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Abstract

We define a notion of realizability, based on a new assignment of
formulas, which does not care for precise witnesses of existential state-
ments, but only for bounds for them. The novel form of realizability
supports a very general form of the FAN theorem, refutes Markov’s
principle but meshes well with some classical principles, including the
lesser limited principle of omniscience and weak König’s lemma. We
discuss some applications, as well as some previous results in the lit-
erature.

1 Introduction

The realizability method, invented by Stephen Kleene in 1945 [8], is a way
of making explicit the constructive content of arithmetical sentences. It is
closely related with intuitionistic logic, being reminiscent of the Brouwer-
Heyting-Kolmogorov interpretation of the intuitionistic logical words (see [15]

∗Partially supported by cmaf, pocti/fct and feder.
†Partially supported by pocti/fct and feder.
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for a modern overview of realizability). In particular, Kleene’s realizability
and related notions (e.g., modified realizability due to Kreisel in [13]) decides
disjunctions and provides precise witnesses for existential statements. In
this paper, we shift attention from the constructive content of arithmetical
sentences to the program of extracting bounding information from (semi-
intuitionistic) proofs in arithmetic. The emphasis on bounds is, by no means,
a novel idea: Ulrich Kohlenbach has, for some years now, been urging a shift
of attention to numerical bounds (cf. [12] for a recent statement).

Bounded modified realizability, as we call the novel realizability notion, is
based on an analysis of formulas which always disregards precise existential
witnesses and decisions concerning disjunctive statements. In this respect,
it is different from the monotone realizability introduced by Kohlenbach in
[10], which is still a notion based on ordinary (modified) realizability. Our
new form of realizability is inspired by work realized in [5] on a newly found
functional interpretation (in the sense of Gödel [6]), but it is simpler than
it in one crucial aspect. The new functional interpretation relies on inten-
sional majorizability relations, regulated by rules, instead of axioms (with
the effect of inducing the failure of the deduction theorem). This feature is
mandatory because it prevents the functional interpretation from analyzing
bounded quantifications of non-zero type, thereby managing to treat them
as computationally empty. However, in the case of realizability, this inten-
sional move is unnecessary because the ordinary majorizability relation is
already treated as computationally empty by the realizability interpretation.
As a consequence, in the framework herein presented, there are no intensional
notions and the deduction theorem does hold.

This paper is organized as follows. In Section 2 we present the underlying
framework of the paper. The central result of the work is the Soundness The-
orem of Section 3. In this section, we also prove a Characterization Theorem
for the notion of bounded modified realizability and study the adjunction of
some conspicuous principles to our theories. We extend our analysis to the
arithmetical setting in the Section 4 and lay out a commented list of some
extra principles that mesh well with the new notion of realizability.

2 General framework

Except for the absence of the intensional majorizability relations, we follow
the general framework of [5]. Accordingly, we let Lω

≤ be a language in all finite
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types (based on a given ground type 0) with a distinguished binary relation
symbol ≤0 (infixing between terms of type 0) and distinguished constants m
of type 0 � (0 � 0) and z of type 0 (the constant z is needed to ensure that
each finite type is inhabited by at least one closed term). The theory ILω

≤ is
intuitionistic logic in all finite types (see [2] for the Hilbert-type deduction
system that we use) with axioms stating that ≤0 is reflexive, transitive, and
with the axioms

A1 : x ≤0 m(x, y) ∧ y ≤0 m(x, y)

A2 : x ≤0 x
′ ∧ y ≤0 y

′ → m(x, y) ≤0 m(x′, y′)

Equality does not pose particular problems for habitual realizability notions,
and it is usually defined extensionally. However, bounded modified realiz-
ability does not seem to realize full extensionality (although it does realize
important cases of it; see 1 of Subsection 4.3). Due to this feature, we opt
for a treatment of equality based on the minimal alternative described by
Troelstra in the end of section 3.1 and the beginning of section 3.3 of [14].
In the minimal alternative, there is a symbol of equality for terms of type 0
only. Its axioms are

E1 : x =0 x

E2 : x =0 y ∧ φ[x/w] → φ[y/w]

where φ is an atomic formula with a distinguished type 0 variable w. In order
to characterize the behavior of the logical constants (combinators) Π and Σ,
we must also add

EΠ,Σ : φ[Π(x, y)/w] ↔ φ[x/w], φ[Σ(x, y, z)/w] ↔ φ[xz(yz)/w],

where φ is a an atomic formula with a distinguished variable w, and x, y and
z are variables of appropriate type.

In the language Lω
≤ we can define Bezem’s strong majorizability relation

≤∗ρ for type ρ and state its main properties (cf. [3]). The proofs are simple
and well-known: see [5] for a recent reference. The relations are defined by
induction on the types:

(a) x ≤∗0 y := x ≤0 y

(b) x ≤∗ρ�σ y := ∀uρ, vρ(u ≤∗ρ v � xu ≤∗σ yv ∧ yu ≤∗σ yv))

3



Lemma 1. ILω
≤ proves

(i) x ≤∗ y → y ≤∗ y.

(ii) x ≤∗ y ∧ y ≤∗ z → x ≤∗ z,

(iii) x ≤ y ∧ y ≤∗ z → x ≤∗ z,

where the relation ≤σ is the pointwise “less than or equal to” relation: It is
≤0 for type 0, and x ≤ρ�σ y is defined recursively by ∀uρ(xu ≤σ yu).

For convenience and clarity, the language Lω
≤ includes the primitive syn-

tactic device of bounded quantifications, i.e. quantifications of the form
∀x ≤∗ t and ∃x ≤∗ t, for terms t not containing the variable x. Bounded
formulas are those formulas in which every quantifier is bounded. The theory
ILω
≤ has also the following schematic axioms:

B∀ : ∀x ≤∗ tA(x) ↔ ∀x(x ≤∗ t→ A(x))

B∃ : ∃x ≤∗ tA(x) ↔ ∃x(x ≤∗ t ∧ A(x)),

Definition 1. We define, by induction on the type, the functional mρ of type
ρ � (ρ � ρ) according to the following clauses:

(a) m0 is m

(b) mρ�σ(x, y) := λuρ.mσ(xu, yu)

It is well known that the combinators Π and Σ enjoy the property of
combinatorial completeness whereby, given any term t with a distinguished
variable u, there is a term λu.t whose free variables are those of t except
for u, such that (λu.t)(q) is (in the sense of allowing the pertinent substitu-
tions of one term for the other) t[q/u]. We are relying on the combinatorial
completeness feature in the above definition.

Lemma 2. ILω
≤ proves

(i) x ≤∗ρ x ∧ y ≤∗ρ y → x ≤∗ρ m(x, y) ∧ y ≤∗ρ m(x, y)

(ii) mρ ≤∗ mρ.

