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Abstract

We present a new functional interpretation, based on a novel assignment of formulas.
In contrast with Gödel’s functional “Dialectica” interpretation, the new interpre-
tation does not care for precise witnesses of existential statements, but only for
bounds for them. New principles are supported by our interpretation, including (a
version of) the FAN theorem, weak König’s lemma and the lesser limited principle
of omniscience. Conspicuous among these principles are also refutations of some
laws of classical logic. Notwithstanding, we end up discussing some applications of
the new interpretation to theories of classical arithmetic and analysis.
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1 Introduction

In 1958 Kurt Gödel presented an interpretation of Heyting Arithmetic HA
into a quantifier-free theory T in all finite types. The interpretation hinges on
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a particular assignment of formulas of the language of first-order arithmetic
to quantifier-free formulas of the language of T. Gödel’s so-called functional
interpretation (a.k.a. Gödel’s Dialectica interpretation, after the journal where
it was published [9]) interprets certain principles that are not intuitionistically
acceptable showing, in effect, that these principles can be safely added to HA
without thereby changing the provable Π0

2-sentences. The particular assign-
ment defined by Gödel cares for precise witnesses of existential statements
(and decides disjunctions). For some years now, Ulrich Kohlenbach has been
urging a shift of attention from the obtaining of precise witnesses to the ob-
taining of bounds for the witnesses. One of the main advantages of working
with the extraction of bounds is that the non-computable mathematical ob-
jects whose existence is claimed by various ineffective principles can sometimes
be bounded by computable ones, and this opens the way to obtaining effec-
tive bounds for ∀∃ statements as long as these claims have the right logical
form (see Subsection 7.1). The standard example is weak König’s lemma. This
principle states that every infinite binary tree has an infinite path, and it is
ineffective in the sense that there are infinite recursive binary trees whose infi-
nite branches are all non-recursive. It can be viewed as the logical counterpart
of various ineffective analytical principles such as

- the attainment of the maximum by a continuous function on [0,1],
- every continuous function on [0,1] is uniformly continuous,
- Heine/Borel theorem (in the sequential form),

among many others (see [34] for a comprehensive list).

Another important benefit of extracting bounds (via the hereditary notion of
bound known as majorizability [11]) is the uniformity obtained on parameters
which are themselves also bounded. For instance, a witness for a theorem
having the form ∀f∀g ≤1 f∃nA(f, g, n) is a functional φ, depending on f and
g, producing a natural number n (the relation ≤1 is the pointwise less than
relation between functions of type 1, i.e. from N to N). However, if a bound
on n is all that is required, then this bound will only depend on bounds for f
and g provided that the functional φ is majorizable. In this case, the bound
can be given independently of g and depending only on a bound for f .

In at least two important situations a bound can be transformed back into an
actual witness, namely

(I) when the range circumscribed by the bound is finite, and the relation under
consideration is decidable. For instance, given a closed term t satisfying
∀n∃m ≤ t(n)A(n,m), A being a decidable relation, one can obtain, by
bounded search, a new closed term q such that ∀nA(n, q(n)).

(II) when the relation under consideration is monotone in the witnessing argu-
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ment. For instance, if A(f) is such that

A(f) ∧ f ≤1 f
′ → A(f ′)

then we easily get that ∃f ≤1 t A(f) implies A(t), i.e. any bound is also a
witness.

The latter observation – on the monotonicity of actual mathematical existence
theorems – has paved the way to striking results in the analysis of mathemat-
ical proofs (e.g. [16,24,28]). In [18], Kohlenbach observed (see also the recent
survey [27]) that various numerically interesting theorems in analysis can be
written in the form

∀x ∈ P ∀z ∈ Kx∃nA∃(x, z, n), (1)

where P is a Polish space (complete separable metric space), Kx is a family of
compact Polish spaces, parametrized by elements of P , and A∃ is an existential
formula. When formalized in the language of arithmetic in all finite types, via
the standard representation of Polish spaces, sentences of the kind (1) have
the logical form

∀x1∀z ≤1 t(x)∃nA∃(x, z, n), (2)

where t is a type 1 closed term of the formal language. In very general sit-
uations (even ineffective) proofs of theorems having the logical form (2) are
guaranteed to provide a bound on n depending only on x (independent of z).
In more concrete terms, a systematic analysis of a proof of a theorem (2) is
guaranteed to provide a closed term q and a proof of the stronger theorem

∀x1∀z ≤1 t(x)∃n ≤ q(x)A∃(x, z, n).

If the formula A∃ is monotone on n (as it is the case for a wide range of
statements in functional analysis, cf. [27]), one actually obtains a witness for
n independent of z,

∀x1∀z ≤1 t(x)A∃(x, z, q(x)). (3)

The analysis of mathematical proofs with the help of proof theoretic tech-
niques, in search for concrete new information, has been dubbed proof mining.
The established technique in proof mining was introduced by Ulrich Kohlen-
bach in [14,18], and has been applied with increasing virtuosity and efficiency
by Kohlenbach and his students ever since. The technique is called monotone
functional interpretation (henceforth abbreviated by m.f.i.) and the proof of
its soundness theorem juxtaposes the Gödelian argument (which yields precise
witnesses) with a majorization argument.
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This paper introduces a new functional interpretation, the bounded func-
tional interpretation (abbreviated b.f.i.). Whereas m.f.i. uses majorizability
techniques at the outer level after the passage from the given formula to its
Gödelian assignment, our interpretation is new in the sense that it defines a
novel assignment of formulas which, in effect, always disregards precise wit-
nesses, caring only for bounds for them. The new interpretation does not rely
on the decidability of prime formulas, not even for the verification of the inter-
pretation (as m.f.i. does). It also interprets new classical principles, conspicu-
ously weak König’s lemma. This should be compared with m.f.i.’s treatment
of weak König’s lemma, according to which the lemma is eliminated at the end
of the analysis, not by the interpretation itself. At the same time, a version of
the (intuitionistically acceptable) FAN theorem is interpreted by the b.f.i.:

∀g ≤1 f∃nA(g, n) → ∃k∀g ≤1 f∃n ≤ kA(g, n),

where A is any formula, provided that we read the relation ≤1 intensionally
(more on this below). This is a blatantly false principle in classical mathemat-
ics. Intuitionistic mathematics accepts it due to reasons of continuity: If one
warrants intuitionistically the antecedent ∀g ≤1 f∃nA(g, n), then the existen-
tial witnesses n must depend solely on finite initial segments of g, yielding in
fact a continuous dependence of n by g. Since the functionals g range below a
given f , compactness reasons (that can be put in intuitionistic clothes) yield
a bound for the n’s. Notwithstanding, it is not continuity that is responsible
for the elimination of the FAN theorem by b.f.i.: It is majorizability! This
was first observed in [15] in connection with the FAN rule (see also [21] and
[26], where closure under the FAN rule is obtained even for systems whose
models must contain discontinuous functionals). Majorizability, as opposed to
continuity, is also responsible for the elimination of the classically valid (but
intuitionistically unacceptable) weak König’s lemma. Finally, there is even a
more radical departure of b.f.i. from Gödel’s interpretation: The principles in-
terpreted by Gödel’s technique are all consistent with classical logic, whereas
this is not the case for b.f.i. in the presence of a minimal amount of arithmetic
(cf. Proposition 9).

Our treatment of the majorizability relation is a bit subtle. For reasons similar
to the ones that prevent Gödel’s Dialectica interpretation from interpreting full
extensionality, we must not work with the extensional majorizability relation.
Instead, we work with an intensional version thereof. With this intensional
majorizability relation, the FAN theorem falls as a very particular case of an
overarching bounded collection principle. The mark of our treatment of the
intensional majorizability relation is the incorporation of a rule, instead of a
corresponding axiom. The presence of this rule entails the failure of the deduc-
tion theorem which, according to received opinion (see, for instance, [36]), is
not attractive. We beg to differ from this judgment. The failure of the deduc-
tion theorem allows the emergence of the distinction between postulates and
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implicative assumptions, the former ones being placed on the left-hand side
of the provability sign, while the latter ones on the right-hand side (what can
be proved with implicative assumptions can be proved with postulates, but
not vice-versa). There are indications that this distinction plays an important
role in the analysis of ordinary theorems of mathematics, being therefore im-
bued of relevant mathematical meaning (see Kohlenbach’s recent work [13],
particularly the discussions in section 3). These matters are far from being
well understood, being in dire need of further study and clarification. Having
said that, we leave them at this juncture.

Even though a detailed comparison between m.f.i. and b.f.i. is beyond the
scope of the present paper, the use of b.f.i. in analyzing some theoretical ap-
plications arising from the work of Ulrich Kohlenbach has convinced us that
b.f.i. sheds light on that work, explaining on principled reasons certain phe-
nomena for which m.f.i. requires rather ad-hoc arguments. The theoretical
applications of b.f.i. can be seen as vast generalizations of Parikh type re-
sults (cf. [32]), in part obtained because b.f.i. automatically removes “ideal
elements” from ineffective proofs (in modern parlance, b.f.i. is specially suited
for obtaining conservation results).

Finally, we should point out that b.f.i. was conceived so that it would leave
(intensional) bounded formulas unaffected by the interpretation and, in par-
ticular, would leave first-order bounded formulas unaffected, even in feasible
settings. Therefore, b.f.i. (as opposed to m.f.i.) is tailored for the elimination
of ideal elements from weak theories of arithmetic and analysis (cf. [7,31]).
Nevertheless, this issue is not dealt with in the present paper and will have to
await for another work.

In the next section, we introduce the basic system over which we define the
new interpretation (Section 3). In Section 4, we enumerate some principles
that are not provable in the basic setting but which have a trivial interpreta-
tion. These turn out to be precisely the principles that are needed for proving
a characterization theorem for the b.f.i. In Sections 5 and 6 we extend the
interpretation to classical and arithmetical systems, respectively. In the final
sections, we study some theoretical applications of b.f.i. by giving simple in-
terpretations of (a uniform version of) weak König’s lemma and of various
(non-standard) boundedness principles in classical mathematics. These ap-
plications are versions of (or stem from) original and exciting results proved
earlier by Kohlenbach using m.f.i. ([18,19,22]).

5



2 Basic Framework

Let Lω
≤ be a language in all finite types (based on a given ground type 0) with

a distinguished binary relation symbol ≤0 (infixing between terms of type
0) and distinguished constants m of type 0 � (0 � 0) and z of type 0 (the
constant z is needed to ensure that each finite type is inhabited by at least one
closed term). The theory ILω

≤ is intuitionistic logic in all finite types (see [1] for
the formalization we will be using) with axioms stating that ≤0 is reflexive,
transitive, and with the axioms

A1 : x ≤0 m(x, y) ∧ y ≤0 m(x, y)
A2 : x ≤0 x

′ ∧ y ≤0 y
′ → m(x, y) ≤0 m(x′, y′)

Our treatment of equality is based on the minimal alternative described by
Troelstra in the end of section 3.1 and the beginning of section 3.3 of [36].
There is a symbol of equality only for terms of type 0. Its axioms are

E1 : x =0 x
E2 : x =0 y ∧ φ[x/w] → φ[y/w]

where φ is an atomic formula with a distinguished type 0 variable w. In order
to characterize the behaviour of the logical constants (combinators) Π and Σ,
we must also add

EΠ,Σ : φ[Π(x, y)/w] ↔ φ[x/w], φ[Σ(x, y, z)/w] ↔ φ[xy(xz)/w],

where φ is a an atomic formula with a distinguished variable w, and x, y and
z are variables of appropriate type.

In the language Lω
≤ we can define Bezem’s strong majorizability relation [2]

(a modification of Howard’s hereditary majorizability relation [11] that, as
opposed to Howard’s, is provably transitive – a necessity for our interpretation)
and prove its main properties. We write ≤∗

ρ for Bezem’s strong majorizability
relation for type ρ. This relation is defined by induction on the types:

(a) x ≤∗
0 y := x ≤0 y

(b) x ≤∗
ρ�σ y := ∀uρ, vρ(u ≤∗

ρ v � xu ≤∗
σ yv ∧ yu ≤∗

σ yv))

The following is a result of [2]:

Lemma 1 ILω
≤ proves

(i) x ≤∗ y → y ≤∗ y.
(ii) x ≤∗ y ∧ y ≤∗ z → x ≤∗ z.
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Proof. The type 0 case for (i) is due to the reflexivity of ≤0, while the type
non-zero cases follow directly from the definition. Property (ii) is proved by
induction on the type. The type 0 case is given. We now must argue for
xu ≤∗

σ zv and zu ≤∗
σ zv under the hypothesis that x ≤∗

ρ�σ y, y ≤∗
ρ�σ z

and u ≤∗
ρ v. We get immediately that xu ≤∗

σ yv. By (i), v ≤∗
ρ v. Therefore,

yv ≤∗
σ zv. By the induction hypothesis, xu ≤∗

σ zv. The other property follows
from the fact that, according to (i), z ≤∗

ρ�σ z. 2

In order to formulate the new functional interpretation, we introduce an ex-
tension Lω

� of the language Lω
≤, obtained from the latter by the adjunction of

new primitive binary relation symbols �ρ, one for each type ρ (we use infix
notation for these symbols). The relation �ρ is the intensional counterpart
of the extensional relation ≤∗

ρ. The terms of Lω
� are the same as the terms

of the original language Lω
≤. Formulas of the form s �ρ t, where s and t are

terms of type ρ, are the new atomic formulas of the language. We also add,
as a new syntactic device, bounded quantifiers, i.e. quantifications of the form
∀x � tA(x) and ∃x � tA(x), for terms t not containing x. Bounded formulas
are those formulas in which every quantifier is bounded.

