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1 Introduction

The editors of this volume asked me to present and discuss Clifford Spector’s proof
of the consistency of analysis. It is only fitting that, in a volume dedicated to Ger-
hard Gentzen, known for his epoch-making consistency proof of Peano arithmetic PA,
Spector’s proof of consistency of analysis is discussed. Gentzen’s approach to consis-
tency proofs has been systematically developed and generalized by the German school
of proof theory (Schiitte, Pohlers, Buchholz, Jiager, Rathjen, etc.) and others. For all its
successes (and there were many), the approach is still very far from providing a proof of
the consistency of full second-order arithmetic PAs (analysis). There are quite serious
difficulties in analysing systems above ITi-comprehension. In the words of Michael
Rathjen in [32], the more advanced analyses “tend to be at the limit of human toler-
ance.” How is it, then, that Spector was able to provide a proof of the consistency of
analysis? What kind of proof is it? Spector’s proof follows quite a different blueprint
from Gentzen’s. It does not reduce PA; to finististic arithmetic together with the pos-
tulation of the well-ordering of a sufficiently long primitive recursive ordinal notation
system. Instead, it reduces (in a finitary manner) the consistency of analysis to the
consistency of a certain quantifier-free finite-type theory. The epistemological gain, if
there is one, rests in the evidence for the consistency of Spector’s quantifier-free theory.

The proof of Spector was published posthumously in 1962 (Spector died young of
acute leukemia). It is a descendant of Godel’s interpretation of PA in 1958, in which
it was shown that PA is interpretable in Godel’s quantifier-free finite-type theory T. In
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the last paragraph of his paper [11], Godel writes that “it is clear that, starting from
the same basic idea, one can also construct systems that are much stronger than T,
for example by admitting transfinite types or the sort of inference that Brouwer used
in proving the ‘fan theorem’.” Spector took up the latter suggestion. The Brouwerian
kind of inference that Godel is presumably referring to is the bar theorem (a corollary
of which is the ‘fan theorem’). Brouwer’s justification of the bar theorem is object of
controversy (see [3] for Brouwer’s own rendition and [37] for a modern defense and
references) and not really formulated in a workable form. Following Stephen Kleene’s
enunciation in [21], the bar theorem is nowadays admitted in intuitionistic mathematics
in the form of an axiom scheme known as bar induction. Spector follows this approach
and advances two moves: he generalizes bar induction to finite types and, in a bold
stroke, introduces a corresponding principle of definition known as (Spector’s) bar re-
cursion. In his own words, “bar recursion is a principle of definition and bar induction
a corresponding principle of proof.” One cannot but think of a parallel with ordinary
recursion and ordinary induction. Spector’s quantifier-free finite-type theory adjoins
to Godel’s T new constants for the bar recursors and accepts the pertinent equations
that characterize them. He is then able to show that analysis is interpretable in this
extension of Godel’s T.

This paper is organized as follows. In the next section, we review Godel’s dialec-
tica interpretation of 1958. We describe a direct interpretation of PA into T, instead
of Godel’s own which relies on the interpretation of Heyting arithmetic accompanied
by a double negation translation of classical logic into intuitionistic logic. The direct
interpretation is very simple and was first described by Joseph Shoenfield in his well-
known textbook [34]. Sections 3 and 5 introduce bar recursion. In the first of these
sections, we discuss bar recursion from the set theoretic point of view. As opposed
to standard treatments of bar recursion, we take some time doing this. We have in
mind the reader unfamiliar with bar recursion but comfortable with the basics of set
theory. One of the aims of this paper is to explain Spector’s proof to a logician not
trained in proof theory or constructive mathematics. Two set-theoretic discussions are
made. The first focus on well-founded trees and their ordinal heights. The second has
the advantage of immediately drawing attention to the principle of dependent choices,
a principle which plays an important role in the discussions of bar recursion. Armed
with the set-theoretic understanding, in Section 5 we finally discuss bar recursion from
an intuitionistic point of view.

