

systems with large biomedical ontologies. In: 26th Description Logics Workshop (2013)

18. Jimenez-Ruiz, E., Payne, T.R., Solimando, A., Tamma, V.: Limiting logical violations in on-

tology alignment through negotiation. In: Proceedings of the 15th International Conference

on Principles of Knowledge Representation and Reasoning (KR). AAAI Press (April 2016)

19. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval labeling

scheme. Inf. Sci. 179(24), 4151–4173 (2009)
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Abstract. Ontology matching is the process of finding a set of corre-
spondences between the entities of two or more ontologies representing a
similar domain. POMap++ is an ontology matching system associating
ontology partitioning to the machine learning techniques. This associ-
ation delivers a local matching learning. POMap++ provides an auto-
mated local matching learning for the biomedical tracks. For the non-
biomedical tracks we employ the version of POMap 2017. In this paper,
we present POMap++ as well as the obtained results for the Ontology
Alignment Evaluation Initiative of 2018.

Keywords: Semantic web, Ontology Matching, Ontology partitioning,
Machine learning

1 Presentation of the system

Ontologies are the backbone of the semantic web. They enable sharing, reusing
and accessing the knowledge resources [9]. Biomedical ontologies are domain-
specific knowledge bases widely employed in biology and medicine. These ontolo-
gies have been separately developed by different experts using different termi-
nologies and modeling techniques. The integration of these data sources requires
ontology matching tools. Ontology matching is the identification process corre-
spondences between the entities of different ontologies. The alignment process is
quite challenging in terms of the complexity of the existing biomedical ontolo-
gies. POMap++ divide a biomedical ontology alignment to a set of sub-matching
tasks called partitions. We align each sub-matching task using its local adequate
settings. We automatically determine the local matching settings by generating
a specific machine learning model for each sub-matching task. This automated
tuning process of local matching parameters aims to improve the overall match-
ing quality of a large ontology matching task. We employed POMap++ for
the biomedical matching tasks and POMap [3] for the non-biomedical matching
tasks. In the following section, we provide a detailed description of POMap++.
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1.1 State, purpose, general statement

1.2 Specific techniques used

The workflow of POMap++ for our second participation in the OAEI comprises
four main steps, as flagged by the figure 1: Input ontologies indexing and load-
ing, input ontologies partitioning, local matching learning and output alignment
generation. The first and the last step are the same as in the last version of
POMap [3]. In the second step, we define the pair of similar partitions between
the two input ontologies. In the third step, we apply machine learning techniques
in order to align every identified pair of similar partitions. In the following, we
detail each of the four steps.

Fig. 1. The architecture of POMap++.

Step 1: Input ontologies indexing and loading

The first step of the ontology indexation and loading is the pre-processing
task. We pre-process the annotations of the two input ontologies by applying the
Porter stemming [8] as well as the stop word removal process. We also remove
the special characters. These indexes are stored along with the structure of
the input ontologies. The structural indexing is responsible for representing the
relationships between entities. Then, during the third task, the indexed data
structures are loaded into the next step of POMap++.

Step 2: Input ontologies partitioning

We divide an ontology into a set of partitions using the hierarchical agglomer-
ative clustering [5] approach. This approach does not take as input the required
number of partitions. The hierarchical agglomerative clustering algorithm re-
ceives as input structural similarity scores between all the entities of an input
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ontology. We compute the structural similarity between the entities of a single
ontology according to the following Definition. The Definition 1 is inspired by
Wu and Palmer [10] similarity measure.

Definition 1 (Structural similarity between entities). We compute the
structural similarity between all the entities in one ontology according to the
Equation 1. For a given two entities ei,x and ei,y of an ontology Oi, lca is their
lowest common ancestor. Dist(ei,x,lca) represents the shortest distance between
ei,x and lca in terms of number of edges. Dist(ei,y,lca) denote the distance be-
tween ei,y and lca. Dist(ri,lca) is the distance between the root ri and lca.

StrcSim(ei,x, ei,y) =
Dist(ri, lca)× 2

Dist(ei,x, lca) +Dist(ei,y, lca) +Dist(ri, lca)× 2
(1)

Step 3: Local Matching learning
Due to the high complexity of biomedical ontologies, no single syntactic simi-
larity measure can effectively all the syntactic heterogeneity of a matching task.
Therefore, for each local matching task, we construct its specific machine learn-
ing model. The training set of every local learning model is not based on any
reference alignments. We automatically construct a supervised training set for
each local matching task of the set of local matchings. These training sets serve
as the input for each local machine learning model. After identifying the par-
titions for each ontology, we find the set of similar partitions between the two
input ontologies using a set of anchors. The existing works retrieve labeled data
either from the reference alignment or by creating it manually. However, the
reference alignment commonly does not exist. We derive each local training set
by cross-searching the entities of a local matching with the existing biomedical
knowledge bases like Uberon. Since we are dealing with biomedical ontologies,
anchors are extracted by cross-searching the input ontologies with the available
external biomedical knowledge bases (KB) such as the Unified Medical Lan-
guage System (UMLS) Metathesaurus [1], Medical Subject Headings (MeSH)
[4], Uberon [6] and BioPortal [7]. For instance, UMLS integrates more than 160
biomedical ontologies. In our case, we cross-search the two input ontologies with
the Uberon ontology to derive the set anchors. We employ the-state-of-the art
syntactic similarity measures3 as features. The labeled data of the training set
is usually hard to acquire. We apply the wrapper feature selection [2] method
over the resulted local training sets. This technique selects the subset of the
most effective and suitable features for each local training set. Therefore, each
local matching task has its specific similarity measures. Then, we build a local
machine learning model for each local matching task. The entities of each local
matching task are classified using their specific machine learning model. This
local learning model aligns the input entities based on the adequate matching
parameters.

Step 4: Output alignment generation

3 https://git.io/fNvqt
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The generated correspondences for every local matching task lmij,q are uni-
fied to generate the final alignment file for the whole ontology matching task.
The alignment file is compared to the reference alignment to evaluate the overall
result accuracy.

2 Results

2.1 Anatomy

The Anatomy track consists of finding the alignments between the Adult Mouse
Anatomy and the NCI Thesaurus describing the human anatomy. The evaluation
was run on a server coupled with 3.46 GHz (6 cores) and 8GB of RAM. Table 1
draws the performance of POMap++ compared to the five top matching systems.
Our matching system achieved the third best result for this dataset with an F-
measure of 89.7%, which is very close to the top results. The remaining challenge
is to speed up the execution time by applying more optimizations. We also target
the improvement of precision value for our next participation in the OAEI.

2.2 Disease and Phenotype

This track is based on a real use case in order to find alignments between disease
and phenotype ontologies. Specifically, the selected ontologies are the Human
Phenotype Ontology (HPO), the Mammalian Phenotype Ontology (MP), the
Human Disease Ontology (DOID) and the Orphanet and Rare Diseases Ontol-
ogy(ORDO). The evaluation was run on an Ubuntu Laptop with an Intel Core
i9-8950UK CPU @ 2.90GHz x 12 coupled with 25Gb RAM. POMap++ suc-
ceeded to complete tow tasks HP-MP and DOID-ORDO. POMap produced 1502
mappings in the HP-MP task associated with 214 unique mappings. Among the
eight matching systems, POMap++ achieved the fifth highest F-measure with
an F-Measure of 69.9%. In the DOID-ORDO task, POMap generated 2563 map-
pings with 174 unique ones. For this task, POMap++ obtained an F-Measure
of 84.5% being the third best result for this track.

