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Abstract
We consider some very robust semi-constructive theories related to Kripke-

Platek set theory, with and without the powerset operation. These theories include
the law of excluded middle for bounded formulas, a form of Markov’s principle,
the unrestricted collection scheme and, also, the classical contrapositive of the
bounded collection scheme. We analyse these theories using forms of a functional
interpretation which work in tandem with the constructible hierarchy (or the cu-
mulative hierarchy, if the powerset operation is present). The main feature of these
functional interpretations is to treat bounded quantifications as “computationally
empty.” Our analysis is extended to a second-order setting enjoying some forms
of class comprehension, including strict-Π1

1 reflection. The key idea of the ex-
tended analysis is to treat second-order (class) quantifiers as bounded quantifiers
and strict-Π1

1 reflection as a form of collection. We will be able to extract some
effective bounds from proofs in these systems in terms of the constructive tree
ordinals up to the Bachmann-Howard ordinal.
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1 Introduction
In recent writings, Solomon Feferman was urging the study of semi-construtive theo-
ries. His papers “On the strength of some semi-constructive theories” [8] and “Logic,
∗I would like to thank the editors of this volume, Gerhard Jäger and Wilfried Sieg, for inviting me to
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mathematics, and conceptual pluralism” [9] (especially section 6) are examples of these
writings. These theories are a blend of intuitionistic and classical logic and their philo-
sophical rationale can be described succinctly: according to some philosophical con-
ceptions, there are good reasons to treat certain collections as constituting a definite
totality (and, therefore, membership in them as abiding by the the law of excluded
middle) and others as open ended. For instance, one may want to see sets defined
by bounded formulas as definite, and unbounded set-theoretic quantifications as open
ended (and, as a consequence, treated intuitionistically). The consideration of intuition-
istic subsystems of set theory with the law of excluded middle for bounded formulas
was apparently first given by Lawrence Pozsgay in [16] (see [8] for more information
on this regard). Even though the present paper studies semi-constructive theories of
this kind, its rationale is mainly technical. It is an exploitation of a form of functional
interpretation that was introduced in the classical setting in [10] and whose roots can
be found in a seminal paper of Jeremy Avigad and Henry Towsner [2]. This form of
functional interpretation works in tandem with Gödel’s constructible hierarchy (or with
the cumulative hierarchy, in case the powerset operation is present) and treats bounded
and second-order (class) quantifications as “computationally empty.” As it turns out,
the theory of these functional interpretations is very natural and satisfying.

The layout of this paper is the following. In Section 2 we introduce and draw some
simple but fundamental consequences of the basic semi-constructive theory that we will
analyse. Section 3 studies with some detail the term calculus of the primitive recursive
functionals, introduced by William Howard in [14]. The Ω-type tree terms q of this cal-
culus give the means to refer to the various (countable) stages Lq of the constructible
hierarchy (or of the cumulative hierarchy Vq). The most important section is the fifth,
where the main functional interpretation is defined and where a pertinent soundness
theorem is proved. Departing from tradition, the verifications of the functional inter-
pretations of this paper do not take place within formal theories, but are rather seen to
hold semantically. A previous Section 4 introduces the two basic semantical structures
with which we will be working with. We will be able to extract constructive informa-
tion from proofs of sentences of the form ∀x∃y φ(x, y), where φ can take various forms.
The constructive information is given by a closed term t of type Ω → Ω such that
∀cΩ∀x ∈ Lc∃y ∈ Ltc φ(x, y) holds. In particular, if the semi-constructive theory proves
a Σ1-sentence then it follows that this sentence already holds in Lα, for α an ordinal
less than the Bachmann-Howard ordinal. Our methods are able to provide a Σ-ordinal
analysis in this sense.

We extend the analysis to a second-order setting with a form of bounded compre-
hension and with strict-Π1

1 reflection. In a first study, the extension keeps the original
separation scheme. This is done in Section 6 and the conclusion is that an ordinary
Σ-ordinal analysis still goes through. In the last section, we allow second-order pa-
rameters in the separation scheme. This simple modification entails a major change
because, as Vincenzo Salipante has observed in [19], with this form of separation one
can prove the totality of the powerset operation. Nevertheless, a functional interpreta-
tion of the second-order theory with the extended separation scheme can still be made.
There is a crucial difference, though. We now need the (countable) stages of the cu-
mulative hierarchy. We are also able to extract some constructive information and to
perform a relativized Σ-ordinal analysis (in the sense of Michael Rathjen in [17]). As a
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last item, we recuperate Rathjen’s relativized Σ-ordinal analysis of the classical theory
dubbed power Kripke-Platek set theory.

2 Intuitionistic Kripke-Platek set theory
Kripke-Platek set theory with infinity, with acronym KPω, is a well-known theory
framed in the language of set theory. It is a theory of classical logic whose axioms
are extensionality, (unordered) pair, union, infinity, and the schemata of ∆0-separation,
∆0-collection and (unrestricted) foundation. The reader can consult [5] for a precise
formulation. Since we are interested in (semi) intuitionistic versions of KPω, the prim-
itive logical symbols are absurdity, conjunction, disjunction, implication, and the uni-
versal and existential quantifiers. It is also convenient in our setting (as it was in [10])
to include bounded quantifiers as a primitive syntactic device. Both ∀x ∈ z φ and
∃x ∈ z φ are part of the primitive syntactic apparatus and are not considered as abbre-
viations of ∀x (x ∈ z→ φ) and ∃x (x ∈ x∧φ), respectively. Instead, our axioms include
the corresponding equivalences between these formulas. The class of bounded or ∆0-
formulas is the smallest class of formulas that includes the atomic formulas (including
the absurdity) and which is closed under propositional connectives and bounded quan-
tifiers. For the record (and because of its importance), we state the scheme ∆0-Coll of
bounded collection:

∀y ∈ w∃x φ(x, y)→ ∃z∀y ∈ w∃x ∈ z φ(x, y),

where φ(x, y) is a bounded formula, possibly with parameters. The scheme of founda-
tion is formulated in its inductive form (which is the form appropriate for intuitionistic
studies):

∀x (∀y ∈ x φ(y)→ φ(x))→ ∀x φ(x),

for every formula φ(x), possibly with parameters. Since the scheme is unrestricted, it
is easy to see that the scheme is (intuitionistically) equivalent to the rule

∀x (∀y ∈ x φ(y)→ φ(x))
∀x φ(x)

where φ(x) is any formula (possibly with other free variables besides x). The proof of
the soundness theorem (Theorem 2) simplifies if we consider the rule instead of the
axiom scheme.

Following [8], let IKPω be the system KPω with the logic restricted to be intuition-
istic. Let ∆0-LEM be the scheme φ ∨ ¬φ of excluded middle for bounded formulas
φ. Our basic intuitionistic theory is IKPω + ∆0-LEM. In the remaining of this sec-
tion we present a series of four definitions that introduce principles that the functional
interpretation of Section 5 is able to interpret.

Definition 1. Markov’s principle MP is the scheme ¬∀x φ(x) → ∃x¬φ(x), for φ a
bounded formula (possibly with parameters).

Proposition 1. IKPω + ∆0-LEM + MP proves the following scheme for bounded for-
mulas φ and ψ (parameters are allowed): (∀x φ(x)→ ψ)→ ∃x (φ(x)→ ψ).
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Proof. Assume ∀x φ(x) → ψ. By ∆0-LEM, there are two cases to consider. If ψ holds
then any x will do. Otherwise, we have ¬∀x φ(x). By MP take x0 such that ¬φ(x0). Of
course, φ(x0)→ ψ. We are done. �

A Σ1-formula φ is a formula of the form ∃zψ(z), where ψ(z) is a bounded for-
mula (possibly with parameters). Up to provability in IKPω, this class of formulas is
closed under conjunction, disjunction, bounded quantifications and existential quantifi-
cations. This is well-known in the classical setting, but the argument also goes through
in IKPω. We defer the discussion of the dual class Π1 until the end of this section. A
Π2-formula is a formula of the form ∀w φ(w), where φ(w) is a Σ1-formula. We have
only defined these formulas with a single universal quantifier ‘∀w’, but it is clear (using
the pair axiom and the closure properties of bounded formulas) that a tuple of universal
quantifications yields a formula equivalent (in IKPω) to a Π2-formula. The following
theorem shows that the theory IKPω + ∆0-LEM + MP has a certain robustness.

Theorem 1. The theory KPω is Π2-conservative over IKPω + ∆0-LEM + MP.

Proof. This is an easy consequence of the (Gödel and Gentzen) negative translation.
The translation is extended to the bounded quantifiers in the natural way: (∀x ∈ z φ(x))g

is ∀x ∈ z φg(x), and (∃x ∈ z φ(x))g is ¬¬∃x ∈ z φg(x). Note that the translation of a
bounded formula is still a bounded formula. Therefore, a bounded formula is equiva-
lent to its negative translation in IKPω + ∆0-LEM. From this it is clear that the trans-
lations of the axioms of extensionality, pair, union, infinity and ∆0-separation are the-
orems of IKPω + ∆0-LEM. The negative translation of an instance of the scheme of
foundation is still an instance of foundation. In order to argue that the negative trans-
lation of KPω is contained in IKPω + ∆0-LEM + MP, it remains to study the scheme
of ∆0-collection. Well, the negative translation of an instance of ∆0-collection has the
form ∀x ∈ z¬¬∃y φg(x, y) → ¬¬∃w∀x ∈ z¬¬∃y ∈ w φg(x, y), where φ is a bounded
formula. In the presence of MP, the antecedent of the above implication is equivalent
to ∀x ∈ z∃yφg(x, y). Now, by an application of bounded collection, we get something
stronger than the consequent of the implication.

We are ready to prove the theorem. Suppose that KPω proves ∀x∃y φ(x, y), with φ
a bounded formula. By the properties of the negative translation, the theory IKPω +

∆0-LEM + MP proves ∀x¬¬∃y φ(x, y). Using MP, we get the desired conclusion. �

Definition 2. The independence of premises principle bIPΠ1 is the scheme

(∀x φ(x)→ ∃yψ(y))→ ∃y (∀x φ(x)→ ∃z ∈ yψ(z)),

where φ is a bounded formula and ψ is any formula (parameters are allowed).

This principle is reminiscent of the independence of premises principle of Gödel’s
dialectica interpretation (cf. [1]). The analogy is not total because of the intrusion of
a bounded quantification in the consequent of the existential consequent above. This
is a crucial feature and it is in line with the bounded functional interpretation [11].
However, when the formula ψ is bounded then the bounded quantifier is not needed.

Lemma 1. IKPω + ∆0-LEM + MP + bIPΠ1 proves the following scheme for bounded
formulas φ and ψ (parameters are allowed): (∀x φ(x) → ∃yψ(y)) → ∃y∃x (φ(x) →
ψ(y)).
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Observation 1. Note that (∀x φ(x) → ∃yψ(y)) → ∃y (∀x φ(x) → ψ(y)) follows intu-
itionistically.

Proof of Lemma 1. Assume ∀x φ(x) → ∃yψ(y). By bIPΠ1 , take y0 so that ∀x φ(x) →
∃z ∈ y0 ψ(z). Since the consequent of the latter formula is bounded, by Proposition 1
there is x0 such that φ(x0)→ ∃z ∈ y0 ψ(z). By ∆0-LEM, there are two cases to consider.
If φ(x0) holds, let z0 be an element of y0 such that ψ(z0). Otherwise, let z0 be ∅. Clearly,
φ(x0)→ ψ(z0). �

Proposition 2. The theory IKPω + ∆0-LEM + MP + bIPΠ1 proves ∆1-separation, i.e.,
it proves ∀x (∀u φ(u, x) ↔ ∃vψ(v, x)) → ∀z∃y∀x (x ∈ y ↔ (x ∈ z ∧ ∃vψ(v, x))), for
bounded formulas φ and ψ (possibly with parameters).

Proof. Suppose that ∀x (∀u φ(u, x) ↔ ∃vψ(v, x)) and fix z. From the left-to-right di-
rection and the above lemma, ∀x ∈ z∃u, v (φ(u, x) → ψ(v, x)). By bounded collection,
there is w such that

∀x ∈ z∃u, v ∈ w (φ(u, x)→ ψ(v, x)).

It is easy to see that we can take y = {x ∈ z : ∃v ∈ wψ(v, x)}. �

Corollary 1. The theory IKPω+ ∆0-LEM + bIPΠ1 + MP proves the ∆1 law of excluded
middle, i.e., it proves (∀u φ(u) ↔ ∃vψ(v)) → (∀u φ(u) ∨ ¬∀u φ(u)), for bounded for-
mulas φ and ψ (possibly with parameters).

Proof. Let y0 = {x ∈ {0, 1} : (x = 0∧ ∃u¬φ(u))∨ (x = 1∧ ∃vψ(v))}. This set exists by
the previous proposition. It is clear that 1 ∈ y0 ↔ ∀u φ(u). We are done. �

In a personal communication, Makoto Fujiwara observed that the ∆1 law of ex-
cluded middle is a consequence of IKPω + ∆0-LEM + bIPΠ1 (MP is not needed). We
will see this in the similar situation of Proposition 6.