The interim Section 4 introduces Spector’s quantifier-free theory with the bar re-
cursive functionals of finite type. It also briefly mentions the two main models of this
theory. Sections 6 and 7 are the heart of the paper. They present the interpretation of
analysis into Spector’s theory. The original proof is based on the interpretation of the
so-called classical principle of numerical double negation shift (principle F' in Spec-
tor’s paper), and this is sufficient to interpret full second-order comprehension. The
technical matter boils down to solving a certain system of equations in finite-type the-
ory, and the bar recursive functionals permit the construction of a solution. The solution
of these equations is ad hoc (Paulo Oliva was, nevertheless, able to find a nice moti-
vation for it in [31]). The interpretation of bar induction is more natural because bar
induction and bar recursion go hand in hand, in a way similar to that of induction and
recursion in Godel’s dialectica interpretation (see the discussion in [7]). Moreover, it



provides additional information. We owe to William Howard in [14] the interpretation
of bar induction into Spector’s theory. Our paper develops Howard’s strategy directly
for the classical setting.

The paper includes a short appendix. It discusses a sort of perplexity caused by the
existence of the ferm model of Spector’s theory, a structure whose infinite numerical
sequences are all recursive. How can bar recursion hold in such a classical structure
when models of bar recursion are usually associated with producing non-recursive ob-
jects? The answer lies in the failure of quantifier-free choice in the term model and
reveals a little of the subtlety of Spector’s interpretation.

The main body of the paper finishes with an epilogue in which Spector’s consis-
tency proof is briefly assessed. We hope that this writing is able to convey to the
uninitiated a little of the depth and beauty of Spector’s proof of consistency, and also
that the expert finds some interest in the paper.

2 Godel’s dialectica interpretation of 1958

David Hilbert did not precisely define what finitary mathematics is, but a very influ-
ential thesis of William Tait [39] identifies finitism with the quantifier-free system of
primitive recursive arithmetic. This theory concerns only one sort of objects: the natu-
ral numbers. These are, in the Hilbertian terms as exposed by Godel in his 1958 paper,
“in the last analysis spatiotemporal arrangements of elements whose characteristics
other than their identity or nonidentity are irrelevant.” Godel considers an extension of
finitism (the work concerns, as its title says, “a hitherto unutilized extension of the fini-
tary standpoint”), viz. a certain quantifier-free, many-sorted, theory. Its “axioms (...)
are formally almost the same as those of primitive recursive number theory, the only
exception being that the variables (other than those on which induction is carried out),
as well as the defined constants, can be of any finite type over the natural numbers”
(quoted from [11]). The variables are supposed to range over the so-called computable
functionals of finite type (a primitive notion for Godel). This is the crux of the ex-
tension: the requirement that the value of the variables be concrete (“spatiotemporal
arrangements”) is dropped, and certain abstracta are accepted.

The current literature has some very clear descriptions and explanations of Godel’s
theory T. Easily available sources are Avigad and Feferman’s survey in [1] and Kohlen-
bach’s monograph [25]. The latter source includes a detailed treatment of Spector’s
bar recursive interpretation (different from the one presented here). In the present sec-
tion, we briefly highlight the main features of T but the reader is referred to the above
sources for details and pointers to the literature. The quantifier-free language 7 of T
has infinitely many sorts (variable ranges), one for each finite type over the natural
numbers. These types are syntactic expressions defined inductively: N (the base type)
is a finite type; if 7 and o are finite types, then 7 — o is a finite type. These are all the
types there are. It is useful to have the following (set-theoretic) interpretation in mind:
the base type N is the type constituted by the natural numbers N, whereas 7 — o is
the type of all (total) set-theoretic functions of objects of type 7 to objects of type o.
To ease reading, we often omit brackets and associate the arrows to the right. E.g.,
N — N — N means N — (N — N). 7 has a denumerable set of variables 27, y°, 27,



etc. for each type 0. When convenient, we omit the type scripts. There are two kinds
of constants:

(a) Logical constants or combinators. For each pair of types o, 7 there is a logical
constant II, - of type 0 — 7 — o. For each triple of types d, o, 7 there is a
logical constant X5, » of type (6 =0 —7) = (6 = 0) = (6 = 7).

