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Abstract 
 
We argue that the basic notions of mathematics (number, set, etcetera) can only be properly formulated in an 
informal way. Mathematical notions transcend formalizations and their study involves the consideration of other 
mathematical notions. We explain the fundamental role of categoricity theorems in making these studies 
possible. We arrive at the conclusion that the notion of mathematical consequence is ultimately defeasible, and 
that we must rely on degrees of evidence. 
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1. Introduction 
 

The classical structure of the natural numbers with 0 and the successor function has a 
second-order categorical axiomatization. The axioms say that no two numbers have the same 
successor, that 0 is not a successor and that for every set, (i) if 0 belongs to the set and (ii) the 
successor of each element of the set belongs to the set, then all numbers belong to the set. These 
axioms are due to Richard Dedekind in his famous essay Was sind und was sollen die Zahlen.1 
Dedekind proved that any two structures that satisfy his axioms are isomorphic. One is tempted 
by this categoricity result to conclude that Dedekind’s axiomatization is complete (and, as a 
result, that it proves all true number-theoretic statements). The reasoning is as follows. Suppose 
that P is a number-theoretic statement and that neither P nor its negation are consequences of 
Dedekind’s axioms. Since P is not a consequence of the axioms, there is a model of the axioms 
in which P is false. Similarly, there is also a model of the axioms in which P is true. This is 
impossible because these two models couldn’t be isomorphic. Is this argument correct? What 
is its significance? The first thing to notice is that this argument can be turned into an 

                                                
§ I acknowledge the support of Fundação para a Ciência e a Tecnologia [UID/MAT/04561/2013] and Centro de 
Matemática, Aplicações Fundamentais e Investigação Operacional of Universidade de Lisboa. 
* In his last email message to me, Sol wrote about (a first version of) this paper of mine saying that “(he) had 
(finally) a chance to read it more seriously. It is beautifully written with a lot of stimulating ideas, but I will still 
need to read it once more to see if I have any useful comments.” The kind words were characteristic of him. 
Unfortunately, his passing some seven months after this exchange cut the dialogue short. The present paper is 
dedicated to his memory. 
1 Richard Dedekind, Was sind und was sollen die Zahlen? (Braunschweig: Vieweg, 1888). Based on Dedekind’s 
notion of simply infinite system, Giuseppe Peano gave in his Arithmetices principia, nova methodo exposita 
(Torino: Bocca, 1889) a formulation of these axioms using a symbolic system close to the one used today in 
formal languages. The well known formal theory of first-order arithmetic PA (Peano Arithmetic) is named after 
Peano.	
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impeccable argument within set theory. In set theory one can define with mathematical rigor 
the notion of (full) second-order structure for a formal second-order language, as well as the 
accompanying notions of truth (of a sentence with respect to a given structure) and of 
semantical consequence. The parenthetic ‘full’ means that the range of the second-order 
variables is constituted by the full power set of the first-order domain (and not, as in Henkin 
models, by subcollections of the power set). With these mathematical notions in place, the 
above proof can be given with mathematical precision. 

The structure of the real numbers also has a second-order categorical axiomatization. 
Even set theory enjoys a result of this kind. In an important paper of 1930, Ernst Zermelo 
showed that the second-order version of the formal theory ZFC is quasi-categorical in the sense 
that given any two models of second-order ZFC, one of them is isomorphic to an initial segment 
of the cumulative hierarchy of the other.2 It goes without saying that all these results can be 
proved with mathematical rigor. In fact, they can be formalized in first-order ZFC.3 

The notion of consequence at play in these rigorous mathematical results is semantical. 
By definition, a sentence is a consequence of certain (second-order) axioms if it is true in all 
models of the axioms. It is this notion that justifies a crucial step in the above “completeness 
result” when it is said that if P is not a consequence of the axioms then there is a model of the 
axioms in which P is false. This step is just a rephrasing of the notion of semantical 
consequence. Now, it has been known since the nineteen thirties that this semantical notion 
cannot be identified with a notion of formal derivability (technically, it is not a S0

1-notion). The 
“completeness result” above does not accomplish much from an epistemological point of view 
because it operates with an inappropriate notion of consequence, not with a derivability notion 
as it is used by ordinary mathematicians to prove theorems and gain mathematical knowledge. 
Georg Kreisel has remarked that Hilbert’s program would never have been pursued if one was 
not convinced that second-order consequence was equivalent, at least in suitable contexts, to 
formal derivability.4 This is yet another facet of the failure of Hilbert’s program and one that 
has cast a dark shadow on second-order logic. As a logical tool it has been said that, at best, it 
is an equivocation (second-order logic is set theory in sheep’s clothing, as Willard Quine 
famously quipped) and, at worst, a cheap trick.5 