One of the characteristic principles of the bounded functional interpretation [11]
is a generalization of weak Kőnig’s lemma. In the second-order setting of Section 6
ahead, the classical contrapositive of (a restriction of) strict-Π1

1 reflection (see chapter
VIII of [5]) takes the place of weak Kőnig’s lemma. However, at a more fundamental
level, the above mentioned characteristic principle of the bounded functional inter-
pretation is better seen as the classical contrapositive of a collection scheme (it was
dubbed bounded contra-collection scheme in [11]). Functional interpretations which
treat bounded quantifications as computationally empty, as it is the case of the bounded
functional interpretation [11] and the functional interpretation of this paper (see Sec-
tion 5), enjoy the novelty of interpretating a bounded contra-collection scheme. As a
consequence, they are able to interpret a semi-intuitionism that is able to accomodate
principles like the lesser limited principle of omniscience LLPO of Errett Bishop (see
[6] and also [7]). It also gives us a good theory of ∆1-predicates. Let us first look at
these matters in our first-order Kripke-Platek framework.

Definition 3. The principle of bounded contra-collection ∆0-CColl is the scheme

∀z∃y ∈ w∀x ∈ z φ(x, y)→ ∃y ∈ w∀x φ(x, y),

where φ is a bounded formula (possibly with parameters).
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Note that, classically, this is just the bounded collection scheme. Bounded contra-
collection easily generalizes for a tuple of z’s. The proof of the following lemma
presents the argument for a pair of z’s:

Lemma 2. For each bounded formula φ, the theory IKPω + ∆0-CColl proves

∀x, z∃y ∈ w∀u ∈ x∀v ∈ z φ(u, v, y)→ ∃y ∈ w∀u, v φ(u, v, y).

Proof. Suppose that ∀x, z∃y ∈ w∀u ∈ x∀v ∈ z φ(u, v, y). We claim that

∀s∃y ∈ w∀r ∈ s∀u ∈ r∀v ∈ r φ(u, v, y).

Let s be given. Using the assumption with x and z taking the common value ∪s, we
get ∃y ∈ w∀u ∈ ∪s∀v ∈ ∪s φ(u, v, y) and, as a consequence, the claim. By ∆0-CColl,
∃y ∈ w∀r∀u ∈ r ∀v ∈ r φ(u, v, y). The result follows using the pair axiom. �

Proposition 3. For bounded formulas φ and ψ, the theory IKPω + ∆0-CColl proves

∀x, z (∀u ∈ x φ(u) ∨ ∀v ∈ zψ(v))→ ∀u φ(u) ∨ ∀vψ(v).

Proof. Suppose that ∀x, z (∀u ∈ x φ(x) ∨ ∀v ∈ zψ(z)). It clearly follows that

∀x, z∃y ∈ {0, 1}∀u ∈ x∀v ∈ z ((y = 0 ∧ φ(u)) ∨ (y = 1 ∧ ψ(v))).

The result follows from the previous lemma. �

We are now able to derive the analogue of the lesser limited principle of omni-
science in our setting (parameters are allowed):

Corollary 2. For bounded formulas φ and ψ, the theory IKPω + ∆0-LEM + ∆0-CColl
proves

∀u, v (φ(u) ∨ ψ(v))→ ∀u φ(u) ∨ ∀vψ(v).

Proof. In the presence of ∆0-LEM, it can easily be argued that ∀u, v (φ(u)∨ψ(v)) entails
∀x, z (∀u ∈ x φ(x) ∨ ∀v ∈ zψ(z)). Now, apply the previous proposition. �

The theory IKPω + ∆0-LEM + MP + bIPΠ1 + ∆0-CColl is a rather robust theory.
For instance, this theory is able to prove the results described by Jon Barwise between
sections 3 and 6 of chapter I of [5]. These results include the existence of ordered pairs,
cartesian products and transitive closures as well as various forms of reflection and re-
placement. More importantly, this theory is well behaved regarding the introduction
of ∆1-relation symbols and Σ1-function symbols. The arguments of the referred sec-
tions of [5] rely crucially on the fact that Σ1-formulas are closed under conjunctions,
disjunctions, bounded quantifications and existential quantifications. As observed, this
is also the case in our intuitionistic setting. It also relies crucially on corresponding
dual properties of Π1-formulas. This is immediate in the classical setting. However,
in our semi-constructive setting, one must proceed with some care. A Π1-formula is a
formula of the form ∀zψ(z), where ψ is a bounded formula. Note that a negation of a
Π1-formula is (equivalent to) a Σ1-formula, thanks to MP. We claim that Π1-formulas
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are closed (up to equivalence in IKPω+ ∆0-LEM + MP + bIPΠ1 + ∆0-CColl) under con-
junctions, disjunctions, bounded quantifications and universal quantifications. This is
clear for conjunctions and universal quantifications (bounded and unbounded). Corol-
lary 2 entails that Π1-formulas are close under disjunctions. The closure under ex-
istential bounded quantifications follows from ∆0-CColl. One last word, the theory
IKPω + ∆0-LEM + MP + bIPΠ1 + ∆0-CColl also allows definitions by Σ-recursion.

The last principle of this section is the unrestricted collection scheme. The func-
tional interpretation of Section 5 is able to interpret it. This is possible because we are
in an intuitionistic setting (this is analogous to the functional interpretation of [8]). In
the classical setting of [10], only the bounded collection scheme is interpretable.

Definition 4. The principle of (unrestricted) collection Coll is the scheme

∀y ∈ w∃x φ(x, y)→ ∃z∀y ∈ w∃x ∈ z φ(x, y),

where φ is any formula (possibly with parameters).

3 On the term calculus of the primitive recursive tree
functionals

It was said in the introduction that the functional interpretations of this paper uses the
combinatory term calculus LΩ of the primitive recursive tree functionals. This term
calculus is due to Howard (cf. [14]) and in [10] we have presented a streamlined
version of it. Let us briefly go through LΩ. We expand Gödel’s language of “primitive
recursive functions of finite-type” (see [1]) with a new ground type Ω for the countable
constructive tree ordinals. The ground type of the natural numbers is denoted by N.
The complex types are obtained from the ground types by closing under arrow. We
use the Greek letters ρ, τ, σ, . . . to denote the types. The language has a denumerable
stock of variables a, b, c, . . . for each type. We follow [1] for notations and conventions
concerning omission of parentheses. The constants of LΩ are:

(a) Logical constants or combinators. For each pair of types ρ, τ there is a combina-
tor of type ρ → τ → ρ denoted by Πρ,τ. For each triple of types δ, ρ, τ there is a
combinator of type

(δ→ ρ→ τ)→ (δ→ ρ)→ (δ→ τ)

denoted by Σδ,ρ,τ.

(b) Arithmetical constants. The constant 0N of type N. The successor constant S of
type N → N. For each type ρ, a (number) recursor constant of type

N → ρ→ (N → ρ→ ρ)→ ρ

denoted by RN
ρ .

(c) Tree constants. The constant 0Ω of type Ω. The supremum constant Sup of type
(N → Ω)→ Ω. For each type ρ, a tree recursor constant of type
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Ω→ ρ→ ((N → Ω)→ (N → ρ)→ ρ)→ ρ

denoted by RΩ
ρ .

The above treatment is not completely rigorous because the recursors must operate
simultaneously on tuples of variables (simultaneous recursion), and not only on a single
variable. A rigorous treatment for arithmetic with simultaneous recursions is given in
[15]. Another option would be to permit product types ρ × τ. We will not worry in
this paper about these fine details. In any circumstance, a combinatory calculus with a
notion of weak equality =w can be associated with the above. The conversions for the
the tree recursors can be found in [10], but can also be read from their set-theoretical
interpretation (definition) in the next section. In this paper we follow the treatment of
[13], including the way of defining lambda terms (abstration). Let us introduce some
important terms (see [10] for more information).

i. qΩ + 1 :≡ Sup(λxN .q).

ii. It is possible to define by number recursion a closed term dΩ�Ω�N�Ω such that
d(q, s, 0) =w q and d(q, s, S n) =w s. Define max(a, b) + 1 :≡ Sup(λxN .d(a, b, x))
(the notation ‘max(a, b) + 1’ should be viewed syncategorematically).

iii. We can define by number recursion a closed term qN→Ω such that q0 =w 0Ω and
q(S n) =w S (qn). We write nΩ instead of qn.

iv. ωΩ :≡ Sup(λxN .xΩ).

v. It is possible to define by tree recursion a term Sup−1 of type Ω → (N → Ω)
such that Sup−1(Sup(t)) =w t for each term t of type N → Ω. We abbreviate
Sup−1(q)(n) by q〈n〉, for terms qΩ and nN . Clearly, Sup(t)〈n〉 =w tn. We have
also (q + 1)〈n〉 =w q, (max(q, s) + 1)〈0〉 =w q and (max(q, s) + 1)〈S n〉 =w s.

vi. Fix p a pairing term of type N → (N → N) with inverse functions l and r, both
of type N → N. Hence, p(l(n), r(n)) =w n, l(p(m, k)) =w m and r(p(m, k)) =w k,
for terms n,m, k of type N. Given tN�Ω, we define

⊔
t :≡ Sup (λyN .(t(ly))〈ry〉).

This is a term of type Ω. An important particular case of this “square union”
is q t s :≡

⊔
(λxN .d(q, s, x)), where q and s are of type Ω and d is the term

introduced in (ii) above.

The next definition is a refinement of a similar definition in [2]:

Definition 5. Let t, q be terms of type Ω and r a term of type N → N. We say that
t vr q if t〈x〉 =w q〈rx〉, where x is a fresh variable of type N.

Sometimes we write only t v q when the witnessing term r is presupposed.

Lemma 3. Let t be a term of type N → Ω and kN . Then, for each term n of type
N, (
⊔

t)〈p(k, n)〉 =w (tk)〈n〉 and (therefore) tk vλxN .p(k,x)
⊔

t. (Here, p is the pairing
function of (vi) above.) In particular, for q and s of type Ω, q v q t s and s v q t s.

Proof. (
⊔

t)〈p(k, n)〉 =w (λyN .(t(ly))〈ry〉)(p(k, n)) =w (tk)〈n〉. �
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In order to deal with the functional interpretation of Section 5, we need to lift some
of the above notions from the type Ω to so-called pure Ω-types (i.e., types obtained
only from the ground type Ω by means of the arrow). The lifting is done pointwise.
As a consequence, we need to have a stronger notion of equality: one that incorporates
some extensionality. We use combinatory extensional equality, as explained in [13].
This notion allows for the so-called ζ-rule: from tx = qx infer t = q, where x is a
fresh variable (of appropriate type). This rule is equivalent to the ξ-rule: from t = q
infer λx.t = λx.q. This is proved in [13]. Note that the ξ-rule is automatic in a direct
treatment (i.e., not via combinators) of the lambda calculus. In a direct treatment of the
lambda calculus, the extensionality needed is given by the η-axiom scheme: λx.qx = q,
where q is a term in which the variable x does not occur free. On the other hand,
in combinatory logic, with a proper definition of abstraction (as in [13], and which
we follow), the η-axiom scheme is automatic. These are somewhat technical issues
relating the combinatory calculus with the lambda calculus. To cut through the fog,
the proper way to state extensional equality in the combinatory calculus is the above ζ-
rule. For more information, consult [13]. Risking confusion (but essentially following
the notation of [13]), we use the notation =βη for combinatory extensional equality. Of
course, if t =w q then t =βη q.

vii. If q is a term of pure Ω-type τ of the form τ1 → · · · → τk → Ω, one defines
q + 1 :≡ λz.((qz) + 1), where z abbreviates a tuple of variables zτ1 , . . . , zτk . If t is
a term of type N → τ, we let Sup(t) :≡ λz.Sup(λn.tnz).

viii. If q is as above and n is of type N, let q〈n〉 :≡ λz.((qz)〈n〉). We claim that
(q+1)〈n〉 =βη q. Well, (q+1)〈n〉 =βη (λz.((qz) +1))〈n〉 =βη λz.(((qz) +1)〈n〉) =βη

λz.qz =βη q. It is in the penultimate equality that extensionality is used (a ξ-
rule application). If t is a term of type N → τ, where τ is the pure Ω-type
above, we have Sup(t)〈n〉 =βη λz.tnz. To see this, notice that Sup(t)〈n〉 =βη

λz.((Sup(λn.tnz))〈n〉) =βη λz.tnz. We are using (v) and the ξ-rule application in
the last equality.

ix. Again, if t is a term of type N → τ, where τ is the pure Ω-type above, we define⊔
t :≡ λz.(

⊔
λxN .(txz)). If q and s are of type τ, we define q t s pointwise in

analogy to (vi) above: q t s :≡ λz.
⊔
λxN .d(qz, sz, x).

Definition 6. Let t, q be terms of pure Ω-type τ and let r a term of type N → N. We
say that t vr q if t〈x〉 =βη q〈rx〉, where x is a fresh variable of type N.

One should see this definition as superseding Definition 5 and the next lemma as
superseding Lemma 3:

Lemma 4. Let t be a term of type N → τ, where τ is a pure Ω-type. Let k and n be
terms of type N. Then (

⊔
t)〈p(k, n)〉 =βη (tk)〈n〉 and (therefore) tk vλxN .p(k,x)

⊔
t. In

particular, for q and s of type τ, q v q t s and s v q t s.