2.3 LargeBio

This tracks aims to find the alignment between three large ontologies: Founda-
tional Model of Anatomy (FMA), SNOMED CT, and the National Cancer Insti-
tute Thesaurus (NCI). Among six matching tasks between these three ontologies,
POMap++ succeeded to perform the matching between FMA-NCI (small frag-
ments) and FMA-SNOMED (small fragments) with an F-Measure respectively of
88.9% and 40.4%. For the other tasks of the large biomedical track, POMap++
exceeded the defined timeout.
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3 Conclusion

The obtained results of POMap++ are promising especially for disease and
phenotype as well as the anatomy track in which we ranked as the third top
performing matching system. However, we did not opt to perform the local
matching using structural-level features. Consequently, we are planning to add
structural-level feature to the local matching process.
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Abstract. Geospatial data is at the essence of the Semantic Web, where a knowledge base
such as LinkedGeoData consists of more than 30 billions facts. Reasoning on these considerable
amounts of geospatial data lacks efficient methods for the computation of links between the
resources contained in these knowledge bases. In this paper, we present the participation of
the extension of Radon algorithm (dubbed Radon2) in the OAEI 2018 campaign. The OAEI
results show that Radon2 outperforms the other state of the art in most of the cases.

1 Presentation of the System

we present the extension of Radon algorithm [8, 6] (dubbed Radon2), where we, compute all
topological relations of DE9-IM in order to accelerate the topological relation discovery among
geospatial resources.

1.1 State, Purpose and General Statement

In the following, we start by formally defining the general link discovery problem. Thereafter, we
formally define the link discovery of topological relations problem, which we takeld by Radon2.

Link Discovery. Let K be a finite RDF knowledge base. K can be regarded as a set of triples
(s, p, o) ∈ (R ∪ B) × P × (R ∪ L ∪ B), where R is the set of all resources, B is the set of all blank
nodes, P the set of all predicates and L the set of all literals. The Link Discovery (LD) problem
can be expressed as follows: Given two sets of resources S and T (for example hotels and water
bodies) and a relation r (e.g., :touches), find all pairs (s, t) ∈ S × T such that r(s, t) holds. The
result is produced as a set of links called a mapping : MS ,T = {(si, r, tj)|si ∈ S, tj ∈ T}. Optionally,
a similarity score (sim ∈ [0, 1]) calculated by an LD tool can be added to the entries of mappings
to express assurance of a computed link. Finding solutions for the LD problem is challenging due
to the typically the large volume of current datasets as well as its semantic heterogeneity. The main
purpose of LD approaches is to meet the main requirements of (1) high effectiveness (i.e maximize
a fitness function such as F-measure) and (2) high efficiency (i.e., minimize runtime).
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Link Discovery of Topological Relations. The Dimensionally Extended nine-Intersection Model (DE-
9IM) [3] is a topological model and a standard used to describe the spatial relations of two geometries
in two-dimensional space. Since the spatial relations expressed by DE-9IM are topological, they are
invariant to rotation, translation and scaling transformations [4]. The DE-9IM model is based on a
3× 3 intersection matrix with the form:

DE9IM(g1, g2) =

⎡
⎣
dim(I(g1) ∩ I(g2)) dim(I(g1) ∩B(g2)) dim(I(g1) ∩ E(g2))
dim(B(g1) ∩ I(g2)) dim(B(g1) ∩B(g2)) dim(B(g1) ∩ E(g2))
dim(E(g1) ∩ I(g2)) dim(E(g1) ∩B(g2)) dim(E(g1) ∩ E(g2))

⎤
⎦ (1)

where dim is the maximum number of dimensions of the intersection ∩ of the interior(I),
boundary(B), or exterior(E) of the two geometries g1 and g2. The domain of dim is {−1, 0, 1, 2},
where −1 indicates no intersection, 0 stands for an intersection that results in a set of one or more
points, 1 indicates an intersection made up of lines and 2 stands for an intersection that results in
an area. A simplified binary version of dim(x) with the binary domain {true, false} is obtained
using the Boolean function β(dim(I(g)) = false iff dim(I(g)) = −1 and true otherwise. There is
only a subset of the topological relations obtainable through DE-9IM that reflects the semantics of
the English language [3] [2] including equals, within, contains, disjoint, touches, meets,

covers, coveredBy, intersects, crosses and overlaps.

1.2 Specific Techniques Used

in this section, we discuss the main idea behind our new extension of Radon.

Radon2 vs. Radon. The basic idea behind the originalRadon approach [8] for topological relation
discovery is to provide an indexing method combined with space tiling that allows for efficient
computation of topological relations between geospatial resources. In particular, Radon presents a
novel sparse index for geospatial resources. Then, based on bounding boxes of the indexed geospatial
resources, Radon applies a strategy for discarding unnecessary computations of DE-9IM relations.
In Radon2, our concerns is focused on optimizing the computing of intersection matrix (IM)
used in DE9-IM standard. In the original Radon, the intersection matrix is computed for each
topological relation, while in Radon2 we compute the IM once for all relations among the same
pair of resources. We then apply the mask for each relation to the the computed IM. In particular,
we buffer the IM of each pair of geometries so that all topological relations of same pair can be
retrieved with no need to recompute their respective IM again. By applying this strategy, we can
save the time for recomputing the IM for each individual topological relation. Moreover, calculating
IM at once for each pair of geometries for all topological relations does not affect the completeness
of the linking result. i.e., the F-measure of Radon2 is the same as the F-measure of Radon, which
is always 1.

1.3 Adaptations Made for the Evaluation

No specific adaptations were made to the original Radon algorithm, we only provide a Java
SystemAdapter according to the campaign guidelines3.

3 https://project-hobbit.eu/challenges/om2017/om2017-tasks/
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1.4 Link to the System

Both Radon and Radon2 are implemented in the link discovery framework Limes. Limes is
available under the GNU Affero General Public License v3.0 4. Radon2 source code is available
online from the project website5. The project web site also provide a user manual6 as well as a
developer manual7.

2 Results

Radon2 has been evaluated only in the Hobbit Link Discovery Track Task 2 (Spatial). The basic
idea behind this task was to measure how well the systems can identify DE- 9IM (Dimensionally Ex-
tended nine-Intersection Model) topological relations. The supported spatial relations were: equals,
within, contains, disjoint, touches, meets, covers, coveredBy, intersects, crosses

and overlaps. The geospatial resources traces were represented in Well-known text (WKT) format
as LineStrings. The result is produced as a set of links called a mapping : MS ,T = {(si, r, tj)|si ∈
S, tj ∈ T}. All the systems were tested against two datasets: (1) the sandbox dataset, with a scale
of 10 instances, and (2) the mainbox dataset with a scale of 5K instances. The other participants
to this task in addition to Radon were Agreement Maker Light(AML) and Silk.

The systems were judged on the basis of precision, recall, F-Measure and run time. The final
results are shown in Figures 1, 2, 3 and 4. Note that we are only presenting the time performance
and not precision, recall and F-Measure as all were equal to 1.0.