We now adapt the notion of majorizability theory introduced in [5] to our
present situation:
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Definition 2. Consider a fixed language Lω
≤. A theory Tω in Lω

≤ is called
a majorizability theory for Lω

≤ if it extends ILω
≤ and, for every constant cρ,

there is a closed term tρ such that Tω ` c ≤∗ρ t.

Lemma 3. Let Tω be a majorizability theory. For every closed term tρ of
Lω
≤ there exists another closed term t̃ρ of Lω

≤, such that

Tω ` t ≤∗ t̃.

Within the context of a language Lω
≤, we say that a term t̃ is a majorant

of an (open) term t if it is a term with the same (free) variables as t and Tω `
λw.t ≤∗ λw.t̃. It is an easy consequence of Lemma 3 that, for majorizability
theories, every (open) term has a majorant. A term t is called monotone if it
is self-majorizing. To say that a functional f is monotone is to assume that
f ≤∗ f . In the sequel, we shall often quantify over monotone functionals. We
abbreviate the quantifications ∀f(f ≤∗ f → A(f)) and ∃f(f ≤∗ f ∧ A(f))
by ∀̃fA(f) and ∃̃fA(f), respectively.

An underlined term t stands for a (possibly empty) tuple of terms t1, t2, . . . , tk.
We use the underlined notation for tuples in several contexts. For instance,
∀x ≤∗ t stands for the string ∀x1 ≤∗ t1∀x2 ≤∗ t2 . . . ∀xk ≤∗ tk, where
x1, x2, . . . , xk and t1, t2, . . . , tk are sequences of variables, respectively terms,
with matching types. After a while, we will no longer underline terms. It will
be clear from the context when we are referring to a tuple of terms, instead
of a single term.

3 The new realizability notion

In this section, we define bounded modified realizability and prove corre-
sponding soundness and characterization theorems.

3.1 The soundness theorem

In order to define the bounded modified realizability we need the following
syntactic notion:

Definition 3. A formula of Lω
≤ is called ∃̃-free if it is built from atomic

formulas by means of conjunction, disjunction, implication, bounded quan-
tifications and monotone universal quantifications, i.e., quantifications of the
form ∀̃a(. . .).
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This notion reminds the well-known notion of ∃-free formula (cf. [16]), but
do observe that it allows disjunctions. We now proceed with the definition
of the new realizability notion. We chose to define it in a slightly unfamiliar
way. Instead of saying what are realizing tuples of functionals, we associate
to each formula of the language an existential formula. One should see the
existential tuples of this quantifier as the familiar places for the (purported)
realizers of the given formula.

Definition 4. To each formula A of the language Lω
≤ we associate formulas

(A)br and Abr of the same language so that (A)br is of the form ∃̃bAbr(b),
with Abr(b) a ∃̃-free formula.

1. (A)br and (A)br are simply A, for atomic formulas A.

If we have already interpretations for A and B given by ∃̃bAbr(b) and ∃̃dBbr(d)
(respectively) then, we define

2. (A ∧B)br is ∃̃b, d(Abr(b) ∧Bbr(d)),

3. (A ∨B)br is ∃̃b, d(Abr(b) ∨Bbr(d)),

4. (A→ B)br is ∃̃f ∀̃b(Abr(b) → Bbr(fb)).

For bounded quantifiers we have:

5. (∀x ≤∗ t A(x))br is ∃̃b∀x ≤∗ t Abr(b, x),

6. (∃x ≤∗ t A(x))br is ∃̃b∃x ≤∗ t Abr(b, x).

And for unbounded quantifiers we define

7. (∀xA(x))br is ∃̃f ∀̃a∀x ≤∗ aAbr(fa, x).

8. (∃xA(x))br is ∃̃a, b∃x ≤∗ aAbr(b, x).

Let us insist again and say that the tuples above may be empty. It also is
understood, for instance, that (A→ B)br is ∀̃b(Abr(b) → Bbr(fb)). Similarly
for the other clauses. As usual, the case of negation is a particular case of
the implication:

9. (¬A)br is ∀̃b¬Abr(b).
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By inspection on the above clauses it is clear that,

Lemma 4 (Monotonicity Lemma). Let (A(x))br be ∃̃bAbr(b, x). The fol-
lowing monotonicity property holds:

Tω ` b ≤∗ b′ ∧ Abr(b, x) → Abr(b
′, x).

Proposition 1. If A is a ∃̃-free formula then (A)br is Abr and they are
equivalent to A.

Proof. The proof is by a straightforward induction on the complexity of
the ∃̃-free formula. Note that we cannot say that (A)br is exactly A because
∀̃aA(a) is syntactically an abbreviation of ∀a(a ≤∗ a→ A(a)) and hence, by
definition, (∀̃aA(a))br is ∀̃a∀x ≤∗ a (x ≤∗ x → Abr(x)). The latter formula
is, of course, equivalent to ∀̃aAbr(a).

For simplicity, in the next corollary and in the Soundness Theorem, we
adopt as definition of x ≤∗ρ�σ y the formula ∀̃vρ∀u ≤∗ρ v(xu ≤∗σ yv∧yu ≤∗σ yv).
Note that this definition is given by a ∃̃-free formula, and that (by (i) of
Lemma 1) it is equivalent to the original one. With this proviso, the following
is an immediate consequence of Proposition 1.

Corollary 1. Given any type ρ, the formula (x ≤∗ρ y)br is (x ≤∗ρ y)br and
they are equivalent to x ≤∗ρ y.

We state the Soundness Theorem in a strong form that already incorpo-
rates the principles which are automatically realized by the bounded modified
realizability (vide the Characterization Theorem ahead). Two of these prin-
ciples are related to similar principles that arise in the discussion of Kreisel’s
modified realizability (see [16]). The third principle is characteristic of the
bounded modified realizability.

I. The Bounded Choice Principle

bACρ,τ : ∀xρ∃yτA(x, y) → ∃̃fρ→τ ∀̃bρ∀x ≤∗ρ b∃y ≤∗τ fbA(x, y),

where A is an arbitrary formula of the language Lω
≤∗ . The standard Axiom

of Choice does not seem to be realizable in general. Still, in 3.2 we will
see that a monotone version of the Axiom of Choice is interpreted by the
Bounded Modified Realizability. For other discussions concerning choice, see
Subsections 4.3 and 4.4.

II. The Bounded Independence of Premises Principle
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bIPρ

∃̃free : (A→ ∃yρB(y)) → ∃̃bρ(A→ ∃y ≤∗ρ bB(y)),

where A is a ∃̃-free formula and B is an arbitrary formula. Even though we
have stated bIPρ

∃̃free for a single variable y only, the tuple version is an easy
consequence of the principle as stated. We will generalize this principle to a
wider class of formulas A in the end of this section.

III. The Majorizability Axioms

MAJρ : ∀xρ∃yρ(x ≤∗ρ y).