Proof. Suppose τ is τ1 → · · · → τr → Ω. Then, if z stands for a tuple of variables
zτ1

1 , . . . , z
τr
r , we have

(
⊔

t)〈p(k, n)〉 =βη (λz.
⊔

λxN .(txz))〈p(k, n)〉 =βη λz.((
⊔

xN .(txz))〈p(k, n)〉) =βη

9



λz.((tkz)〈n〉) =βη (tk)〈n〉

Extensionality is used in the penultimate equality. �

We were somewhat careful (perhaps even pedantic) in the discussion of extension-
ality because there is a faux pas in section 6 of [10]. In that paper, we discussed a
so-called internalization of an interpretation introduced in a previous section (in the
present paper we do not discuss internalizations). The referred internalization is given
by the intensional model of section 9.3 of [1] (a version of the hereditarily recursive
operations for our setting). However, the conclusion of the soundness theorem is not
verified in this structure because of a lack of extensionality: the above discussed βη
equalities do not hold in the intensional model. The problem is easily fixed, though.
The internalization should have been done with the analogue of the hereditarily effec-
tive operations for our setting (also discussed in 9.3 of [1]).

4 Brief semantical considerations
In the next section we define a functional interpretation of the theory IKPω+ ∆0-LEM+

MP + bIPΠ1 + ∆0-CColl + Coll and prove an appropriate soundness theorem. The con-
clusion of the soundness theorem is not verified in a formal theory (as it is the tradition
in functional interpretations) but it is rather semantically verified, i.e., seen to be true
in a certain structure. This is a simplificatory option of this paper. In principle, one
can refine the soundness theorem in order to have a verification in a suitable formal
theory, as we did in section 6 of [10] with an “internalization” of the semantical in-
terpretation presented there in sections 2 and 3. With verifications in formal theories,
one can obtain stronger results (viz., conservation results) but, as noted in the previous
section, one has to proceed carefully and this is would make the present paper too long
and perhaps even distracting from its main objective. So, in this paper, we will proceed
semantically in the verification of the soundness theorems.

The interpretation of the term calculus of this paper is common to all the interpre-
tations of this paper. It is the (full and extensional) set-theoretical structure 〈S ρ〉 of
section 9.4 of [1] (see also [10]). The variables of each type ρ of LΩ range over S ρ.
These sets are defined thus:

1. S N = ω

2. S Ω is the smallest set W which contains 0 and is such that, whenever f is a
function that maps ω into W, then the ordered pair (1, f ) is in W.

3. S ρ�τ = { f : f is a set-theoretic function that maps S ρ into S τ}

It is clear how the terms of LΩ are interpreted in the set-theoretical model (see [10]
for some details). We only note that the constant Sup is interpreted by the function
which, on input f ∈ S N�Ω, outputs the element (1, f ) of W. We also remark that, to
each element c of W, we can associate a countable set-theoretical ordinal |c| so that
|0| = 0 and, for a function f : ω→ W, |Sup( f )| = sup{| f (n)| + 1 : n ∈ ω}. Observe that
| f (n)| < |Sup( f )|, for each natural number n. It is well-known that the first uncountable
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ordinal ω1 is the supremum of all |c|, with c ∈ W. The previous discussion also permits
to define, by classical ordinal recursion, the interpretations of the tree recursors RΩ

ρ so
that:

RΩ
ρ (0Ω, a, F) = a and RΩ

ρ (Sup( f ), a, F) = F( f , λxN .RΩ
ρ ( f (x), a, F)),

for all a ∈ S ρ and F a function that maps S N�ρ into (S ρ)S N�ρ .
Clearly, the equalities (both =w and =βη) established in the previous section between

terms of LΩ give rise to set-theoretical equalities in 〈S ρ〉.

Lemma 5. (i) If c ∈ W and c , 0, then |c| = Supn∈ω(|c〈n〉| + 1).

(ii) If c, d ∈ W and c v d then |c| ≤ |d|.

Proof. (ii) is an immediate consequence of (i). Given c , 0, let c = sup f , for a certain
f : ω→ W. Then |c| = sup{| f (n)| + 1 : n ∈ ω} = sup{|c〈n〉| + 1 : n ∈ ω}. �

Lemma 6. Let b, c : ρ → τ and a : ρ be term variables of pure Ω-types and f be a
term variable of type N → N. Then the implication b v f c → ba v f ca is true in the
set-theoretical structure 〈S ρ〉 for any values of the variables.

Proof. Let τ be τ1 → · · · → τk → Ω. Take n a natural number. Since b v f c, then
b〈n〉 = c〈 f n〉 holds set-theoretically. Note that ρ → τ is ρ → τ1 → · · · → τk → Ω.
Hence, λwρ, z.((bwz)〈n〉) = λwρ, z.((cwz)〈 f n〉) holds set-theoretically (where z is a tuple
of variables zτ1

1 , . . . , z
τk
k ). Therefore, (λwρ, z.((bwz)〈n〉))a = (λwρ, z.((cwz)〈 f n〉))a holds

set-theoretically and, hence, λz.((baz)〈n〉) = λz.((caz)〈 f n〉) holds set-theoretically. In
sum, ba v f ca. �

Finally, before discussing our so-called mixed structures, observe that the interpre-
tation of a closed term t of ground type Ω is an element of W and, therefore, has an
associated set-theoretical ordinal which, with abuse of notation, we denote by |t|. The
Bachmann-Howard ordinal is the supremum of all these ordinals.

The functional interpretation of the next section translates a formula φ of the lan-
guage of set theory into formulas φB and φB of a mixed language Lmix

Ω
. A version of

this language was introduced in [10]. Let us briefly describe it. The mixed language
Lmix

Ω
has three kinds of terms: the terms of LΩ (including, of course, the variables a, b,

c, etc. of LΩ), the set-theoretical variables x, y, z, etc. and (set) terms Mt, where t is a
term of LΩ. The atomic formulas of Lmix

Ω
are the formulas of the form x = y, x ∈ y or

x ∈ Mt, for x and y set-theoretical variables and t a term of LΩ of type Ω. The bounded
mixed formulas are generated from the atomic formulas by means of the propositional
logical connectives ¬ and ∧ and quantifications of the form ∀x ∈ y, ∀x ∈ Mt and ∀nN

(note that this last quantifier is classified as bounded). Since our semantics is clas-
sical, there is no need to introduce other connectives and quantifiers, as they can be
defined. The formulas of Lmix

Ω
are generated from the bounded mixed formulas by

means of propositional connectives and quantifications of the form ∀aρ, where a is a
term variable (of a certain type ρ) of the term language LΩ. Observe that we do not
need unbounded set-theoretic quantifications.

The two basic interpretations for Lmix
Ω

are the structures Lmix
ω1

and Vmix
ω1

. In both
of these structures, the terms of LΩ (and, therefore, the range of term variables) are
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interpreted set-theoretically in 〈S ρ〉 (as described by points 1, 2 and 3 above). The
set-theoretic variables range over Lω1 , respectively Vω1 . The terms Mt are interpreted
as L|t| in Lmix

ω1
and as V|t| in Vmix

ω1
. Abusing language, we often replace the term Mt by

the notations Lt or Vt according to the interpretation that we have in mind.

5 The main functional interpretation
We are going to associate to each formula φ(x1, . . . , xn) of the language of set theory
(free variables as shown) a bounded mixed formula φB of the form

φB(a1, . . . , ak, b1, . . . , bm, x1, . . . , xn),

with the free variables as shown (the a’s and the b’s are variables ofLΩ of pure Ω-type)
and also the following formula φB(x1, . . . , xn) of the language Lmix

Ω
:

∃a1 · · · ∃ak∀b1 · · · ∀bm φB(a1, . . . , ak, b1, . . . , bm, x1, . . . , xn).

Note that k or m (or both) can be zero. For notational simplicity, we simply write φ(x),
φB(x) and φB(a, b, x), instead of carrying the tuple notation. Many times we also omit
the parameters x.

Definition 7. To each formula φ of the language of set theory (possibly with param-
eters), we assign formulas φB and φB so that φB is of the form ∃a∀b φB(a, b), with
φB(a, b) a bounded mixed formula, according to the following clauses:

1. φB and φB are simply φ, for bounded formulas φ of the language of set theory.

For the remaining cases, if we have already interpretations for φ and ψ given by
∃a∀b φB(a, b) and ∃d∀eψB(d, e) (respectively), then we define:

2. (φ ∧ ψ)B is ∃a, d∀b, e [φB(a, b) ∧ ψB(d, e)],

3. (φ ∨ ψ)B is ∃a, d∀b, e [∀n φB(a, b〈n〉) ∨ ∀mψB(d, e〈m〉)],

4. (φ→ ψ)B is ∃B,D∀a, e [∀n φB(a, (Bae)〈n〉)→ ψB(Da, e)],

5. (∀x ∈ z φ(x, z))B is ∃a∀b [∀x ∈ z φB(a, b, x, z)],

6. (∃x ∈ z φ(x, z))B is ∃a∀b [∃x ∈ z∀n φB(a, b〈n〉, x, z)],

7. (∀xφ(x))B is ∃A∀cΩ, b [∀x ∈ Lc φB(Ac, b, x)],

8. (∃xφ(x))B is ∃cΩ, a∀b [∃x ∈ Lc∀n φB(a, b〈n〉, x)].

The lower B-translations are displayed inside the square parentheses. Note that
they are bounded mixed formulas. The following lemma is an immediate consequence
of the definitions.

Lemma 7. Let φ be a ∆0-formula. Then:
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(i) (∃xφ(x))B is ∃cΩ[∃x ∈ Lc φ(x)].

(ii) (∀x∃yφ(x, y))B is ∃AΩ→Ω∀cΩ[∀x ∈ Lc∃y ∈ LAc φ(x, y)].

As it is usual with this kind of functional interpretations, we have the following
crucial property:

Lemma 8 (Monotonicity property). Let φ(x) be a formula of the language of set theory.
In Lmix

ω1
one has the implication a v f c ∧ φB(a, b, x)→ φB(c, b, x).

Proof. It is clear that the clauses 2, 3, 5 and 6 preserve this property. By Lemma 6,
clause 7 preserves the property, and by Lemma 5(ii), so does clause 8. Let us look
now at clause 4. Suppose that ∀n φB(a, (Bae)〈n〉) → ψB(Da, e) holds in Lmix

ω1
and that

B v f B′ and D vg D′. Assume that ∀n φB(a, (B′ae)〈n〉). Let k be an arbitrary natural
number. Since B v f B′, by two applications of Lemma 6, we get Bae v f B′ae. Hence,
(Bae)〈k〉 = (B′ae)〈 f k〉. By the assumption, we have φB(a, (B′ae)〈 f k〉). Now, by the
arbitrariness of k, we may conclude that ∀k φB(a, (Bae)〈k〉). By hypothesis we may
infer ψB(Da, e) and, therefore by Lemma 6 and the induction hypothesis, ψB(D′a, e).
We are done. �

We are now ready to state and prove the soundness theorem of the functional inter-
pretation.

Theorem 2 (Soundness Theorem). Let φ be a sentence of the language of set theory.
Suppose that IKPω + ∆0-LEM + MP + bIPΠ1 + ∆0-CColl + Coll ` φ. Then there are
closed terms t of LΩ such that, for appropriate types ρ,

Lmix
ω1
|= ∀bρ φB(t, b).

Proof. The proof is by induction on the length of the derivation. We show that if a
formula φ(w) is provable in the theory of the theorem, then there are closed terms t of
LΩ such that, for appropriate types ρ, we have

Lmix
ω1
|= ∀cΩ∀bρ [∀w ∈ Lc φB(tc, b,w)],

where φ(w)B is ∃a∀b φB(a, b,w).
For ease of reading, in the following we ignore parameters that do not play an

important role in the proof of the theorem. For the logical part of the theory, we rely on
the formalization of intuitionistic logic given in [1]. The verification of these axioms
and rules has some rough similarities with the verifications of [11]. In the following,
we take φ and ψ as in Definition 7, and γ with γB given by ∃u∀v γB(u, v). Let us now
discuss each rule and axiom:

1. φ, φ → ψ ⇒ ψ. By induction hypothesis, there are terms t, r and s such that
∀b φB(t, b) and ∀a, e [∀n φB(a, (rae)〈n〉) → ψB(sa, e)] hold in Lmix

ω1
. Let q :≡ st. It is

clear that we can conclude ∀eψB(q, e).
2. φ → ψ, ψ → γ ⇒ φ → γ. By hypothesis we have terms t, s, r and q such

that the following holds in Lmix
ω1

: (i) ∀a, e [∀n φB(a, (sae)〈n〉) → ψB(ta, e)] and (ii)
∀d, v [∀mψB(d, (rdv)〈m〉) → γB(qd, v)]. Take l :≡ λa, v.

⊔
m s(a, (r(ta, v))〈m〉) and
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o :≡ λa.q(ta). We show that Lmix
ω1
|= ∀a, v [∀k φB(a, (lav)〈k〉) → γ(oa, v)]. Take a and v

and suppose that ∀k φB(a, (lav)〈k〉). Then, for every n,m, we have φB(a, (lav)〈p(m, n)〉)
(here p is the pairing term). By Lemma 4, (lav)〈p(m, n)〉 = (s(a, (r(ta, v))〈m〉))〈n〉.
Hence, fixing m, we have ∀n φB(a, (s(a, (r(ta, v))〈m〉))〈n〉). Particularizing (i) with e as
the element (r(ta, v))〈m〉, we get ψB(ta, (r(ta, v))〈m〉). By the arbitrariness of m and (ii),
we conclude γ(q(ta), v). That is what we want.