Definition 1 The theory ILω
� is an extension of ILω

≤ with the axiom schemae:

B∀ : ∀x� tA(x) ↔ ∀x(x� t→ A(x))
B∃ : ∃x� tA(x) ↔ ∃x(x� t ∧ A(x)),

with the restriction that x does not occur in t. There are also two further
axioms

M1 : x�0 y ↔ x ≤0 y
M2 : x�ρ→σ y → ∀u�ρ v(xu�σ yv ∧ yu�σ yv)

and a rule RL�

Ab ∧ u� v → su� tv ∧ tu� tv

Ab → s� t

where s and t are terms of ILω
�, Ab is a bounded formula and u and v are

variables that do not occur free in the conclusion.

Warning 1 As we will show in Proposition 8, the presence of the rule RL�

entails the failure of the Deduction Theorem for the arithmetical theories (here
considered). We must use the rule instead of the corresponding implication (the
converse of M2) due to the fact that the implication does not have a bounded
functional interpretation. A similar problem occurs with the treatment of full
extensionality by the usual Gödel’s functional interpretation, in which case the
axiom must be replaced by a rule of extensionality (cf. [23] and [35]).
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The proof that we gave of Lemma 1 does not use the converse of the implication
M2, only its weakened version given by the rule RL�. This observation justifies
the first two claims of the lemma below. The third claim is immediate.

Lemma 2 ILω
� proves

(i) x� y → y � y.
(ii) x� y ∧ y � z → x� z.
(iii) x�1 y → x ≤∗

1 y. Hence, x�1 y → x ≤1 y.

Observation 1 The relation ≤σ is the usual pointwise “less than or equal to”
relation. It is the relation ≤0 for type 0, and x ≤ρ�σ y is defined recursively
by ∀uρ(xu ≤σ yu).

Since the extended language Lω
� has new atomic formulas, we must check

whether our axioms ensure that we have a decent theory of identity for all
types. The following two propositions guarantee just that.

Proposition 1 Let φ be any formula of Lω
� with a distinguished type 0 free

variable w. The theory ILω
� proves

x =0 y ∧ φ[x/w] → φ[y/w]

where x and y are free for w in φ.

Proof. It is enough to prove the above for atomic formulas φ. If the atomic
formula is in the original language Lω

≤, the result follows from E2. Let us now
deal with the atomic formulas originating from the new relational symbols �σ.
We must show that, for every type σ, if r[w] and q[w] are terms of type σ with
a distinguished type 0 variable w, then

x =0 y ∧ r[x/w] �σ q[x/w] → r[y/w] �σ q[y/w].

We prove this by induction on the type σ. For the base type, use the axiom
M1 to reduce the �0-inequation to an inequation with relation symbol ≤0. By
rule RL�, in order to prove that

x =0 y ∧ r[x/w] �σ�τ q[x/w] → r[y/w] �σ�τ q[y/w].

it is enough to prove the implicationx =0 y ∧ r[x/w] �σ�τ q[x/w] ∧ u�σ v →

r[y/w]u�τ q[y/w]v ∧ q[y/w]u�τ q[y/w]v.

By the axiom M2, the last two conjuncts of the antecedent of the implication
entail r[x/w]u �τ q[x/w]v and q[x/w]u �τ q[x/w]v. By induction hypothesis
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applied to the type τ term couples r[w]u, q[w]v and q[w]u, q[w]v, we obtain
the consequent of the implication. 2

Proposition 2 Let φ be any formula of Lω
� with a distinguished free variable

w. The theory ILω
� proves the equivalences

φ[Π(x, y)/w] ↔ φ[x/w], φ[Σ(x, y, z)/w] ↔ φ[xy(xz)/w]

where x, y and z are free for w in φ.

Proof. It is enough to prove the above for atomic formulas φ. If φ is in the
original language Lω

≤, the result follows from EΠ,Σ. The atomic inequations
with relation symbol �σ are dealt with by induction on the type σ, similarly
to the argument of the previous proposition. 2

Lemma 3 ILω
� proves that Π � Π and Σ � Σ.

Proof. The usual proof of these facts for the ≤∗ relation only uses the rule
RL�, not the unwarranted implication. For instance, to check that Σ � Σ it is
enough to prove (by several applications of rule RL�) the implication

x� x′ ∧ y � y′ ∧ z � z′ → Σxyz � Σx′y′z′

By the above proposition, the consequent of the implication is equivalent to
xy(xz) � x′y′(x′z′). This, in turn, is (under the antecedent of the implication)
an easy consequence of M2. 2

2.1 Majorizability Theories

In the following the reader should observe that the language Lω
� is allowed to

include relational and constant symbols besides ≤0, �σ (σ a finite type), m
and z.

Definition 2 Consider a fixed language Lω
�. A theory Tω

� in Lω
� is called a

majorizability theory for Lω
� if it extends ILω

� and, for every constant cρ, there
is a closed term tρ such that Tω

� ` c�ρ t.

If the constants of the language Lω
� are just m, z and the combinators Π and

Σ, then Lemma 3 guarantees that ILω
� is a majorizability theory. Later in the

paper, we will associate majorizability theories to the theories of arithmetic
HAω,PRAω

i and GnAω
i (n ≥ 2).

In a majorizability theory we define by induction on the type, a binary relation
mρ of type ρ � (ρ � ρ) according to the following clauses:
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(a) m0 is m
(b) mρ�σ(x, y) := λuρ.mσ(xu, yu)

It is well known that the combinators Π and Σ enjoy the property of combi-
natorial completeness whereby, given any term t with a distinguished variable
u, there is a term λu.t whose free variables are those of t except for u, such
that (λu.t)(q) is (in the sense of allowing the pertinent substitutions of one
term for the other) t[q/u]. We are using this fact in the above definition.

Lemma 4 Let Tω
� be a majorizability theory. Tω

� proves

(i) x� x ∧ y � y → x� m(x, y) ∧ y � m(x, y)
(ii) mρ � mρ.

Proof. Firstly, we prove (ii) by induction on the type ρ. The base case is
trivial. By rule RL� (twice), in order to prove that mρ�σ � mρ�σ it is enough
to prove

x�ρ�σ x
′ ∧ y �ρ�σ y

′ → m(x, y) �ρ�σ m(x′, y′).

In order to prove this, by rule RL� (twice again), it is sufficient to prove

x�ρ�σ x
′ ∧ y �ρ�σ y

′ ∧ u�ρ v → m(xu, yu) �σ m(x′v, y′v).

This follows from the induction hypothesis. Claim (i) is also proved by in-
duction on the type. The base case is clear. We must now prove the im-
plication whose antecedent is x �ρ�σ x ∧ y �ρ�σ y and whose consequent is
x�ρ�σ mρ�σ(x, y) (the other conjunct is similar). By rule RL�, it is sufficient
to prove

x� x ∧ y � y ∧ u�ρ v → xu�σ m(xv, yv) ∧m(xu, yu) �σ m(xv, yv).

The second conjunct of the consequent follows from part (ii) of the lemma. For
the first conjunct, observe that xu �σ xv and that, by induction hypothesis,
xv �σ mσ(xv, yv). Now use the transitivity of �σ. 2

The following result can be proven by an easy induction on the structure of
terms.

Lemma 5 Let Tω
� be a majorizability theory. For every closed term tρ of Lω

≤
there exists another closed term t̃ρ of Lω

≤, such that

Tω
� ` t� t̃.

Notation 1 An underlined term t is an abbreviation of a (possibly empty)
tuple of terms t1, t2, . . . , tk. We use this notation for tuples in several contexts,
and it should be evident what it means. For instance, ∀x � t abbreviates the
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sequence of quantifications ∀x1 � t1∀x2 � t2 . . . ∀xk � tk, where x1, x2, . . . , xk

and t1, t2, . . . , tk are sequences of variables, respectively terms, with matching
types. After a while, we will no longer underline terms. It will be clear from
the context when we are referring to a tuple of terms, instead of a single term
only.

Definition 3 Within the context of a language Lω
�, by a majorant of an

(open) term t with (free) variables w we mean a term t̃ with the same (free)
variables such that Tω

� ` λw.t � λw.t̃. A term t is called monotone if it is
self-majorizing. To say that a functional f is monotone is to assume that
f � f .

It is an easy consequence of Lemma 5 that every (open) term has a majorant.
In the sequel, we shall often quantify over monotone functionals. We abbrevi-
ate the quantifications ∀f(f � f → A(f)) and ∃f(f � f ∧ A(f)) by ∀̃fA(f)
and ∃̃fA(f), respectively.

3 The Bounded Functional Interpretation

In this section, we define a new functional interpretation (the Bounded Func-
tional Interpretation) within ILω

� and prove a corresponding soundness theo-
rem.

Definition 4 To each formula A of the language Lω
� we associate formulas

(A)B and AB of the same language so that (A)B is of the form ∃̃b∀̃cAB(b, c),
with AB(b, c) a bounded formula.

1. (Ab)
B and (Ab)B are simply Ab, for bounded formulas Ab.

If we have already interpretations for A and B given by ∃̃b∀̃cAB(b, c) and
∃̃d∀̃eBB(d, e) (respectively) then, we define

2. (A ∧B)B is ∃̃b, d∀̃c, e(AB(b, c) ∧BB(d, e)),
3. (A ∨B)B is ∃̃b, d∀̃c, e(∀̃c′ � cAB(b, c′) ∨ ∀̃e′ � eBB(d, e′)),
4. (A→ B)B is ∃̃f, g∀̃b, e(∀̃c� gbeAB(b, c) → BB(fb, e)).

For bounded quantifiers we have:

5. (∀x� tA(x))B is ∃̃b∀̃c∀x� t AB(b, c, x),
6. (∃x� tA(x))B is ∃̃b∀̃c∃x� t∀̃c′ � cAB(b, c′, x).

And for unbounded quantifiers we define

7. (∀xA(x))B is ∃̃f ∀̃a, c∀x� aAB(fa, c, x).

11



8. (∃xA(x))B is ∃̃a, b∀̃c∃x� a∀̃c′ � cAB(b, c′, x).

In the above, it is understood that (∃xA)B is ∃x�a∀̃c′�cAB(b, c′, x). Similarly
for the other clauses. Note that the universal bounded quantifiers that occur in
the clauses 3, 4, 6 and 8 are (as opposed to the others) restricted to monotone
variables. The case of negation is a particular case of the implication. We get,

9. (¬A)B is ∃̃g∀̃b¬∀̃c� gbAB(b, c).

An inspection of the clauses of the definition of the bounded functional inter-
pretation easily shows that

Lemma 6 (Monotonicity Lemma) Let (A)B be ∃̃b∀̃cAB(b, c, x). The fol-
lowing monotonicity property holds:

Tω
� ` b� b′ ∧ c� c ∧ AB(b, c, x) → AB(b′, c, x).

We are now ready to formulate and prove a soundness theorem for the bounded
functional interpretation:

Theorem 1 (Soundness) Consider a fixed language Lω
�. Let Tω

� be a ma-

jorizability theory for Lω
� and assume that (A(z))B is ∃̃b∀̃cAB(b, c, z), where

A(z) is an arbitrary formula of Lω
� with its free variables as displayed. If

ILω
� ` A(z),

then there are closed monotone terms t of appropriate types such that

Tω
� ` ∀̃a∀z � a ∀̃cAB(ta, c, z).

Proof. The proof proceeds by induction on the length of the derivation of
A(z). Wherever convenient we shall build a term t containing also the vari-
ables a (the majorants of z), instead of a closed term which only at the end
gets applied to a.

The axioms M1, M2 and the equations characterizing the behaviour of the
combinators are universal statements and it is to check that their interpreta-
tion is sound. Let us now consider an instance of the rule RL�. Assume that
the premise of the instance

Ab[z] ∧ u� v → s[z]u� t[z]v ∧ t[z]u� t[z]v.

has been derived (for the sake of simplicity, let z be the only parameter). By
induction hypothesis, Tω

� proves that for all monotone a, c and d

∀z � a∀u� c∀v � d(Ab[z] ∧ u� v → s[z]u� t[z]v ∧ t[z]u� t[z]v).

12



By (i) of Lemma 2 (with c = d = v), the above entails that Tω
� proves

∀̃a∀z � a(Ab[z] ∧ u� v → s[z]u� t[z]v ∧ t[z]u� t[z]v),

which is equivalent to

∀a∀z(Ab[z] ∧ z � a ∧ a� a ∧ u� v → s[z]u� t[z]v ∧ t[z]u� t[z]v).