(b) Arithmetical constants. The constant O of type N. The successor constant S of
type N — N. For each type o, there is a recursor constant R, of type N — o —
(60 > N—=o0)—>o.

Constants and variables of type o are terms of type o. If ¢ is a term of type 0 — 7
and ¢ is a term of type o then one can form a new term, denoted by App(¢, q), of type
7 (t is said to be applied to q). These are all the terms there are. We write tq or t(g) for
App(t,q). We also write ¢(q,r) instead of (¢(¢))(r). In general, t(q,r,...,s) stands
for (... (((@))(r)) -..)(s).

The intended meaning of these constants are given by certain identities. There
are the identities for the combinators: II(z,y) is  and X(z,y, 2) is x(z,yz). The
identities for the combinators make possible the definition of lambda terms within
Godel’s T: given a term t° and a variable z7, there is a term ¢" ~“ (denoted by the
lambda notation Az.t) whose variables are all those of ¢ other than x, such that, for
every term s of type 7, one has the identity between ¢s and t[s/z] (the notation ‘[s/x]’
indicates the substitution of the variable x by the term s in the relevant expression).
For the recursors, we have the following identities: R(0,y, z) is y and R(Sz,y, z) is
z(R(x,y, z), z). These identities formulate definitions by recursion.

We have been speaking loosely about identities because there are subtle issues con-
cerning the treatment of equality in functional interpretations: consult [40] and [1] for
discussions. (These issues surface because extensional equality suffers from a serious
shortcoming with respect to the dialectica interpretation, viz: the axiom of extensional-
ity, i.e., the postulation that extensional equality enjoys substitution salva veritate fails
to be interpretable. This was shown by Howard in [15].) We adopt the following mini-
mal treatment: there is only the symbol for equality between terms of the base type N,
and the formulas of 7 are defined as Boolean combinations of equalities of the form
t = g, where t and ¢ are terms of type N. How are the identities for the combinators
and recursors to be formulated within this framework? They give rise to certain ax-
iom schemes. For instance, the axioms for the recursors are given by the equivalences
A[R(0,y,2)/w] <> Aly/w] and A[R(Sz,y, 2)/w] < Alz(R(z,y,z),x)/w], where
A is any formula of 7 with a distinguished variable w.

The axioms of T are the axioms of classical propositional calculus, the axioms of
equality z = z and x = y A Az /w] — Aly/w] (A is any formula of 7, and z, y and w
are of type N, of course), the schemata coming from the identities of combinators and
recursors and, finally, the usual arithmetical axioms for the constants 0 and .S, namely:
Sz # 0and Sx = Sy — x = y. There are also two rules. The rule of substitution
that allows to infer A[s” /x] from A and the rule of induction that, from A(0) and
A(zN) — A(Sz) allows the inference of A(x) (in both rules, A can be any formula of

7).



We have described Godel’s quantifier-free, many-sorted, system T. Godel showed
that it is possible to interpret Heyting arithmetic (and, hence, Peano arithmetic) into T
in a finitistic way. This result entails that the consistency of PA is finitistically reducible
to the consistency of a natural extension of finitism. In the sequel, we describe Godel’s
result. We formulate a direct interpretation of an extension (to finite types) of PA into
T. The extension, which we denote by PA“, is a quantifier version of T. Its language
L% is obtained from 7 by adding quantifiers for each type. Formulas of £ can now
be constructed in the usual way by means of quantification. Note that the quantifier-
free fragment of £ is constituted exactly by the formulas of 7. PA“ is formulated in
classical logic. Its axioms consist of the universal closures of the axioms of T and the
induction scheme constituted by the universal closures of

A(0) AVZN(A(z) — A(Sx)) — Vo A(z)

where A can be any formula of £“. There is (now) no (need for the) substitution rule
nor (the) induction rule. PA“ can be considered an extension of first-order arithmetic
PA because both sum and product can be defined using the recursors. As an aside,
it is now possible to define equality x =, y in higher types by VF7~°(Fz = Fy).
With this Leibnizian definition, we have the usual properties of equality (reflexivity,
symmetry, transitivity and substitution salva veritate, but not that it coincides with
extensional equality).