From these results we can see that Radon2 outperforms the other systems in all relations for
the sandbox and mainbox (linestrings –polygons) (see Figures 3 and 4) dataset as well as the for
the the mainbox dataset (linestrings–linestrings) (Figure 2). For the sandbox dataset (linestrings–
linestrings) (Figure 1),Radon achives a better performance in most of the relations (e.g., overlaps,
crosses, covered by, covers, within, contains, disjoint and equal. Only for the touches
and intersects Aml was able to outperform Radon2 for the TomTom dataset of the sandbox
(linestrings–linestrings). The differences in performance between touches and intersects, where
AML outperforms Radon cannot be explained from an implementation point of view, as these
two relations share the exact optimizations. However, due to the datasets consisting exclusively of
LineStrings, it is apparent that touches and intersects are much more likely to hold between any
two geometries than other relations. Therefore, the benchmarks on these relations are the hardest
in this task.

3 Conclusions and Future Work

We present Radon2, a simple strategy for scaling the original Radon approach by computing the
intersection matrix for each pair of resources once and use it for computing all possible topological
relations associated with such resources at hand. The presented evaluation during the OAEI 2018
showed that, in addition to being complete and correct (i.e. achieving an F-Measure of 1.0),Radon2
also outperforms the other participating systems in most of the cases

4 https://github.com/dice-group/LIMES/blob/master/LICENSE
5 https://github.com/dice-group/LIMES
6 https://dice-group.github.io/LIMES/user manual/
7 https://dice-group.github.io/LIMES/developer manual/
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Fig. 1: Runtime results of linestrings-linestrings Sandbox Dataset
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Fig. 2: Runtime results of linestrings-linestrings Mailbox DataSet
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Fig. 3: Runtime results of linestrings-polygons Sandbox Dataset
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Fig. 4: Runtimes results of linestrings-polygons Mailbox DataSet
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In future work, we will apply this strategy on a larger datasets with more resources and more
points per resource, where we will implement more sophisticated parallelization techniques. For
enabling automatic configuration of Radon2, we will combine Radon2 with the machine learning
algorithmWombat [7] implemented in Limes. Also, we will extend Radon2 for discovering spatial-
temporal relation by integrating it with [5]. Moreover, we intend to combine Radon2 with the
simplification algorithms introduced in [1] in order to achieve even better speedup.
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Abstract. Simulated annealing-based ontology matching (SANOM) par-
ticipates for the second time at the ontology alignment evaluation ini-
tiative (OAEI) 2018. This paper contains the configuration of SANOM
and its results on the anatomy and conference tracks. In comparison
to the OAEI 2017, SANOM has improved significantly, and its results
are competitive with the state-of-the-art systems. In particular, SANOM
has the highest recall rate among the participated systems in the confer-
ence track, and is competitive with AML, the best performing system,
in terms of F-measure. SANOM is also competitive with LogMap on the
anatomy track, which is the best performing system in this track with no
usage of particular biomedical background knowledge. SANOM has been
adapted to the HOBBIT platfrom and is now available for the registered
users. abstract environment.

Keywords: SANOM, ontology alignment, OAEI.

1 System Representation

SANOM takes advantages of the well-known simulated annealing (SA) to dis-
cover the shared concepts between two given ontologies [3]. A potential alignment
is modeled as a state in the SA whose evolution would result in a more reliable
matching between ontologies. The evolution requires a fitness function in order
to gauge the goodness of the intermediate solutions to the ontology matching
problem.

A fitness function should utilize the lexical and structural similarity metrics
to estimate the fineness of an alignment. The version of SANOM participated
this year uses both lexical and structural similarity metrics, which are described
in the following.

1.1 Lexical Similarity Metric

The cleaning of strings before the similarity computation is essential to increase
the chance of mapping entities. SANOM uses the following pre-processing tech-
niques to this end:

– Tokenization. It is quite common that the The terminology of concepts are
constructed from a bag of words (BoW). The words are often concatenated
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by white space, the capital letter of first letters, and several punctuations
such as ”−” or ” ”. Therefore, they need to be broken into individual words
and then the similarity is computed by comparing the bag of words together.

– Stop word removal. Stop words are the typical words with no particular
meaning. The stop words should be detected by searching the tokens (iden-
tified after tokenization) in a table containing all possible stop words. The
Glasgow stop word list is utilized in the current implementation 1 .

– Stemming. Two entities from the given ontologies might refer to a simi-
lar concept, but they are named differently due to various verb tense, plu-
ral/singular, and so forth. Therefore, one needs to recover the normal words
so that the similar concepts will have higher similarity. The Porter stemming
method is used for this matter [4].

After the pre-processing step, the strings of two concepts can be given to a
similarity metric in order to calibrate the degree of similarity between concepts.
The base similarity metric computes the sameness of tokens obtained from each
entity. The current version of SANOM takes advantage of two similarity metrics
and take their maximum as the final similarity of two given tokens. One of this
similarity metric is for sole comparison of stirngs, and the other one is to guage
the linguistic relation of two given names. These similarity metrics are:

– Jaro-Winkler metric. The combination of TF-IDF and Jaro-Winkler is
popular and has been sucessful in ontology alignment as well. Similarly,
SANOM uses Jaro-Winkler with the threshold 0.9 as one of the base simi-
larity metrics.

– WordNet-based metric. The linguistic heterogeneity is also rampant in
various domains. Therefore, the existence of a similarity metric to measure
the lingual closeness of two entities is absolutely essential. In this study, the
relatedness of two given tokens are computed by the Wu and Palmer measure
[5] and is used as a base similarity metric with the threshold 0.95.

1.2 Structural Similarity Metric

The preceding string similarity metric gives a high score to the entities which
have lexical or linguistic proximity. Another similarity of two entities could be
derived from their positions in the given ontologies.

We consider two structural similarity measures for the current implementa-
tion of SANOM:

– The first structural similarity is gauged by the subsumption relation of
classes. If there are two classes c1 and c2 whose superclasses are s1 and
s2 from two given ontologies O1 and O2, then the matching of classes s1
and s2 would increase the similarity of c1 and c2. Let s be a correspondence
mapping s1 to s2, then the increased similarity of c1 and c2 is gauged by

fstructural(c1, c2) = f(s). (1)

1 http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words

206



SANOM results for OAEI 2018 3

– Another structural similarity is derived from the properties of the given on-
tologies. The alignment of two properties would tell us the fact that their
corresponding domain and/or ranges are also identical. Similarly, if two prop-
erties have the analogous domain and/or range, then it is likely that they
are similar as well.
The names of properties and even their corresponding core concepts are
not a reliable meter based on which they are declared a correspondence. A
recent study has shown that the mapping of properties solely based on their
names would result in high false positive and false negative rates, e.g. there
are properties with identical names which are not semantically related while
there are semantically relevant properties with totally distinct names.
The current implementation treats the object and data properties differ-
ently. For the object properties op1 and op2, their corresponding domains
and ranges are computed as the concatenation of their set of ranges and
domains, respectively. Then, the fitness of the names, domains, and ranges
are computed by the Soft TF-IDF. The final mapping of two properties is
the average of top two fitness scores obtained by the Soft TF-IDF. For the
data properties, the fitness is computed as the similarity average of names
and their corresponding domain.
On the other flow of alignment, it is possible to derive if two classes are
identical based on the properties. Let e1 and e2 be classes, op1 and op2 be
the object properties, and R1 and R2 are the corresponding ranges, then the
correspondence c = (e1, e2) is evaluated as

fstructural(c) =
fstring(R1, R2) + fstring(op1, op2)

2
. (2)

2 Results

This section contains the results obtained by SANOM on the anatomy and con-
ference track.