By the rule RL� we conclude

∀a∀z(Ab[z] ∧ z � a ∧ a� a→ s[z] � t[z]).

which is equivalent to ∀̃a∀z � a(Ab[z] → s[z] � t[z]), as desired.

Let us now consider the axioms for bounded quantifiers. We assume that each
of the bounded principles B∀ and B∃ is a shorthand for two separate principles:
the left-to-right and the right-to-left implications.

B∀. ∀x � tA(x) ↔ ∀x(x � t → A(x)). Assume (A(x))B is ∃̃b∀̃cAB(b, c, x) and
that z includes all the free variables of t (as mentioned in Notation 1 we will
omit the underlining of tuples). Then

(∀x� tA(x))B := ∃̃b∀̃c∀x� tAB(b, c, x),

while the interpretation of the right hand side gives

(∀x(x� t→ A(x)))B := ∃̃f ∀̃c, d∀x� d(x� t→ AB(fd, c, x).

The left-to-right implication asks for monotone terms q and r such that

∀̃b, c, d(∀̃c′ � qbcd∀x� tAB(b, c′, x) → ∀x� d(x� t→ AB(rbd, c, x))).

Clearly, q(b, c, d) := c and r(b, d) := b do the job. For the right-to-left impli-
cation, we must find monotone terms q, s and r such that

∀̃f, c(∀̃d� qfc∀̃c′ � sfc∀x�d(x� t→ AB(fd, c′, x)) → ∀x� tAB(rf, c, x)).

It is easy to see that q(f, c) := t̃[a/z], s(f, c) := c and r(f) = f(t̃[a/z]), where
t̃ and a are majorants for t and z respectively, do the job.

B∃. ∃x� tA(x) ↔ ∃x(x� t ∧A(x)). Assume (A(x))B is ∃̃b∀̃cAB(b, c, x). Then

(∃x� tA(x))B := ∃̃b∀̃c∃x� t∀̃c′ � cAB(b, c′, x),

while the interpretation of the right hand side gives

(∃x(x� t ∧ A(x)))B := ∃̃b, d∀̃c∃x� d∀̃c′ � c(x� t ∧ AB(b, c′, x)).

The left-to-right implication asks for monotone terms q, r and s such that

13



 ∀̃b, c(∀̃c′′ � qbc∃x� t∀̃c′ � c′′AB(b, c′, x) →

∃x� rb∀̃c′ � c(x� t ∧ AB(sb, c′, x))).

We just take q(b, c) := c, r(b) := t̃[a/z] and s(b) := b, where t̃ and a are
majorants for t and z respectively. For the right-to-left implication, we must
find monotone terms q and r such that ∀̃b, c, d(∀̃c′′ � qbcd∃x� d∀̃c′ � c′′(x� t ∧ AB(b, c′, x)) →

∃x� t∀̃c′ � cAB(rbd, c′, x)).

It is easy to see that q(b, c, d) := c and r(b, d) := b do the job.

For the induction steps assume that (A)B is ∃̃b∀̃cAB(b, c) and (B)B is ∃̃d∀̃eBB(d, e)
(we omit the free variables of A and B whenever not relevant).

1. A,A→ B ⇒ B. By induction hypothesis we have monotone terms t, s and
r such that

(i) ∀̃cAB(t, c)
(ii) ∀̃b, e(∀̃c� r(b, e)AB(b, c) → BB(s(b), e)).

Let q := s(t). It is easy to see that ∀̃eBB(q, e) follows from (i) and (ii), since, for
a fixed e, (i) implies ∀̃c� r(t, e)AB(t, c) and (ii) implies ∀̃c� r(t, e)AB(t, c) →
BB(s(t), e). Moreover, if s and t are monotone, then q is also monotone.

2. A → B,B → C ⇒ A → C. Assume (C)B := ∃̃u∀̃vCB(u, v). By induction
hypothesis we have monotone terms s and t such that

(i) ∀̃b, e(∀̃c� sbeAB(b, c) → BB(tb, e))

and monotone terms r, q such that

(ii) ∀̃d, v(∀̃e� rdvBB(d, e) → CB(qd, v)).

We have to produce monotone terms p and l satisfying

∀̃b, v(∀̃c� lbvAB(b, c) → CB(pb, v)).

Let l(b, v) := s(b, r(tb, v)) and p(b) := q(tb). Fix monotone b, v and assume
that (iii) ∀̃c� s(b, r(tb, v))AB(b, c). By (i) we get

(iv) ∀̃e� r(tb, v)(∀̃c� sbeAB(b, c) → BB(tb, e)).

From (iii) and (iv) we have (v) ∀̃e� r(tb, v)BB(tb, e). From (ii) and (v) we get
(by taking d := tb) CB(q(tb), v).
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3a. A ∨ A → A. To interpret this axiom we must find monotone terms t, q1
and q2 such that

∀̃b1, b2, c(∀̃c′1 � q1b1b2c∀̃c′2 � q2b1b2c
∨2

i=1 ∀̃c′′i � c′iAB(bi, c
′′
i ) → AB(tb1b2, c)).

Let t(b1, b2) := m(b1, b2) and qi(b1, b2, c) := c. Clearly, the terms t and qi are
monotone (see Lemma 4). By the Monotonicity Property and Lemma 4, these
terms do the job.

3b. A → A ∧ A. To interpret this axiom we must find monotone terms t1, t2
and q such that

∀̃b, c1, c2(∀̃c� q(b, c1, c2)AB(b, c) → ∧2
i=1AB(ti(b), ci)).

Let ti(b) := b and q(b, c1, c2) := m(c1, c2). These terms will do. Note that
the construction of the term q is canonical at this step, contrary to Gödel’s
interpretation where one is faced with a choice of terms.

4. A→ A ∨B and A ∧B → A. Trivial.

5. A ∨B → B ∨ A and A ∧B → B ∧ A. Trivial.

6. A → B ⇒ C ∨ A → C ∨ B. Assume (C)B := ∃̃u∀̃vCB(u, v). By induction
hypothesis, there are monotone terms t and q such that

(i) ∀̃b∀̃e(∀̃c� tbeAB(b, c) → BB(qb, e)).

Let us compute the bounded functional interpretation of the conclusion of the
rule. At first, ∃̃u, b∀̃v, c(∀̃v′ � vCB(u, v′) ∨ ∀̃c′ � cAB(b, c′) →

∃̃u, d∀̃v, e(∀̃v′ � vCB(u, v′) ∨ ∀̃e′ � eBB(b, e′)).

We must find monotone terms r, s, p and l such that for all monotone u, b, v
and e,∀v′′ � rubve∀̃c� subve(∀̃v′ � v′′CB(u, v′) ∨ ∀̃c′ � cAB(b, c′)) →

∀v′ � vCB(pub, v′) ∨ ∀̃e′ � eBB(lub, e′).

We take r(u, b, v, e) := v, s(u, b, v, e) := t(b, e), p(u, b) := u and l(u, b) = q(b).
These are clearly monotone terms. Let us verify that they do the job. Fix
monotone u, b, v and e, and suppose that

∀̃v′′ � v∀̃c� tbe(∀̃v′ � v′′CB(u, v′) ∨ ∀̃c′ � cAB(b, c′)).

In particular,
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∀̃v′ � vCB(u, v′) ∨ ∀c′ � tbeAB(b, c′).

If the first disjunct holds, we are done. Suppose that the second disjunct is
the case. Take any monotone e′ � e. Clearly, if c′ � tbe′ then c′ � tbe. Hence,
AB(b, c′). We have showed that, ∀̃c′ � tbe′AB(b, c′). By (i), we get BB(qb, e′).
By the arbitrariness of e′, we are done.

7a. A ∧ B → C ⇒ A → (B → C). Assume (C)B := ∃̃u∀̃vCB(u, v). Just
observe that the interpretation of A∧B → C asks for monotone terms t1, t2, s
such that

∀̃b, d, v(∀̃c� t1bdvAB(b, c) ∧ ∀̃e� t2bdvBB(d, e) → CB(sbd, v)),

while the conclusion of the rule asks for terms t1, t2, s such that

∀̃b, d, v(∀̃c� t1bdvAB(b, c) → (∀̃e� t2bdvBB(d, e) → CB(sbd, v))).

7b. A→ (B → C) ⇒ A ∧B → C. Similar to 7a.

8. ⊥→ A. Trivial.

9. A→ B(z) ⇒ A→ ∀zB(z). The interpretation of A→ B(z) is

∃̃f, g∀̃b, e(∀̃c� gbeAB(b, c) → BB(fb, e, z)).

By induction hypothesis, we have monotone terms r, s such that

∀̃a, b, e∀z � a(∀̃c� rabeAB(b, c) → BB(sab, e, z)).

The interpretation of the conclusion of the rule asks for monotone terms t and
q satisfying,

∀̃a, b, e(∀̃c� tabeAB(b, c) → ∀z � aBB(qab, e, z)).

It is clear that we can take t := r and q := s.

10. ∀xA(x) → A(t). For this axiom it is important to show all the free vari-
ables. The interpretation of ∀xA(x, z) → A(t[z], z) is

∃̃φ, ψ, θ∀̃g, c(∀̃d� φgc∀̃c′ � ψgc∀x� dAB(gd, c′, x, z) → AB(θg, c, t[z], z)).

The soundness asks for monotone terms t, q, r such that for all g, c, a and z�a

∀̃d� tgca∀̃c′ � qgca∀x� dAB(gd, c′, x, z) → AB(rga, c, t[z], z).

Let t(g, c, a) := t̃[a/z], q(g, c, a) := c and r(g, a) := g(t̃[a/z]), where t̃ is a term
that majorizes t. It is easy to see that for all g, c, a and z � a

∀̃d� t̃[a/z]∀̃c′ � c∀x� dAB(gd, c, x, z) → AB(g(t̃[a/z]), c, t[z], z),
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since t[z] � t̃[a/z]. It is clear that t, q and r are monotone.

11. A(t) → ∃xA(x). Here, it is also important to make explicit all the free
variables. The axiom A(t[z], z) → ∃xA(x, z) has (partial) interpretation

∃̃b∀̃cAB(b, c, t[z], z) → ∃̃d, b∀̃c∃x� d∀̃c′ � cAB(b, c′, x, z)

and the soundness asks for monotone terms q, r and s such that for all b, c, a
and z � a

∀̃c′ � qbcaAB(b, c′, t[z], z) → ∃x� rba∀̃c′ � cAB(sba, c′, x, z).

Let q(b, c, a) := c, r(b, a) := t∗[a/z] and s(b, a) := b. Then, for all b, e, a and
z � a

∀̃c′ � cAB(b, c′, t[z], z) → ∃x� t∗[a/z]∀̃c′ � cAB(b, c′, x, z),

follows since t[z] � t∗[a/z]. It is also clear that q, r and s are monotone.

12. A(z) → B ⇒ ∃zA(z) → B. The interpretation of A(z) → B is

∃̃f, g∀̃b, e(∀̃c� gbeAB(b, c, z) → BB(fb, e))

By induction hypothesis we have monotone terms r, s such that for all a, b, e
and z � a

∀̃c� rabeAB(b, c, z) → BB(sab, e).

The interpretation of the conclusion of the rule asks for monotone terms t and
q satisfying for all a, b, e

∀̃c� tabe∃z � a∀̃c′ � cAB(b, c′, z) → BB(qab, e).

It’s clear that we can take t := r and q := s. 2

4 The Interpretation at Work

Gödel’s original interpretation [9] interprets certain principles, whose status
goes beyond the intuitionistically acceptable (this was studied by M. Yasugi
in [38]; see sections 3.5.7-3.5.11 of [37] for an exposition of these matters).
The Bounded Functional Interpretation also interprets certain principles be-
yond those provable in ILω

�. While some of these principles are related to the
principles that are vindicated by Gödel’s interpretation, others are completely
new.
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We finish the section with a Characterization Theorem for the bounded func-
tional interpretation.

4.1 Interpretable Principles

As we will show, the following principles have a bounded functional interpre-
tation:

1. The Bounded Choice Principle

bACρ,τ [�] : ∀xρ∃yτA(x, y) → ∃̃f ∀̃b∀x� b∃y � fbA(x, y),

where A is an arbitrary formula of the language Lω
�. The standard Axiom of

Choice does not seem to be interpretable in general. Still, in Subsection 4.2
we will see that a monotone version of the Axiom of Choice is interpreted by
the Bounded Functional Interpretation.

2. The Bounded Independence of Premises Principle

bIPρ
∀bd[�] : (∀xAb(x) → ∃yρB(y)) → ∃̃b(∀xAb(x) → ∃y � bB(y)),

where Ab is a bounded formula and B is an arbitrary formula.