We are now ready to define an interpretation of PA“ into T. As noted in the in-
troduction, this interpretation is due to Shoenfield in [34]. Like all functional inter-
pretations, it consists of a trade-off between quantifier complexity and higher types.
Since the logic is classical, we may assume that the primitive logical connectives are
disjunction, negation and universal quantifications.

Definition. To each formula A of the language L~ we assign formulas AS and Ag so
that AS is of the form Nx3yAs(z,y), with As(z,y) a quantifier-free formula of L*,
according to the following clauses:

1. AS and Ag are simply A, for atomic formulas A

If we have already interpretations of A and B given by VQHQAS (z, y) and¥z3wBs(z, w)
(respectively) then we define:

2. (AV B)S isVz, 23y, w(As(z,y) V Bs(z,w))
3. (mA)S isVfIz-As(z, fz)
4. (VuA(w))® is VuvzIyAs(z,y, u)

In the above, the underlined variables denote tuples of variables (possibly empty).
In the sequel, we omit the underlining. E.g., (=A)S is written as Vf3zr—As(z, f).
The formulas Ag are the matrices of AS. For instance, (—A)g is ~As(z, fz). There is
a principle of choice that plays a fundamental role in Shoenfield’s interpretation. It is
the quantifier-free axiom of choice in all finite types, denoted by AC:



Vo Iy" Age(z,y) — If7 Ve Ay (z, fz)

where o and 7 are any types and Ags is a quantifier-free formula. This principle is
called the characteristic principle of Shoenfield’s interpretation because of the follow-
ing result:

Proposition (Characterization of Shoenfield’s interpretation). For any formula A of
LY, the theory PAY + AC:f proves the equivalence A <> AS.

The proposition is easy to prove by induction on the complexity of A. All the
clauses of Shoenfield’s translation, with the exception of negation, give rise to classi-
cally equivalent formulas. The choice principle ACf;f is exactly what is needed to deal
with the negation clause. We are now ready to state Godel’s result of 1958 in the form
that is most convenient for us:

Theorem (after Godel and Shoenfield). Let A be a sentence ot L%. If PA¥ —I—AC‘;f F A,
then there are closed terms t (of appropriate types) of T such that T = Ag(x, tx).

The proof is not difficult, but it is delicate at some points. One works with a suit-
able axiomatization of classical logic (the one given by Shoenfield in [34] is specially
convenient) and with the usual axioms of arithmetic (it is simpler to work with an in-
duction rule instead). It can be shown that the axioms are interpretable and that the
rules of inference preserve the interpretation. Roughly, the logical part of the calculus
is dealt by the combinators whereas the recursors are used to interpret induction. The
quantifier-free axiom of choice is interpretable (essentially) because of the way that
the clause of negation is defined. The remaining axioms are universal and, therefore,
trivially interpretable. This is an obviously finitistic proof.

3 What is bar recursion? Set-theoretic considerations

Let C and D be non-empty sets, and let ' : C<N — D, G : C<N x D¢ ~ D and
Y : CN — Nbe given functions (here, C<N denotes the set of all finite sequences
of elements of C'). We introduce some notation. First, we distinguish an element
Oc of C. Given s € C<N, denote by |s| the length of s = (sg,s1,...,55—1); if
s,t € O<N, s x t is the concatenation of s with ¢. For i < |s|, let s|; be the sequence
(0, ..,8i_1). To each finite sequence s € C'<N, we denote by 3 the infinite sequence
of C™ which prolongs s by zeroes. More precisely: (i) = s;, fori < |s|; (i) = Oc,
for i > |s|. Finally, for + € C" and i a natural number, Z(4) is the finite sequence
(x(0),...,z(i — 1)).