3a. φ ∨ φ → φ. A simple computation of (φ ∨ φ → φ)B shows that we must find
terms q1, q2 and t such that, for all a, a′, b′′ the following holds in Lmix

ω1
:

∀k, k′(∀n φB(a, (q1aa′b′′)〈k〉〈n〉) ∨ ∀m φB(a′, (q2aa′b′′′)〈k′〉〈m〉)→ φB(taa′, b′′).

We claim that the above is true with t :≡ λa, a′.(a t a′), and with both q1 and q2 as
λa, a′, b′′.(b′′+ 2). In effect, the antecedent above entails φB(a, b′′)∨φB(a′, b′′). By the
monotonicity property, we get φ(a t a′, b′′), as wanted.

3b. φ→ φ ∧ φ. We must find terms t1, t2 and q such that

∀a, b′, b′′ [∀n φB(a, (qab′b′′)〈n〉)→ φB(t1a, b′) ∧ φB(t2a, b′′)]

holds in Lmix
ω1

. Let t1 and t2 be the term λa.a and q :≡ λa, b′, b′′.((b′ + 1) t (b′′ + 1)). If
∀n φB(a, ((b′ + 1)t (b′′ + 1))〈n〉) we have, in particular φB(a, b′) and φB(a, b′′) because
((b′ + 1) t (b′′ + 1))〈p(0, n)〉 = b′ and ((b′ + 1) t (b′′ + 1))〈p(1, n)〉 = b′′, where p is
the pairing function.

4a. φ→ φ ∨ ψ. We must find terms q, t and r such that

∀a, b′, e [∀k φB(a, (rab′e)〈k〉)→ ∀n φB(qa, b′〈n〉) ∨ ∀mψB(ta, e〈m〉)]

holds in Lmix
ω1

. It is clear that q :≡ λa.a, t :≡ λa.0, and r :≡ λa, b′, e.b′ works (here, 0 is
the usual zero constant of appropriate pure Ω-type).

4b. φ ∧ ψ→ φ. We must find terms q, t and r such that

∀a, d, b′ [∀n∀m (φB(a, (tadb′)〈n〉) ∧ ψB(d, (radb′)〈m〉))→ φB(qad, b′)]

holds in Lmix
ω1

. Clearly, q :≡ λa, d.a, t :≡ λa, d, b′.(b′ + 1) and r :≡ λa, d, b′.0 works.
5a. φ ∨ ψ→ ψ ∨ φ. We must find terms q, t, r and s such that

∀a, b, b′, e′ [∀k∀k′ (∀n φB(a, (qabb′e′)〈k〉〈n〉) ∨ ∀mψB(d, (tabb′e′)〈k′〉〈m〉))→

∀n φB(rad, b′〈n〉) ∨ ∀mψB(sad, e′〈m〉)]

holds in Lmix
ω1

. It is clear that r :≡ λa, d.a, s :≡ λa, d.d, q :≡ λa, b, b′, e′.(b′ + 1) and
t :≡ λa, b, b′, e′.(e′ + 1) work.

5b. φ ∧ ψ→ ψ ∧ φ. Clear.
6. φ → ψ ⇒ (γ ∨ φ → γ ∨ ψ). By hypothesis we have terms t and q such that

∀a, e [∀k φB(a, (tae))〈k〉 → ψB(qa, e)]. We must show that there are terms o, l, r and s
such that

∀u, a, v, e [∀k∀k′(∀n γB(u, (ruave)〈k〉〈n〉) ∨ ∀m φB(a, (suave)〈k′〉〈m〉))→
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∀n γ(oua, v〈n〉) ∨ ∀mψ(lua, e〈m〉)]

holds in Lmix
ω1

. Let us define o :≡ λu, a.u, l :≡ λu, a.qa, r :≡ λu, a, v, e.(v + 1) and s :≡
λu, a, v, e.((

⊔
i t(a, e〈i〉)) + 1). Suppose the antecedent. Particularizing for k = k′ = 0,

we get ∀n γB(u, v〈n〉)∨∀m φB(a, (
⊔

i t(a, e〈i〉))〈m〉). If we have the first disjunct, we are
done. If we have the second then ∀k,m φB(a, (

⊔
i t(a, e〈i〉))〈p(m, k)〉), where p is the

pairing term. Therefore, by Lemma 4, ∀k,m φB(a, t(a, e〈m〉)〈k〉). The hypothesis now
entails ∀mψB(qa, e〈m〉).

7a. φ∧ ψ→ γ ⇒ φ→ (ψ→ γ). By hypothesis, there are terms t, q and r such that
∀a, d, v [∀n∀m (φB(a, (tadv)〈n〉) ∧ ψB(d, (qadv)〈m〉)) → γB(rad, v)] holds in Lmix

ω1
, and

we must obtain terms t′, q′ and r′ such that the following also holds:

∀a, d, v [∀n φB(a, (t′adv)〈n〉)→ (∀mψB(d, (q′adv)〈m〉)→ γB(rad, v))].

Of course, t′ :≡ t, q′ :≡ q and r′ :≡ r work.
7b. φ→ (ψ→ γ)⇒ φ ∧ ψ→ γ. Similar to 7a.
8. ⊥ → φ. Clear.
9. φ → ψ(w) ⇒ φ → ∀wψ(w), where w does not occur free in φ. By hypothesis,

there are terms t and q such that

∀cΩ, a, e [∀w ∈ Lc (∀n φB(a, (tcae)〈n〉)→ ψB(qca, e,w))]

holds in Lmix
ω1

. The interpretation asks for terms r and s such that

∀cΩ, a, e [∀n φB(a, (race)〈n〉)→ ∀w ∈ Lc ψB(sac, e,w)].

This is clear.
10. ∀x φ(x) → φ(w). A computation of the upper-B translation of this formula

shows that we must find terms t, q and r such that for all c ∈ W and A and b′ of
appropriate types in the set-theoretical structure 〈S ρ〉,

∀w ∈ Lc (∀n,m∀x ∈ L(qcAb′)〈n〉 φB(A((qcAb′)〈n〉), (rcAb′)〈m〉, x)→ φB(tcA, b′,w))

holds in Lmix
ω1

. It is clear that the terms t :≡ λc, A.Ac, q :≡ λc, A, b′.(c + 1) and r :≡
λc, A, b′.(b′ + 1) do the job.

11. φ(w)→ ∃x φ(x). We must find terms t, q and r such that

∀cΩ, a, b [∀w ∈ Lc (∀n φB(a, (qcab)〈n〉,w)→ ∃x ∈ Ltca∀n φB(rca, b〈n〉, x))]

holds in Lmix
ω1

. It is clear that t :≡ λc, a.c, q :≡ λc, a, b.b and r :≡ λc, a.a do the job.
12. φ(w) → ψ ⇒ ∃w φ(w) → ψ, where w does not occur free in ψ. By hypothesis

there are terms t and q such that

∀cΩ, a, e [∀w ∈ Lc (∀n φB(a, (tcae)〈n〉,w)→ ψB(qca, e))]

holds in Lmix
ω1

. The interpretation asks for terms r and s such that

∀cΩ, a, e [∀m∃w ∈ Lc ∀n φB(a, (rcae)〈m〉〈n〉,w)→ ψB(sca, e)].

It is clear that s :≡ q and r :≡ λc, a, e.((tcae) + 1) work.
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If we do not count the axioms of equality of IKPω, we are done with the logical
part. The axioms of equality pose no problem because they can be taken as universal
formulas and, hence, are interpreted by themselves. Before proceeding to the mathe-
matical axioms of IKPω, we must still pay attention to the four axioms that regulate the
primitive bounded quantifiers ∀x ∈ z (. . .) and ∃x ∈ z (...).

In order to study universal bounded quantification, we compute the upper-B trans-
lations of ∀x ∈ z φ(x, z) and ∀x (x ∈ z → φ(x, z)). They are ∃a∀b [∀x ∈ z φB(a, b, x, z)]
and ∃A∀cΩ, b [∀x ∈ Lc (x ∈ z→ φB(Ac, b, x, z))], respectively.

The axiom ∀x ∈ z φ(x, z) → ∀x (x ∈ z → φ(x, z)). It is easy to see that we must
obtain terms t and q such that for all e, c ∈ W and a and b of appropriate types in the
set-theoretical structure 〈S ρ〉, and for all z ∈ L|e|, the statement

∀n∀x ∈ z φB(a, (tecab)〈n〉, x, z)→ ∀x ∈ Lc (x ∈ z→ φB(qeac, b, x, z))

holds in Lmix
ω1

. This is clearly the case with t :≡ λe, c, a, b.(b + 1) and q :≡ λe, a, c.a.
The axiom ∀x (x ∈ z → φ(x, z)) → ∀x ∈ z φ(x, z). We must obtain terms t, q and

s such that for all for all e ∈ W and A, b of appropriate types in the set-theoretical
structure 〈S ρ〉, and for all z ∈ L|e|, the statement

∀n,m∀x ∈ L(teAb)〈n〉(x ∈ z→ φB(A((teAb)〈n〉), (qeAb)〈m〉, x, z))→ ∀x ∈ z φB(seA, b, x, z)

holds in Lmix
ω1

. It is clear that s :≡ λe, A.Ae, t :≡ λe, A, b.(e + 1) and q :≡ λe, A, b.(b + 1)
work.

Now we discuss the existential bounded quantifier. The upper B-translations of
∃x ∈ z φ(x, z) and ∃x (x ∈ z∧φ(x, z)) are, respectively, ∃a∀b [∃x ∈ z∀n φB(a, b〈n〉, x, z)]
and ∃cΩ, a∀b [∃x ∈ Lc∀n (x ∈ z ∧ φB(a, b〈n〉, x, z))].

The axiom ∃x ∈ z φ(x, z)→ ∃x(x ∈ z ∧ φ(x, z)). We must find terms t, q and s such
that, for all e ∈ W and a and b of appropriate types in the set-theoretical structure 〈S ρ〉,
and for all z ∈ L|e|,

∀m∃x ∈ z∀n φB(a, (teab)〈m〉〈n〉, x, z)→ ∃x ∈ Lqea∀n (x ∈ z ∧ φB(sea, b〈n〉, x, z))

holds in Lmix
ω1

. Clearly, t :≡ λe, a, b.(b + 1), q :≡ λe, a.e and s :≡ λe, a.a work.
The axiom ∃x (x ∈ z∧ φ(x, z))→ ∃x ∈ z φ(x, z). We must obtain terms t and q such

that, for all e, c ∈ W and for all a, b of appropriate types in the set-theoretical structure
〈S ρ〉, and for all z ∈ L|e|, the statement

∀m∃x ∈ Lc∀n (x ∈ z ∧ φB(a, (tecab)〈m〉〈n〉, x, z))→ ∃x ∈ z∀n φB(qeca, b〈n〉, x, z)

holds in Lmix
ω1

. This is clearly the case with t :≡ λe, a, c, b.(b + 1) and q :≡ λe, c, a.a.
Let us now turn to the mathematical axioms of IKPω. Extensionality poses no

problem because it is the universal closure of a bounded formula. The verification
of the pairing, union and infinity axioms is like the verification done in [10]. For
completeness, for these three axioms we need (respectively) closed terms t, q and r
such that ∀c, e∀x ∈ Lc∀y ∈ Le∃z ∈ Ltce (x ∈ z ∧ y ∈ z), ∀c∀x ∈ Lc∃z ∈ Lqc∀y ∈ x∀w ∈
y (w ∈ z) and ∃x ∈ Lr Lim(x), where Lim(x) is a bounded formula which expresses that
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x is a limit ordinal. The terms t :≡ λc, e.(max(c, e) + 1), q :≡ λc.c and r :≡ ωΩ + 1 do
the job.

The separation scheme is ∀w∀y∃z∀x (x ∈ z ↔ x ∈ y ∧ φ(x,w)), where φ is a
bounded formula in which the variable z does not occur. Note that the inner universal
statement can be considered bounded. A straightforward computation of the upper B-
translation of this formula shows that we need a closed term t of type Ω → (Ω → Ω)
such that

∀cΩ, eΩ [∀y ∈ Lc∀w ∈ Le∃z ∈ Ltce∀x (x ∈ z↔ x ∈ y ∧ φ(x,w))]

holds in Lmix
ω1

. It is clear that the term t :≡ λc, e.(max(c, e) + 1) does the job. To see this,
just take z to be {x ∈ Lα : x ∈ y ∧ φ(x,w)}, where α = max(|c|, |e|).

The bounded collection scheme is a sub-scheme of the scheme of unrestricted col-
lection Coll that will be discussed later. Let us now study the foundation rule. A
computation of the upper-B translation of the premise of the induction rule shows that,
by induction hypothesis, there are terms t and q such that

(∗) ∀cΩ, a, b [∀x ∈ Lc (∀n∀y ∈ x φB(a, (tcab)〈n〉, y)→ φB(qca, b, x))]

holds in Lmix
ω1

. We want to find a term r such that

(?) Lmix
ω1
|= ∀cΩ, b [∀x ∈ Lc φB(rc, b, x)]

Define by tree recursion the term r as follows: r0Ω = 0 and

r(Sup( f )) =
⊔

k

q( f k, r( f k)).