3. The Bounded Markov’s Principle

bMPρ
bd[�] : (∀yρ∀xAb(x, y) → Bb) → ∃̃b(∀y � b∀xAb(x, y) → Bb),

where Ab and Bb are bounded formulas. When Bb is ⊥, with the help of some
intuitionistic logic, we get the following useful version of the above principle:
¬¬∃yρAb(y) → ∃̃b¬¬∃y � bAb(y), where Ab is a bounded formula.

4. The Bounded Universal Disjunction Principle

bUD
ρ,τ

∀bd[�] : ∀̃bρ∀̃cτ (∀x� bAb(x) ∨ ∀y � cBb(y)) → ∀xAb(x) ∨ ∀yBb(y),

where Ab and Bb are bounded formulas. There is no analogue of this principle
in Gödel’s functional interpretation. In a setting where bounded first-order for-
mulas are decidable, this principle generalizes Bishop’s lesser limited principle
of omniscience LLPO (cf. [3], but also [4]) viz. that ∀x0, y0(A(x) ∨ B(y)) →
∀xA(x) ∨ ∀yB(y), where A(x) and B(y) are bounded first-order formulas.

5. The Bounded Contra Collection Principle

bBCC
ρ,τ
bd [�] : ∀̃cρ(∀̃bτ∃z � c∀y � bAb(y, z) → ∃z � c∀yAb(y, z)),

where Ab is a bounded formula. This principle allows the conclusion of certain
existentially bounded statements from the assumption of weakenings thereof
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(so-called ε-versions or ε-weakenings, in a terminology that Kohlenbach intro-
duced in [14] regarding a more concrete situation – see also Section 7.1 below).
As we shall discuss in Section 7, the Bounded Contra Collection Principle en-
tails certain classical (non-constructive) principles related to weak König’s
lemma.

6. And finally, the Majorizability Axioms

MAJρ[�] : ∀xρ∃y(x� y).

We use bACω[�], bIPω
∀bd[�], bMPω

bd[�], bUDω
∀bd[�], bBCCω

bd[�] and MAJω[�],
respectively, for the aggregate of each of the above principles over all types.
We denote by P[�] the sum total of all these principles.

The next principle is a vast generalization of a version of Brouwer’s FAN
theorem (Brouwer’s theorem is the case ρ = 1, τ = 0). 3 Under the label of
uniform boundedness principles UBρ, Kohlenbach already considered in [21] a
related generalization of the FAN theorem.

Proposition 3 The theory ILω
� + P[�] proves the Bounded Collection Princi-

ple

bBCρ,τ [�] : ∀̃c(∀z � cρ∃yτA(y, z) → ∃̃b∀z � c∃y � bA(y, z)),

where A is an arbitrary formula. (We use the acronym bBCω[�] for the ag-
gregate of this principle over all types.)

Observation 2 In the above, the formula A is arbitrary (in consonance with
the FAN theorem). The Bounded Contra Collection Principle is (classically)
the contrapositive of the Bounded Collection Principle, restricted to bounded
matrices only. Note that the Bounded Contra Collection Principle is not intu-
itionistically acceptable, even for bounded matrices, ρ = 1 and τ = 0 (it entails
weak König’s lemma, as we shall see).

Proof. Let c monotone be fixed. Assume that

∀z(z � cρ → ∃yτA(y, z)).

By bIPω
∀bd[�] we get

∀z∃̃b(z � cρ → ∃y � bA(y, z)),

which by bACω[�] gives

3 The usual formulation of Brouwer’s FAN theorem in, for instance, section 1.9.24
of [37], differs from the statement herein (seen in the arithmetical setting) in that
it concerns continuity, as opposed to majorizability.
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∃̃f ∀̃a∀z � a∃̃b� fa(z � cρ → ∃y � bA(y, z)),

which implies

∃̃f ∀̃a∀z � a(z � cρ → ∃y � faA(y, z)).

Taking a := c, we get ∃̃b∀z � c∃y � bA(y, z). 2

Theorem 2 (Soundness, General Extension) Consider a fixed language
Lω

�. Let Tω
� be a majorizability theory for Lω

� and assume that (A(z))B is

∃̃b∀̃cAB(b, c, z), where A(z) is an arbitrary formula of Lω
� with its free variables

as displayed. If

ILω
� + P[�] ` A(z),

then there are closed monotone terms t of appropriate types such that

Tω
� ` ∀̃a∀z � a ∀̃cAB(ta, c, z).

Proof. Given any principle P ∈ P[�] (where (P )B is ∃̃b∀̃cPB(b, c)), we must
argue that there are monotone closed terms s such that Tω

� ` ∀̃cPB(s, c).
Let us first look at the interpretation of bACω[�]. Assume that (A(x, y))B is
∃̃b∀̃cAB(b, c, x, y). The interpretation of ∀x∃yA(x, y) is

∃̃f, g∀̃a, cB(a, ga, c, f),

where B(a, b, c, f) is ∀x � a∃y � fa∀̃c′ � cAB(b, c′, x, y). The conclusion of
bACω[�] has interpretation

∃̃f, g∀̃a, c∃̃f ′ � f ∀̃a′′ � a∀̃c′′ � c∀̃a′ � a′′B(a′, ga′′, c′′, f ′).

We have to show that there are monotone terms t and q, r1 and r2 such that,
for all monotone f, g, a and c, ∀̃a′ � r1fgac∀̃c′′ � r2fgacB(a′, ga′, c′′, f) →

∃̃f ′ � tfg∀̃a′′ � a∀̃c′′ � c∀̃a′ � a′′B(a′, qfga′′, c′′, f ′).

Let t(f, g) := f , q(f, g) := g, r1(f, g, a, c) = a, r2(f, g, a, c) := c and take f ′ as
f . The implication ∀̃a′ � a∀̃c′ � cB(a′, ga′, c′, f) →

∀̃a′′ � a∀̃c′′ � c∀̃a′ � a′′B(a′, ga′′, c′′, f),

follows due to the monotonicity property of the second entry of B, the mono-
tonicity of g and the transitivity of �.
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Let us now look at the interpretation of bIPω
∀bd[�]. Its premise has interpreta-

tion

∃̃b, d, g∀̃e(∀̃a� ge∀x� aAb(x) → ∃y � b∀̃e′ � eBB(d, e′, y))

while the interpretation of the conclusion is ∃̃b, d, g∀̃e∃b′ � b∀̃e′′ � e
(
b′ � b′∧

(∀̃a� ge′′∀x� aAb(x) → ∃y � b′∀̃e′ � e′′BB(d, e′, y))
)
.

It is now easy to check that there are straightforward monotone terms (pro-
jections) that interpret the above principle.

We now study the interpretation of bMPω
bd[�]. Its antecedent has interpreta-

tion

∃̃b, a(∀̃b′ � b∀̃a′ � a∀y � b′∀x� a′Ab(x, y) → Bb)

while the interpretation of the conclusion is

∃̃b, a∃̃b′ � b(∀̃a′ � a∀y � b′∀x� a′Ab(x, y) → Bb).

Again, it is easy to check that there are suitable terms that interpret bMPω
bd[�].

The interpretations of bUDω
∀bd[�] and bBCCω

bd[�] and are straightforward. Fi-
nally, the interpretation of the majorizability axiom is

∃̃f ∀̃a∀x� a∃y � fa(x� y),

which is also interpreted by the identity functional. 2

4.2 The Characterization Theorem

In this section we show that the principles P[�] are exactly the ones needed
for proving the equivalence A↔ (A)B, for arbitrary formulas A.

Proposition 4 (Monotone Axiom of Choice) ILω
� + P[�] proves

(
∀̃a∀̃b∀̃b′ � b[A(a, b′) → A(a, b)] ∧ ∀̃a∃̃bA(a, b)

)
→ ∃̃f ∀̃aA(a, f(a)),

where A is an arbitrary formula of the language Lω
�.

Proof. We argue the above for single variables, instead of tuples (the general
case reduces to this one by induction on the number of variables). Assume
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the antecedent. In particular, we have ∀a(a � a → ∃b(b � b ∧ A(a, b))). By
bIPω

∀bd[�] we get

∀a∃̃b(a� a→ ∃b′ � b(b′ � b′ ∧ A(a, b′)))

which implies, by the monotonicity of A, ∀a∃̃b(a� a→ A(a, b)). By bACω[�]
we have

∃̃f ∀̃a∀a′ � a∃̃b� f(a)(a′ � a′ → A(a′, b)).

By the monotonicity of A, ∃̃f ∀̃a∀̃a′ � aA(a′, f(a)) follows. We now conclude
that ∃̃f ∀̃aA(a, f(a)). 2

Theorem 3 (Characterization) Let A be an arbitrary formula of Lω
�. Then

ILω
� + P[�] ` A↔ (A)B.

Proof. The proof is by induction on the logical structure of A. Let us assume
that A ↔ (A)B and B ↔ (B)B. It is easy to see that (A → B)B implies
A→ B. For the reverse implication, we have that

∃̃b∀̃cAB(b, c) → ∃̃d∀̃eBB(d, e),

implies (by intuitionistic logic)

∀̃b(∀̃cAB(b, c) → ∃̃d∀̃eBB(d, e)).

By bIPω
∀bd[�] and the monotonicity property we get

∀̃b∃̃d(∀̃cAB(b, c) → ∀̃eBB(d, e)).

Again by intuitionistic logic we obtain

∀̃b∃̃d∀̃e(∀̃cAB(b, c) → BB(d, e)).

By bMPω
bd[�] we have

∀̃b∃̃d∀̃e∃̃c(∀̃c′ � cAB(b, c) → BB(d, e)).

By two applications of Proposition 4 we have

∃̃f, g∀̃b, e(∀̃c′ � g(b, e)AB(b, c) → BB(f(b), e)).

The equivalence between A∨B and (A∨B)B can be shown in ILω
�+bUDω

∀bd[�],
while the equivalence between A∧B and (A∧B)B relies purely on intuition-
istic logic. The equivalence ∀xA(x) ↔ (∀xA(x))B depends on MAJω[�] and
bACω[�] while ∃xA(x) ↔ (∃xA(x))B relies on MAJω[�] and bBCCω

bd[�]. For
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bounded quantifiers ∀x�tA(x) and ∃x�tA(x) we use bBCω[�] and bBCCω
bd[�]

respectively. 2

5 The Negative Translation

We extend a version of the ‘negative’ translation of classical logic into intu-
itionistic logic to the language Lω

� of bounded quantifiers, and show that the
translation of some important principles are implied by the principles them-
selves (with the help of a form of Markov’s principle and a stability condition).
We use a ‘negative’ translation due to S. Kuroda [29]. This translation is de-
fined in two steps. Firstly, it translates a formula A into a formula A† by
maintaining unchanged atomic formulas, conjunctions, disjunctions, implica-
tions and existential quantifications and inserting a double negation after each
universal quantification. The ‘negative’ translation A′ of A is, by definition,
¬¬A†. We extend this translation to the language Lω

� of the bounded quanti-
fiers in the obvious way:

(1) (∃x� tA)† is ∃x� t A†.
(2) (∀x� tA)† is ∀x� t¬¬A†.

The Stability Axiom S is the statement ∀x0, y0(¬¬(x �0 y) → x �0 y). Note
that this axiom holds in theories of arithmetic because in these theories the
relation ≤0 is decidable. The Stability Axiom lifts to all types:

Lemma 7 For all types σ, ILω
� + S ` ¬¬(x�σ y) → x�σ y.

Proof. The proof is by induction on the type. The base case is the definition
of S. We must show that ILω

� + S ` ¬¬(x �ρ�σ y) → x �ρ�σ y. According to
the rule RL�, it is sufficient to show that ILω

� + S proves

(‡) ¬¬(x�ρ�σ y) ∧ u�ρ v → xu�σ yv ∧ yu�σ yv.

Well, the implication x�ρ�σ y ∧ u�ρ v → xu�σ yv ∧ yu�σ yv is an axiom of
ILω

�. By intuitionistic logic, ILω
� proves

¬¬(x�ρ�σ y ∧ u�ρ v) → ¬¬(xu�σ yv ∧ yu�σ yv).

Now, using the fact that ¬¬(A ∧ B) ↔ ¬¬A ∧ ¬¬B and the induction hy-
pothesis, (‡) follows. 2

Let bACω
bd[�] be the version of the Bounded Choice Principle in which the

matrix A is bounded. The acronym Pbd[�] denotes the modification of P[�]
in which bACω[�] is substituted by bACω

bd[�]. By the proof of Proposition 3,
the theory ILω

� +Pbd[�] guarantees the Bounded Collection Principle bBCω[�]
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for bounded formulas A (this restriction is denoted by bBCω
bd[�]).

Proposition 5 If CLω
� + Pbd[�] ` A then ILω

� + Pbd[�] + S ` A′.

Notation 2 The theory CLω
� is the classical version of ILω

�, i.e., it is obtained
from it by the adjunction of the law of excluded middle. In general, if T is a
intuitionistic theory, CT denotes its classical counterpart.