The fact that the set-theoretic notion of second-order consequence is not derivability-
based disqualifies it as a good epistemological notion (in contrast, first-order consequence is a 
derivability notion by Gödel’s completeness theorem). Our main thesis is that, appropriately 

                                                
2 Ernst Zermelo, ‘Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über die Grundlagen der 
Mengenlehre’, Fundamenta Mathematicae 16 (1930): 26-47.	
3 A good reference for ZFC is the book Introduction to Set Theory, by Karel Hrbacek and Thomas Jech (New 
York: Marcel-Dekker, 1999). For the results of mathematical logic mentioned in this paper (e.g., Gödel’s 
completeness theorem, Gödel’s second incompleteness theorrem, the Löwenheim-Skolem theorems and Tarski’s 
truth definition), I recommend A Mathematical Introduction to Logic, by Herbert Enderton (San Diego: Academic 
Press, 2001). 
4	Georg Kreisel, ‘Informal rigour and completeness proofs’, in Problems in the Philosophy of Mathematics, edited 
by I. Lakatos (Amsterdam: North-Holland, 1967), 146.	
5 Quine’s quip appears in his Philosophy of Logic (Cambridge, Massachusetts: Harvard University Press, 1986), 
66. The “cheap trick” remark is taken from Daniel Isaacson’s ‘The reality of mathematics and the case of set 
theory’, in Truth, Reference, and Realism, edited by Z. Novak and A. Simonyi (Budapest: Central European 
University Press, 2011), 46. Isaacson does not endorse the remark.	



 3 

understood, second-order categorical axiomatizations are nevertheless highly significant for 
the epistemology of mathematics.  

It is important to separate the proof of Dedekind’s categoricity theorem from the question 
of the axiomatization of the first-order structure of the natural numbers.6 In the discussion 
above these two issue were treated in tandem relying, as it were, on the semantical notions of 
truth and (full) second-order consequence. However, Dedekind’s categoricity theorem need 
not be treated in this full-blown semantical way. It can be stated as follows: Given (N1,01,S1) 
and (N2,02,S2) two first-order natural number structures, the map h: N1 ® N2 defined 
recursively by h(01) = 02 and h(S1(x)) = S2(h(x)) is an isomorphism. For the strict purpose of 
proving the categoricity theorem, what really matters is that we accept the existence of the 
function h and enough induction to be able to show that h, as abiding by the above recursive 
clauses, is an isomorphism. Essentially, the proof of Dedekind’s categoricity theorem proceeds 
in a first-order fashion given the two natural number structures.7 

 
2. The epistemological chasm 

 
This paper is neutral with regard to object platonism, even in the robust version according 

to which there is a world of independent abstract mathematical objects and that, somehow, our 
mathematical talk is about the objects of this world. This view is sometimes dubbed naive 
realism and it is mostly seen with condescension (in spite of some illustrious defenders, like 
Kurt Gödel).8 Nevertheless, it does solve a cluster of (related) problems. One is the objectivity 
of mathematics. Under the robust platonistic view, the world of abstract mathematical objects 
is independent of human interests or conceptions and it is this world that mathematicians try to 
describe. The other is that mathematical assertions have a determinate truth value. For instance, 
the continuum hypothesis (of set theory) has a determinate truth value. At the present moment 
we do not know which one and it cannot be ruled out that we may never know. It also solves a 
perceived problem regarding the set-theoretic notion of second-order consequence. Even 
though it is a poor notion from the epistemological point of view, the criticism runs, it also 
does not do what it claims that it does, viz. to characterize a mathematical structures up to 
isomorphism. In effect, when reasoning set-theoretically within a formal theory like ZFC, well 
known model-theoretic results show that there are models of these theories with different 
                                                