We now check (?) by transfinite induction on |c|. If |c| = 0 there is nothing to prove.
Suppose that c = Sup( f ). Take b appropriate of type in the set-theoretical structure
〈S ρ〉 and x ∈ L|c|. Take y ∈ x. Since L|c| =

⋃
k L| f (k)|+1, there is a natural number k0

(which we identify with the corresponding type N term) such that x ∈ L| f (k0)|+1. By
transfinite induction hypothesis,

Lmix
ω1
|= ∀b∀y ∈ L f (k0) φB(r( f (k0)), b, y)

because | f (k0)| < |c|. In particular,

Lmix
ω1
|= ∀b∀y ∈ L f (k0)∀n φB(r( f (k0)), (t( f (k0), r( f (k0)), b))〈n〉, y).

Using the hypothesis (∗), we may conclude that

Lmix
ω1
|= ∀b φB(q( f (k0), r( f (k0))), b, x).

But, by Lemma 4, q( f (k0), r( f (k0))) v
⊔

k q( f (k), r( f (k))) holds in Lmix
ω1

. By the defi-
nition of r and c, we have Lmix

ω1
|= q( f (k0), r( f (k0))) v rc. Now, (?) follows using the

monotonicity property of the existencial entry of φB.
It remains to check the principles ∆0-LEM, MP, bIPΠ1 , ∆0-CColl and Coll. Of

course, ∆0-LEM is trivially interpreted by itself. We now check these four principles:
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MP. We must find a term t such that ∀cΩ [¬∀n∀x ∈ Lc〈n〉 φ(x) → ∃x ∈ Ltc ¬φ(x)]
holds in Lmix

ω1
. The identity term in type Ω works.

bIPΠ1 . The upper B-translation of the antecedent of this principle is

∃cΩ, d, B∀e [∀k∀x ∈ L(Be)〈k〉 φ(x)→ ∃y ∈ Lc∀nψB(d, e〈n〉, y)],

whereas the upper B-translation of the consequent is

∃cΩ, d, B∀e [∃y ∈ Lc∀m (∀k∀x ∈ L(B(e〈m〉))〈k〉 φ(x)→ ∃z ∈ y∀nψB(d, e〈m〉〈n〉, z))].

Therefore, we must find terms t, q, r and s such that for all c ∈ W and d, B and e of
appropriate types in the set-theoretical structure 〈S ρ〉,

∀m (∀k∀x ∈ L(B((tcdBe)〈m〉))〈k〉 φ(x)→ ∃z ∈ Lc∀nψB(d, (tcdBe)〈m〉〈n〉, z))→

∃y ∈ LqcdB∀m (∀k∀x ∈ L((scdB)(e〈m〉))〈k〉 φ(x)→ ∃z ∈ y∀nψB(rcdB, e〈m〉〈n〉, z))

holds in Lmix
ω1

. It does hold with t :≡ λc, d, B, e.e, s :≡ λc, d, B.B, q :≡ λc, d, B.(c + 1)
and r :≡ λc, d, B.d. To see this we have to check that

∀cΩ, d, B, e [∀m (∀k∀x ∈ L(B(e〈m〉))〈k〉 φ(x)→ ∃z ∈ Lc∀nψB(d, e〈m〉〈n〉, z))→

∃y ∈ Lc+1∀m (∀k∀x ∈ L(B(e〈m〉))〈k〉 φ(x)→ ∃z ∈ y∀nψB(d, e〈m〉〈n〉, z))]

holds in Lmix
ω1

. In effect, if we assume the antecedent, then the consequent is seen to
immediately hold with y = Lc.

∆0-CColl. According to the upper B-translation of this principle, we need a term t
such that

∀dΩ, cΩ [∀w ∈ Ld (∀n∀z ∈ L(tdc)〈n〉∃y ∈ w∀x ∈ z φ(x, y)→ ∃y ∈ w∀n∀x ∈ Lc〈n〉 φ(x, y))]

holds in Lmix
ω1

. It is easy to argue that t :≡ λd, c.(c + 2) works. One just has to instantiate
the antecedent with z = Lc (and n = 0, say) to see that the consequent holds.

Coll. The upper B-translation of the antecedent of this principle is

∃cΩ, a∀b [∀y ∈ w∃x ∈ Lc∀n φB(a, b〈n〉, x, y)],

and the upper B-translation of the consequent is

∃dΩ, a∀b [∃z ∈ Ld∀k∀y ∈ w∃x ∈ z∀n φB(a, b〈k〉〈n〉, x, y)].

Therefore, we must obtain terms t, q and r such that

∀eΩ, cΩ, a, b [∀w ∈ Le (∀k∀y ∈ w∃x ∈ Lc∀n φB(a, (tecab)〈k〉〈n〉, x, y)→

∃z ∈ Lqeca∀k∀y ∈ w∃x ∈ z∀n φB(reca, b〈k〉〈n〉, x, y))]

holds in Lmix
ω1

. Just take t :≡ λe, c, a, b.b, q :≡ λe, c, a.(c + 1) and r :≡ λe, c, a.a.
Obviously, the consequent becames true (given the antecedent) with z = Lc.

�

18



The following proposition is an immediate consequence of the Soundness Theorem
and of (ii) of Lemma 7:

Proposition 4. If IKPω + ∆0-LEM + MP + bIPΠ1 + ∆0-CColl + Coll ` ∀x∃y φ(x, y),
where φ is a bounded formula (x and y are the only free variables), then there is a
closed term t of type Ω→ Ω such that

Lmix
ω1
|= ∀cΩ∀x ∈ Lc∃y ∈ Ltc φ(x, y).

Moreover, LBH |= ∀x∃y φ(x, y), where BH is the Bachmann-Howard ordinal.

In the last conclusion, one uses the absoluteness of bounded formulas. The same
for the following:

Corollary 3. If IKPω+ ∆0-LEM + MP + bIPΠ1 + Coll + ∆0-CColl ` ∃x φ(x), where φ is
a bounded formula (x is the only free variable), then there is an ordinal α smaller than
the Bachmann-Howard ordinal such that Lα |= ∃x φ(x).

A part of Proposition 4 can be much improved because the translations that define
the functional interpretation are correct in Lmix

ω1
(however, the improvement does not

seem susceptible to an internalization like the one in section 6 of [10]). In order to
discuss this improvement it is convenient to permit also unbounded set-theoretic quan-
tifications in the mixed language. With these quantifications, we refer to the language
as the extended mixed language.

Lemma 9. For every formula φ of the language of set theory, Lmix
ω1
|= φ↔ φB.

Proof. The proof is by induction on the complexity of φ. The result is clear for φ
bounded, for the conjunction and also for the disjunction. For the latter one, just use
the fact that for every b ∈ S ρ, the equality (b + 1)〈n〉 = b holds set-theoretically. The
remaining cases follow from the following fact:

Fact. Let z ∈ Lω1 , ρ a pure Ω-type and φ a formula of the extended mixed language.
Then

Lmix
ω1
|= ∀x ∈ z∃aρ φ(a, x, z)→ ∃a∀x ∈ z∃n φ(a〈n〉, x, z).

The proof of the fact is easy. Let z ∈ Lω1 . Suppose that Lmix
ω1
|= ∀x ∈ z∃aρ φ(a, x, z).

Since z is countable, we can take an enumeration (xn)n∈ω of the elements of z. For each
n ∈ ω, choose an ∈ S ρ be such that Lmix

ω1
|= φ(an, xn, z). Call f this function n{ an. By

(viii) of Section 3, Lmix
ω1
|= ∀nN((Sup f )〈n〉 = an). It is now clear that we can take for a

the element Sup f . � (end of proof of fact)

Let us study the universal bounded quantifier. We need to show that

Lmix
ω1
|= ∀x ∈ z∃a∀b φB(a, b, x, z)↔ ∃a∀b∀x ∈ z φB(a, b, x, z).

Only the left-to-right direction needs to be argued. Assume the antecedent. By the
Fact, ∃a∀x ∈ z∃n∀b φB(a〈n〉, b, x, z). By Lemma 4 and the monotonicity lemma, we
easily get ∀b∀x ∈ z φB(ã, b, x, z), where ã is

⊔
λxN .(a〈x〉).
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Regarding the existential bounded quantifier, we must show that

Lmix
ω1
|= ∃x ∈ z∃a∀b φB(a, b, x, z)↔ ∃a∀b∃x ∈ z∀n φB(a, b〈n〉, x, z).

This time, the left-to-right direction is trivial. So, assume the right-hand side and
take an element a such that ∀b∃x ∈ z∀n φB(a, b〈n〉, x, z). We use the contrapositive of
the Fact in order to we get what we want.

Let us consider the universal quantifier. We must show that

Lmix
ω1
|= ∀x∃aρ∀b φB(a, b, x)↔ ∃A∀cΩ, b∀x ∈ Lc φB(Ac, b, x).

Suppose the antecendent. Hence, for all elements c ∈ W, ∀x ∈ Lc∃a∀b φB(a, b, x).
By the discussion of the universal bounded quantifier case, we get that for all c ∈ W
there is a ∈ S ρ such that ∀x ∈ Lc∀b φB(a, b, x). Take a function A : W → S ρ (that is,
an element of S Ω�ρ) such that, for all elements c in W, ∀b∀x ∈ Lc φB(Ac, b, x). This A
works. Now, assume the right-hand side. Let A ∈ S Ω�ρ such that, for all c ∈ W one
has ∀b∀x ∈ Lc φB(A(c), b, x). Take x an arbitrary element of Lω1 . Then there is c ∈ W
such that x ∈ L|c| (we are using the fact that ω1 = supc∈W |c|). It is clear that if we take
a to be A(c), we get ∀b φB(a, b, x).

For the existential quantifier we must show that

Lmix
ω1
|= ∃x∃aρ∀b φB(a, b, x)↔ ∃cΩ, a∀b∃x ∈ Lc∀n φB(a, b〈n〉, x).

The left-to-right direction follows from the fact Lω1 =
⋃

c∈W L|c|. To see the other direc-
tion, take c ∈ W and a ∈ S ρ such that ∀b∃x ∈ Lc∀n φB(a, b〈n〉, x). By the contrapositive
of the Fact, we obtain ∃x ∈ Lc∀b φB(a, b, x) and, therefore, the left-hand side.

It remains to check the implication. We must argue that the following holds in Lmix
ω1

:

(∃a∀b φB(a, b)→ ∃d∀eψB(d, e))↔ ∃B,D∀a, e (∀n φB(a, (Bae)〈n〉)→ ψB(Da, e)).

Note that ∀b φB(a, b) is equivalent to ∀b∀n φB(a, b〈n〉). With this in mind, an approriate
(partial) prenexification of the left-hand side of the equivalence yields

∀a∃d∀e∃b (∀n φB(a, b〈n〉)→ ψB(d, e)).

The equivalence follows using two applications of the axiom of choice in the structure
(S ρ). �

Proposition 5. If IKPω + ∆0-LEM + MP + bIPΠ1 + Coll + ∆0-CColl ` ∀x∃y φ(x, y),
where φ is an arbitrary formula of the language of set theory (x and y are the only free
variables), then there is a closed term t of type Ω→ Ω such that

∀c ∈ W∀x ∈ L|c|∃y ∈ L|t(c)| Lω1|= φ(x, y).

Proof. Let φ(x, y)B be ∃aτ∀bρφB(a, b, x, y). It is easy to see that (∀x∃y φ(x, y))B is

∃A,D∀cΩ, b∀x ∈ Lc∃y ∈ LDc∀n φB(Ac, b〈n〉, x, y).

By the Soundness theorem, there are closed terms t and q such that

∀cΩ∀x ∈ Lc∀b∃y ∈ Ltc∀n φB(qc, b〈n〉, x, y)
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holds in Lmix
ω1

. By the contrapositive of the Fact of the previous lemma, we get:

∀cΩ ∀x ∈ Lc∃y ∈ Ltc∀b φB(qc, b, x, y).

In particular, ∀c∀x ∈ Lc∃y ∈ Ltc∃a∀b φB(a, b, x, y), i.e., ∀c∀x ∈ Lc∃y ∈ Ltc φ
B(x, y).

By the previous lemma, we are done. �

6 Adding strict-Π1
1 reflection

Admissibility is the playground where finiteness, recursive enumerability and other
recursion-theoretic notions find a fertile ground for generalization (see, for instance,
the preface of [18]). Weak Kőnig’s lemma is an important (second-order) principle in
recursion theory (viz., in relation with low degrees and compactness) as well as in sub-
systems of second-order arithmetic and reverse mathematics (cf. [20]). The principle
of strict-Π1

1 reflection, introduced by Barwise in [3] and [4], is a natural generaliza-
tion of weak Kőnig’s lemma from the arithmetical setting to the admissible setting.
Strict-Π1

1 reflection can be stated as follows:

∀X∃x φ(x, X)→ ∃z∀X∃x ∈ z φ(x, X),

where φ is a bounded formula (for details see chapter VIII of [5]). In the second part
of [10], we extended the Σ-ordinal analysis of KPω to a second-order theory with the
principle of strict-Π1

1 reflection. We proved the novel result that the Σ-ordinal of this
second-order theory is still the Bachmann-Howard ordinal. The main idea for this
analysis was an extension of the functional interpretation in which second-order quan-
tifications are treated as bounded quantifications. It may sound surprising at first that
this treatment works because the transformations of formulas underlying the functional
intepretation of the second-order quantifiers are not truth-preserving in our semantics
(more about this later). However, on second thought – for a person familiar with the
bounded functional interpretation of [11] – the idea is compelling.