Proof. The proof is by induction on the derivation of A. The axioms M1 and
M2 are universal and, hence, their negative translations are consequences of
themselves. In order to deal with the rule, the other axioms and the principles
Pbd[�] observe, as a preliminary, that if Ab is a bounded formula, then so is
A†

b. Let us now check the axioms for the bounded quantifiers. The negative
translation of B∀ is the double negation of

∀x� t¬¬A†(x) ↔ ∀x¬¬(x� t→ A†(x)).

It is clear that the above follows (intuitionistically) from B∀ itself. The case
B∃ is even simpler. Let us now study the behaviour of the rule RL� under the
negative translation. Suppose that the theory CLω

�+Pbd[�] proves the premise
(of an instance) of rule RL�:

Ab ∧ u� v → su� tv ∧ tu� tv,

where Ab is a bounded formula. By induction hypothesis, the theory ILω
� +

Pbd[�] + S derives

A†
b ∧ u� v → ¬¬(su� tv ∧ tu� tv).

By intuitionistic logic and the lemma above, we obtain a derivation of

A†
b ∧ u� v → su� tv ∧ tu� tv.

By rule RL�, ILω
� +Pbd[�]+S derives A†

b → s� t and, hence, A†
b → ¬¬(s� t),

as wanted.

Clearly, the negative translation of a majorizability axiom ∀x∃y(x�y) follows
intuitionistically from itself. In the presence of the majorizability axioms, the
Bounded Independence of Premises Principle and the Bounded Markov’s Prin-
ciple are classically true. We now show that ILω

� + Pbd[�] + S ` (bACω
bd[�])′.

An instance of (bACω
bd[�])′ is intuitionistically equivalent to:

(∗) ∀x¬¬∃y(Ab(x, y))
† → ¬¬∃̃f ∀̃a∀x� a¬¬∃y � fa(Ab(x, y))

†

where Ab is a bounded formula. By bMPω
bd[�], the antecedent of the above

formula (∗) implies ∀x∃̃b¬¬∃y � b(Ab(x, y))
†. By bACω

bd[�], we may conclude
that ∃̃f ∀̃a∀x� a∃̃b� fa¬¬∃y � b(Ab(x, y))

†. Using the transitivity of �, the
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following implication is intuitionistically valid:

∃̃b� fa¬¬∃y � b(Ab(x, y))
† → ¬¬∃y � fa(Ab(x, y))

†.

This implies the consequent of (∗), as wanted. In a similar vein, we can show
that ILω

� + Pbd[�] + S ` (bBCω
bd[�])′. Finally the Bounded Contra Collection

Principle follows classically from bBCω
bd[�]. 2

6 Arithmetic

With a view to applications, in this section we associate to each theory of
arithmetic HAω, PRAω

i and GnAω
i (n ≥ 2) a majorizability theory HAω

�, PRAω
i,�

and GnAω
i,� (respectively). We prove some basic facts concerning these ma-

jorizability theories and see how they relate to the original ones.

6.1 Theories of Arithmetic

The theory HAω is a version of Gödel’s quantifier-free calculus T with quanti-
fiers ranging over each finite type, with the axioms and rules of intuitionistic
predicate logic and induction for all formulas of the new language. We keep,
however, Troelstra’s minimal treatment of equality as described in Section 2. 4

In HAω, we can define the usual less than or equal numerical relation ≤0, and
the usual term max0�(0�0), giving the maximum of two numbers. Under HAω,
≤0 is a reflexive and transitive relation and max satisfies the axioms A1 and A2.
We may suppose that ≤0 and max are primitive symbols of the language, and
may take 0 as the distinguished type 0 constant (just add new constants ≤0

and m and adjoin universal numerical axioms characterizing them according
to the usual definitions).

Definition 5 The theory HAω
� in the language Lω

� is the extension of HAω

which has the additional axioms B∃, B∀, M1, M2 and the rule RL�. Moreover,
the induction axiom

A(0) ∧ ∀x(A(x) → A(Sx)) → ∀xA(x)

is extended to all formulas of Lω
� (i.e., the new relation symbols � may occur

in A).

4 Troelstra denotes the theory with the minimal treatment of equality by HAω
0 . For

simplicity, we use the simpler notation, since other treatments of equality will not
be discussed in this paper.
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Observation 3 Note that, as part of the theory HAω (and, hence, as part of
the theory HAω

�), one has the following “equality” axioms for the recursors R,

ER : φ[R0yz/w] ↔ φ[y/w], φ[R(Sx)yz/w] ↔ φ[z(Rxyz, x)/w],

where φ is an atomic formula of Lω
≤ with a distinguished variable w, and

x, y and z are variables of appropriate type. Proposition 2 can be extended
accordingly.

The following result is an adaptation of a result due to Howard in [11]:

Proposition 6 HAω
� is a majorizability theory.

Proof. As discussed above, HAω
� extends ILω

� (where m is max). Clearly, the
arithmetical constants 00 and S1 are self-majorizing (one uses rule RL� to
check that S �1 S). It remains to see that the recursors R can be majorized
(in the sense of �). The basic observation is that Howard’s proof that the
recursors can be majorized (in the sense of ≤∗) only needs the rule RL�, not
the unwarranted implication. 2

The intuitionistic theories of arithmetic GnAω
i (n ≥ 2) were introduced by

Kohlenbach (see [19]) in suitable languages of all finite types. They form a
sequence of increasing strength, closely related to the levels of Grzegorczyk’s
hierarchy of primitive recursive functions (first defined in [10]). These theories
include: (a) a minimization functional µb of type (0 � 1) � 1 with (universal)
axioms stating that µbf

0�1n0 =0 min0 k ≤0 n(fnk =0 0) if such a k ≤0 n ex-
ists, and =0 0 otherwise; and (b) a maximization functional M of type 1 � 1
satisfying the equations Mf0 =0 f0 and Mf(n+1) =0 max0(Mfn, f(n+1)).
They also have suitable recursors meant to define functions by bounded “pred-
icative” recursion. There are only two places in which we do not follow Kohlen-
bach. Firstly (and importantly), we do not include Spector’s weak extension-
ality rule in these theories, 5 and opt instead for the minimal treatment of
equality already discussed above. Secondly (although not essentially), in or-
der to keep in tune with the usual presentation of arithmetical theories, we do
not include in GnAω

i (n ≥ 2) all the true purely universal sentences ∀xA0(x),
where x is a tuple of variables whose types have degree ≤ 2 (it is a known
observation of G. Kreisel that the addition of true universal sentences does
not have any effect on the bounds extracted – see Subsection 7.1 for a gener-

5 The use of the weak extensionality rule was proposed by C. Spector in [35],
since the standard extensionality axiom was shown by Howard [11] not to have a
Dialectica interpretation. It seems, however, that even Spector’s weak rule of ex-
tensionality does not have a bounded functional interpretation, which forces us to
consider systems where equality is treated in a minimal fashion, as Section 2 illus-
trates. The reason for this apparent failure is the fact that the soundness theorem
for b.f.i. makes use of a relativization to majorizable functionals.
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alization of this observation). Due to this last modification, we must explicitly
include in the theories GnAω

i (n ≥ 2) the axiom of quantifier-free induction:

∀f 1, x0(f(0) = 0 ∧ ∀z ≤0 x(f(z) = 0 → f(Sz) = 0) → f(x) = 0).

The theory PRAω
i is obtained from the union of the theories GnAω

i (n ≥ 2) by
adding the “predicative” recursors R̂σ due to Kleene (see [1] for a description
of these recursors). 6

Definition 6 The theories PRAω
i,� and GnAω

i,� (n ≥ 2) in the language Lω
� are

the extensions of PRAω
i and GnAω

i (n ≥ 2), respectively, obtained by adding
the axioms B∃, B∀, M1, M2 and the rule RL�.

Warning 2 The induction available in the new extended theories PRAω
i,� and

GnAω
i,� (n ≥ 2) is exactly the same as that of the original theories, i.e., it does

not include induction for quantifier-free formulas in which the new predicate
symbols � occur.

By the work of Kohlenbach in [19], the following is clear:

Proposition 7 The theories PRAω
i,� and GnAω

i,� (n ≥ 2) are majorizability
theories.

Theorem 4 (Soundness, Arithmetical Extension) Let Tω
� be one of the

theories HAω
�, PRAω

i,� or GnAω
i,� (n ≥ 2), and assume (A(z))B := ∃̃b∀̃cAB(b, c, z),

where A(z) is an arbitrary formula of Lω
� with its free variables as displayed.

If

Tω
� + P[�] ` A(z),

then there are closed monotone terms t of appropriate types of the language of
Tω

� such that

Tω
� ` ∀̃a∀z � a ∀̃cAB(ta, c, z).

Proof. By the Soundness Theorems, it is enough to see that the arithmetical
axioms are interpreted in Tω

�. This is clearly the case for the arithmetical
axioms that are universal statements, and this includes the quantifier-free
induction axioms of the theories PRAω

i,� and GnAω
i,� (n ≥ 2).

It remains to see that the scheme of unrestricted induction can be interpreted
in HAω

�. It is easier to verify the equivalent induction rule. Let (A(x))B be

6 Except for the treatment of equality, PRAω
i is the theory restricted -Ẑω

i of Solomon
Feferman in [6]. This theory is also denoted by ĤA

ω
� in the literature. Charles

Parsons’ quantifier-free theory T0 (see [33]) is an earlier version of these theories.
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∃̃b∀̃cAB(b, c, x), where A is an arbitrary formula. Assume that we have already
monotone terms r, s and t such that

(i) ∀̃cAB(r, c, 0)

and

(ii) ∀̃a0, b, c∀x� a(∀̃c′ � sabcAB(b, c′, x) → AB(tab, c, Sx)).

Notice that (ii) implies

(iii) ∀̃a, b∀x ≤0 a(∀̃cAB(b, c, x) → ∀̃cAB(tab, c, Sx)).

By (i) and (iii), the scheme of induction and the monotonicity of AB on the
first argument, we get

∀̃a, c∀x ≤0 aAB(Φ(a), c, x),

where Φ(a) = Ψ(a, a), and Ψ(x, a) is the iteration functional defined according
to the following recursive clauses: Ψ(0, a) = r

Ψ(Sx, a) = max{Ψ(x, a), t(a,Ψ(x, a))}.

Note that Φ is monotone (by the scheme of induction) and, hence, so is Ψ. 2

6.2 Two distinctive facts

The next result shows that the presence of the rule RL� (and a minimal amount
of arithmetic) entails the failure of the deduction theorem:

Proposition 8 Let Tω
� be one of the theories HAω

�, PRAω
i,� or GnAω

i,� (n ≥ 2).
The deduction theorem fails for Tω

�.

Proof. If the deduction theorem were valid for Tω
� one could prove

∀f, g
(
∀n∀m ≤ n(fm ≤ gn ∧ gm ≤ gn) → f � g

)
.

By the soundness theorem we would have a term t satisfying

∀̃f ∗, g∗∀f � f ∗∀g � g∗
(
∀n ≤ tf∗g∗∀m ≤ n(fm ≤ gn ∧ gm ≤ gn) → f � g

)
.

Let f ∗ = g∗ = 1 and k = t11. We get
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∀f � 1∀g � 1
(
∀n ≤ k∀m ≤ n(fm ≤ gn ∧ gm ≤ gn) → f � g

)
.

Let f be constant zero function up to k and one otherwise, whereas g is one
up to k and zero otherwise. Using rule RL� it is easy to show in Tω

� that f � 1
and g�1. We can also prove the premise of the implication above in Tω

�, which
would entail Tω

� ` f � g. This implies, however,

Tω
� ` ∀n∀m ≤ n(fm ≤ gn ∧ gm ≤ gn).

Clearly a contradiction given the way f and g are defined. 2

Intuitionistic mathematics accepts some results which the classical mathe-
matician rejects, e.g. some versions of the FAN theorem (see [5] for a recent
introduction to intuitionistic mathematics). The derivation of the non-classical
FAN theorem within intuitionistic mathematics relies upon continuity prin-
ciples peculiar to the intuitionistic philosophy of the continuum. From these
continuity principles, one can obtain refutations of laws of classical logic. Al-
though b.f.i. bypasses the intuitionistic principles of continuity via majoriz-
ability (as we have already observed in the introduction) it vindicates a very
general form of the FAN theorem. It so happens that this general form already
refutes laws of classical logic (this seems to be a folklore result). We show next
that this folklore result can be formalized in the theory interpretable by b.f.i.,
via the minimal amount of Markov principle available there, which implies
that b.f.i. is sound for classically false principles.

Proposition 9 Let Tω
� be one of the theories HAω

�, PRAω
i,� or GnAω

i,� (n ≥ 2).
The theory Tω

� + P[�] is inconsistent with classical logic.

Proof. We show that Tω
� + P[�] proves

¬∀x1(∀n0(xn = 0) ∨ ¬∀n0(xn = 0)).

To see this, assume that the sentence prefixed by the negation sign holds. By
bMP0

bd[�] and a bit of intuitionistic arithmetic we may conclude

∀x1∃n0(∀n0(xn = 0) ∨ xn 6= 0).