6 As it is well-known, an infinite first-order structure can never be characterized up to isomorphism by a first-
order axiomatization. This is a consequence of the upward Löwenheim-Skolem theorem. Therefore, a categoric 
axiomatization of the first-order structure of the natural numbers must use resources beyond first-order logic.	
7 In ‘The uniqueness of the natural numbers’, Iyyun 39 (1990): 13-44, Charles Parsons says that Dedekind’s 
theorem and its proof are “essentially first-order” (italics as in the original). In Parsons’s words, the function h is 
introduced “in keeping with Skolem’s recursive arithmetic”, and the proof that it is an isomorphism only needs 
first-order instances of induction (using, of course, the data N1, 01, S1, N2, 02 and S2). Alternatively, Dedekind’s 
categoricity theorem can be proved within relatively weak deductive system for second-order logic (note the 
underlining - it makes the system really of first-order character). For further information and discussion on these 
matters, see the recent survey ‘Structure and categoricity: determinacy of reference and truth value in the 
philosophy of mathematics’, by Tim Button and Sean Walsh, Philosophia Mathematica 24, no. 3 (2006): 283-
307. 
8	The locus classicus of Gödel’s defense of platonism is ‘What is Cantor’s continuum problem?’, American 
Mathematical Monthly 54 (1947): 515-525. Some years later (1963/1964), Gödel wrote a revised and expanded 
version for Philosophy of Mathematics (Selected Readings), edited by P. Benacerraf and H. Putnam (Cambridge: 
Cambridge University Press, 1983), 470-485.	
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power set operations. For instance, the reals in one first-order model of ZFC need not be 
isomorphic with the reals in another model, even though the categoricity theorem for the real 
numbers holds within each model. Some set-theoretic notions are relative to models of first-
order set theory9 and, for this reason, it is claimed that the categoricity theorems do not say as 
much as they seem to be saying. For the robust platonist, this argument is of no relevance 
because when reasoning set-theoretically (in the sense of the ordinary mathematician) one is 
not reasoning about this or that model of first-order set theory but about an abstract world of 
independent mathematical objects (sets). 

The mathematical objects of this abstract world are not located in spacetime. They do not 
causally interact with us. This can be a source of perplexity. How can we know anything about 
the mathematical world? How is reference to the objects of the mathematical world attained? 
Gödel himself defended that we possess a special faculty akin to sense perception that allows 
us to “perceive” the objects of set theory.10 In a much quoted essay on these issues, Paul 
Benacerraf has a speculative historical note in which he sees Plato’s concept of anamnesis as 
bridging the chasm between an abstract world of mathematics and the human knower.11 In past 
lifes we have been in touch with such an abstract reality and, with proper training, tutoring and 
effort, we can remember this world. Even though I consider these solutions unreasonable, they 
are - on their own terms - answers to the epistemological chasm. I may even suggest a 
Leibnizian solution of my own. There are no interactions between the abstract world of 
mathematical objects and the sublunar world of human affairs. However, we do possess some 
mathematical conceptions like those of number, set, etc. and, due to a pre-established harmony, 
these conceptions happen to describe the abstract world of mathematical objects. It is not that 
we interact with an independent reality (our notions run in strict parallelism with the world of 
mathematical objects without any mutual interference). It is that, nevertheless, an independent 
reality happens to be described by our notions. In Leibnizian terms, the abstract world of 
mathematical objects and our sublunar world are “windowless”, but our mathematical 
conceptions “mirror” the abstract world by a kind of pre-established harmony.12 

Our Leibnizian solution is also unreasonable. We introduced it as a philosophical 
Gedankenexperiment with the purpose of illustrating that an absolute conception of number 
(i.e., one that transcends any formalism) makes sense without presupposing - not even in the 
thought experiment - interactions with an independent reality. The disengagement of 
mathematical knowledge from interactions with an independent reality of abstract 
mathematical objects coheres with the modus operandi of the pure mathematician. When doing 
mathematics, pure mathematicians lay down proofs which, in the end, report to some first 
principles, be they implicit or explicit. Mathematical knowledge is not obtained by interacting 
with the objects of some abstract world but rather by relating concepts and notions through 