2.1 Anatomy Track

The anatomy track is one of the earliest benchmarks in the OAEI. The task is
about aligning the Adult Mouse anatomy and a part of NCI thesaurus containing
the anatomy of humans. Each of the ontologies has approximately 3,000 classes,
which are designed carefully and are annotated in technical terms.

The best performing systems in this track use a biomedical background
knowledge. Thus, their results are not comparable with SANOM which does
not use any particular background knowledge. Among other systems, LogMap
[2] is best one with no use of a background knowledge.

Table 1 tabulates the precision, recall, and F-measure of SANOM and LogMap
on the anatomy track. According to this table, the recall of SANOM is slightly
higher than LogMap which means that it could identify more correspondences
than LogMap. However, the precision of LogMap is better than SANOM with
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the margin of three percent. The overall performance of SANOM is quite close
to LogMap since their F-measure has only 1% difference.

System Precision F-measure Recall

LogMap 0.918 0.88 0.846
SANOM 0.888 0.87 0.853

Table 1: The precision, recall, and F-measure of SANOM and LogMap on the
OAEI anatomy track.

SANOM AML LogMap
P F R P F R P F R

cmt-conference 0.61 0.74 0.93 0.67 0.59 0.53 0.73 0.62 0.53
cmt-confOf 0.80 0.62 0.50 0.90 0.69 0.56 0.83 0.45 0.31
cmt-edas 0.63 0.69 0.77 0.90 0.78 0.69 0.89 0.73 0.62
cmt-ekaw 0.54 0.58 0.64 0.75 0.63 0.55 0.75 0.63 0.55
cmt-iasted 0.67 0.80 1.00 0.80 0.89 1.00 0.80 0.89 1.00
cmt-sigkdd 0.85 0.88 0.92 0.92 0.92 0.92 1.00 0.91 0.83

conference-confOf 0.79 0.76 0.73 0.87 0.87 0.87 0.85 0.79 0.73
conference-edas 0.67 0.74 0.82 0.73 0.69 0.65 0.85 0.73 0.65
conference-ekaw 0.66 0.70 0.76 0.78 0.75 0.72 0.63 0.55 0.48
conference-iasted 0.88 0.64 0.50 0.83 0.50 0.36 0.88 0.64 0.50
conference-sigkdd 0.75 0.77 0.80 0.85 0.79 0.73 0.85 0.79 0.73

confOf-edas 0.82 0.78 0.74 0.92 0.71 0.58 0.77 0.63 0.53
confOf-ekaw 0.81 0.83 0.85 0.94 0.86 0.80 0.93 0.80 0.70
confOf-iasted 0.71 0.63 0.56 0.80 0.57 0.44 1.00 0.62 0.44
confOf-sigkdd 0.83 0.77 0.71 1.00 0.92 0.86 1.00 0.83 0.71
edas-ekaw 0.71 0.72 0.74 0.79 0.59 0.48 0.75 0.62 0.52
edas-iasted 0.69 0.56 0.47 0.82 0.60 0.47 0.88 0.52 0.37
edas-sigkdd 0.80 0.64 0.53 1.00 0.80 0.67 0.88 0.61 0.47
ekaw-iasted 0.70 0.70 0.70 0.88 0.78 0.70 0.75 0.67 0.60
ekaw-sigkdd 0.89 0.80 0.73 0.80 0.76 0.73 0.86 0.67 0.55
iasted-sigkdd 0.70 0.80 0.93 0.81 0.84 0.87 0.71 0.69 0.67

Average 0.74 0.72 0.73 0.84 0.74 0.67 0.84 0.68 0.59

Table 2: The precision, recall, and F-measure of SANOM, AML, and LogMap
on various datasets on the conference track

2.2 Conference Track

The conference comprises the pairwise alignment of seven ontologies. Table 2
displays the precision, recall, and F-measure of SANOM, LogMap, and AML [1]
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on the conference track. AML and LogMap are the top two systems in terms of
precision and recall.

According to Table 2, the recall of SANOM is superior to both LogMap and
AML. SANOM’s average recall is 7% and 14% more than those of AML and
LogMap, respectively, but its precision is 10% less than both of the systems.
Overall, the performance of SANOM is quite competitive with the top perform-
ing systems in the conference track.

3 Conclusion

SANOM only participated in the OAEI 2018 anatomy and conference track. For
the next year, we have aims to participate in more tracks so that the performance
of SANOM can be compared with that of the state-of-the-art systems in other
tracks as well. Another avenue to improve the system is to equip it with a proper
biomedical background knowledge since most of the OAEI tracks are from this
domain.
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Abstract. We describe in this paper the XMap system and the results achieved

during the 2018 edition of the Ontology Alignment Evaluation Initiative. XMap

aims to tackle the issue of matching large scale ontologies by involving particular

parallel matching on multiple cores or machines. Our strategies aim to provide

a set of requirements that foster the using of a domain-specific thesaurus for the

alignment of specialized ontologies.

1 Presentation of the system

The eXtended Mapping (XMap) algorithm relies on the context notion to deal with lex-

ical ambiguity as well as a parallel comparison between concepts to efficiently handle

the matching of large ontologies. Our approach to matching ontologies employs dif-

ferent components and steps in the ontology alignment process such as preprocessing,

matching, filtering and combining matching results, and oracle validation of mapping

suggestions. The contributions are the following:

– Defining a semantic similarity measure using UMLS1 [1] and WordNet [2] to pro-

vide a synonymy degree between two entities from different ontologies, by ex-

ploring both of their lexical and structural contexts. In XMap, the measurement

of lexical similarity in ontology matching is performed using a synset, defined in

WordNet and UMLS. In our approach, the similarity between two entities of dif-

ferent ontologies is evaluated not only by investigating the semantics of the entity

names, but also taking into account the context, through which the effective mean-

ing is described. It is worth mentioning that the context is the set of information

(partly) characterizing the situation of some entities [3]. The context notion is not

universal but it is relative to some situations, tasks or applications [4, 5];

– Limiting the number of mapping suggestions to be validated by an oracle. Indeed,

our approach employs a double threshold to produce matching candidates and use

a small set of constraints [6, 7] (e.g., consistency, locality, and conservativity or

quality checks), acting as a filter to select the final alignments. The first threshold

is used at the interactive selection algorithm, which will ask the oracle for feedback

about mappings when they are below a given similarity threshold, until a given

number of negative answers is reached. The second threshold is used at the final

1 http://www.nlm.nih.gov/research/umls/
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Fig. 1. The different steps for scoring a multiple network alignment.

stage to filter out the set of correspondences having a similarity value below a

given threshold. This strategy skips over the problem of the growing size and the

complexity of the user participation in the process alignment of large ontologies.

– Applying repair techniques from Applying Logical Constraints on Matching On-

tologies (ALCOMO) [8] to make reference alignments coherent, by removing less

unsatisfiable classes (discovering disjointness relationships) without having an im-

pact on the F-measure score. Our strategy in the repair mode takes into account

the confidence values during the selection of mappings to be removed in order to

improve the quality of the repaired alignments in terms of computation time and

mapping coherence.