In this paper we are interested in analysing theories based on intuitionistic logic.
Some phenomena absent in the classical setting emerge in the intuitionistic theories.
As we saw, the bounded collection scheme of KPω is inflated into unrestricted col-
lection Coll (while the non-intuitionistic classical contrapositive of bounded collection
∆0-CColl is kept). A similar sort of thing happens with strict-Π1

1 reflection (see Defini-
tions 12 and 13). The inflation also extends to the notion of bounded formula, now that
second-order quantifications are regarded as bounded. There is no apparent reason to
stick any longer to the usual notion of bounded formula.

Let us set up the basic second-order theories IKPω2� and IKPω2 (the latter is dis-
cussed in the next section). The language of second-order set theory is the enlargement
of the language of set theory (as described in Section 2) with monadic second-order
quantification (we have both universal and existential quantifiers). We use capital let-
ters X, Y , Z, . . . for the monadic predicates and call them classes. As it is common
usage, we write ‘x ∈ X’ instead of the (syntactically correct) ‘X(x)’. This is an abuse
of notation because the membership sign in the expression ‘x ∈ X’ is not the member-
ship sign of the language of (first-order) set theory. It is just a harmless and felicitous
notational device, and we read ‘x ∈ X’ as saying that x is a member of (the class) X.
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Definition 8. The class of ∆C0 -formulas of the language of second-order set theory is
the smallest class of formulas that contains the atomic formulas x ∈ y, x = y, x ∈ X, the
absurdity, and which is closed under propositional connectives, the bounded quantifiers
∀x ∈ y and ∃x ∈ y, and the second-order quantifiers ∀X and ∃X.

In [19], Salipante uses the notation ∆C
0 , with a roman letter ‘C’, for a more restricted

version of bounded formula, namely for ∆0-formulas in which second-order parameters
are permitted (second-order quantifications are not allowed). In order to distinguish
our notion from Salipante’s, we use a caligraphic ‘C’ instead. This caligraphic notation
has also the advantage of cohering with a notation of Rathjen in [17] that we will be
needing in the next section.

We denote the law of excluded middle restricted to ∆C0 -formulas by ∆C0 -LEM.

Definition 9. The second-order theory IKPω2� is the intuitionistic theory of the lan-
guage of second-order set theory that contains IKPω and extends the scheme of foun-
dation in order to permit all the formulas of the new language.

Some comments are in order. In the above, we did not change the original schemata
of separation and bounded collection. They remain exactly as in IKPω. We could have
opted for allowing in the collection scheme the wider class of ∆C0 -formulas and, also,
second-order parameters. This would be more in line with the definition of KPω2� in
[10]. However, this enlarged collection scheme is a particular case of the unrestricted
collection scheme CollC given in (d) of Definition 11, and our functional interpretation
is able to realize it. The point of attention is really the separation scheme of Definition
9. It is the original formulation of the separation scheme, without second-order param-
eters and with the original bounded (i.e., ∆0) formulas. That explains the restriction
sign in the acronym of the theory. As we will see, the Σ-ordinal of the restricted theory
together with the ∆C0 -LEM, some comprehension for second-order class formation and
strict-Π1

1 reflection is still the Bachmann-Howard ordinal. On the other hand, Salipante
showed that if second-order parameters are allowed in the separation scheme (never
mind allowing for ∆C0 -matrices) then, in the presence of suitable comprehension and
strict-Π1

1 reflection, one is able to prove the powerset axiom. This will be discussed in
the next section (see Theorem 4). Antecipating the results of that section, we may add
that with the help of other interpretable principles Salipante’s result gives rise to a very
strong theory, namely to (an intuitionistic version of) the so-called power Kripke-Platek
set theory KPω (P), as described in [17].

Next, we introduce the principles of class comprehension that will be of our interest
(notice the analogy with similar principles in subsystems of second-order arithmetic).
A ΣC1 -formula is a formula of the form ∃xϕ(x), where ϕ(x) is a ∆C0 -formula. The notion
of ΠC1 -formula is defined dually.

Definition 10. The following schemata are defined in the second-order language of set
theory (first and second-order parameters are allowed):

I. The scheme ∆C0 -CA is ∃X∀x (x ∈ X ↔ φ(x)), where φ(x) is a ∆C0 -formula (X is a fresh
variable).

II. The scheme ∆C1 -CA is ∀x (φ(x) ↔ ψ(x)) → ∃X∀x (x ∈ X ↔ φ(x)), where φ(x) is a
ΣC1 -formula and ψ(x) is a ΠC1 -formula (X is a fresh variable).
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We now list some principles which our functional interpretation is able to realize:

Definition 11. The following schemata are defined in the second-order language of set
theory (in all the schemata below, both first and second-order parameters are allowed):

(a) Markov’s principle MPC is the scheme ¬∀x φ(x)→ ∃x¬φ(x), for φ a ∆C0 -formula.

(b) The independence of premises principle bIPΠC1
is the scheme

(∀x φ(x)→ ∃yψ(y))→ ∃y (∀x φ(x)→ ∃z ∈ yψ(z)),

where φ is a ∆C0 -formula and ψ is any formula of the second-order language.

(c) The principle of bounded contra-collection ∆C0 -CColl is the scheme

∀z∃y ∈ w∀x ∈ z φ(x, z)→ ∃y ∈ w∀xφ(x, y),

where φ is a ∆C0 -formula.

(d) The principle of (unrestricted) collection CollC is the scheme

∀y ∈ w∃x φ(x, y)→ ∃z∀y ∈ w∃x ∈ z φ(x, y),

where φ is any formula of the second-order language.

Some of the results of Section 2 adapt to the new setting. The following result is
analogous to the law of excluded middle of Corollary 1. The proof of that corollary
used a separation result that we do not have in our present setting, due to the restric-
tions of the separation scheme discussed above. However a direct proof is forthcoming
(moreover, Markov’s principle is not needed, as observed by Fujiwara):

Proposition 6. The theory IKPω2� + ∆C0 -LEM + bIPΠC1
proves the ∆C1 law of excluded

middle, i.e., it proves (∀u φ(u) ↔ ∃vψ(v)) → (∀u φ(u) ∨ ¬∀u φ(u)), for ∆C0 -formulas φ
and ψ (possibly with first and second-order parameters).

Proof. Suppose that ∀u φ(u) ↔ ∃vψ(v). Applying bIPΠC1
to the left-to-right direction

of the equivalence, there is v0 such that ∀u φ(u) → ∃v ∈ v0 ψ(v). If ∃v ∈ v0 ψ(v), our
supposition entails ∀u φ(u). If ¬∃v ∈ v0 ψ(v), we directly conclude that ¬∀u φ(u). �

A version of the lesser limited principle of omniscience also holds in the present
setting (first and second-order parameters are allowed in the following, of course). The
proof is analogous to the proof of Corollary 2.

Proposition 7. If φ and ψ are ∆C0 -formulas, then

IKPω2�+ ∆C0 -LEM + ∆C0 -CColl ` ∀u, v (φ(u) ∨ ψ(v))→ ∀u φ(u) ∨ ∀vψ(v).

The appropriate version of the strict-Π1
1 reflection scheme in our intuitionistic set-

ting comes in two installments. The reader will notice that they are like collection
schemes. The first one is a version of the contrapositive of strict-Π1

1 reflection. The
second one is a vast generalization, only possible because we are in an intuitionistic
setting. Of course, each installment entails strict-Π1

1 reflection (the first one classically,
the second intuitionistically).
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Definition 12. The principle of bounded class contra-collection ∆C0 -CColl2 is the scheme

∀z∃X∀x ∈ z φ(x, X)→ ∃X∀x φ(x, X),

where φ is a ∆C0 -bounded formula (possibly with first and second-order parameters).

It was argued in [10] that with the aid of strict-Π1
1 reflection, the bounded compre-

hension scheme upgrades to a ∆1-comprehension scheme. A similar result holds in the
present setting.

Proposition 8. IKPω2�+ ∆C0 -LEM + ∆C0 -CA + ∆C0 -CColl2 ` ∆C1 -CA.

Proof. The proof is mutatis mutandis the argument for lemma 5.3 of [10]. Suppose
that ∀u (∃y φ(u, y)↔ ∀zψ(u, z)), where φ and ψ are ∆C0 -formulas. Then,

∀w∃X∀x ∈ w∀u, y, z ∈ x ((φ(u, y)→ u ∈ X) ∧ (u ∈ X → ψ(u, v))).

It is easy to argue this. Given w, take w̃ its transitive closure. Clearly, we can take X to
be {u : ∃y ∈ w̃ φ(u, y)}. Note that this class exists by ∆C0 -CA.

By ∆C0 -CColl, we get ∃X∀x∀u, y, z ∈ x ((φ(u, y) → u ∈ X) ∧ (u ∈ X → ψ(u, z))).
Clearly, this X is formed by the elements u that satisfy ∃y φ(u, y). �

We have said that ∆C0 -CColl2 is like a collection scheme. In fact, it generalizes
∆C0 -CColl:

Proposition 9. IKPω2�+ ∆C0 -LEM + ∆C0 -CA + ∆C0 -CColl2 ` ∆C0 -CColl.

Proof. Let φ be a ∆C
0 -formula and suppose that ∀z∃y ∈ w∀x ∈ z φ(x, y). We claim that

∀z∃X∀x ∈ z [∃y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) ∧ φ(x, y))]. Given z, by the
supposition there is y0 ∈ w such that ∀x ∈ z φ(x, y0). We just have to take X to be the
singleton class formed by y0 (it exists by ∆C0 -CA). Since the formula between square
parenthesis is a ∆C

0 -formula, we can apply ∆0-CColl2 in order to get

∃X∀x [∃y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) ∧ φ(x, y))].

Clearly, X ∩ w must be a singleton (i.e., this class has only one element). Let y0 be the
only element of this class. We get y0 ∈ w and ∀x φ(x, y0). �

The second installment of strict-Π1
1 reflection is the following:

Definition 13. The principle of (unrestricted) class collection CollC2 is the scheme

∀X∃x φ(x, X)→ ∃z∀X∃x ∈ z φ(x, X),

where φ is any formula (possibly with first and second-order parameters).

At this point, the following proposition should not be surprising:

Proposition 10. IKPω2�+ ∆C0 -LEM + ∆C0 -CA + CollC2 ` CollC.
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Proof. Let φ be a ∆C
0 -formula and suppose that we have ∀y ∈ w∃x φ(x, y). We claim

that ∀X∃x [∀y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y)→ φ(x, y))]. Given X, either there
is y ∈ w such that y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y) or not (the previous formula is
bounded and, hence, we can apply ∆C0 -LEM). In the first case, by supposition, there is
x such that φ(x, y) and we are done. If not, the assertion is trivially true.

By CollC2 , there is z0 such that

∀X∃x ∈ z0 [∀y ∈ w (y ∈ X ∧ ∀u ∈ w (u ∈ X → u = y)→ φ(x, y))].

Given y ∈ w, take X to be the singleton class formed by y. Clearly, ∃x ∈ z0 φ(x, y).
�

The theory IKPω2� + ∆C0 -LEM+∆C0 -CA+MPC+bIPΠC1
+∆C0 -CColl2+CollC2 (which, as

we saw, includes ∆C0 -CColl and CollC) is very robust. For instance, modulo this theory,
the ΣC1 -formulas and the ΠC1 -formulas enjoy strong closure properties and this permits
the smooth introduction of ∆C1 -relation symbols and of ΣC1 -function symbols. In ef-
fect, modulo the above theory, the ΣC1 -formulas are closed under conjunctions, disjunc-
tions, bounded quantifications, second-order quantifications and existential (first-order)
quantifications. The closure under conjunctions, disjunctions and bounded, second-
order and unbounded existential quantifications is clear. The closure under bounded
and second-order universal quantifications follows from CollC and CollC2 , respectively.
Dually, the ΠC1 -formulas are closed under conjunctions, disjunctions, bounded quan-
tifications, second-order quantifications and universal (first-order) quantifications. The
closure under conjunctions, bounded, second-order and unbounded universal quan-
tifications is clear. The closure under disjunction is a consequence of Proposition 7.
The closure under bounded and second-order existential quantifications follows from
∆C0 -CColl and ∆C0 -CColl2, respectively. The introduction of the powerset operation in
the next section uses these facts crucially. They are essential for the interpretation of
the power Kripke-Platek set theory in a theory based on IKPω2.

The functional interpretation given in Definition 7 is extended to the second-order
language by the following two clauses.

9. (∀X φ(X))B is ∃a∀b [∀X φB(a, b, X)],

10. (∃X φ(X))B is ∃a∀b [∃X∀n φB(a, b〈n〉, X)].

Notice that now the lower B-translations of formulas include second-order quantifi-
cations. The notion of bounded mixed formula of Section 4 has to be generalized to the
notion of second-order bounded mixed formula in which closure under second-order
quantifications is also allowed. The formulas of the second-order mixed languageLmixC

Ω

are defined accordingly, as those that are generated from the second-order bounded
formulas by means of propositional connectives and quantifications of the form ∀aρ,
where a is a term variable (of a certain type ρ) of the term language LΩ. Notice that, as
before, we only need a set of classical connectives (our verifying semantics – described
in the next paragraph – is classical) and that unbounded set-theoretic quantifiers are not
present in the language LmixC

Ω
.