                                                
9	By the downward Löwenheim-Skolem theorem, every transitive model of ZFC has a countable transitive 
submodel M. Since M is a model of ZFC, by Cantor’s theorem the set R of its real numbers is not countable-in-
M. But, of course, every set of M is countable and, in particular, so is R. Therefore, countability is not the same 
as countability-in-M (countability is a relative set-theoretic notion).	
10 Gödel, ‘What is Cantor’s continuum problem’, revised and expanded version, 483-484.	
11	Paul Benacerraf, ‘Mathematical truth’, in Philosophy of Mathematics. Selected Readings, 416. The article was 
first published in 1973.	
12 See specially the paragraphs 78 et seq. of Leibniz’s Principes de la Philosophie ou Monadologie (1714).	
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mathematical proof. There is nevertheless a kind of methodological platonism underlying the 
work of ordinary mathematicians, according to which mathematical notions transcend 
formalizations (e.g., first-order axiomatizations). When speaking of the natural numbers, 
ordinary mathematicians are not speaking of numbers in this or that nonstandard model of first-
order Peano Arithmetic (PA). Confronted with two non-isomorphic models of Peano 
Arithmetic, a mathematician will immediately investigate the failure of the induction principle 
in one (or both) of them. Rather than putting into question his notion of natural number, he will 
say a priori that there must be something wrong with one (or both) of the models. Similarly, 
when ordinary mathematicians consider the power set of the natural numbers, they are not 
considering it in this or that model of first-order ZFC. Their consideration of the real numbers 
transcends first-order models. They have an absolute conception of the power set operation. 

 
3. Informal reasoning 
 

The work of ordinary mathematicians is developed within a completely extensional 
framework, where the objects of mathematics are cut off from all links with the reflecting 
subject. Mathematicians do not construct sets, they prove the existence of sets.13 As a result, a 
certain indefiniteness normally associated with notions like property or concept (we use these 
words more or less interchangeably) is absent from ordinary mathematics, and this is certainly 
part of the success of the mathematical enterprise. However, there are a few apparent 
exceptions to this view. Even ordinary mathematicians find quite natural to state the induction 
principle by saying that if a property holds of 0, and if it holds of S(n) whenever it holds of n, 
then it holds of every natural number. Induction can be stated with sets instead and this was, in 
fact, how we presented Dedekind’s axiomatization of the natural numbers. That 
notwithstanding, mathematicians do not find it unnatural to use the intensional terminology in 
formulating the induction principle. The following example is more incisive. Mathematicians 
also say that if a “definite property” holds of some elements of a given set X, then there is a set 
whose elements are exactly those elements of X for which the given property holds. This is 
Zermelo’s Aussonderungsaxiom. In this case it is not possible to replace the mention of 
properties by the mention of sets.  

Properties or concepts are not the subject matter of mathematics. Sets, numbers, groups, 
orders, topological spaces, differential manifolds, etcetera, are. Of course, mathematicians 
apply concepts like everybody else. In their work towards gaining mathematical knowledge, 
mathematicians apply concepts to mathematical objects and lay down proofs of mathematical 
facts. This kind of work must be presented in concreto if it has to have any epistemological 
significance. The induction principle ‘P(0) Ù "n(P(n) ® P(S(n))) ® "nP(n)’ is a schema 
where the letter ‘P’ stands in place of an unspecified numerical predicate. The important thing 
to say concerning this schema is that it is not restricted to a given formal language (as it is the 
case with studies in mathematical logic). It is an informal schema. The induction schema 
contributes to the articulation of the notion of natural number in the guise of an inference ticket: 
whenever a predicate is well-defined for the natural numbers, then it can be used in an inductive 

                                                
13	I am adapting some words of Paul Bernays taken from his well known essay on platonism, ‘Sur le platonisme 
dans les mathématiques’, L’Enseignment Mathématique 34 (1935): 52-69. 
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argument. The proper use of a natural number predicate in an inductive argument relies, as we 
will illustrate, on the endorsement of certain mathematical notions. Such endorsements 
constitute the grounds which, ultimately, warrant the use of numerical predicates. 

The mathematization of logic is but an approximation of the view of logic as a 
philosophical discipline concerned with concepts, propositions and demonstrations. In their 
stead, mathematical logic operates with formulas, sentences and proofs within the setting of 
formal languages (and their interpretations). It is a central claim of this paper that the basic 
notions of mathematics, like those of number and set, can only be properly formulated in an 
informal manner. As Kreisel observes in Informal rigour and completeness proofs, the 
evidence of a first-order schema derives from a corresponding second-order (informal) 
principle. In the case of the first-order theory PA, with zero, successor and also the primitive 
operations of addition and multiplication, the induction schema is restricted to arithmetical 
predicates (in the technical sense of being predicates defined by formulas of the language of 
first-order Peano Arithmetic) and our grounds for accepting this schema is that predicates given 
by arithmetical formulas are well-defined for the natural numbers. The evidence of the schema 
of induction of PA stems from the informal notion of natural number together with the 
conviction that first-order formulas of the language of PA express definite properties of the 
natural numbers.  