A function B from C<N to D is defined by bar recursion from F', G and Y if it
satisfies the following equality:

_ [ F(s) it 3i < |s| (Y(s]:) <)
Bls) = { G(s, \w.B(s * (w))) otherwise

(The knowledgeable reader will notice that the above definition is slightly different
from Spector’s definition. The present definition has the advantage of having the func-
tional Y directly related to a certain tree — as will be discussed below.) The above



specification does not always define a total function. Take, for instance, the functional
Y : NV N given by

o if Vk (z(k) #0)
Y(I){H-l if (i) = 0 AVE < i (x(k) #0)

Then, with appropriate F’ and G, we could consider

By ={ 0 if 3 <[] (¥ (s]:) <)
1+ B(s=* (1)) otherwise

but it is easy to argue that B is not defined on the empty sequence ().
There is a simple condition on the function Y whose validity ensures that B is
always defined. Consider the tree

o~

Ty = {s € C<N:Vi < [s|(Y(s];) > 1)}

(This set is a tree because whenever s * t € Ty then s € Ty.) We say that the tree Ty
is well-founded if Vz € CN3i (z(i) ¢ Ty), ie., Vo € CNIFi (Y (z(i)) < ). We call
the latter condition, Spector’s condition for Y.

Theorem. LetY : CN — N be given. The function'Y satisfies Spector’s condition if.
and only if, there is a map hgt from Ty into the ordinals such that, whenever s is a
strict subsequence of t, then hgt(t) < hgt(s).

Proof. Suppose that there is an order inverting map hgt as above. Let 2 € C be given
and assume, in view of a contradiction, that Vi (Z(i) € Ty ). Since, for each natural
number 4, T(4) is a strict subsequence of T(i + 1), then hgt(Z(i + 1)) < hgt(Z(i)).
This gives an infinite descending sequence of ordinals, a contradiction.

Now, let us assume that Y satisfies Spector’s condition, i.e., that the tree Ty~ is well-
founded. Suppose, in order to reach a contradiction, that there is no order inverting map
from Ty into the ordinals. This assumption implies that Ty # (). Given s € Ty, let
Ty/sbe {t € C<N : sxt € Ty}. Note that Ty /s is a non-empty tree. Consider
the subset T C Ty constituted by the finite sequences s € Ty such that Ty /s is a
tree for which there is no order inverting map to the ordinals. Since () € Ty and
Ty = Ty /(), we have () € T. Moreover, it is clear that T is a subtree of Ty. We
claim that 7" has no endnodes, i.e., we show that if s € T then there is w € C such
that s * (w) € T. Suppose not. Then there is s € T such that, for each w € C, we
can find an ordinal «,, and an order inverting map h,, from Ty /(s * (w)) into «,,. Let
a = sup,,cc(ay + 1) (the axiom of replacement of Zermelo-Fraenkel set theory is
being used in this argument), and define

|« if t=()
M“{m@)ﬁtzqu

for all t € Ty /s. By construction, h is an order inverting function from 7Ty /s into the
ordinals. This is a contradiction.

Now, since 7' is a non-empty tree without endnodes, then 7" has an infinite path,
i.e., there is a function x : N — T such that, for all natural numbers ¢, Z(¢) € T This
path is actually also a path throught Ty, contradicting Spector’s condition for Y. [



If Y satisfies Spector’s condition, the above theorem permits to justify bar recursive
definitions by transfinite recursion. In order to see this, note that if s € Ty, w € C
and s x (w) € Ty, then we have hgt(s * (w)) < hgt(s). So B(s) is defined by
G(s, \w.B(s*{w))), an operation that only uses values of B at points of Ty of smaller
ordinal height than s (the points outside Ty pose no problem).

There are two important conditions that easily ensure Spector’s condition for the
function Y. One is the continuity condition:

Yz € CNIk € Nvy € ON (g(k) = T(k) — Y (z) = Y ().

The other is the (weaker) bounding condition:

—

Vz € CNIn € NVi € NY (z2(i)) < n.

As we will briefly discuss in the next section, these two conditions are related to
important structures for bar recursion. However, the bounding conditon seems to be
more fundamental (see [8]).