– Finally, is the ability of XMap to deal with large scale ontology matching, by pro-

ducing good experimental results in terms of quality of the alignments, time per-

formance and scalability.

2 State, purpose, general statement

Our prototype leans on the architecture of a sequential/parallel composition. XMap

uses various similarity measures of different categories such as string, linguistic, and

structural based similarity measures, each contributing to some extent to the alignment

results. At a glance, the mapping process of XMap is depicted in Figure 1. XMap re-

ceives as an input two source ontologies. The mappings discovered by the terminolog-

ical level matcher are transferred to the structural level matcher in order to find new

correspondences by analyzing the context of the entities in the taxonomy of ontologies.

Afterwards, the combined result of the two basic matchers are aggregated by a weighted

sum aggregation operator. For the final alignment method, the system uses the threshold

method. Moreover, we manually define the filters threshold value to produce the final

mappings. A fast repair method is applied so as to detect and remove the inconsistent

ones.
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3 Results

In this section, we present the evaluation results obtained by running XMap under the

SEALS client with Anatomy, Conference, Multifarm, Interactive matching evaluation,

Large Biomedical Ontologies, Disease and Phenotype and Biodiversity and Ecology
tracks.

Anatomy The Anatomy track consists of finding an alignment between the Adult

Mouse Anatomy (2744 classes) and a part of the NCI Thesaurus (3304 classes) de-

scribing the human anatomy. XMap achieves a good F-Measure value of ≈89% in a

reasonable amount of time (37 sec.) (cf., Table 1).

Table 1. Results for Anatomy track.

System Precision F-Measure Recall Time(s)

XMap 0.929 0.896 0.865 37

StringEquiv 0.997 0.766 0.622 946

Conference The Conference track uses a collection of 16 ontologies from the domain

of academic conferences. Most ontologies were equipped with OWL-DL axioms of

various types; this opens a useful way to test our semantic matchers. For each reference

alignment, three evaluation modalities are applied : a) crisp reference alignments, b) the

uncertain version of the reference alignment, c) logical reasoning.

Table 2. Results based on the crisp reference alignments.

Precision F-Measure 1 Recall

Original reference alignment (ra1)

ra1-M1 0.81 0.70 0.61

ra1-M2 0.69 0.31 0.20

ra1-M3 0.81 0.65 0.54

Entailed reference alignment (ra2)

ra2-M1 0.79 0.65 0.55

ra2-M2 0.77 0.34 0.22

ra2-M3 0.77 0.61 0.5

Violation reference alignment (rar2)

rar2-M1 0.78 0.66 0.57

rar2-M2 0.77 0.34 0.22

rar2-M3 0.76 0.62 0.52

As depicted in Table 2 and 3, XMap produces fairly consistent alignments when

matching the conference ontologies. Finally, XMap generated only one incoherent align-

ment for the evaluation based on logical reasoning.
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Table 3. Results based on the uncertain version of the reference alignment.

Precision F-Measure 1 Recall

Uncertain reference alignments (Sharp)

0.81 0.65 0.54

Uncertain reference alignments (Discrete)

0.66 0.74 0.83

Uncertain reference alignments (Continuous)

0.74 0.70 0.66

Multifarm This track is based on the translation of the OntoFarm collection of on-

tologies into 9 different languages. XMap have low performance due to many internal

exceptions. The results are showed in Table 4.

Table 4. Results for Multifarm track.

System Different ontologies Same ontologies

P F R P F R

XMap 0.2 0.3 0.07 0.13 0.14 0.19

Interactive matching evaluation The goal of this evaluation is to imitate interactive

alignment [9, 10], where a oracle user is involved to validate the correspondences found

by the alignment approach by checking the reference alignment, and changing error

values in order to assess their influence on the performance of alignment systems. For

the 2018 edition, participating systems are evaluated on the Conference and Anatomy
datasets using an oracle based on the reference alignment.

XMap uses various similarity measures to generate candidate mappings. It applies

two thresholds to filter the candidate mappings: one for the mappings that are directly

added to the final alignment and another for those that are presented to the user for

validation. The latter threshold is selected to be high in order to minimize the num-

ber of requests and the rejected candidate mappings from the oracle; the requests are

mainly about incorrect mappings. The mappings accepted by the user are moved to

the final alignment. For the three years 2016, 2017 and 2018, XMap preserved roughly

the same F-Measure value, and it benefits the least from the interaction with the or-

acle. Whereas, for the conference track, XMap has increases in precision, recall and

F-measure. XMap’s measures differ with less than 0.2% from the non-interactive runs,

and performance does not change at all with the increasing error rates.

Large biomedical ontologies This track consists of finding alignments between the

Foundational Model of Anatomy (FMA), SNOMED CT, and the National Cancer In-

stitute Thesaurus (NCI). The results obtained by XMap (Evaluated without UMLS) are

depicted by Table 5.
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Table 5. Results for the Large BioMedical track.

Test set Precision Recall F-Measure Time(s)

Small FMA-NCI 0.977 0.783 0.869 7356

Whole FMA-NCI 0.877 0.741 0.803 66499

Small FMA-SNOMED 0.962 0.647 0.774 25544

Whole FMA- Large SNOMED 0.723 0.608 0.661 299027

Small SNOMED-NCI 0.835 0.588 0.69 123597

Whole SNOMED-NCI 0.64 0.582 0.61 426584

In general, we can conclude that XMap achieved a good precision/recall values. The

high recall value can be explained by the fact that UMLS thesaurus contains definitions

of highly technical medical terms.

Disease and Phenotype This track based on a real use case where it is required to find

alignments between disease and phenotype ontologies. Specifically, the selected ontolo-

gies are the Human Phenotype Ontology (HPO), the Mammalian Phenotype Ontology

(MP), the Human Disease Ontology (DOID), and the Orphanet and Rare Diseases On-

tology (ORDO).

XMap achieved fair results according to the three evaluation (Silver standard, Man-

ually generated mappings and Manual assessment of unique mappings).

Biodiversity and Ecology This track aims finding the alignments between the Envi-

ronment Ontology (ENVO) and the Semantic Web for Earth and Environment Technol-

ogy Ontology (SWEET), and between the Flora Phenotype Ontology (FLOPO) and the

Plant Trait Ontology (PTO). The results are showed in Table .

Table 6. Results for the Biodiversity and Ecology track.

Test set Precision Recall F-Measure Time(s)

Small flopo-pto 0.987 0.761 0.619 153

Whole envo-sweet 0.868 0.785 0.716 547

4 General comments

4.1 Comments on the results

This is the 6th time that we participate in the OAEI campaign. The official results of

OAEI 2018 show that XMap is competitive with other well-known ontology matching

systems in all OAEI tracks.
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4.2 Comments on the OAEI 2018 procedure

As a sixth participation, we found the OAEI procedure very convenient and the organiz-

ers very supportive. The OAEI test cases are various, and this leads to a comparison on

different levels of difficulty, which is very interesting. We found that SEALS platform

is a precious tool to compare the performance of our system with the others.