In particular,

∀x�1 1∃n0(∀n0(xn = 0) ∨ xn 6= 0).

Hence, by bBC1,0[�],

∃k∀x�1 1∃n ≤0 k(∀n0(xn = 0) ∨ xn 6= 0).

This is clearly a contradiction: Just consider the function x1 which has the
value zero for the natural numbers up to k and is equal to one afterwards
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(note that Tω
� proves that x�1 1). 2

Using the terminology of Errett Bishop in [3], the theory interpretable by b.f.i.
refutes the principle of limited omniscience LPO but, according to the results
of Section 4.1, proves the lesser limited principle of omniscience (LLPO).

6.3 Towards Applications

In this subsection, we go through some basic assorted facts that are needed
for the applications.

Lemma 8 The following are derivable in G2A
ω
i,�:

(i) M �1�1 M
(ii) f �1 Mf

(iii) x�τ z → minτ (x, y) �τ z

Observation 4 In the above, min0 is the usual minimum function of the nat-
ural number system, whereas minρ�σ(x, y) is λuρ.minσ(xu, yu).

Observation 5 Instead of Mf we usually write fM . With this notation, prop-
erty 2 above becomes f � fM .

Proof. We just have to be careful and make sure that we use the rule RL�,
not the unwarranted implication ∀u, v(u�v → xu�yv∧yu�yv) → x�y. By
RL�, in order to obtain M�M it is enough to prove that f�1g →Mf�1Mg.
This, on the other hand, follows (again by RL�) from the provability of the
implication f �1 g ∧ n�0 m→Mfn�0 Mgm ∧Mgn�0 Mgm. This is clear.
The other claims of the lemma are also easy. For instance, the last claim is
proved by induction on the types. The base case is trivial. The conditional

x�ρ�σ z → minρ�σ(x, y) �ρ�σ z

follows from the provability of

x�ρ�σ z ∧ u�ρ v → minσ(xu, yu) �σ zv ∧ zu�σ zv.

This holds because, under the antecedent, the induction hypothesis yields
minσ(xu, yu) �σ zv. 2

Definition 7 Let i, j ∈ {0, 1}. By the acronym bACi,j
0 we mean the following

bounded choice principle:

∀xi∃yjA0(x, y) → ∃Φi�j∀xi∃y ≤j ΦxA0(x, y),

30



where A0 is a quantifier-free formula.

Proposition 10 For i, j ∈ {0, 1}, G2A
ω
i,� + Pbd[�] ` bACi,j

0 .

Proof. We argue for bAC1,1
0 (the other choice principles follow from this one).

Assume ∀x1∃y1A0(x, y). By bACω
bd[�], ∃̃Φ1�1∀̃a1∀x�1a∃y�1ΦaA0(x, y). Pick

such a Φ1�1. Given x1, put a1 as xM and use part (ii) of Lemma 8 and part
(iii) of Lemma 2, to obtain the desired conclusion. 2

For i, j ∈ {0, 1}, the usual quantifier-free choice principle ACi,j
0 is

∀xi∃yjA0(x, y) → ∃Φi�j∀xiΦA0(x,Φx),

where A0 is a quantifier-free formula. In virtue of the existence of the mini-
mization functional µb, it is clear that bACi,0

0 ⇒ ACi,0
0 , for i ∈ {0, 1}.

Theories of arithmetic satisfy the Stability Axiom (they even decide x ≤0 y).
The corollary below is a consequence of Proposition 5 together with the fact
that the theories considered are closed under the negative translation:

Corollary 1 Let Tω
� be one of the theories HAω

�, PRAω
i,� or GnAω

i,� (n ≥ 2).
If CTω

� + Pbd[�] ` A then Tω
� + Pbd[�] ` A′.

Each of the theories of arithmetic Tω that we are considering was extended
by a corresponding majorizability theory Tω

�. Theorems of these extended
theories give rise, in a natural way, to theorems of the original theories. Let
us see how. Given A any formula of the language Lω

�, A∗ denotes the formula
obtained from A by replacing each intensional symbol �σ by the corresponding
extensional relation ≤∗

σ and, afterwards, unravelling (in the obvious way) the
bounded quantifiers obtained thereof. Formally,

Definition 8 For any given formula A in the language Lω
�, we define the

formula A∗ of the language Lω
≤ by recursion on A as follows:

(a) If A is an atomic formula in which � does not occur, A∗ is A.
(b) For any given type σ, (t�σ q)

∗ is t ≤∗
σ q.

(c) (A2B)∗ is A∗2B∗, for 2 ∈ {∧,∨,→}.
(d) (QxA)∗ is QxA∗, for Q ∈ {∀,∃}
(e) For any given type σ, (∀x �σ tA)∗ is ∀x(x ≤∗

σ t → A∗) and (∃x �σ tA)∗ is
∃x(x ≤∗

σ t ∧ A∗).

The following result is clear:

Proposition 11 Let Tω be one of the theories HAω, PRAω
i or GnAω

i (n ≥ 2),
and let A(z) be an arbitrary formula of Lω

�, with its free variables as displayed.
We have:
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Tω
� ` A(z) ⇒ Tω ` A∗(z).

Notice that (as remarked in Warning 2) the amount of induction available in
theories with restricted induction must remain the same when the extension
to the language Lω

� is made. This is essential for Proposition 11 to hold,
since via the transformation (·)∗, the prime formulas � become formulas of
high complexity. This is no problem, however, for theories already containing
unrestricted induction as HAω.

7 Application: Interpreting UWKL

Weak König’s Lemma, WKL for short, is the well-known principle saying that
every infinite tree of finite sequences of 0’s and 1’s has an infinite path. We
formalize this axiom as follows:

∀f 1(∀k∃s ∈ {0, 1}kf tree(s) =0 0 → ∃x ≤1 1∀k f tree(x(k)) =0 0),

where we are using the notation of [1]. This notation is explained swiftly. Given
f 1, f tree is a functional of type 1 so that, for any s0,

f tree(s) =0 0 ↔ (s ∈ {0, 1}<ω ∧ ∀q ⊆ s(f tree(q) =0 0)),

where s ∈ {0, 1}<ω means that s is (the code of) a binary sequence, and
q ⊆ s means that q is (the code of) an initial sequence of s. The functional
f tree itself is obtained from f by pruning away extraneous sequences (formally,
λf 1.f tree is a functional of type 1 � 1). The expression s ∈ {0, 1}k means that
s is (the code of) a binary sequence of length k (note that the quantification
∃s ∈ {0, 1}k(. . .) is first-order bounded). Finally, given k0 and x1, x(k) is
the (code of the) sequence 〈x(0), x(1), . . . , x(k − 1)〉. Uniform weak König’s
lemma (first introduced in [26], def. 2.3), UWKL for short, is the following
strengthening of weak König’s lemma 7 :

∃Φ1�1∀f 1(∀k∃s ∈ {0, 1}kf tree(s) =0 0 → ∀k f tree(Φf(k)) =0 0).

Lemma 9 The following are derivable in G3A
ω
i,�:

(i) ∀f 1(f tree �1 1).
(ii) ∀s0(ŝ�1 1), where ŝ is the functional of type 1 with the same values as the

binary sequence s up to its length, and zero otherwise (in case s /∈ {0, 1}<ω,
ŝ is constantly zero).

7 Note that uniform weak König’s lemma is no longer “weak” in the presence of
full extensionality, as shown in [26].
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Notation 3 The ‘1’ on the right-hand side of ‘�1’ denotes the constant func-
tional λn0.10.

Observation 6 Formally, λs.ŝ is a functional of type 0 � 1.

Proof. We argue (ii) (part (i) is similar). According to rule RL�, in order to
prove that ŝ �1 1, it is enough to prove the implication u ≤0 v → ŝ(u) ≤0 1.
This is clear by the definition of ŝ. 2

Lemma 10 G3A
ω
i,� + bBCCω

bd[�] ` UWKL.

Proof. Let Bounded(f 1, k0) abbreviate ∀s ∈ {0, 1}k f(s) 6=0 0. UWKL? is the
following principle:

∃Φ1�1∀f 1∀k0(¬Bounded(f tree, k) → f tree(Φf(k)) =0 0).

It is clear that UWKL? entails UWKL. We show that G3A
ω
i,� + bBCCω

bd[�] `
UWKL?. Firstly, we claim that G3A

ω
i,� proves

∀k0∃Φ �1�1 1∀g �1 1∀n ≤0 k(¬Bounded(gtree, n) → gtree(Φg(n)) =0 0),

where 11�1 := λf 1, k0.10. The proof of the claim follows closely an argument
of Avigad and Feferman in [1]. Take an arbitrary k0. Define φ1�0 as follows:
Given g1, if the empty sequence ε is not in g1 (i.e., g applied to the code of
ε is not zero), let φg be (the code of) ε; if not, consider the greatest length
` < k + 1 for which there is a sequence s ∈ {0, 1}` such that gtree(s) = 0, and

take φg to be (say) the leftmost such sequence. Define Φ1�1g := φ̂g. By (ii)
of the previous lemma, it is easy to argue that Φ �1�1 1. Let g1 be given. It
does not take much reflection to conclude that

∀n ≤0 k(¬Bounded(gtree, n) → gtree(Φg(n)) = 0).

The claim follows. Using (i) of the previous lemma and the facts that (gtree)tree

and gtree, and Φg and Φgtree are equal pointwise, the claim can be restated
thus:

∀̃f 1, k0∃Φ �1�1 1∀g � f∀n� k(¬Bounded(gtree, n) → gtree(Φg(n)) = 0).

By bBCCω
bd[�], we get UWKL?. 2

Theorem 5 and Corollary 2 below are similar to Theorem 4.8 of [14] and
Theorem 3.2 of [26].

Theorem 5 Let Tω be one of the theories HAω, PRAω
i or GnAω

i (n ≥ 3). If

CTω + bAC1,1
0 + UWKL ` ∀xτ∃yρA0(x, y),
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where τ and ρ are arbitrary types and A0 is a quantifier-free formula (its free
variables as displayed), then there is a closed monotone term qτ�ρ such that

CTω ` ∀aτ∀x ≤∗
τ a∃y ≤∗

ρ qaA0(x, y).

Proof. Suppose that CTω +bAC1,1
0 +UWKL ` ∀xτ∃yρA0(x, y). By Proposition

10 and the previous lemma, CTω
� + Pbd[�] ` ∀xτ∃yρA0(x, y). By Corollary 1,

Tω
� + Pbd[�] ` ∀xτ¬¬∃yρA0(x, y). Using bMPω

bd[�], we get

Tω
� + Pbd[�] ` ∀xτ∃wρ¬¬∃y �ρ wA0(x, y).

By the Soundness Theorem (Arithmetical Extension) and Proposition 11,
there is a closed monotone term qτ�ρ such that,

(++) Tω ` ∀aτ∀x ≤∗
τ a¬¬∃y ≤∗

ρ qaA0(x, y).

The result follows. 2

Corollary 2 Let Tω be one of the theories HAω, PRAω
i or GnAω

i (n ≥ 3). If
CTω +bAC1,1

0 +UWKL ` ∀x0∃y0A0(x, y), where A0 is a quantifier-free formula
(its free variables as displayed), then there is a closed term t1 such that Tω `
∀x0A(x, tx).

Proof. We follow the proof of the previous theorem until (++). In our case,
by letting a0 be x0, we get Tω ` ∀x0¬¬∃y ≤0 qxA0(x, y). The double negation
sign may disappear because first-order bounded formulas are decidable. The
term t can be obtained by bounded search. 2

The theory PRAω + bAC1,1
0 contains the well-known second-order theory RCA0

from the studies in Reverse Mathematics [34]. This is clear because the pres-
ence of AC0,0

0 allows the deduction of Σ0
1-induction and ∆0

1-comprehension.
Therefore, the second-order theory WKL0 – obtained from RCA0 by the ad-
junction of weak König’s lemma – is a sub-theory of PRAω +bAC1,1

0 +UWKL. 8

The following result is essentially due to Kleene [12] (see [1] for an exposition):
There is a natural translation of type 0 terms t of the language of PRAω

i whose
only free variables are of type 0 to terms tPRA of the language of Primitive Re-
cursive Arithmetic PRA, such that if PRAω

i ` t = q, then PRA ` tPRA = qPRA.
The discussion of this paragraph, together with the corollary above, yields the
following result of Harvey Friedman (1976, unpublished):

Corollary 3 If WKL0 ` ∀n∃mA0(n,m), where A0 is a quantifier-free formula
(its variables as displayed) and n and m are numerical variables, then there is
a functional symbol f of the language of PRA such that PRA ` ∀nA0(n, f(n)).