As with the soundness theorem of Section 2, the soundness theorem of this section
is verified semantically. There are several ways of extending the structures Lmix

ω1
and
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Vmix
ω1

to the second-order setting. The first semantics that we consider is (LmixC
ω1

,P(Lω1)�).
In this semantics, the second-order variables range over P(Lω1)�, i.e., over the sets of
the form x ∩ Lα, where x ⊆ Lω1 and α < ω1. There is a subtlety here. The intuitive
second-order semantics is P(Lω1 ), not the subsets of Lω1 truncated at a certain level α
(α < ω1) of the construtible hierarchy. However, the truncated semantics is enough.
A second semantics that we will briefly consider is (LmixC

ω1
, Lω1 ). In this semantics the

values of second-order variables range over elements of Lω1 , i.e., over the sets in Lω1 .
This semantics is even subtler because both first-order set variables and second-order
class variables range over the same domain, viz. Lω1 . It was, in fact, the semantics used
in [10]. In the next section we will consider the structure (VmixC

ω1
,Vω1 ). In this structure,

the terms t of LΩ of type Ω index the (countable) stages Vt of the cumulative hierar-
chy. Of course, by this is meant that Vt is interpreted as V|t|, as discussed at the end
of Section 4. On the other hand, the second-order class variables range over elements
of Vω1 (the same range as the first-order set variables). Note that this range can also
be described as being constituted by the sets of the form x ∩ Vα, where x ⊆ Vω1 and
α < ω1.

Theorem 3 (Second-order soundness theorem I). Let φ be a sentence of the language
of second-order set theory. Suppose that

IKPω2� + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2 ` φ.

Then there are closed terms t of LΩ such that, for appropriate types ρ,

(LmixC
ω1

,P(Lω1)�) |= ∀bρ φB(t, b).

Proof. The proof is by induction on the length of the derivation. We show that if a
formula φ(w,W) is provable in the theory of the theorem, then there are closed terms t
of LΩ such that, for appropiate types ρ, we have

Lmix
ω1
|= ∀cΩ∀bρ [∀W∀w ∈ Lc φB(tc, b,w,W)],

where φ(w,W)B is ∃a∀b φB(a, b,w,W).
The various verifications are, mutatis mutandis, the ones given in the proof of The-

orem 2. We only need to complement the verifications with the study of the logical
rules for the second-order quantifiers and the principles ∆C0 -CColl2, CollC2 and ∆C0 -CA.
We use the same layout as in the proof of Theorem 2. Let us start with the four new
axioms and rules for second-order quantifiers.

13. φ → ψ(W) ⇒ φ → ∀W ψ(W), where W is not free in φ. By induction
hypothesis, there are terms q and r such that

∀a, e [∀W (∀n φB(a, (qae)〈n〉)→ ψB(ra, e,W))]

holds in (LmixC
ω1

,P(Lω1)�). We must obtain terms t and s such that

∀a, e [∀n φB(a, (sae)〈n〉)→ ∀W ψB(ta, e,W)]

holds in (LmixC
ω1

,P(Lω1)�). Just take t :≡ r and s :≡ q.
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14. ∀X φ(X) → φ(W). A computation of the upper-B translation of this formula
shows that we must find terms q and r such that

∀a, b′ [∀W (∀n∀X φB(a, (qab′)〈n〉, X)→ φB(ra, b′,W))]

holds in (LmixC
ω1

,P(Lω1)�). Just put q :≡ λa, b′.(b′ + 1) and r :≡ λa.a.
15. φ(W) → ∃X φ(X). A computation of the upper-B translation of this formula

shows that we must find terms q and r such that

∀a, b′ [∀W (∀n φB(a, (qab′)〈n〉,W)→ ∃X∀n φB(ra, b′〈n〉, X))]

holds in (LmixC
ω1

,P(Lω1)�). Just put q :≡ λa, b′.b′ and r :≡ λa.a.
16. φ(W) → ψ ⇒ ∃W φ(W) → ψ, where W is not free in ψ. By induction

hypothesis, there are terms q and r such that

∀a, e[∀W (∀n φB(a, (qae)〈n〉,W)→ ψB(ra, e))]

holds in (LmixC
ω1

,P(Lω1)�). We must obtain terms t and s such that

∀a, e [∀n∃W∀k φB(a, (sae)〈n〉〈k〉,W)→ ψB(ta, e)]

holds in (LmixC
ω1

,P(Lω1)�). Just take t :≡ r and s :≡ λa, e.((qae) + 1).

Let us now discuss the principle ∆C0 -CColl2. According to its upper-B translation,
we must find a term q such that

∀cΩ [∀n∀z ∈ L(qc)〈n〉∃X∀x ∈ z φ(x, X)→ ∃X∀n∀x ∈ Lc〈n〉 φ(x, X)]

holds in in (LmixC
ω1

,P(Lω1)�). Well, it does hold with q :≡ λc.(c + 2). To see this, note
that the hypotehsis above entails ∀z ∈ Lc+1∃X∀x ∈ z φB(x, X). In particular, this holds
with z particularized as Lc, and we get what we want.

In order to discuss the principle CollC2 , we compute the upper-B translations of its
antecedent and consequent. They are, ∃cΩ, a∀b [∀X∃x ∈ Lc∀n φB(a, b〈n〉, x, X) and
∃cΩ, a∀b [∃z ∈ Lc∀k∀X∃x ∈ z∀n φB(a, b〈k〉〈n〉, x, X)], respectively. Therefore, we
need term q, r and t such that

∀cΩ, a, b [∀k∀X∃x ∈ Lc∀n φB(a, (qcab)〈k〉〈n〉, x, X)→

∃z ∈ Lrca∀k∀X∃x ∈ z∀n φB(tca, b〈k〉〈n〉, x, X)]

holds in (LmixC
ω1

,P(Lω1)�). Take q :≡ λc, a, b.b, r :≡ λc, a.(c + 1) and t :≡ λc, a.a. With
these data, the above holds (just let z be Lc).

Finally, we study the comprehension principle∆C0 -CA. An instance of this principle
has the form ∀W,w∃X∀x (x ∈ X ↔ φ(x,w,W)), where φ is a ∆C0 -formula in which X
does not occur. The upper B-translation of this instance is:

∀dΩ, bΩ[∀W∀w ∈ Ld∃X∀nN∀x ∈ Lb〈n〉(x ∈ X ↔ φ(x,w,W))].

This statement holds with the set X :≡ {x ∈ Lα : φ(x,w,W)}, where α = |b|. �
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The proof of the previous theorem goes through in (LmixC
ω1

, Lω1 ) except for one single
step. It is in the verification of the scheme ∆C0 -CA. If instead of ∆C0 -CA one had the
scheme ∃X∀x (x ∈ X ↔ φ(x,w,W)), where φ(x) is restricted to be a ∆0-formula, then
the set {x ∈ Lα : φ(x,w,W)} is in Lω1 . In effect, the parameter W (and, also, w) of the
structure (LmixC

ω1
, Lω1 ) takes a value in a certain Lβ, for a certain β < ω1. Therefore, the

previous set is an element of Lγ, for α, β < γ. We think that this is worth remarking
(specially because this was the strategy adopted in [10]).

Proposition 11. If IKPω2� + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2

proves ∀x∃y φ(x, y), where φ is a ∆0-formula (x and y are the only free variables), then
there is a closed term t of type Ω→ Ω such that

Lmix
ω1
|= ∀cΩ∀x ∈ Lc∃y ∈ Ltc φ(x, y).

Moreover, LBH |= ∀x∃y φ(x, y), where BH is the Bachmann-Howard ordinal.

The above proposition is an immediate consequence of Theorem 3. Note that the
formulas φ are restricted to ∆0-formulas.

Corollary 4. If IKPω2� + ∆C0 -LEM+∆C0 -CA+MPC+bIPΠC1
+∆C0 -CColl2 +CollC2 proves

∃x φ(x), where φ is a ∆0-formula (x is the only free variable), then there is an ordinal
α smaller than the Bachmann-Howard ordinal so that Lα |= ∃x φ(x).

Lemma 9 does not generalize to the functional interpretation extended to the second-
order language, neither when the semantics is (LmixC

ω1
,P(Lω1)�), nor when the semantics

is (LmixC
ω1

, Lω1 ). For instance, consider the following instance of CollC:

∀X∃x∀z (X = {z} → Ord(x)∧ z ∈ Lx)→ ∃w∀X∃x ∈ w∀z (X = {z} → Ord(x)∧ z ∈ Lx).

It is clear that this sentence is false in both structures above. The reason why the proof
of Lemma 9 does not generalize is, of course, the fact that the transformations (9) and
(10) of the definition of the functional interpretation are not truth preserving (in the
said structures). However, as it was shown in Lemma 9, the remaining transformations
are truth preserving. Hence, as long as we restrict ourselves to first-order formulas φ,
we have the following:

Proposition 12. If IKPω2� + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2

proves ∀x∃y φ(x, y), where φ is any formula (x and y are the only free variables) without
second-order quantifications, then there is a closed term t of type Ω→ Ω such that

∀c ∈ W∀x ∈ L|c|∃y ∈ L|t(c)| Lω1|= φ(x, y).

The proof is like the one of Proposition 5.

7 Salipante’s result and power Kripke-Platek set the-
ory

The theory IKPω2 is like the theory IKPω2� of Definition 9 except that we now per-
mit ∆C0 -formulas in the separation scheme with (first and) second-order parameters. In
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[19], Salipante observed the following (he worked in a classical theory, but the argu-
ment is the same):

Theorem 4 (Salipante). The theory IKPω2 + ∆0-LEM + ∆0-CA + sΠ1
1-ref proves the

powerset axiom, i.e., it proves the sentence ∀y∃z∀x (x ∈ z↔ x ⊆ y).

Proof. Let y be given. The theory IKPω2 proves ∀X∃w (w = X ∩ y), where X ∩ y
abbreviates the set {u ∈ y : u ∈ X}. This set exists by separation (using the second-
order parameter X). By sΠ1

1-ref, ∃z∀X∃w ∈ z (w = X ∩ y). Let z0 be such a set. We
claim that ∀x (x ⊆ y → x ∈ z0). To see this, take x a subset of y. By ∆0-CA, let
X0 = {u : u ∈ x}. By the choice of z0, there is w ∈ z0 such that w = X0 ∩ y. Since
X0 ∩ y = x, we conclude that x ∈ z0, as wanted. The powerset of y can now be obtained
from z0 by ordinary separation. �

The above proof also holds if the separation scheme applies only to ∆0-formulas
(that is how Salipante stated his theorem). The crucial thing is to allow second-order
parameters in the separation scheme.

In [17] Rathjen introduced the theory KPω (P) of power Kripke-Platek set theory.
In order to formulate this theory we need the following definition:

Definition 14. The class of ∆P0 -formulas is the smallest class of formulas of the lan-
guage of set theory containing the atomic formulas (including ⊥) and closed under ∧,
∨,→ and the quantifications

∀x ∈ z, ∃x ∈ z, ∀x ⊆ z, ∃x ⊆ z,

where the last two quantifications abbreviate ∀x (x ⊆ z → . . .) and ∃x (x ⊆ z ∧ . . .),
respectively. ΣP1 -formulas are formulas of the form ∃sψ(z), where ψ(z) is a ∆P0 -formula
(possibly with parameters). ΠP1 -formulas are defined dually. A ΠP2 -formula is a formula
of the form ∀w φ(w), where φ(w) is a ΣP1 -formula.

The theory KPω (P) is a classical theory in the language of set theory with the
following axioms: extensionality, pairing, union, infinity, powerset, ∆P0 -separation, ∆P0 -
collection and unrestricted foundation. The transitive models of KPω (P) are the power
admissible sets introduced by Harvey Friedman in [12]. As Rathjen observes, the the-
ory KPω (P) can also be described as the theory KPω framed in the language of set
theory extended with a new primitive unary function symbol P for the powerset op-
eration, the axiom ∀x (x ∈ P(y) ↔ x ⊆ y), and the schemata of ∆0-separation and
∆0-collection extended to the ∆0-formulas of this new language. It should be noticed,
as Rathjen warns us, that the theory KPω (P) is not the same theory as KPω with the
powerset axiom. This latter theory is much weaker than KPω (P), as Rathjen discusses
in [17].

In this paper we are interested in semi-constructive theories. The natural theories
to consider are the theories of Section 2 in which the ∆0-formulas are replaced by the
wider class of ∆P0 -formulas. We are naturally led to consider the theory

IKPω (P) + ∆P0 -LEM + MPP + bIPΠP1
+ ∆P0 -CColl + CollP,

where it should be clear what the acronyms above stand for. This is also a very robust
theory, and it is clear that we have the analogue of Proposition 1:
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Proposition 13. The theory KPω (P) is ΠP2 -conservative over IKPω (P) + ∆P0 -LEM +

MPP.

We could adapt the analysis that we have made of the semi-constructive theory
IKPω + ∆0-LEM + MP + bIPΠ1 + ∆0-CColl + Coll to the powerset version mentioned
above (this adaptation requires the cumulative hierarchy instead of the constructible
hierarchy). The next theorem provides an illuminating alternative. We need a lemma
first:

Lemma 10. The theory IKPω2 + ∆C0 -LEM+∆C0 -CA+MPC+bIPΠC1
+∆C0 -CColl2 +CollC2

proves ∆C1 -separation, i.e., it proves

∀x (∀u φ(u, x)↔ ∃vψ(v, x))→ ∀z∃y∀x (x ∈ y↔ (x ∈ z ∧ ∃vψ(v, x))),

for ∆C0 -formulas φ and ψ (possibly with first and second-order parameters).