5 Conclusion

Generally, according to our results obtained during the compaing OAEI 2018, our sys-

tem delivered good results comparatively to other well-known ontology matching sys-

tems. The used benchmark greatly helped to identify the power and weaknesses of

the algorithm. used benchmark helped greatly identify the power and weaknesses of

the algorithm. In addition, XMap showed the feasibility of our approach especially on

large-scale biomedical ontologies which was a thriving challenge in ontology matching

domain.

References

1. Olivier Bodenreider. The unified medical language system (UMLS): integrating biomedical

terminology. Nucleic Acids Research, 32(Database-Issue):267–270, 2004.

2. Christiane D. Fellbaum. WordNet – An Electronic Lexical Database. MIT Press, 1998.

3. Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework and a toolkit

for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact.,
16(2):97–166, December 2001.

4. Paul Dourish. Seeking a foundation for context-aware computing. Human-Computer Inter-
action, 16(2-4):229–241, 2001.

5. Matthew Chalmers. A historical view of context. Computer Supported Cooperative Work,

13(3):223–247, 2004.
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1 Introduction

Whereas the ontology matching field has developed fully in the last decades, most

matching approaches are still limited to generating equivalences between entities of

different ontologies. However, for many tasks, finding subsumption relations may be

useful. Despite the variety of matching approaches in the literature, most of them rely

on string-based techniques as an initial estimate of the likelihood that two elements

refer to the same real world phenomenon, hence, the found correspondences represent

equivalences with terms similarly written rather than subsumptions. This paper presents

an approach relying on background knowledge from BabelNet (BN) [3] and on the no-

tion of context. The latter has been exploited in different ways in ontology matching

[2, 4]. They are used for disambiguating the senses that better express the meaning of

ontology concepts when looking for subsumption relations between them in BN.

2 Proposed approach

The matching process is divided in two steps. The first step disambiguates the ontology

concept, and the second looks for a subsumption relation between two concepts.

Concept disambiguation. It finds the semantically closer BN synset for a concept. We

adopt the notion of context as a bag of words. For each ontology concept c, from the

source s and target t ontologies, the context ctxc is constructed from the available infor-

mation about the concept (ID, labels, information on super and sub-concepts, etc.). The

context of BN synsets ctxbn is constructed from their sense and main glosses terms. We

adapt the word sense disambiguation method of Lesk [1], which relies on the calculation

of the word overlap between the sense definitions of two or more target terms. Here, we

overlap the context ctxc and all ctxbn, coming from the synsets retrieved when looking

for c in BN. We retrieve the highest overlap. The overlap function is based on the edit

distance similarity between words rather than on the exact match.

Subsumption detection. Given cs and ct concepts from the source and target ontolo-

gies, and their respectively retrieved synsets syns and synt obtained in the previous

step, we look for a subsumption relation between cs and ct. For that purpose, we

check if synt belongs to the set of hypernyms Hyper(syns), where Hyper(syns)=⋃
k

Hyperk(syns) and k is length of the path from syns to one of its hypernym synsets,

based on a depth-first search strategy.
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3 Experimentation

Material and methods. We used the set of 7 ontologies from the OAEI conference

data set that are involved in the 21 available reference alignments. In our experiments,

compounds with no entry in BN have been pre-processed by removing the modifiers

(e.g. “Invited speaker” is a “Speaker”). We empirically selected k=2 for the path length

and 0.8 as edit distance threshold. We used as reference the subsumptions inferred from

the available equivalence reference alignments, using Hermit and the Alignment API

4.5. As many concepts do not have any super or sub concepts, we considered 2 settings:

contexts as introduced above and the whole ontology as context for each concept. The

best results, which are reported here, were obtained with the latter.

Results and discussion. Table 1 shows the results (measures were computed using

the Alignment API). Overall, the best results are obtained when considering alignments

close to those expected (extended and semantic measures) rather than exact ones. Look-

ing at the results for each pair of ontologies, the best results where obtained for different

pairs when using the different measures: edas-ekaw (classical), confOf-edas (extended)

and conference-sigkdd (semantic). The overall low results are mainly due to two rea-

sons: a high number of concepts can not be found in BN and using the modifier does

help so much in this task; the construction of contexts suffers from the lack of annota-

tions in the ontologies (as well many concepts do not have any super or sub concepts),

and hence, contexts are not rich enough for disambiguating the synsets.

Table 1. Results for the 21 pairs (and those discarding empty alignments) and best pair results.

Average (21 pairs) Best pair results

Classical Extended Semantic Classical Extended Semantic

Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

.06 (.23) .02 (.07) .14 (.16) .05 (.06) .02 (.02) .22 (.22) .22 .08 .50 .11 .14 .15

4 Conclusions

We presented an approach for generating subsumption correspondences relying on Ba-

belNet. This task is still a gap in the field and the initial results presented here can be

improved in different ways. We plan to improve the disambiguation strategy, exploit-

ing word embeddings, to automatically enrich the ontology with annotations, to adopt

a hybrid approach combining both lexical and background knowledge, to work on the

confidence of the correspondences, and to look for other relations like meronymy.
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1 Extended Abstract

Building large Knowledge Bases can be realised by aligning and integrating exist-
ing data sources. To support AI-based digital healthcare services within Babylon
Health1 significant effort to build a large medical KB was recently undertaken. To
realise this goal a highly configurable and modular ontology integration pipeline
has been created which works as follows: an initial ontology is used as a seed KB
(KB0) and additional data sources are integrated into it creating new extended
versions of KB0. The integration process is based on a Matching phase, an Ag-
gregation phrase, and a final PostProcessing phase. In the Matching phase the
following matchers can be used:

– An in-house LabelMatcher which is based along similar ideas as the label
matcher in [1], i.e., label normalisation, inverted indexes, and more.

– The state-of-the-art systems AML [1] and LogMap [3] in both its versions
LogMapo

2 and LogMapc
3.

– A UMLS-synonym and a UMLS-CUI based matcher, or mappings from 3rd
parties like BioPortal, NHS, and more.

The mappings from the previous stage are Aggregated using a weighted average
and a threshold is applied. Finally, post-processing performs the following:

– Mappings of higher-multiplicity (i.e., mapping multiple classes to the same
one) are separated from the rest. The former are handled by multiplicity-
disambiguation techniques which reduce them to 1-to-1 or 1-to-m mappings.

– All mappings go through existing [2] and novel [4] conservativity-based map-
ping repair methods in order to avoid altering the structure of the seed KB.

Significant efforts were spent to determine which matching algorithm to use in
the Matching phase. The Large BioMedTrack datasets were considered for eval-
uating the methods, however, surprisingly enough these datasets are much older,
smaller and with somewhat different content compared to the recent releases of

1 https://www.babylonhealth.com/
2 https://github.com/ernestojimenezruiz/logmap-matcher
3 https://github.com/asolimando/logmap-conservativity/
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Table 1. Evaluation results on aligning official releases of SNOMED and NCI

precision recall f-Value Time(sec) �mapppings

LabelMatcher 0.356 0.77 0.49 13 28457
LogMap 0.372 0.78 0.50 2 850 27342

AML 0.410 0.50 0.45 596 15861

Table 2. Statistics about the KB after each integration/enrichment iteration.