8 The systems RCA0 and WKL0 were introduced by Harvey Friedman in [8] using
a somewhat different language and axioms.
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Ulrich Kohlenbach has been calling attention to the importance (for applica-
tions) of the extraction of bounds for consequences having the general form
∀x1∀z ≤σ sx∃yρA0(x, y, z), where A0 is a quantifier-free formula, ρ ≤ 2 and
σ arbitrary (the special case σ = 1, ρ = 0 is the most important case for
applications). Here follows a result based on section 3 of [18]:

Corollary 4 Let Tω be one of the theories HAω, PRAω
i or GnAω

i (n ≥ 3). If
CTω + bAC1,1

0 + UWKL ` ∀x1∀z ≤σ sx∃yρA0(x, y, z), where ρ ≤ 2, s1�σ is a
closed term, and A0 is a quantifier-free formula (its free variables as displayed),
then there is a closed monotone term t such that

CTω ` ∀x1∀z ≤σ sx∃y ≤ρ txA0(x, y, z).

Proof. Write the universal formula z ≤ρ sx as ∀uB0(u, x, z), withB0 quantifier-
free. Then

CTω + bAC1,1
0 + UWKL ` ∀x1, zσ∃yρ, u(B0(u, x, z) → A0(x, y, z)).

Let s̃ be a closed term such that Tω ` s ≤∗
1�σ s̃. We apply Theorem 5 with a

the pair xM , s̃xM , and infer

CTω ` ∀x1∀z ≤∗
σ s̃x

M∃y ≤∗
ρ qx

M(s̃xM)∃u(B0(u, x, z) → A0(x, y, z)),

for a certain closed monotone term q (we disregard the bound on u). Using
the fact that sx ≤∗

σ s̃x
M (and hence z ≤σ sx→ z ≤∗

σ s̃x
M), we get

CTω ` ∀x1∀z ≤σ sx∃y ≤∗
ρ qx

M(s̃xM)A0(x, y, z).

Suppose that ρ is 2 (the other cases are simpler). It is clear that the term t1�2

defined by tx1 := λf 1.(qxM(s̃xM))fM does the job. 2

7.1 A Note on a Class of Postulates

Georg Kreisel has remarked in several papers that the use of lemmata con-
stituted by true universal sentences in proofs of ∀∃ theorems has no impact
in the extraction of bounds. In [14], Kohlenbach generalized this observation
by considering sets of sentences ∆ of the form ∀b∃u ≤ rb∀vB0(v, u, b), where
v, u and b are of arbitrary type, r is a closed term and B0 is quantifier-free
(many principles of analysis, such as weak König’s lemma or Brouwer’s fixed
point theorem, can be put in this form: see [17,20]). He introduced a weak-
ening ∆w of ∆ (its ε-weakening) constituted essentially by sentences of the
form ∀b, v∃u ≤ rb∀v′ ≤∗ vB0(v

′, u, b), each one corresponding to a sentence
of ∆. In Kohlenbach’s work, the verification of the bounds obtained from the
analysis of ∀∃ theorems takes place (in general) in a theory that replaces ∆ by
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a strengthening of ∆w (obtained by a partial Skolemization of the sentences
thereof). This strengthening seems to be necessary due to the fact that m.f.i.
interprets (even in a classical context) the axiom of quantifier-free choice for
arbitrary types. In our context, however, where only restricted forms of choice
can be handled, ∆w is all that is needed for the verification:

Theorem 6 Let Tω be one of the theories HAω, PRAω
i or GnAω

i (n ≥ 2).
Suppose that

CTω + bAC1,1
0 + ∆ ` ∀xτ∃yρA0(x, y),

where τ and ρ are arbitrary types, A0 is a quantifier-free formula (its free
variables as displayed), and ∆ is a class of sentences as described above. Then
there is a closed monotone term qτ�ρ such that

CTω + ∆w ` ∀aτ∀x ≤∗
τ a∃y ≤∗

ρ qaA0(x, y),

where ∆w is the weakening of ∆ described above.

Proof. Take r̃ such that Tω
� ` r � r̃, and write the universal formula u ≤ rb

as ∀wC0(w, u, b), with C0 quantifier-free. Consider the class ∆� of sentences
of Lω

� formed by

∀̃b∀b′ � b∀̃v∀̃w∃u� r̃b∀v′ � v∀w′ � w(C0(w
′, u, b′) ∧B0(v

′, u, b′)),

each one corresponding to a sentence of ∆. Using bBCCω
bd[�], each of the

above sentences implies ∀̃b∀b′ � b∃u � r̃b∀v, w(C0(w, u, b
′) ∧ B0(v, u, b

′)). By
MAJω[�], each of these sentences implies, in turn, the corresponding one in
∆. Therefore,

CTω + Pbd[�] + ∆� ` ∀x∃yA0(x, y).

Since each sentence of ∆� implies its negative translation, we get

Tω
� + Pbd[�] + ∆� ` ∀x∃z¬¬∃y � z A0(x, y).

It is clear that the bounded functional interpretations of the sentences in ∆�

are of the form ∀̃F , with F a bounded formula, and that they are implied
by the original sentences themselves. Hence, by (an obvious extension of) the
Soundness Theorem (Arithmetical Version), we infer that

Tω
� + ∆� ` ∀a∀x� a¬¬∃y � qaA0(x, y),

for a suitable closed monotone term q. By (an obvious extension of) Proposi-
tion 11, we conclude that

CTω + ∆∗
� ` ∀a∀x ≤∗ a∃y ≤∗ qaA0(x, y).
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It is clear that ∆w ⇒ ∆∗
� (using the fact that α ≤ β ∧ β ≤∗ γ → α ≤∗ γ). We

are done. 2

Weak König’s lemma provides an instructive case. Kohlenbach showed in [14]
that WKL can be replaced by a ∆-sentence, namely (the following is a slight
simplification due to Avigad and Feferman in [1]):

∀f 1∃x ≤1 1∀k0(¬Bounded(f tree, k) → f tree(x(k)) =0 0).

Therefore, one can extract a bound from a proof of a ∀∃ sentence in CTω +
bAC1,1

0 + WKL, and verify it in CTω together with the following weakening of
WKL:

∀f 1∀n0∃x ≤1 1∀k ≤0 n(¬Bounded(f tree, k) → f tree(x(k)) =0 0).

Observe that this weakening is already provable in CTω. This is in tune with
what was proved in the previous section.

8 Application: Uniform Boundedness

The Boundedness Principle for type 2 functionals, abbreviated by BF2, is the
statement ∀Φ2∀h1∃n0∀f ≤1 h [Φ(f) ≤0 n]. This principle is intuitionistically
valid (it is a consequence of the FAN theorem) although it is easily seen to be
classically false. In [19], Kohlenbach considered versions of this principle, and
showed that in suitable classical settings with full extensionality certain of its
consequences are true (Kohlenbach’s result is actually a conservation result of
a false theory over a true one).

In the following definition, we consider a very general boundedness principle,
and prove a corresponding conservation result.

Definition 9 Let τ be an arbitrary type. The Uniform Boundedness Principle
for type τ � 1 functionals, which we abbreviate by UBFτ�1, is

∀G0�(τ�1)∀B0�τ∃g0�1∀k0∀Φ ≤τ Bk [G(k,Φ) ≤1 gk].

Theorem 7 Suppose that CTω is PAω, PRAω or GnAω (n ≥ 2). If

E-CTω + bAC0,1
0 + AC1,0

0 + UBFτ�1 ` ∀x0/1∃yρA0(x, y),

where ρ is an arbitrary type and A0 is a quantifier-free formula (its free vari-
ables as displayed), then there is a closed monotone term q0/1�ρ such that

CTω ` ∀x0/1∃y ≤∗
ρ qxA0(x, y).
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Observation 7 The theory E-CTω is the theory CTω together with full exten-
sionality. Given s and t terms of type ρ := ρ1 � (. . . � (ρk � 0) . . .) we say
that s =ρ t if ∀yρ1

1 . . . ∀yρk
k (sy1 . . . yk =0 ty1 . . . yk). Full extensionality is the

collection of axioms of the form ∀zρ�τ∀xρ, yρ(x =ρ y → zx =τ zy).

Notation 4 The expression x0/1 means that x can be of type 0 or 1.

Proof. Suppose A := ∀x0/1∃yρA0(x, y) is a theorem of the theory E-CTω +
bAC0,1

0 + AC1,0
0 + UBFτ�1. In the presence of full extensionality, UBFτ�1 is a

consequence of (actually, it is equivalent to)

(∗∗) ∀G0�(τ�1)∀B0�τ∃g0�1∀k0∀Φτ [G(k,minτ (Bk,Φ)) ≤1 gk]

To see this, let G0�(τ�1) and B0�τ be given functionals. By (∗∗), there is g0�1

so that ∀k0∀Φτ [G(k,minτ (Bk,Φ)) ≤1 gk]. Take Φτ with Φ ≤τ Bk. It is clear
that minτ (Bk,Φ) =τ Φ. By extensionality, G(k,minτ (Bk,Φ)) =1 G(k,Φ).
Hence G(k,Φ) ≤1 gk.

By the above, E-CTω +bAC0,1
0 +AC1,0

0 +(∗∗) ` A. Noticing that the quantifiers
of type (essentially) greater than 1 in (∗∗) are universal and appear positively,
it follows by elimination of extensionality (using a technique of H. Luckhardt
in [30]) that CTω + bAC0,1

0 + AC1,0
0 + (∗∗) ` A. Thus, by Proposition 10,

CTω
� + Pbd[�] + (∗∗) ` A.

We now claim that Tω
� + Pbd[�] ` (∗∗). Let us reason within Tω

� + Pbd[�].

Suppose that G0�(τ�1) and B0�τ are given. By the Majorization Axioms, we
can take G̃0�(τ�1) and B̃0�τ with G �0�(τ�1) G̃ and B �0�τ B̃. Define g0�1

as λk0.G̃(k, B̃k). Fix k0 and take an arbitrary functional Φτ . By Lemma 8,
minτ (Bk,Φ) �τ B̃k. Thus, G(k,minτ (Bk,Φ)) �1 G̃(k, B̃k). By part (iii) of
Lemma 2, we conclude that G(k,minτ (Bk,Φ)) ≤1 gk. The claim is proved.
Therefore,

CTω
� + Pbd[�] ` ∀x0/1∃yρA0(x, y).

By Corollary 1, Tω
� + Pbd[�] ` (∀x0/1∃yρA0(x, y))

′. By bMPω
bd[�], the theory

Tω
� +Pbd[�] proves ∀x0/1∃zρ¬¬∃y�ρ zA0(x, y). Now, the Soundness Theorem

(Arithmetical Extension) and Proposition 11 yield a closed monotone term
q0/1�ρ such that

Tω ` ∀a0/1∀x ≤∗
0/1 a∃z ≤∗

ρ qa¬¬∃y ≤∗
ρ z A0(x, y).

By the transitivity of ≤∗
ρ, Tω ` ∀a0/1∀x ≤∗

0/1 a¬¬∃y ≤∗
ρ qaA0(x, y). If the

type of x is 1 (the case 0 is even simpler), we infer that

Tω ` ∀x1¬¬∃y ≤∗
ρ txA0(x, y),
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where t := λx.qxM . The conclusion of the theorem follows. 2

The above theorem also holds for functionals G of type 0 � (τ � 0), yielding
the so-called UBFτ�0 principles. Plainly, in order to put to use the above
theorem one must have interesting functionals G of appropriate type around.
This is potentially the case when τ = 1 because the presence of AC1,0

0 allows
one to obtain functionals of type of type 1 � 0 from quantifier complexes of
the form ∀f 1∃n0. The principle, UBF1�0 (or UBF2), is:

∀Φ0�2∀h0�1∃g1∀k0∀f ≤1 hk[Φ(k, f) ≤0 gk].

It is a version of Kohlenbach’s principle F:

∀Φ0�2∀h0�1∃ψ0�1∀k0∀f ≤1 hk[Φ(k, f) ≤0 Φ(k, ψk)]. 9

Kohlenbach’s principle is seemingly stronger than UBF2, insofar as it guaran-
tees the (uniform) attainment of the maximum by the functional Φ. Yet, we
will show in Section 9 that they are equivalent over E-G3A

ω + AC1,0
0 .

The Uniform Σ0
1-Boundedness Principle, Σ0

1-UB for short, also introduced by
Kohlenbach in [19], is

∀h0�1
[
∀k0∀f≤1hk∃n0A0(f, h, k, n) → ∃g1∀k0∀f≤ 1hk∃n ≤0 gkA0(f, h, k, n)

]
where A0 is a quantifier-free formula (which may contain parameters of arbi-
trary type). In [22], Kohlenbach showed that this false principle implies (even
relative to systems as weak as G2A

ω) that all functions f from [0, 1] into the
real numbers are uniformly continuous (with a modulus of uniform continu-
ity). Therefore, all continuity requirements may be dropped, i.e. functions f
from [0, 1] into the real numbers can just be treated as arbitrary functionals
of type 1 � 1 that respect the notion of equality between real numbers. It also
allows for particularly simple proofs of

• the attainment of the maximum of a function in C[0, 1],
• Dini’s theorem,

among others.

We finish this section with a (version of a) result of Kohlenbach.