Evidence comes in degrees. Investigations in the foundations of mathematics have 
classified various foundational positions according to the evidence supporting them.14 An early 
overview by Hao Wang in Eighty years of foundational studies discerns five positions of 
decreasing degree of evidence, from anthropologism to set-theoretic platonism.15 When 
applying a schema which contributes towards the articulation of a basic notion of mathematics 
(be it the induction schema in number theory, the Aussonderungsaxiom in set theory, or other) 
we must first convince ourselves that the predicate used is well-defined and this conviction is 
based on the endorsement of certain mathematical notions. For instance, in number theory a 
further step (down) in the ladder of evidence from the first-order theory PA leads to the 
acceptance of the truth predicate for its sentences as construing a definite property of natural 
numbers (via a Gödel numbering of formulas). A simple inductive argument using the truth 
predicate proves the soundness of PA and, therefore, its consistency. By Gödel’s second 
incompleteness theorem, this is a truth (stateable, but) unprovable in PA. Another way of 
formulating well-defined predicates and, therefore, of extending the use of the induction 
principle, is by considering new ontologies. Beyond the natural numbers, we may also consider 
arbitrary subsets of the natural numbers (yet another step down in the ladder of evidence). This 
extension of the domain and a corresponding extension of the language with the membership 
relation and a new sort for sets of natural numbers enables the formulation of new predicates 

                                                
14 The concept of evidence is relational. The aim of reductive proof theory is to give a precise mapping of 
reductions of certain formal theories to others. These reductions intend to capture mathematically the relational 
notion of evidence. For an overview see Feferman’s ‘What rests on what? The proof-theoretic analysis of 
mathematics’, in In the Light of Logic (Oxford: Oxford University Press, 1998), 187-208. The article was first 
published in 1993.	
15 The referred article of Wang was published in dialectica 12 (1958): 466-497. Section 7.1 of Wang’s book A 
Logical Journey. From Gödel to Philosophy (Cambridge, Massachusetts: MIT Press, 1996) has a very interesting 
discussion on the origin of mathematical notions. According to Wang, Gödel classified the acceptance of infinity 
(in the form of natural numbers) as the “big jump.”	
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and, hence, permits one to work with new properties of the natural numbers. As a case in point, 
one can define the truth predicate for sentences of the language of PA if arbitrary sets of natural 
numbers are available (Tarski’s truth definition), thereby recovering the previous step in the 
ladder of evidence. 

The first extension of PA discussed above is ideological, in the Quinean sense of adding 
a new predicate to the language (no new objects are added).16 The new predicate - the truth 
predicate - holds exactly of the Gödel numbers of true sentences of the (formal) language of 
PA. From a mathematical (and epistemological) point of view new axioms are accepted, 
expressing Tarski’s truth conditions. The proof of the consistency of PA uses PA itself, the 
new axioms and the induction principle applied to formulas of the extended first-order 
language (i.e., in which the new truth predicate occurs). In what sense, if any, can we view this 
argument as an outcome of the informal Dedekind axioms? Note that in order to cash the 
inference ticket of informal induction with the truth predicate, we had to accept extra axioms. 
The second example is an ontological extension in which one considers, alongside natural 
numbers, also arbitrary sets of natural numbers. As mentioned, it is possible to exhibit a 
formula in the language of two-sorted arithmetic which is true of a number just in case that 
number is the Gödel number of a true sentence of the language of PA. The same inductive 
argument as before permits one to prove the consistency of PA. The second example seems to 
fare better. However, the new proof relies on the fact that the exhibited formula defines the 
truth predicate (with its usual properties). As a proof, it is a proof with a gap. The gap is easily 
filled if we accept axioms that articulate the notion of arbitrary subset of the natural numbers. 
Full comprehension for formulas of the two-sorted language is enough.17 Once again, one does 
not avoid the predicament brought by the need to accept extra axioms in order to be able to 
cash the inference ticket made available by the informal schema of induction. 

In spite of the problems of the above two examples, the arguments for the new 
arithmetical truth (the consistency of PA) are quite satisfying from the informal Dedekind-
axiomatic point of view because their main thrust is based on an induction on the length of 
formal proofs applied to a formula involving the truth predicate. One sees exactly how the 
inference ticket of informal induction is cashed and, moreover, the induction itself constitutes 
the main line of the argument. However, the ties to the informal induction schema need not be 
explicit. Consider, for example, a number-theoretic statement provable in ZFC. Can we 
reasonably say, within this level of generality, that the statement is an outcome of the notion 
of natural number as given by the informal Dedekind axioms? 