Note that in the presence of this principle, every universal (resp. existential)
quantification is equivalent to a monotone universal (resp. existential) quan-
tification followed by a bounded quantification. An application of this fact
is that, in the presence of MAJω, we can allow plain universal quantifications
in the definition of ∃̃-free formulas.

We use bACω, bIPω
∃̃free and MAJω, respectively, for the aggregate of each

of the above principles over all types. Before we go on with the Soundness
Theorem, it is worth observing that a vast generalization of Brouwer’s FAN
theorem follows from the above three principles.

Proposition 2. The theory ILω
≤+bACω +bIPω

∃̃free+MAJω proves the Bounded
Collection Principle

bBCρ,τ : ∀̃c(∀z ≤∗ cρ∃yτA(y, z) → ∃̃b∀z ≤∗ c∃y ≤∗ bA(y, z)),

where A is an arbitrary formula.

Observation 1. In the context of analysis, Brouwer’s theorem is the case
ρ = 1, τ = 0. Note that the usual formulation of Brouwer’s FAN theorem
in, for instance, section 1.9.24 of [16], differs from the statement above in
that it concerns continuity, as opposed to majorizability. In Section 4, we
will discuss some related principles already considered by Kohlenbach in [10].

Observation 2. The case ρ = τ = 0 extends the familiar bounded collection
principle of arithmetic.

Proof. We repeat an argument presented in [5] that also works in the
present setting. Let c monotone be fixed. Assume that ∀z(z ≤∗ cρ →
∃yτA(y, z)). By bIPω

∃̃free we get ∀z∃̃b(z ≤∗ cρ → ∃y ≤∗ bA(y, z)), which by
bACω yields
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∃̃f ∀̃a∀z ≤∗ a∃̃b ≤∗ fa(z ≤∗ cρ → ∃y ≤∗ bA(y, z)).

In turn, by (ii) of Lemma 1, this implies

∃̃f ∀̃a∀z ≤∗ a(z ≤∗ cρ → ∃y ≤∗ faA(y, z)).

Taking a := c, we get ∃̃b∀z ≤∗ c∃y ≤∗ bA(y, z).
The main theorem of this paper is:

Theorem 1 (Soundness). Consider a fixed language Lω
≤. Let Tω be a

majorizability theory for Lω
≤ and assume that (A(z))br is ∃̃bAbr(b, z), where

A(z) is an arbitrary formula of Lω
≤ with its free variables as displayed. If

ILω
≤ + bACω + bIPω

∃̃free + MAJω ` A(z),

then there are closed monotone terms t of appropriate types such that

Tω ` ∀̃a∀z ≤∗ aAbr(ta, z).

Proof. The proof proceeds by induction on the length of the derivation
of A. For the sake of simplicity, we will not explicitly include the parameters
z. The non-logical axioms are universal and, hence, are realized by the empty
tuple. Let us consider the axioms for bounded quantifiers. We assume that
each of the bounded principles B∀ and B∃ is a shorthand for two separate
principles: the left-to-right and the right-to-left implications.

B∀. ∀x ≤∗ t A(x) ↔ ∀x(x ≤∗ t → A(x)). Assume that (A(x))br is
∃̃bAbr(b, x). For the left-to-right implication we need to define monotone
closed terms q such that

∀̃b(∀x ≤∗ t Abr(b, x) → ∀̃c∀x ≤∗ c(x ≤∗ t → Abr(qbc, x)))

Of course, the terms q := λuv.u do the job. Concerning the right-to-left
implication, we need monotone terms q such that

∀̃b(∀̃c∀x ≤∗ c (x ≤∗ t → Abr(bc, x)) → ∀x ≤∗ t Abr(qb, x))

In this case define q := λu.ut̃ where t̃ is a monotone majorant of t (whose
existence is guaranteed in the majorizability theory Tω). It is easy to see
that the defined terms q are monotone and do the job.

B∃. ∃x ≤∗ t A(x) ↔ ∃x(x ≤∗ t ∧ A(x)). Assume that (A(x))br is
∃̃bAbr(b, x). For the left-to-right implication we need to define monotone
terms q, s such that

9



∀̃b(∃x ≤∗ t Abr(b, x) → ∃x ≤∗ qb(x ≤∗ t ∧ Abr(sb, x)))

Clearly the terms q := λu.t̃ where t̃ is a monotone majorant of t (whose
existence is guaranteed in the majorizability theory Tω) and s := λu.u do
the job. Concerning the reverse direction, we must define terms q such that

∀̃c, b(∃x ≤∗ c (x ≤∗ t ∧ Abr(b, x)) → ∃x ≤∗ t Abr(qcb, x)).

Just define q := λuv.v.

For the logical axioms and rules assume that (A)br is ∃̃bAbr(b), (B)br is
∃̃cBbr(c) and (C)br is ∃̃dCbr(d).

1. A,A → B ⇒ B. By induction hypothesis we have monotone terms
t and q such that Abr(t) and ∀̃b(Abr(b) → Bbr(qb)). Clearly s := q(t) is
monotone and Bbr(s) holds.

2. A → B,B → C ⇒ A → C. By induction hypothesis we have
monotone terms t and q such that ∀̃b(Abr(b) → Bbr(tb)) and ∀̃c(Bbr(c) →
Cbr(qc)). Clearly s := λu.q(tu) is monotone and ∀̃b(Abr(b) → Cbr(sb)) holds.

3a. A ∨ A→ A. We need monotone terms t such that

∀̃b, c(Abr(b) ∨ Abr(c) → Abr(tbc)).

By monotonicity (Lemmas 2 and 4), it is clear that the terms t := λuv.m(u, v)
do the job.

3b. A→ A ∧ A. Trivial.
4. A→ A ∨B and A ∧B → A. Trivial.
5. A ∨B → B ∨ A and A ∧B → B ∧ A. Trivial.
6. A→ B ⇒ C∨A→ C∨B. By induction hypothesis we have monotone

terms t such that ∀̃b(Abr(b) → Bbr(tb)). We must define monotone terms q
and s such that

∀̃c, b(Cbr(c) ∨ Abr(b) → Cbr(qcb) ∨Bbr(scb)).

It is clear that q := λu, v.u and s := λu, v.v do the job.
7. (A ∧ B) → C ⇒ A→ (B → C) and A→ (B → C) ⇒ (A ∧ B) → C.

Due to currying the terms that realize one of the formulas also realize the
other.

8. ⊥→ A. Trivial.
9. A → B(z) ⇒ A → ∀zB(z). By induction hypothesis there are

monotone terms t such that ∀̃a∀z ≤∗ a ∀̃b(Abr(b) → Bbr(tab, z)). Let q :=
λuv.tvu. Clearly q is monotone and realizes the conclusion.

10. ∀xA(x) → A(t). We must define monotone terms q such that
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∀̃f(∀̃a∀x ≤∗ aAbr(fa, x) → Abr(qf, t)).