Corollary 5 Suppose that CTω is PAω, PRAω and GnAω (n ≥ 2). Let s1�1

be a closed term, and A0(x
1, yρ, z1) be a quantifier-free formula with its free

9 This principle was introduced in [19], along with a weaker version F−, different
from UBF2 (see also the forerunner F0 in [18]). Some years later, Kohlenbach showed
(see [25]) that in the presence of full extensionality and a form of quantifier-free
choice, F is actually implied by the weaker F−.
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variables as shown. If

E-CTω + bAC0,1
0 + AC1,0

0 + Σ0
1-UB ` ∀x1∀z ≤1 sx∃yρA0(x, y, z),

where ρ ≤ 2, then there is a closed monotone term t1�ρ such that

CTω ` ∀x1∀z ≤1 sx∃y ≤ρ txA0(x, y, z).

Proof. We claim that Σ0
1-UB follows from UBF2 in the presence of AC1,0

0 . Let
h0�1 be given and assume that ∀k0∀f ≤1 hk∃n0A0(f, h, k, n). Using AC1,0

0 , it
is easy to see that we may infer that

∃Φ0�(1�0)∀k0∀f ≤1 hkA0(f, h, k,Φkf).

By UBF2 there is g1 such that ∀k0∀f ≤1 hk[Φkf ≤0 gk]. The claim follows.
By Theorem 7 there is a closed monotone term q1�(1�ρ) such that CTω proves
that

∀x1∀z ≤1 sx∃y ≤∗
ρ qxz A0(x, y, z).

Let s̃1�1 be a closed term such that s ≤∗ s̃. Suppose that ρ is of type 2 (types
0 and 1 are easier). The term t1�2 defined by tx1f 1 := (qxM(s̃xM))fM will
do. 2

For the connoisseur, it should be noted that the theory Tω in which the veri-
fication of the bounding term is made is the same as the underlying theory in
the premise, even when the theory is G2A

ω (compare this with theorem 4.21
of [19]). Note, however, that our theories have a weaker version bAC0,1

0 of the
quantifier-free axiom of choice AC0,1

0 (this is no real weakening, except perhaps
for G2A

ω – see the next section).

9 Refinements

We refine the main theorem of the previous section in two ways. Given f a
functional of type 1 and n a number, let f, n be the functional of type 1 that
coincides with f for inputs k <0 n, and is zero for k ≥0 n. Formally, λf, n.f, n
is a functional of type 1 � (0 � 1).

The next proof relies on an argument of Kohlenbach in [18]:

Proposition 12 The theory E-G2A
ω + AC1,0

0 + BF2 proves

∀Φ2∀f 1∃n0∀r ≥0 n[Φ(f) =0 Φ(f, r)].

Proof. By extensionality, it follows that
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∀Φ2∀f 1, g1∃n0(∀k < n(fk =0 gk) → Φ(f) =0 Φ(g)).

Fix Φ2. It is an easy consequence of AC1,0
0 that there is µ of type 1 � (1 � 0)

such that:

∀f 1, g1(∀k < µfg(fk =0 gk) → Φ(f) =0 Φ(g)).

Fix now f 1. By BF2, there is n0 such that,

∀g ≤1 f(µfg ≤0 n).

Therefore,

∀g ≤1 f(∀k < n(fk =0 gk) → Φ(f) =0 Φ(g)).

The proposition clearly follows. 2

We need to be able to do sequence coding in the proofs of the next two
propositions. Hence, we work with the level 3 of the Grzegorczyk’s hierarchy:

Proposition 13 E-G3A
ω + AC1,0

0 + BF2 ` AC1,1
0 .

Proof. Assume that ∀f 1∃g1A0(f, g). By the previous proposition, this is
equivalent to ∀f 1∃n0A0(f, g, n) which, in turn, implies

∀f 1∃s0(s ∈ ω<ω ∧ A0(f, ŝ)),

where s ∈ ω<ω says that s is a (finitely long) sequence of natural numbers. By

AC1,0
0 , take Φ1�0 so that ∀f 1A0(f, Φ̂f). The functional Ψ1�1 := λf 1.Φ̂f does

the job. 2

By the above proposition, in Theorem 7 we can substitute the hypothesis
bAC0,1

0 + AC1,0
0 by the more encompassing AC1,1

0 provided that we rule out the
theory G2A

ω. More interestingly, if we now weaken the hypothesis by removing
the false (for τ non zero) principle UBFτ�1 we get a true theory with the choice
principle AC1,1

0 for which the theorem (again, with the exception of G2A
ω) holds

good. However, this result is obtained in a very roundabout way, via a false
extension. Is there a more direct route?

Before we consider the second refinement of Theorem 7, we digress in order
to show the following (as promised in the previous section):

Proposition 14 Over the theory E-G3A
ω + AC1,0

0 , UBF2 entails Kohlenbach’s
principle F.

Proof. Let Φ0�2 and h0�1 be given functionals. By UBF2, there is g1 such that
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∀k0∀f ≤1 hk [Φ(k, f) ≤0 gk].

According to Proposition 12, ∀k0, f1∃n0 [Φ(k, f) =0 Φ(k, f, n)). By AC1,0
0 , it is

easy to see that there is M0�2 such that ∀k0, f1 [Φ(k, f) =0 Φ(k, f,M(k, f))].
We now apply UBF2 again (this time with respect to M and h) in order to get
e1 such that

∀k0∀f ≤1 hk [M(k, f) ≤0 ek].

Consider the formula A defined by,

A(k0,m0) := ∃s ∈ {0, 1, . . . , hk}<ek [Φ(k, ŝ) = m],

where the above notation means that s is a sequence of length less than ek
constituted by elements less than or equal to hk. Clearly, A is a first-order
bounded formula and, thence, equivalent to a quantifier-free formula.

Fix k0 momentarily. The theory E-G3A
ω has enough induction to show that

there is the largest element mk ≤0 gk such that A(k,mk). Therefore:∀k0∃m ≤0 gk (∃s ∈ {0, 1, . . . , hk}<ek (Φ(k, ŝ) = m) ∧

∀m′ ≤0 gk(A(k,m′) → m′ ≤ m)).

Using the minimization functional µb (to choose the numerically least s above),
it is clear that there is ψ∗ of type 1 such that

∀k0(ψ∗k ∈ {0, 1, . . . , hk}<ek ∧ ∀m′ ≤0 gk(A(k,m′) → m′ ≤0 Φ(k, ψ̂∗k)))

It is clear that ψ0�1 := λk.ψ̂∗k satisfies ∀k0∀f ≤1 hk (Φ(k, f) ≤0 Φ(k, ψk)). 2

Let us refine Theorem 7 again, this time in a direction that is applicable to
the theory G2A

ω as well. In this refinement, the matrix A of the theorem is
allowed to be of a more general form:

Definition 10 Let L be the language of arithmetic. We say that a formula is
0-bounded if all its quantifiers are of the form ∀n0(n ≤0 t→ . . .) or ∃n0(n ≤0

t∧ . . .), where t is a term of type 0, with parameters of any type, in which the
variable n does not occur. A formula is 1-bounded if all its quantifiers are like
the quantifiers occurring in the 0-bounded formulas or, else, are of the form
∀f 1(f ≤1 t → . . .) or ∃f 1(f ≤1 t ∧ . . .), where t is a term of type one, with
parameters of any type, in which the variable f does not occur.

In order to extend Theorem 7 to 1-bounded matrices, we perform a ‘sandwich
argument’.

Definition 11 We associate to each 1-bounded formula A of the language Lω
≤
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formulas Al, Ac and Ar. We define recursively Al, Ac and Ar according to the
following clauses:

(1) If A is atomic, Al, Ac and Ar are all the same and equal to A.
(2) (A2B)\ is A\2B\, where 2 ∈ {∧,∨} and \ ∈ {l, c, r}.
(3)a) (A→ B)l is Ar → Bl;

b) (A→ B)c is Ac → Bc;
c) (A→ B)r is Al → Br.

(4) (Qz ≤0 tA(z))\ is Qz �0 t[A(z)]\, where Q ∈ {∀,∃} and \ ∈ {l, c, r}.
(5)a) (∀f ≤1 tA(f))l is ∀f �1 t

M [A(min1(t, f))]l;
b) (∀f ≤1 tA(f))c is ∀f [A(min1(t,min1(t

M , f)))]c;
c) (∀f ≤1 tA(f))r is ∀f �1 t

M [A(min1(t,min1(t
M , f)))]r.

(6)a) (∃f ≤1 tA(f))l is ∃f �1 t
M [A(min1(t,min1(t

M , f)))]l;
b) (∃f ≤1 tA(f))c is ∃f [A(min1(t,min1(t

M , f)))]c;
c) (∃f ≤1 tA(f))r is ∃f �1 t

M [A(min1(t, f))]r.

Observe that Ac is still a formula of Lω
≤, whereas Al and Ar are formulas of

the extended language Lω
�. We now remind the reader of Definition 8, where

to each formula A of Lω
� we associate the formula A∗ of Lω

≤ by replacing each
�σ by the corresponding ≤∗

σ.

Lemma 11 Let A be a 1-bounded formula of L.

(i) E-G2A
ω
i proves that A, Ac, (Al)

∗ and (Ar)
∗ are all equivalent.

(ii) G2A
ω
i,� proves Al → Ac and Ac → Ar.

Proof. It is clear that, in the presence of full extensionality, A and Ac are
equivalent. The proof of the equivalences Ac ↔ (Al)

∗ and Ac ↔ (Ar)
∗ require

simultaneous induction. Let us look in some detail at equivalence Ac ↔ (Al)
∗

for the clause ∀f ≤1 tA(f). In this case,

(1) (∀f ≤1 tA(f))c is ∀f [A(min1(t,min1(t
M , f)))]c;

(2) [(∀f ≤1 tA(f))l]
∗ is ∀f ≤∗

1 t
M [A(min1(t, f))l]

∗.

Since min1(t
M , f) ≤∗

1 tM holds, it is clear (by induction hypothesis) that
(Al)

∗ → Ac. The reverse implication uses extensionality (and the induction
hypothesis).

Claim (ii) is also proved by simultaneous induction. Let us look at the im-
plication Al → Ac for the clauses ∀f ≤1 tA(f) and ∃f ≤1 tA(f). We
first consider the universal case. Suppose Al, i.e., ∀f �1 t

M [A(min1(t, f))]l.
Take any f 1. By (ii) and (iii) of Lemma 8, min1(t

M , f) �1 t
M . Therefore,

[A(min1(t,min1(t
M , f)))]l. Using the induction hypothesis and the arbitrari-

ness of f , we get Ac. The existential case is straightforward. 2

We may now show that Theorem 7 holds good even when the formula proven is
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∀x0/1∃yρA1(x, y) with A1 a 1-bounded formula, provided that the verification
of the conclusion takes place in E-CTω, where full extensionality is available
(as opposed to plain CTω):

Theorem 8 Suppose that CTω is PAω, PRAω or GnAω (n ≥ 2). If

E-CTω + bAC0,1
0 + AC1,0

0 + UBFτ�1 ` ∀x0/1∃yρA1(x, y),

where ρ is an arbitrary type and A1 is a 1-bounded formula (its free variables
as displayed), then there is a closed monotone term q0/1�ρ such that

E-CTω ` ∀x0/1∃y ≤∗
ρ qxA1(x, y).

Proof. Suppose that

E-CTω + bAC0,1
0 + AC1,0

0 + UBFτ�1 ` ∀x0/1∃yρA1(x, y).

By part (i) of the previous proposition, A1(x, y) above can be replaced by
[A1(x, y)]c. Following the proof of Theorem 7, we easily get to the point where

CTω
� + Pbd[�] ` ∀x0/1∃yρ[A1(x, y)]c

(notice that the formula [A1(x, y)]c has only quantifiers of type 0 or 1 and,
hence, remains unchanged in the process of elimination of extensionality). At
this point we invoke part (ii) of the previous proposition to get

CTω
� + Pbd[�] ` ∀x0/1∃yρ[A1(x, y)]r.

By Corollary 1, Tω
� + Pbd[�] ` (∀x0/1∃yρ[A1(x, y)]r)

′. Using the fact that
[[A1(x, y)]r]

† is a bounded formula, an application of bMPω
bd[�] shows that

the theory Tω
� + Pbd[�] proves ∀x∃z¬¬∃y � z[[A1(x, y)]r]

†. By the Soundness

Theorem (Arithmetical Version), there is a closed monotone term q0/1�ρ such
that

Tω ` ∀a0/1∀x ≤∗
τ a¬¬∃y ≤∗

ρ qa([[A1(x, y)]r]
†)∗.

If the type of x is 1 (the case 0 is easier), we infer

Tω ` ∀x1¬¬∃y ≤ρ tx([[A1(x, y)]r]
†)∗,

where t is as in the proof of Theorem 7. It is clear that this entails

CTω ` ∀x1∃y ≤∗
ρ tx ([A1(x, y)]r)

∗.

Now, by (i) of the previous proposition we conclude that

E-CTω ` ∀x1∃y ≤∗
ρ txA1(x, y). 2
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