 

                                                
16 Properties of natural numbers are also obtained by means of definitions done with the help of particular 
elements of the ontologies available. In technical terms, parameters are allowed in the formulas that define 
properties and the induction principle also applies to formulas with parameters. The presence of parameters 
dramatizes the entanglement between ideology and ontology. My use here of the word ‘ideology’ comes from 
Quine’s paper ‘Ontology and ideology’, Philosophical Studies 2 (1951): 11-15, but differs from Quine’s usage in 
that I allow parameters in the construction of predicates. Moreover, for Quine, ontology and ideology are kept 
apart neatly. Not much attention has been paid to the entanglement between ontology and ideology (which, I 
believe, is very important in the philosophy of mathematics), as opposed to the entanglement between the analytic 
and the synthetic.	
17 It is enough, I mean, to prove that the presented formula satisfies Tarski’s truth conditions. Full comprehension 
is, actually, an overkill. Technically, it is sufficient to have D1

1-comprehension and S1
1-induction.	
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4. Arithmetical knowledge 
 
We tried to illustrate the consequences of regarding second-order principles as informal 

schemata (inference tickets). We argued that in order to cash these inference tickets we may 
need to help ourselves to mathematical notions other than the notions that are our immediate 
object of concern. New forms of number-theoretic induction are articulated by considering the 
truth predicate for arithmetical sentences or the quasi-combinatorial notion of arbitrary subset 
of the natural numbers.18 By bringing along these new notions (and associated axioms) aren’t 
we adding something to the notion of natural number as given by the informal Dedekind 
axioms? Couldn’t then the notion be developed in different incompatible ways? Let me use the 
simile due to Gödel of “seeing a concept more clearly.”19 In order to see more clearly the 
concept of natural number it is necessary to use some auxiliary tools (like an astronomer who 
uses a telescope), namely other mathematical notions. Couldn’t it be the case that, through the 
application of this process, a mathematician realizes that he is mixing two or more notions, that 
the notion of natural number bifurcates (like an astronomer who realizes that the celestial body 
that he is studying is actually a double star)? The significance of Dedekind’s categoricity 
theorem is that this cannot happen. The work of the mathematician is, so to speak, confluent 
with respect to the notion of natural number. Dedekind’s categoricity theorem ensures that the 
notion of natural number has a determinate direction (to use the phenomenological terminology 
of “directedness”). Let us say that the notion is univocal. 20 

The univocality of the notion of natural number is important for the epistemology of 
arithmetic because it justifies the use of other mathematical notions as a means of gaining 
arithmetical knowledge. Consider the notion of natural number N, 0, S as given by the informal 