Let t̃ be a monotone majorant of t (whose existence is guaranteed in the
majorizability theory Tω), and define q := λf.f t̃. These terms do the job.

11. A(t) → ∃xA(x). We need to define monotone closed terms q, r such
that

∀̃b(Abr(b, t) → ∃x ≤∗ qbAbr(rb, x)).

Let t̃ be a monotone majorant of t in the majorizability theory Tω (whose
existence is guaranteed in the majorizability theory Tω), and define q := λu.t̃
and r := λv.v.

12. A(z) → B ⇒ ∃zA(z) → B. It is easy to see that the terms that
realize the left-hand side also realize the right-hand side.

Finally, we need to check the principles bACω, bIPω
∃̃free and MAJω:

bACω. In order to realize bACω, an easy computation shows that it is
enough to define monotone terms t and q such that,

∀̃f, g(∀̃a∀x ≤∗ a∃y ≤∗ faAbr(ga, x, y) → ∀̃a∀x ≤∗ a∃y ≤∗ tfgaAbr(qfga, x, y)).

Clearly the projections t := λf, g.f and q := λf, g.g do the job.
bIPω

∃̃free. It is straightforward to see that one needs monotone terms t and
q such that,

∀̃b, c((A→ ∃y ≤∗ bBbr(c, y)) → (A→ ∃y ≤∗ tbcBbr(qbc, y))),

for A an ∃-free formula. The projections t := λu, v.u and q := λu, v.v do the
job.

MAJω. For each type ρ we need a monotone term tρ�ρ such that,

∀̃aρ∀x ≤∗ρ a∃y ≤∗ ta (x ≤∗ρ y).

The identity functional t := λuρ.u does the job.

3.2 The characterization theorem

There is a proof of the following result in [5] (in a slightly different setting):

Proposition 3 (Monotone Axiom of Choice). The theory ILω
≤+ bACω +

bIPω
∃̃free proves
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(∀̃a∀̃b∀̃b′ ≤∗ b[A(a, b′) → A(a, b)] ∧ ∀̃a∃̃bA(a, b)) → ∃̃f ∀̃aA(a, f(a)),

where A is an arbitrary formula of the language Lω
≤.

Theorem 2 (Characterization). Let A be an arbitrary formula of Lω
≤.

Then

ILω
≤∗ + bACω + bIPω

∃̃free + MAJω ` A↔ (A)br.

Proof. The proof is by induction on the complexity of the formula A.
There is nothing to prove concerning atomic formulas. Suppose that ILω

≤∗ +

bACω + bIPω
∃̃free + MAJω proves the equivalences B ↔ ∃̃bBbr(b) and C ↔

∃̃cCbr(c).
The cases when A is B∧C or B∨C are straightforward. Let A be ∀x ≤∗

tB(x). In this case, (A)br is (by definition) ∃b∀x ≤∗ t Bbr(b, x). On the other
hand, by induction hypothesis, A is equivalent to ∀x ≤∗ t ∃̃bBbr(b, x). By
bBCω (see Proposition 2) and the monotonicity of Bbr (see Lemma 4), we can
switch the quantifier ∀x ≤∗ t with the quantifiers ∃̃b, as wanted. Similarly, let
A be ∀xB(x). In this case, Abr is (by definition) ∃̃f ∀̃a∀x ≤∗ aBbr(fa, x). On

the other hand, by induction hypothesis, A is equivalent to ∀x∃̃bBbr(b, x),
and hence (by MAJω) to ∀̃a∀x ≤∗ a ∃̃bBbr(b, x). In turn, by bBCω, this is
equivalent to ∀̃a∃b∀x ≤∗ aBbr(b, x). Now, we apply the Monotone Axiom of
Choice (cf. Proposition 3) to get the equivalent ∃̃f ∀̃a∀x ≤∗ aBbr(fa, x), as
desired. The cases of the existential quantifier and the bounded existential
quantifier are straightforward.

It remains to study implication. Suppose that A is B → C. Assume
(A)br. By definition, we have ∃̃f ∀̃b(Bbr(b) → Cbr(fb)). Using the induction
hypothesis twice, it is clear that this implies B → C. Conversely, suppose
B → C. By the induction hypothesis (twice), we have ∃̃bBbr(b) → ∃̃cCbr(c).
Intuitionistic logic yields ∀̃b(Bbr(b) → ∃̃cCbr(c)). By bIPω

∃̃free and the mono-

tonicity of Cbr (cf. Lemma 4), we get ∀̃b∃̃c(Bbr(b) → Cbr(c)). By an ap-
plication of the Monotone Axiom of Choice (cf. Proposition 3) we conclude
(A)br.

3.3 Conspicuous logical forms

We study logical forms which are equivalent, imply or are implied by their
own br associates (this parallels similar studies in ordinary realizability, e.g.
in [16]). Proposition 1 gives a special role to ∃̃-free formulas. Let us define
two superclasses of the class of ∃̃-free formulas.
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Definition 5. Let Lω
≤ be a fixed language. We define the classes of formulas

Γbr and Πbr according to the following clauses:

i. Atomic formulas are in Γbr and Πbr.

ii. The class Γbr is closed under conjunctions, disjunctions, bounded quan-
tifications, monotone universal quantifications and existential quantifi-
cations.

iii. The class Πbr is closed under conjunctions, disjunctions, bounded quan-
tifications and universal quantifications.

iv. If A is in Γbr and B is in Πbr then (A→ B) is in Πbr and (B → A) is
in Γbr.

Note that ∃̃-free formulas are simultaneously in Γbr and Πbr.

Proposition 4. Let A be in Γbr. Then ILω
≤ ` (A)br → A. Let B be in Πbr.

Then ILω
≤ ` B → (B)br. Moreover, in the latter case, (B)br is Bbr.

Proof. We prove the claims simultaneously, by induction on the complex-
ity of formulas. The atomic case is clear, as well as conjunction, disjunction
and existential bounded quantifications (since, modulo logical equivalence,
these commute with the br-transformation). The cases of existential quan-
tifications regarding the Γbr-class and of universal quantification regarding
the Πbr class pose no difficulty. Let us look at the monotone universal quan-
tifier regarding the class Γbr. Suppose that A is ∀̃aC(a), with C(a) in Γbr.
Then (A)br is ∃̃f ∀̃a∀x ≤∗ a(x ≤∗ x→ Cbr(fa, x)). By induction hypothesis,
this entails A.

It remains to study implication. Suppose that A is in Γbr and B is in
Πbr. By induction hypothesis, (A → B)br is ∀̃b(Abr(b) → Bbr) and this is
implied by A→ B. On the other hand, (B → A)br is ∃̃b(Bbr → Abr(b)). By
induction hypothesis, this implies B → A.