SNOMED +NCI +CHV +FMA
Classes 340 995 429 241 429 241 524 837
Properties 93 124 124 219
|A � B| 511 656 617 542 617 542 713 313
|〈A p iri ∪ Lit〉| 1 069 562 1 611 543 1 708 616 2 173 649

SNOMED, NCI, and FMA that are considered in Babylon. For example, NCI
in BioTrack is almost half the size of the NCI December 2017 release (the for-
mer contains 96K axioms whereas the latter 185K), FMA is almost 1/4 and
SNOMED almost 1/3 of their recent releases. In addition, synonym labels of
classes seem to be completely missing from all ontologies. For those reasons the
reference set between SNOMED and NCI in the BioTrack was refactored to
point to codes in the official releases and then a precision/recall evaluation of
our LabelMatcher, AML, LogMap, and XMap was conduced using the official
releases (see Table 1); XMap did not manage to terminate.

As can be seen, although in theory simple, LabelMatcher provides compa-
rable precision/recall and is orders of magnitude faster; the very low precision
is because of the extra mappings found in the larger ontology versions which
are confused as false positives. Given the scalability results and adequate pre-
cision/recall, we used our LabelMatcher in the pipeline to integrate the latest
versions of NCI, CHV, and FMA on top of SNOMED (indeed this process could
not be completed using AML or LogMapo). Statistics about the KBs that we cre-
ated after each integration are depicted in Table 2; moreover, no conservativity
violations could be detected due to our post-processing.

We have also compared our post-processing approach against mapping repair-
ing implemented in AML, LogMapc and LogMapo. In cases that these systems
don’t terminate we used smaller versions of our (test) ontologies. In all cases a
large number of conservativity violations could be identified (in contrast to none
detectable after running our approach); detailed results can be found in [4].
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1 Introduction
Large biomedical ontologies such as SNOMED CT, NCI, and FMA are exten-
sively employed in the biomedical domain. These complex ontologies are based
on diverse modelling views and vocabularies. We define an approach that breaks
up a large ontology alignment problem into a set of smaller matching tasks.
We coupled this approach with an automated tuning process, which generates
the adequate thresholds of the available similarity measure for any biomedical
matching task. Experiments demonstrate that the coupling between ontology
partitioning and threshold tuning outperforms the existing approaches.

2 Partitioning and Matching Tuning of Biomedical
Ontologies

2.1 Architecture overview
In figure 1, we depict the different stages for ontologies partitioning and threshold
tuning. These stages are detailed in the following sections.

Fig. 1. Architecture Overview

2.2 Ontologies Partitioning

We employ the hierarchical agglomerative clustering technique to divide an on-
tology into a set of partitions. This method is based on the equation 1 to compute
the structural similarity between the entities of the input ontologies. This equa-
tion is inspired by Wu and Palmer [4] similarity measure. The partitioning of
every ontology results in a dendrogram. We cut each dendrogram automatically
in order to result in a set of partitions. We examine the output of all the possible
cuts until finding the first cut which do not result in any isolated partitions. Iso-
lated partitions are partitions containing only one entity. We identify the similar
partition-pairs through the set of exact matchings between the input ontologies.

StrcSim(ei,m, ei,n) =
Dist(ri, lca)× 2

Dist(ei,m, lca) +Dist(ei,n, lca) +Dist(ri, lca)× 2
(1)

220



2 Laadhar et al.

2.3 Threshold tuning
The available external knowledge sources represent mediator biomedical ontolo-
gies between the two input ontologies. We cross-search the input ontologies and
the mediating ontology in order to find synthetic reference alignments. We com-
pute the similarity score Sim between all the annotations of the generated align-
ments. These similarity scores are represented by: simScore =

{
sim1,... ,simn

}
.

The threshold Th value is deducted from simScore using the Equation 2:

Th =

∑simn

sim1
simi

|simScore| (2)3 Experiments
In Table 1, we compare our proposed partitioning approach to the currently
available partitioning strategies using two OAEI 2017 biomedical data sets: the
Anatomy task and the LargeBio small segments tasks.

Table 1. Anatomy track partitioning results

Precision F-Measure Recall Number of partitions

Proposed approach 0.945 0.883 0.829 57/57
SeeCOnt [3] 0.951 0.863 0.789 ND
Falcon [2] 0.964 0.730 0.591 139/119

Alsayed et al. [1] 0.975 0.753 0.613 84/80

We employed UBERON as an external biomedical knowledge for deriving
synthetic reference alignments. We use ISUB similarity measure to compute the
similarity scores between the derived mappings. In Table 2, we illustrate the
accuracy of the partitioning approach with the deduced thresholds.

Table 2. Accuracy and derived thresholds for Anatomy and LargeBio tracks

Precision F-Measure Recall Derived Threshold

Anatomy 0.945 0.883 0.829 0.91
FMA-NCI 0.957 0.870 0.789 0.69

FMA-SNOMED 0.860 0.674 0.554 0.75
SNOMED-NCI 0.911 0.697 0.564 0.85

4 Conclusion and Future Work
As future work, we intend to automate all the matching tuning process while
focusing on different type of heterogeneity applied over the partitions-pairs.
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1 Introduction

Complex matching, i.e., finding correspondences that go beyond equivalence and
are able to capture more complex relationships between entities or sets of enti-
ties, is a recognized challenge (for a more in-depth overview see [1]). However,
in multi-domain areas, there is a need to perform ‘holistic’ matching - link mul-
tiple ontologies to address different perspectives of the underlying data, while
maintaining the inherently distributed paradigm championed by the Semantic
Web. This need motivates ‘compound mappings’ involving more than two on-
tologies. A specific case is the ternary compound mapping [2], for example, the
HP class ‘broad forehead’ is equivalent to an axiom obtained by relating PATO
(‘increased width’) and UBERON (‘forehead’) classes, via an intersection. In this
study, we explore compound matching involving multiple concepts from multiple
ontologies.

2 Methods and Results

A compound mapping is a tuple <Cs,[Ct0,...,Ctn],[Pt0,...,Ptn],M>, where Cs is
a class from a source ontology, [Ct0,...,Ctn] and [Pt0,...,Ptn] are a set of target
classes extracted from multiple target ontologies and the set of properties that
stand between them, while M is a mapping relation established between the
source class and the expression composed by the set of target classes and prop-
erties. For our purposes, we are restricting our approach to finding mappings
where M is an equivalence, and we are simplifying our goal to just finding the
set of target classes. Our compound matching algorithm is based on finding par-
tial lexical matches between word sequences in the source class labels and full
labels of target classes. The algorithms for compound alignment were developed
within the AgreementMakerLight (AML) system [3] and use hash map-based
data structures to improve scalability.

We evaluated our algorithm using four test cases: (1) HP as source, UBERON
and PATO as targets; (2) HP as source, UBERON, PATO and GO as targets;
(3) MP as source, UBERON and PATO as targets; (4) MP as source, UBERON,
PATO and GO as targets1. The reference alignments for each task were generated

1 HP:Human Phenotype Ontology; PATO: Phenotypic Quality Ontology; UBERON:
Uber anatomy ontology; GO:Gene Ontology
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by extracting all the Equivalent Classes Axioms of MP and HP OWL files with
OWL API. For each ontology we created two references: (1) UB-PT: containing
mappings that employ classes from the UBERON and/or PATO ontologies; (2)
UB-PT-GO: containing all mappings that employ the UBERON and/or PATO
and/or GO ontologies. Note that these are just partial alignments, since they
only cover 39%of the classes in HP and 28.7% in MP.