The above lemma is proven like Proposition 2. The proof is possible because
we now permit ∆C0 -formulas and parameters (first and second-order) in the separation
scheme.

Theorem 5. The theory IKPω (P) + ∆P0 -LEM + MPP + bIPΠP1
+ ∆P0 -CColl + CollP is a

subtheory of the second-order theory

IKPω2 + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2 .

Proof. This result hinges on two facts. The first is that the relation z = P(y) is given by
the ∆C0 -formula ∀x ∈ z (x ⊆ y) ∧ ∀X (X ∩ y ∈ z). Without the abbreviation ‘X ∩ y ∈ z’,
it reads

∀x ∈ z (x ⊆ y) ∧ ∀X∃x ∈ z∀w (w ∈ x↔ w ∈ X ∧ w ∈ y).

Let us denote this ∆C0 -formula by P(y, z). By Theorem 4 (and its argument), the
second-order theory of the theorem proves ∀y, z (P(y, z) ↔ ∀x (x ∈ z ↔ x ⊆ y)) and
∀y∃1z P(y, z). Therefore, it proves the powerset axiom. The second important fact
is that the second-order theory of the theorem has a good theory for introducing ΣC1 -
function symbols (see the comments after Definition 13). In particular, ∆C0 -formulas
in the new language with the extra function symbols translate into ∆C1 -formulas of the
original language (the equivalence between the corresponding pair of ΣC1 -formulas and
ΠC1 -formulas is proven in the second-order theory of the theorem, of course). Therefore,
we can introduce a ΣC1 -function symbol that satisfies the defining axiom of the powerset
operation and, as a consequence, ∆P0 -formulas are rendered by ∆C1 -formulas. The above
lemma entails that ∆P0 -separation is provable in the second-order theory. The theorem
should now be clear. �

The structure (VmixC
ω1

,Vω1 ) for the second-order mixed language LmixC
Ω

was intro-
duced just before Theorem 3. Remember that in this structure both the first-order set
variables and second-order (class) variables of LmixC

Ω
take values in Vω1 .
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Theorem 6 (Second-order soundness theorem II). Let φ be a sentence of the language
of second-order set theory. Suppose that

IKPω2 + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2 ` φ.

Then there are closed terms t of LΩ such that, for appropriate types ρ,

(VmixC
ω1

,Vω1 ) |= ∀bρ φB(t, b).

Proof. The proof is mutatis mutandis the proof of Theorem 3 (see also the note after
that proof), but one must replace systematically the construtible hierarchy by the cu-
mulative hierarchy. We need the cumulative hierarchy because the separation axiom of
IKPω2 has second-order parameters. Let us see in detail why this is so. The separation
axiom with (first and) second-order parameters is

∀w,W∀y∃z∀x (x ∈ z↔ x ∈ y ∧ φ(x,w,W)),

where φ is a ∆C0 -formula in which the variable z does not occur. As before, notice that
the inner universal statement can be considered ∆C0 . Hence, the upper B-translation of
this formula shows that we need a closed term t of type Ω→ (Ω→ Ω) such that

∀cΩ, eΩ [∀y ∈ Vc∀w ∈ Ve∀W∃z ∈ Vtce∀x (x ∈ z↔ x ∈ y ∧ φ(x,w,W))]

holds in (VmixC
ω1

,Vω1 ). It is clear that the term t :≡ λc, e.(c + 1) does the job. To see this,
just take z to be {x ∈ Vα : x ∈ y ∧ φ(x,w,W)}, where α = |c|.
[Note that the proof does not go through in the constructible hierarchy because the term
t is only allowed to depend on y and w, via c and e (respectively), but not on W.] �

As usual, we can draw some consequences regarding ΠC2 and ΣC1 consequences of
the second-order theory of the theorem. We are going to present them in a particlular
fashion, with an eye to their application to power Kripke-Platek set theories.

We have the following absoluteness property:

Lemma 11. If α and β are ordinals and φ(x1, . . . , xn) is a ∆C
0 -formula with its free

variables as shown (they are all first-order), then

x1, . . . , xn ∈ Vα ∧ α < β→ [(Vα,Vα+1) |= φ(x1, . . . , xn) ↔ (Vβ,Vβ) |= φ(x1, . . . , xn)].

Observation 2. In the above, in a structure of the form (V,W), with W ⊆ P(V), the
first-order variables take values in V and the second-order variables take values in W.

Proof. We show a bit more in order to get an induction on ∆C0 -formulas going. We
prove by induction on ∆C0 -formulas φ(x1, . . . , xn, X1, . . . , Xk) that for all x1, . . . , xn ∈ Vα

and X1, . . . , Xk ∈ Vβ we have

(Vα,Vα+1) |= φ(x1, . . . , xn, X1∩Vα, . . . , Xk∩Vα) ↔ (Vβ,Vβ) |= φ(x1, . . . , xn, X1, . . . , Xk)

Note that we are abusing notation by confusing variables with the sets that take
their values. For ease of reading, we will also omit tuples. The proof by induction
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is straightforward except for the case of second-order quantifications. We study the
universal second-order quantifier (the case of the existential second-order quantifier
follows immediately because ∆C0 -formulas are closed under negation).

Consider the formula ∀W φ(x, X,W), with φ a ∆C0 -formula. Let x ∈ Vα, X ∈ Vβ

and assume that (Vα,Vα+1) |= ∀W φ(x, X ∩ Vα,W). Let Y be an arbitrary element of
Vβ. Since Y ∩ Vα ∈ Vα+1, we have (Vα,Vα+1) |= φ(x, X ∩ Vα,Y ∩ Vα). By induc-
tion hypothesis, we get (Vβ,Vβ) |= φ(x, X,Y). By the arbitrariness of Y , we conclude
(Vβ,Vβ) |= ∀W φ(x, X,W). To prove the converse, let x ∈ Vα, X ∈ Vβ and assume that
(Vβ,Vβ) |= ∀W φ(x, X,W). Let Y ∈ Vα+1 be arbitrary. In particular, Y ∈ Vβ. Hence,
(Vβ,Vβ) |= φ(x, X,Y). By induction hypothesis, we get (Vα,Vα+1) |= φ(x, X∩Vα,Y∩Vα).
Since Y∩Vα = Y , we have (Vα,Vα+1) |= φ(x, X∩Vα,Y). Therefore, by the arbitrariness
of Y , we conclude that (Vα,Vα+1) |= ∀W φ(x, X ∩ Vα,W). �

Proposition 14. If IKPω2 + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2

proves ∀x∃y φ(x, y), where φ is a ∆C0 -formula (x and y are the only free variables), then
there is a closed term t of type Ω→ Ω such that

(VmixC
ω1

,Vω1 ) |= ∀cΩ∀x ∈ Vc∃y ∈ Vtc φ(x, y).

Moreover, (VBH,VBH) |= ∀x∃y φ(x, y), where BH is the Bachmann-Howard ordinal.

The above proposition is an immediate consequence of Theorem 6. The final con-
clusion follows from two applications of Lemma 11. With this lemma, we also get:

Corollary 5. If IKPω2+ ∆C0 -LEM+∆C0 -CA+MPC+bIPΠC1
+∆C0 -CColl2+CollC2 ` ∃x φ(x),

where φ(x) is a ∆C0 -formula (x is its only free variable), then there is an ordinal α
smaller than the Bachmann-Howard ordinal such that (Vα,Vα+1) |= ∃x φ(x).

An analysis of the theory IKPω (P) + ∆P0 -LEM + MPP + bIPΠP1
+ ∆P0 -CColl + CollP

is now forthcoming. The strategy is clear: Use Theorem 5 to reduce the analysis of this
theory to the analysis of the second-order theory of that proposition. In the following
lemma, P(y, z) is the ∆C0 -formula of the proof of Theorem 5:

Lemma 12. Let φ(x1, . . . , xn) be a ∆P0 , with its free variables as shown. Then there is
a ∆0-formula φ∗(x1, . . . , xn, z) such that the second-order theory

IKPω2 + ∆C0 -LEM + ∆C0 -CA + MPC + bIPΠC1
+ ∆C0 -CColl2 + CollC2

proves the equivalence

φ(x1, . . . , xn)↔ ∃z (P(tc(x1 ∪ . . . ∪ xn), z) ∧ φ∗(x1, . . . , xn, z)).

Moreover, for all x1, . . . , xn ∈ Vω1 ,

Vω1 |= φ(x1, . . . , xn) if, and only if, Vω1 |= φ∗(x1, . . . , xn,P(tc(x1 ∪ . . . ∪ xn))).

Here, tc(w) stands for the transitive closure of w.
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Proof. The proof is by induction on the complexity of φ. We will only study negation
and the universal quantifications ∀w⊆ x (. . .) and ∀w∈ x (. . .). Negation is clear because,
using the induction hypothesis, the equivalence

¬φ(x1, . . . , xn)↔ ∃z (P(tc(x1 ∪ . . . ∪ xn), z) ∧ ¬φ∗(x1, . . . , xn, z))

is provable in the second-order theory of the lemma. Of course, (¬φ)∗ is defined as
being ¬(φ∗). Let us now consider the formula ∀w ⊆ x φ(w, x, x1, . . . , xn), with φ ∈ ∆P0 .
By induction hypothesis, the second-order theory of the lemma proves the equivalence
of the above formula with ∀w ⊆ x∃z (P(tc(w∪x∪x1∪. . .∪xn), z)∧φ∗(w, x, x1, . . . , xn, z)).
This is equivalent to

∃z (P(tc(x ∪ x1 ∪ . . . ∪ xn), z) ∧ ∀w ∈ z (w ⊆ x→ φ∗(w, x, x1, . . . , xn, z))).

This is due to the fact that w ∪ x = x (and the uniqueness of the z). The argument for
the second part of the lemma is similar. The situation is clear now.

The treatment of the usual bounded quantification ∀w ∈ x (. . .) is analogous. Here
one takes notice that tc(w ∪ x ∪ x1 ∪ . . . ∪ xn) = tc(x ∪ x1 ∪ . . . ∪ xn) when w ∈ x. �

We are ready to prove the following proposition and corollary:

Proposition 15. If IKPω (P)+ ∆P0 -LEM+MPP+bIPΠP1
+∆P0 -CColl+CollP ` ∀x∃y φ(x, y),

where φ is a ∆P0 -formula (x and y are the only free variables), then there is a closed
term t of type Ω→ Ω such that

∀c ∈ W∀x ∈ V|c|∃y ∈ V|t(c)| Vω1 |= φ(x, y).

Moreover, VBH |= ∀x∃y φ(x, y), where BH is the Bachmann-Howard ordinal.

Proof. Suppose that the theory IKPω (P)+ ∆P0 -LEM+MPP+bIPΠP1
+∆P0 -CColl+CollP

proves ∀x∃y φ(x, y). By Theorem 5, so does the theory of Proposition 14. By the
previous lemma, this second-order theory proves ∀x∃y∃z (P(tc(x ∪ y), z) ∧ φ∗(x, y, z)).
Using Proposition 14, it can be argued that there is a closed term t such that

∀c ∈ W∀x ∈ V|c|∃y ∈ V|t(c)| (Vω1 ,Vω1 ) |= ∃z (P(tc(x ∪ y, z)) ∧ φ∗(x, y, z)).

Since (Vω1 ,Vω1 ) |= P(tc(x∪ y), z)↔ z = P(tc(x∪ y)), we obtain the desired conclusion
using the second part of previous lemma.

It also follows that VBH |= ∀x∃y φ(x, y) because ∆P0 -formulas are absolute between
the various levels of the cumulative hierarchy. �

Corollary 6. If IKPω (P) + ∆P0 -LEM + MPP + bIPΠP1
+ ∆P0 -CColl + CollP ` ∃x φ(x),

where φ(x) is a ∆P0 -formula (x is its only free variable), then there is an ordinal α
smaller than the Bachmann-Howard ordinal such that Vα |= ∃x φ(x).

Using Proposition 13, we can give a Σ-ordinal analysis (in the relativized sense of
[17]) of the classical theory KPω (P):
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Proposition 16. If KPω (P) ` ∀x∃y φ(x, y), where φ is a ∆P0 -formula (x and y are the
only free variables), then there is a closed term t of type Ω→ Ω such that

∀c ∈ W∀x ∈ V|c|∃y ∈ V|t(c)| Vω1 |= φ(x, y).

Moreover, VBH |= ∀x∃y φ(x, y), where BH is the Bachmann-Howard ordinal.

Corollary 7. If KPω (P) ` ∃x φ(x), where φ(x) is a ∆P0 -formula (x is its only free
variable), then there is an ordinal α smaller than the Bachmann-Howard ordinal such
that Vα |= ∃x φ(x).

These two results are due to Rathjen in [17]. We obtained them in a very round-
about way, via second-order semi-constructive theories. A direct way, using our kind
of functional interpretations, would be just to adapt – replacing in a straightforward
manner the constructible hierarchy by the cumulative hierarchy – the analysis of KPω
provided in [10].
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