If one adds a principle of the form Πbr to our theory, the above proposition
shows that such a principle is trivially realized within a theory that includes
it. Therefore, we have the following version of the Soundness Theorem:

Theorem 3 (Soundness, Specific Extension). Consider a fixed language
Lω
≤. Let Tω be a majorizability theory for Lω

≤ and assume that (A(z))br is

∃̃bAbr(b, z), where A(z) is an arbitrary formula of Lω
≤ with its free variables

as displayed. If
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ILω
≤ + bACω + bIPω

∃̃free + MAJω + ∆ ` A(z),

where ∆ is a collection of Πbr sentences, then there are closed monotone
terms t of appropriate types such that

Tω + ∆ ` ∀̃a∀z ≤∗ aAbr(ta, z).

The following is an immediate consequence of the above theorem and of
Proposition 4:

Corollary 2. Consider a language Lω
≤ and Tω a majorizability theory for

it. Let ∆ be a collection of Πbr sentences. Then, the theory ILω
≤ + bACω +

bIPω
∃̃free + MAJω + ∆ is conservative over Tω + ∆ with respect to sentences in

Γbr.

We finish this section with some notes on the classes Πbr and Γbr in the
presence of the principles bACω + bIPω

∃̃free + MAJω.

Proposition 5. Consider a language Lω
≤. Over the theory ILω

≤ + bACω +
bIPω

∃̃free + MAJω every formula is equivalent to a formula in Γbr, and every

formula in Πbr is equivalent to an ∃̃-free formula.

Proof. By the Characterization Theorem, every formula A is equivalent
(modulo the theory ILω

≤+bACω+bIPω
∃̃free) to (A)br. This latter formula has the

form ∃̃bAbr(b), where Abr(b) is a ∃̃-free formula. Now, note that the class Γbr

is closed under existential monotone quantifications. The proof that formulas
in Πbr are equivalent to ∃̃-free formulas is by induction on the complexity
of the formula. We only need to check the conditional clause. Suppose that
A ∈ Γbr and B ∈ Πbr. Since A is equivalent to ∃̃bAbr(b) if follows that A→ B
is intuitionistically equivalent to ∀̃b(A(b)br → B). This formula is equivalent
to a ∃̃-free formula if B is.

Corollary 3. The theory ILω
≤ + bACω + bIPω

∃̃free + MAJω proves the following
principle of independence of premises bIPω

Πbr
:

(A→ ∃yB(y)) → ∃̃b(A→ ∃y ≤∗ bB(y)),

where A is in Πbr, B is an arbitrary formula and y is of arbitrary type.

Note that negated formulas are in Πbr modulo ILω
≤+bACω+bIPω

∃̃free+MAJω

(use the above Proposition). Therefore, the scheme bIPω
¬:

(¬A→ ∃yB(y)) → ∃̃b(¬A→ ∃y ≤∗ bB(y)),

is provable in ILω
≤ + bACω + bIPω

∃̃free + MAJω for arbitrary formulas A and B.
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4 The role of some arithmetical principles

As an application of Theorem 3, we will discuss some arithmetical principles
whose realizations follow from themselves. We must start our discussion by
extending the general framework based on ILω

≤ to arithmetic.

4.1 Theories of arithmetic

The arithmetical theories that concern us here are: HAω, PRAω
i and GnAω

i

(n ≥ 2). The first one is an intuitionistic expansion of Gödel’s quantifier-free
calculus T with quantifiers ranging over each finite type. The theory PRAω

i

differs from HAω because it only has the “predicative” recursors R̂σ due to
Kleene (see [2] for a description of these recursors) and, correspondingly,
induction in the following restricted form:

A(0) ∧ ∀x(A(x) → A(Sx)) → ∀xA(x),

where A is a quantifier-free formula. It is known that the type 1 closed
terms of the language of PRAω

i define the primitive recursive functions. The
theories GnAω

i (n ≥ 2) were introduced by Kohlenbach (see [9] for details).
They form a sequence of increasing strength, closely related to the levels of
Grzegorczyk’s hierarchy of primitive recursive functions. The principle of
induction present is the restricted one above.

These theories must be set up within the general framework of Section 2.
Accordingly, the treatment of equality in these theories is the minimal one
due to Troelstra in [14] (note the treatment of the impredicative recursors).
We define the usual less than or equal numerical relation ≤0, and the usual
term max0�(0�0), giving the maximum of two numbers. Under these theories,
≤0 is a reflexive and transitive relation and max satisfies the axioms A1 and
A2. It is clear that we may suppose that ≤0 and max are primitive symbols
of the language, and may take 0 as the distinguished constant of type zero.

For the sake of completeness, we must say that all the above theories of
arithmetic include: (a) a minimization functional µb of type (0 � 1) � 1 such
that µbf

0�1n0 =0 min0 k ≤0 n(fnk =0 0) if such a k ≤0 n exists, and =0 0
otherwise; and (b) a maximization functional M of type 1 � 1 satisfying the
equations Mf0 =0 f0 and Mf(n+ 1) =0 max0(Mfn, f(n+ 1)). We usually
write fM instead of Mf . Note that f ≤∗1 fM .

The following result is due to Howard [7] for HAω, and to Kohlenbach [9]
for the other theories:
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Proposition 6. The theories HAω, PRAω and GnAω
i (n ≥ 2) are majoriz-

ability theories.

The soundness theorem has an arithmetical extension:

Theorem 4 (Soundness, Arithmetical Extension). Let Tω be one of the
theories HAω, PRAω

i or GnAω
i (n ≥ 2), and assume (A(z))br := ∃̃bAbr(b, z),

where A(z) is an arbitrary formula of Lω
≤ with its free variables as displayed.

If

Tω + bACω + bIPω
∃̃free + MAJω + ∆ ` A(z),

where ∆ is a collection of Πbr sentences, then there are closed monotone
terms t of appropriate types of the language of Tω such that

Tω + ∆ ` ∀̃a∀z ≤∗ aAbr(ta, z).

Proof. It is enough to see that the arithmetical axioms are realized in
Tω. This is clearly the case for the arithmetical axioms that are universal
statements, as well as for the quantifier-free induction axioms of the theories
PRAω

i and GnAω
i (n ≥ 2). It remains to see that the scheme of unrestricted

induction

A(0) ∧ ∀n(A(n) → A(n+ 1)) → ∀nA(n)

can be interpreted in HAω. An easy computation shows that one must present
a monotone functionals t such that

∀̃a,Φ(Abr(a, 0)∧∀n∀̃b(Abr(b, n) → Abr(Φbn, n+1)) → ∀nAbr(taΦn, n))

Using the recursors of Gödel’s T we define t such that taΦ0 is a and taΦ(n+1)
is max(Φ(taΦn)n, taΦn). This functional clearly does the job.