                                                
18 According to Wang in A Logical Journey. From Gödel to Philosophy, Gödel commented on the situation just 
described in the main text (in which a given notion needs the help of other notions in order to be fully operational). 
He classifies the situation as “very strange” unless one is a platonist. In effect, on p. 222 of Wang’s book, Gödel 
says that “so (...) in order to find out what properties we have given to certain objects of our imagination, [we] 
must first create other objects - a very strange situation indeed!”	
19	The simile is described in pp. 85-86 of Wang’s book From Mathematics to Philosophy (London: Routledge & 
Kegan Paul, 1974).	
20 The same reasoning applies to other univocal notions. In the aftermath of Cohen’s proof of the independence 
of the continuum hypothesis, Kreisel drew attention to the differences between first and second-order set theory 
and wrote that “denying the (alleged) bifurcation or multifurcation of our notion of set of the cumulative hierarchy 
is nothing else but asserting the properties of our intuitive conception of the cumulative type-structure” (italics as 
in the original). Op. cit. For instance, the (w+w)-level of the cumulative set-theoretical structure has a second-
order categorical axiomatization (this follows from Gabriel Uzquiano’s results in §5 of ‘Models of second-order 
Zermelo set theory’, Bulletin of Symbolic Logic 5, no. 3 (1999): 289-302). Since the continuum hypothesis can be 
formulated within this level by a sentence of the first-order language of set theory, this categoricity result entails 
that there cannot be a scenario of actual bifurcation in which the continuum hypothesis has different answers. 
Note that Gödel’s thesis of robust platonism entails the stronger proposition that the continuum hypothesis has a 
determinate truth value. Combined with his rationalistic optimism, Gödel also thinks that we can know which one 
it is. On the other hand, an optimistic methodological platonist would say that we can answer (in the positive or 
in the negative) the question of the continuum hypothesis. According to our current knowledge, it is however 
compatible with methodological platonism that there is just no (positive or negative) answer to that question. 
Feferman’s view that the continuum hypothesis is inherently vague (cf. his ‘Why the programs for new axioms 
need to be questioned’, Bulletin Symbolic Logic 6, no. 4 (2000): 401-413) can be seen as a defense that there is 
simply no (positive or negative) answer to the continuum hypothesis.	
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Dedekind axioms. Let P be a number-theoretical statement.21 Take Pset its translation into the 
formal language of set theory (the quantifiers that occur in Pset are relativized to w, the set of 
von Neumann finite ordinals, 0 is interpreted by the empty set Æ, and the successor of an 
ordinal a is given by a È {a}) and suppose that Pset is provable in (first-order) ZFC. A fortiori, 
Pset is provable in second-order ZFC, i.e., the version of ZFC in which the schemata of 
separation and replacement are informal. Now, the mathematical concept of von Neumann 
finite ordinal satisfies the informal Dedekind axioms (this follows from the informal schema 
of separation), and so we can invoke the isomorphism h: N ® w (determined by the recursive 
clauses h(0) = Æ and h(S(n)) = h(n) È {h(n)}) in order to argue (by induction on the complexity 
of the first-order formula P) that the biconditional P « Pset holds. Since we are endorsing the 
notion of set as given by second-order ZFC, we may conclude that P holds. In the sense just 
illustrated, Dedekind’s categoricity theorem provides a passageway from number-theoretic 
statements proved in set theory to the notion of number as conceived according to Dedekind’s 
informal axiomatization. 

The previous discussions suggest an informal idea of mathematical consequence with 
respect to univocal notions. According to this idea, we may cash the inference tickets made 
available by the informal schemata which characterize a given univocal notion by helping 
ourselves to certain other mathematical notions.22 The passageway provided by Dedekind’s 
categoricity theorem justifies this form of reasoning. It is a form of mathematical reasoning 
that can, however, go astray. Mathematical consequence - as described here - is defeasible 
because the mathematical notions which are brought to the fore may harbor difficulties or, 
even, contradiction. Mathematics is not infallible and we have to get by with degrees of 
evidence.23 When facing difficulties, or even trouble (contradiction), we have to analyze and 
clarify our notions and, in extreme cases, abandon them altogether. This happened historically 
with the hesitations concerning the axiom of choice and the bankruptcy of the logicist notion 
of set. For all of their visibility, these episodes are nevertheless very rare. Mathematical logic 
has taught us that ordinary mathematical work can (in principle) be developed in formal 
theories, where absolute rigor is attained. However, absolute rigor is not the same thing as 
absolute certainty. It is nevertheless worth emphasizing - as Solomon Feferman does - that 
mathematical logic has shown that a little bit goes a long way and that the bulk of ordinary 
mathematics can be formalized in theories enjoying a very high degree of evidence.24  

                                                
21	To make the discussion interesting, we suppose that P is a sentence of the first-order language of PA (note that 
the first-order theory of the number-theoretic truths formulated in the language with only zero and successor is 
decidable). We nevertheless ignore the technical details arising from going beyond the primitive language with 
only zero and the successor operation. 
22	This notion of mathematical consequence is a form of absolute demonstrability as discussed by Gödel in pp. 
268-269 of Wang’s A Logical Journey. From Gödel to Philosophy op. cit. In quotation 8.4.21 of that book, Gödel 
suggests a kind of normal form for absolute demonstrability: “The idea of [absolute] proof may be 
nonconstructively equivalent to the concept of set: axioms of infinity and absolute proofs are more or less the 
same thing.” I do not believe that there is compelling evidence for this bold thesis.	
23	According to entry 9.2.35 of Wang’s A Logical Journey. From Gödel to Philosophy, Gödel defended that “We 
have no absolute knowledge of anything. There are degrees of evidence.” Page 302 of the referred book has more 
material on Gödel’s view on the fallibility of mathematical knowledge.	
24	S. Feferman, ‘Why a little bit goes a long way: logical foundations of scientifically applicable mathematics’, 
in In the Light of Logic, 284-298. The article was first published in 1992.	
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