In our evaluation (shown in Table 1) we have considered partial mappings as
positive2. The MP tasks had a better performance than HP, and for MP there
was a marked difference between the UB-PT and UB-PT-GO, with the former
having an improvement of over 30% in f-measure.

Table 1. Performance metrics for partial mappings

Precision Recall F-measure

MP-UB-PT 75.4% 98.8% 85.6%
MP-UB-PT-GO 46.4% 61.1% 52.8%
HP-UB-PT 26.0% 43.4% 32.5%
HP-UB-PT-GO 26.1% 44.9% 33.0%

3 Conclusions

This exploratory study highlights the difficulties in performing holistic match-
ing, which range from scalability issues to the inherent increased complexity of
the task. Recent evaluation of complex matching approaches revealed that all
techniques produced f-measures below 20% [1]. Furthermore, building reference
alignments for compound matching is a standing challenge, and the reference
alignments we built can only be considered partial references. We envision sev-
eral future work endeavors in this area, ranging from more complex lexical ap-
proaches to approaches richer in semantics that are able to capture property
restrictions to reproduce the full equivalence axiom.

Acknowledgments This work has been supported by the Fundação da Ciência
e Tecnologia through funding of LaSIGE Research Unit, ref.UID/CEC/00408/2013
and by the project SMiLaX (PTDC/EEI-ESS/4633/2014).
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Abstract. In this paper, we propose our prototype system, named MCHA
SPAIDA, that allows us for cooperatively editing SPARQL queries by the
help of anonymous helper users without revealing the detailed meaning
of the query. This system dynamically generates ontology mappings to
translate a modified query by using a query and some data on an end-
point. Ontology matching approaches have been applied to effectively
anonymize the query to be cooperatively edited by other users without
loss of semantic relations among data and vocabularies. To make ease of
cooperative tracing and profiling of a query, our method will not directly
modify the queries and given ontology mappings. Rather, our method
tries to add a small amount of supplemental ontology mappings to effec-
tively anonymize the meaning of original query.

Keywords: SPARQL, ontology mapping, cooperative query editing, privacy
protection, query anonymization

1 MCHA SPAIDA

To overcome the issues, we are implementing a system named MCHA SPAIDA3,
which is an extended version of our previously implemented system SPAIDA
for utilizing ontology mappings on SPARQL queries[1–3] which also includes
anonymous helper mechanism MCHA for cooperatively editing and sophisticat-
ing queries. Our system includes an “on-the-fly” ontology and instance matcher
to evaluate the used ontology mappings and instance mappings, suggests which
mappings will be used in the query. Furthermore, the on-the-fly matcher can
also be used to interactively add one-time mappings that could produce more
complete answer in the results of the specified query [1].

We are implementing a prototype system as a web application with SPARQL
query editors and anonymous helpers. In order to utilize alignments as mapping
data by using ontology matching tools (e.g., Alignment API [4]) and instance

3 A demo is available at http://whitebear.cs.inf.shizuoka.ac.jp/spaida-demo/
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matching tools (e.g., ScLink [5]), SPAIDA prepares mapping repositories to the
outside.

Figure 1 shows an overview of our implementing system.

Fig. 1. An overview of our implementing system

2 Dynamic Mapping Generation

An application of the on-the-fly mapping generation mechanism is MCHA (Mapping-
based Conversion for Human-based query writing Assistance), which rather con-
vert a query to another query which targets to completely different things while
it tries to keep their attributes in the sense of complexity and structure of the
output. This allows anonymous cooperative helper editing of a query while mit-
igating the targets the original user is trying to access. In this mechanism, some
users are asked to help editing and enhancing a query of mapping-based conver-
sion of a query to a “semantically equivalent or very similar” query.
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1 Motivation

With the adoption of the Semantic Web vision , semantic knowledge resources
(KR), which include taxonomies, structured vocabularies and ontologies, acting
as pivotal resources, are nowadays commonly used. This is a direct consequence
of the desire to attach formal semantic meaning to manipulated data. These
KR, developed by different communities with various needs and purposes, are
by nature heterogeneous. This heterogeneity leads to the development of systems
for finding the correspondences between entities of different KR, called alignment
[2]. In addition, KR increasingly involve large volumes of formalized knowledge,
containing hundred of thousand entities, which raises the question of generating
and validating alignments between large resources.

In order to help finding and reusing these more and more available KRs, a
significant effort has been made for providing multi-knowledge resources repos-
itories. This effort is particularly noticeable in the biomedical domain, where
classifying existing objects is a secular tradition.

However, to the best of our knowledge, there is no currently available frame-
work which offers the possibility to handle both multiple KRs together with
their respective alignments, while keeping their native semantics and offering
a support for a transparent visualization of these resources. In addition, with
the development of the ontology matching domain, as different systems could
be used to generate alignments and sometimes relying on user input, either for
mappings validation purpose or initial alignment providing, it is a crucial issue
to keep track of users and involved alignment methods or tools.

To fill this gap, we have designed the K-Ware framework [1] which comple-
ment existing multi-knowledge resources repositories. Its aim is not to provide a
single access point for all available biomedical ontologies and alignments. Rather,
it is a framework which could be embedded within projects that have an exten-
sive use of multiple KRs and their respective alignments. In particular, enabling
a support for multi point of view navigation and hierarchical visualization of any
KR relevant for a dedicated purpose or suitable for a given project.

� This study is supported by the Drugs Systematized Assessment in real-liFe Environ-
ment (DrugSafe) platform, funded by the French Agency for Drugs Monitoring.
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2 Joint handling of knowledge resources and alignments

2.1 Alignment management

In order to properly take into account alignments between different KRs, we
have introduced additional properties to the definition of the notion of corre-
spondence introduced in [2]. Therefore, we identify the following components
for a correspondence : i) the two entities to be mapped, linked with a Map-
pingRelation, in an directed order (e1-mappingRelation-e2 ); ii) its confidence
value; iii) the mapping’s author / User; iv) the mapping’s method called Map-
pingMethod, either if it is an alignment provided by an automated method
ComputerizedProcess with an alignment Tool or a manual one; v) finally, a
flag which indicates whether the considered mapping is valid (and validated by
a User) for an Alignment between two KRs.

2.2 Handling structural relations within knowledge resources

KRs often exhibits a structural hierarchical organization : the is-a relationship
translated into rdfs:subClassOf or the part-whole relationship for formal on-
tologies and the narrower/broader relationship for taxonomies, translated into
skos:narrower and skos:broader respectively. We find similar notions when it
comes to express inter relationships between entities in different KRs. For in-
stance, the skos:narrowMatch is used to state a hierarchical mapping link be-
tween two conceptual resources in different concept schemes. Hierarchical aspect
is the the main information to be kept when one wishes to integrate many dif-
ferent semantic resources.

To allow navigating easily KR represented in the OWL or SKOS languages,
we distinguish three types of relations : HierarchicalRelation, LiteralDefi-
nition and MappingRelation. In a given KR, a hierarchical relation could be
rdfs:subClassOf, skos:broader, part of, etc.). A literal definition helps rendering
a human readable description of an entity (rdfs:label, skos:prefLabel, etc.). While
a mapping relation (for instance owl:equivalentTo, skos:exactMatch) handle cor-
respondences between entities.

An API has been implemented for the features defined models of K-Ware4.
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