The theory G2A
ω +bACω +bIPω

∃̃free+MAJω refutes Markov’s principle and,
therefore, it is classically inconsistent. In effect, suppose that

∀x1(¬¬∃n0(xn = 0) → ∃n0(xn = 0)).

By intuitionistic logic and bIPω
∃̃free, ∀x

1∃n0(¬∀k0(xk 6= 0) → ∃i ≤ n(xi =
0)). By the bounded collection principle, one infers that there is a natural
number l0 such that ∀x ≤1 1(¬∀k0(xk 6= 0) → ∃n ≤ l(xn = 0)). This is
a contradiction (just consider the number theoretic function that takes the
value 1 for values less than or equal to l and is 0 afterwards).

Nevertheless, the theory G2A
ω + bACω + bIPω

∃̃free + MAJω is intuitionistic
consistent (relative to G2A

ω). This is a corollary of the Soundness Theorem:

16



Corollary 4. Let Tω be one of the theories HAω, PRAω
i or GnAω

i (n ≥ 2).
The theory Tω + bACω + bIPω

∃̃free + MAJω is consistent relative to Tω.

This corollary has an interesting interpretation (we are grateful to Rein-
hard Kahle for pointing this out to us). It can be viewed as the realization of a
non-standard Hilbert program (pace the intuitionistic setting) for the “ideal”
(and rather strange) world of HAω + bACω + bIPω

∃̃free + MAJω. It is a conse-
quence of the next corollary that this “ideal” world is even Π0

2-conservative
over the “real” world.

Corollary 5. Under the conditions of Theorem 4, if

Tω + bACω + bIPω
∃̃free + MAJω + ∆ ` ∀xρ∃yτA(x, y),

where ρ ∈ {0, 1}, τ is arbitrary, A is in Γbr and the variables are as displayed,
then there is a closed monotone term tρ�τ of the language of Tω such that

Tω + ∆ ` ∀x∃y ≤∗ txA(x, y).

Proof. Clearly, (∃yτA(x, y))br is ∃̃aτ , b∃y ≤∗τ aAbr(b, x, y). Therefore, by
Theorem 4, there are closed monotone terms t and q such that the theory

Tω + ∆ proves ∃y ≤∗τ txM Abr(qx
M , x, y) (the case ρ = 0 is even simpler).

The result follows from Proposition 4.
As it is well-known, when ρ = τ = 0, the functional t is of type 1 and

corresponds to an < ε0-recursive function (respectively, primitive recursive,
function in the n-level of the Grzegorczyk’s hierarchy) when Tω is HAω (re-
spectively, PRAω

i , GnAω
i with n ≥ 2).

The following result is an adaptation of a result of Kohlenbach in [10].

Corollary 6. Under the conditions of Theorem 4, if t is a closed term of the
language, C is in Πbr, D is in Γbr and

Tω + bACω + bIPω
∃̃free + MAJω + ∆ ` ∀u1∀v ≤γ tu(C → ∃w2D(w)),

with the free variables as displayed, then there is a closed monotone term Ψ
of the language of Tω such that

Tω + ∆ ` ∀u1∀v ≤γ tu(C → ∃w ≤2 ΨuD(w)).

Proof. Clearly, ∀u∀v ≤∗γ t̃uM(v ≤γ tu∧C → ∃w2D(w)) is a consequence

of the major theory above, where t̃ is a closed term such that t ≤∗ t̃ (see
Proposition 6). By bIPω

Πbr
and bBCω, we conclude that
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∀u∃a2∀v ≤∗γ t̃uM(v ≤γ tu ∧ C → ∃w ≤∗2 aD(w)).

Since the formula that follows the quantifier ∃a2 is in Γbr, by the previous
corollary there is a closed monotone term r1�2 such that

Tω + ∆ ` ∀u∀v ≤∗γ t̃uM(v ≤γ tu ∧ C → ∃w ≤∗2 ruD(w)).

Define Ψu1 as λf 1.rufM . By a simple computation and (iii) of Lemma 1, we
get the desired result.

4.2 About certain principles (Part I)

Principles that have the form Πbr (those which may occur in ∆ above) are
very convenient because they are self-realizable. However, principles that
follow from the theory Tω + bACω + bIPω

∃̃free + MAJω are even better since
they are not necessary for the verification of their own realizability. As a
consequence, even if they are false principles certain truthful bounding infor-
mation can be obtained from their use because they are not needed for the
verification of the bounds. (In this paper, talk about ‘true’ and ‘false’ refers
to the full set-theoretic structure associated with the language of arithmetic
in all finite types, where the zero type ranges over the natural numbers.)
This is the case with certain versions of the FAN theorem, under the heading
of uniform boundedness principles (these were so baptized and studied by
Kohlenbach in, e.g., [9] and [10]). Before we look at them, let us first briefly
consider some forms of choice since, in general, choice principles do not come
for free within the framework of the bounded modified realizability (contrary
to Kohlenbach’s monotone modified realizability).

It is an easy consequence of bACω that

∀xρ∃yA(x, y) → ∃̃f∀x∃y ≤∗ fxA(x, y)

for ρ ∈ {0, 1}, y of any type and A arbitrary. A simple trick shows that when
the type of y is 0, 1 or 2 then the inequality y ≤∗ fx may be replaced by
y ≤ fx. Remark further that if A is quantifier-free and y is of type 0 then
we can obtain the usual form of choice using a bounded search. In the next
section we will say more about the usual form of choice.

Kohlenbach’s principle of uniform boundedness UBρ for the type ρ is the
following combination of the FAN theorem with choice:{

∀y0�ρ(∀k0∀x ≤ρ yk ∃z0A(x, y, k, z)
→ ∃χ1∀k0∀x ≤ρ yk ∃z ≤0 χk A(x, y, k, z)),
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for arbitrary A.

Proposition 7. Let ρ be a given type. The principle of uniform boundedness
UBρ is provable in Tω + bACω + bIPω

∃̃free + MAJω.

Proof. Fix y0�ρ and assume that ∀k0∀x ≤ρ yk ∃z0A(x, y, k, z). By
MAJω, take ỹ such that y ≤∗ ỹ. Take k0. Then, ∀x ≤∗ρ ỹk (x ≤ρ yk →
∃z0A(x, y, k, z)). We can apply bIPω

Πbr
(see Corollary 3) and move the exis-

tential quantifier ∃z0 to the front of the implication. Using bBCω and the
arbitrariness of k we get ∀k0∃n0∀x ≤∗ρ ỹk ∃z ≤0 n (x ≤ρ yk → A(x, y, k, z)).
By a form of choice discussed above and (iii) of Lemma 1, we get the desired
conclusion.

This is perhaps a good place to say a few words concerning bounded
realizability vis-à-vis Kohlenbach’s monotone realizability. Kohlenbach’s in-
terpretation (cf. [10]) relies upon the transformation of formulas of Kreisel’s
modified realizability, differing from it in the statement of the soundness the-
orem. Let (A)mr and Amr denote the formulas assigned to a given formula
A by the modified realizability interpretation of Kreisel (here (A)mr is of the
form ∃xAmr(x), with Amr(x) a ∃-free formula). The soundness theorem for
monotone realizability guarantees the existence of monotone closed terms t
such that

Tω ` ∃x ≤∗ t∀zAmr(x(z), z),

whenever the theory Tω + ACω + IPω
∃free proves A(z). The principles ACω and

IPω
∃free are (respectively) the axiom of choice for arbitrary matrices and the

independence of premises principle for ∃-free antecendents (types are not re-
stricted). The advantage of monotone realizability over Kreisel’s realizability
is due to the fact that a soundness theorem still holds good when one adjoins
to the theory Tω certain ineffective principles (see Theorem 3.10 of [10] for
details).

The most conspicuous difference between monotone realizability and bounded
realizability is the fact that the first is based on a transformation of formulas
which is classically correct whereas the second is not. Due to this correctness,
monotone realizability is able to extract classically correct bounds from con-
sequences of the form ∀∃F , where F is an arbitrary matrix. These bounds
can be obtained in the presence of certain classically correct ineffective princi-
ples and are obtained within a formal framework where FAN-like rules (with
arbitrary matrix) are admissible. On the other hand, the classically incorrect
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transformation of formulas upon which bounded realizability is based hinders
the extraction of classically correct bounds from arbitrary ∀∃ consequences.
However, bounded realizability is specially taylored for obtaining new con-
servation results (see Corollary 5 above) regarding certain special kinds of
sentences (of the form ∀∃, followed by a Γbr matrix) and, also, for extracting
classically correct bounds for consequences of this kind. These results can be
obtained in the presence of very general FAN-like principles (as opposed to
rules), many of which false, and also of certain ineffective principles (see the
next section).

4.3 About certain principles (Part II)

We present a list of principles which follow from Tω +bACω +bIPω
∃̃free +MAJω

with the aid of true assertions that have the form Πbr (over the base theory
Tω). According to Theorem 4 and related results, the bounds resulting from
the application of these results to the principles are truthful, i.e., can be
verified in a true theory. We call such principles benign. Note that benign
principles can be false!

1. Extensional equality in higher types is defined by induction on the
type. For type 0, it is the given equality at type 0. The equality x =ρ�τ y
is defined by ∀uρ(xu =τ yu). Full extensionality is the collection of axioms
of the form ∀φρ�τ∀xρ, yρ(x =ρ y → φx =τ φy). The scheme of full exten-
sionality does not seem to be self-realizable because of the relativization to
majorizable functionals in bounded modified realizability. However, the ax-
ioms of extensionality for types ρ = 0, 1, 2 can easily be put in the form Πbr.
Hence, these forms of extensionality are benign.

2. The classical, but not intuitionistic, truth

(§) ∀x∀y(A(x) ∨B(y)) → ∀xA(x) ∨ ∀yB(y),

where A and B are Πbr-formulas modulo Tω + bACω + bIPω
∃̃free + MAJω, and

the types of x and y are unrestricted, is benign. Note that when both types
are 0 and A and B are quantifier-free formulas, we have the well-known lesser
limited principle of omniscience LLPO (cf. [4]). Also, by the argument after
Corollary 3, it follows from (§) that the scheme

∀x∀y(¬A(x) ∨ ¬B(y)) → ∀x¬A(x) ∨ ∀y¬B(y),

where A and B are arbitrary, is benign. In order to see that (§) is benign,
observe that this principle follows (over Tω + bACω + bIPω

∃̃free + MAJω) from:
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∀̃a∀x ≤∗ a∀̃b∀y ≤∗ b (A(x)∨B(y)) → ∀̃a∀x ≤∗ aA(x)∨∀̃b∀y ≤∗ bB(y),

where A and B are ∃̃-free formulas (use Proposition 5). Since this restricted
implication is in Πbr and it is true, we are done.

3. The law of excluded middle A ∨ ¬A, for A ∈ Πbr, is benign because
(over Tω + bACω + bIPω

∃̃free + MAJω) it follows from the Πbr-scheme A ∨ ¬A,

with A in the class of ∃̃-free formulas. Note that this form of excluded
middle includes Π0

1 − LEM, i.e., ∀n0A0(n) ∨ ¬∀n0A0(n) for A0 a first-order
bounded formula. In view of the fact that Tω +bACω +bIPω

∃̃free+MAJω refutes
Markov’s principle, one is drawn to the conclusion that Π0

1 − LEM does not
prove Markov’s principle. This result first appeared in [1].

As in the discussion of the previous point, by the argument following
Corollary 3, we get that the scheme ¬A∨¬¬A is benign, where A is arbitrary.

4. The following principle can easily be put in Πbr-form:

($) ∀̃h1�ρ(∀x1∃y ≤∗ρ ĥxA(x, y) → ∃f ≤∗1�ρ ĥ∀xA(x, fx)),

where ĥ is the functional of type 1 → ρ defined by ĥ := λx1.hxM , and A is
a ∃̃-free formula. This is clearly a true principle. Note that a tuple of h’s
would also be alright. The choice principle AC1,ρ is

∀x1∃yρA(x, y) → ∃f 1�ρ∀xA(x, fx),

where A is an arbitrary formula. We show that this choice principle is prov-
able in Tω + bACω + bIPω

∃̃free + MAJω together with the tuple version of the

above Πbr-principle. As a consequence, AC1,ρ is benign (AC0,ρ is also benign).
Suppose that ∀x1∃yρA(x, y). By the Characterization Theorem 2, we deduce
that ∀x1∃yρ∃̃bAbr(b, x, y). By bACω there are monotone functionals h1�ρ and
φ such that

∀x1∃y ≤∗ρ ĥx∃b ≤∗ φ̂x (b ≤∗ b ∧ Abr(b, x, y)).

We deduce ∃f ≤∗1�ρ ĥ∃ψ ≤∗ φ̂∀x1(ψx ≤∗ ψx ∧ Abr(ψx, x, fx)) by the tuple

version of ($). Hence, ∃f 1�ρ∀x1∃̃bAbr(b, x, fx). A new application of the
Characterization Theorem yields the result.

5. The discussion above does not generalize to choice principles in which
x is of type greater than 1 because, for such types, ($) cannot be put in the
form Πbr. However, there is a benign version of choice with no restrictions
on the types:
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∀x ≤∗τ a∃yρA(x, y) → ∃f τ�ρ∀x ≤∗τ aA(x, fx),

where A is an arbitrary formula and a is monotone. We reason within the
theory Tω + bACω + bIPω

∃̃free + MAJω. Assume that ∀x ≤∗τ a∃yρA(x, y). By

the Characterization Theorem, ∀x ≤∗τ a∃yρ∃̃bAbr(b, x, y). By bBCω, there are
monotone c and b′ such that ∀x ≤∗τ a∃y ≤∗ρ c ∃̃b ≤∗ b′Abr(b, x, y). Consider
the conditional:{

∀x ≤∗τ a∃y ≤∗ρ c ∃̃b ≤∗ b′Abr(b, x, y) →
∃f ≤∗τ�ρ λx

τ .cρ ∀x ≤∗τ a ∃̃b ≤∗ b′Abr(b, x, fx).

This conditional is of ∃̃-form and it is true. From it, by Modus Ponens, it
follows that ∃f τ�ρ∀x ≤∗τ a ∃̃bAbr(b, x, fx). Again by the Characterization
Theorem, we get ∃f τ�ρ∀x ≤∗τ aA(x, fx).

6. It is well known that the FAN theorem is true (and intuitionistically
acceptable) for quantifier-free matrices without parameters of type greater
than 1. A modification of its contrapositive, which is equivalent to weak
König’s lemma WKL, is rejected intuitionistically. Nevertheless, it is clear
that this modified contrapositive:

∀u1(∀n0∃x ≤1 u ∀k ≤0 nA(x, k) → ∃x ≤1 u ∀k A(x, k)),

can be put in the form Πbr when A is a quantifier-free formula. Therefore,
it is a benign principle. A related principle is uniform weak König’s lemma
(first considered in [11]), UWKL for short:

∃Φ1�1∀f 1(∀k∃s ∈ {0, 1}k(s ∈ f tree(s)) → ∀k (Φf(k) ∈ f tree)),

where we are using the notation of [2]. Remark that the functional Φ1�1

can be bounded (in the sense of ≤∗1�1) by the functional λf 1, k0.10. Hence,
UWKL can be put in a Πbr-form. Alternatively, we can analyze UWKL by
noting that this principle is provable in Tω + AC1,1 with the aid of the above
contrapositive. Note that, according to 3 above, AC1,1 is a benign principle.

7. The forms of comprehension CAρ
Πbr

:

∃Φ ≤∗ρ�0 λx
ρ.10 ∀yρ(Φy =0 0 ↔ A(y)),

for A a Πbr-formula, are benign. They follow (over Tω + bACω + bIPω
∃̃free +

MAJω) from their restrictions to formulas A that are ∃̃-free (use Proposition
5). These restrictions are true and have the form Πbr. By previous discus-
sions, it is clear that comprehension CAρ

¬ for negated formulas is also a benign
principle:
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∃Φ ≤∗ρ�0 λx
ρ.10 ∀yρ(Φy =0 0 ↔ ¬A(y)).

8. By a similar argument, the scheme of induction

A(0) ∧ ∀n(A(n) → A(n+ 1)) → ∀nA(n),

is benign for A a Πbr-formula or a negated formula.
9. In [10], Kohlenbach considered the principles Fρ:

∀Φ0�(ρ�0)∀y0�ρ∃y0 ≤0�ρ y ∀k0∀z ≤ρ yk (Φkz ≤0 Φk(y0k)).

These principles are false for ρ 6= 0. They are, nevertheless, benign. We
make some preliminary remarks. Let (x ≤ρ y)

M be the formula obtained
from x ≤ρ y by substituting every universal quantifier ∀u by the complex
∀̃v∀u ≤∗ v. The new relation (x ≤ρ y)

M is the old relation x ≤ρ y relativized
to the class of M := {u : ∃̃v(u ≤∗ v)} of majorizable functionals. Consider:

(?)

{
∀Ψρ�0∀̃v∀u ≤∗ρ v∀n0(∀z ≤∗ρ v((z ≤ρ u)

M → Ψz ≤0 n) →
∃x0 ≤∗ρ v((x0 ≤ρ u)

M ∧ ∀z ≤∗ρ v((z ≤ρ u)
M → Ψz ≤0 Ψx0))).

This principle is true and has the form Πbr. We argue that over the theory
Tω + bACω + bIPω

∃̃free + MAJω the principle (?) and AC0,ρ entails Fρ. This
shows that Fρ is benign.

Due to the presence of MAJω, the formulas x ≤ρ y and (x ≤ρ y)
M are

equivalent. We will use this fact systematically. Take Φ0�(ρ�0) and y0�ρ.
Let k0 be given. Put Ψ := Φk and u := yk. Let Ψ̃ and v be such that
Ψ ≤∗ρ�0 Ψ̃ and u ≤∗ρ v. For z ≤∗ρ v we get Ψz ≤0 Ψ̃v. In particular,

∀z ≤∗ρ v(z ≤ρ u → Ψz ≤0 n), where n is Ψ̃v. By (?) and (iii) of Lemma 1,
∃x0(x0 ≤ρ u∧∀z(z ≤ρ u→ Ψz ≤0 Ψx0)). By the arbitrariness of k0 we have

∀k0∃x0(x0 ≤ρ yk ∧ ∀z(z ≤ρ yk → Φkz ≤0 Φkx0)).

An application of AC0,ρ yields Fρ.

5 Closing

For some years now, Ulrich Kohlenbach and his students have been showing
the practical use of Proof Theory in obtaining numerical bounds from classical
proofs of analysis (see [12] for a recent survey). Kohlenbach’s methods are
not based on realizability because realizability notions (including bounded
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realizability) are not taylored for the analysis of classical proofs. In effect,
even though a classical proof can be translated into an intuitionistic proof
via (e.g.) the Gödel-Gentzen negative translation, the translation destroys
existential statements – replacing them by negated universal statements –
with the consequence that realizers yield no computational information. Of
course, this shortcoming is related with the fact that Markov’s principle
is not benign. That notwithstanding, bounded modified realizability (and
monotone modified realizability [10]) supports many classical principles that
go beyond intuitionistic logic (see Subsections 4.2 and 4.3).

In order to deal with full classical reasoning, one must use the more so-
phisticated tool of the functional interpretation, introduced by Kurt Gödel
in [6] (one should add, for quite different reasons – see the discussion in [14]).
Contrary to realizability, Gödel’s interpretation is efficient in analyzing classi-
cal proofs because it supports Markov’s principle. The proof-theoretical tool
used by Ulrich Kohlenbach in his program of searching for numerical infor-
mation in classical proofs of analysis (so-called Proof Mining) is a modifica-
tion of Gödel’s interpretation, still based on Gödel’s assignment of formulas:
monotone functional interpretation. As we have said in the introduction, the
realizability notion studied in this paper stems from work on a newly found
functional interpretation, based on a novel assignment of formulas: bounded
functional interpretation. The new functional interpretation supports (a vari-
ation of) Markov’s principle, being also efficient for the analysis of classical
proofs. Moreover, it has the peculiarity of using intensional majorizability
relations (i.e., regulated by rules, instead of axioms). The curious reader can
learn about the new interpretation in [5].
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