We saw that bar recursion is a form of definition by transfinite recursion on well-
founded trees. We used set-theoretic arguments at will. The existence of the bar recur-
sive functionals for well-founded Y is, nevertheless, amenable to a more elementary set
theoretic treatment. It is sufficient to be able to form certain subsets of Z C C<N x D
and to use the following principle of dependent choices:

Vs € C<N3w € C A(s, s * (w)) — Jz € CVVi e NA(Z(3),7(i + 1))

for suitable predicates A. (Dependent choices ensures that there are “enough” infinite
sequences around.) Let us briefly see why this is so.

Suppose that Y satisfies Spector’s condition. A set Z C C<N x D is a partial
bar function, and we write P(Z), if Z is a partial function (i.e., whenever (s,d) € Z
and (s,d’) € Z then d = d’) and, for all s € C<N with s € dom(Z), either s ¢
Ty NZ(s) = F(s) or

s €Ty ANVYw € C (s (w) € dom(Z) A Z(s) = G(s, \w.Z(s * (w))))

We claim that if P(Z) and P(WW) then P(Z U W). First, observe that it is easy to
argue that if s € dom(Z) N dom(W) and Z(s) # W(s) then there exists w € C
such that s * (w) € dom(Z) N dom(W) and Z(s * (w)) # W (s * (w)). Now, if Z
and W are not compatible at a certain given sequence s € C<N, then (by the above
observation) there must exist an infinite path x € C such that Z(|s|) = s and, for
all natural numbers ¢ > |s|, Z(i) € dom(Z) Ndom(W) and Z(Z (7)) # W (Z(7)). Of
course, the existence of this path requires the principle of dependent choices. Clearly,
we have Vi (Z(i) € Ty ) and this contradicts the well-foundedness of Ty-.

Let U := |U{Z : P(Z)}. By the discussion above, it is clear that P(U). Note,
also, that C<N\ Ty C dom(U). If we show that U is a total function, i.e., defined for
every s € C<N, then U is the bar functional that we want. The following fact is easy
to prove: if s € C<N and, for all w € C, s * (w) € dom(U), then s € dom(U). If
s ¢ Ty, there is nothing to prove. If s € Ty, then P(U U{(s, G(s, \w.U(s* (w))))}).



By the maximality of U, s € dom(U). Now, to see that U is a total function assume, in
order to get a contradiction, that there is a sequence s € C<N such that s ¢ dom(U).
Using the above fact and dependent choices, it is easy to obtain = € CN such that, for
all natural numbers i, if ¢ > |s|, then Z(i) ¢ dom(U). This entails Vi (Z(i) € Ty),
contradicting the well-foundedness of Ty-.

4 Spector’s quantifier-free theory for bar recursion

In [36], Spector introduces a logic-free theory of computable functionals of finite type
(called X4 in Spector’ paper). In this section, we describe a quantifier-free variant of
>4 building on Gédel’s quantifier-free theory T described in Section 2. The terms of
the language of Spector’s theory include the terms of 7 together with those obtained
by term application from new constants B, . of type

(cN=7)=5(cNo77257)=2(N=0)=>N)=oN=7

one for each pair of types o, 7. We are casually using the type o< of finite sequences
of elements of type o even though this is not a primitive type of our language. It is
nevertheless possible to deal with finite sequences via a pair consisting of an infinite
sequence and a natural number (whose intended meaning is to signal the truncation
of the infinite sequence at the length of the given natural number). We will not worry
about these technical issues in here. Let us denote the extended quantifier-free language
by 7gr. Its formulas are built as in Godel’s T, only now with new terms coming from
the bar constants. The theory T + BR includes the rule of induction (and substitution)
for the new formulas and the quantifier-free bar axioms (naturally) associated with the
following equality:

By~ (F,G,Y)(s) :{ F(s) if 30 < |s|(Y (s]:) <)
G(s, \w.B, - (F,G,Y)(s * (w))) otherwise
where, of course, F, G, Y and s are variables of types oSN 571 o<N 5 70 5 7
(N — o) — N and o<N, respectively. As noted in the previous section, the above
definition of bar recursion is not quite the same as Spector’s. It is easy to see that our
theory is included in Spector’s theory. We do not know if they are the same theory.
We saw that the set-theoretical structure is not a model of T + BR. This is one of
the main differences between Godel’s T and Spector’s T + BR: the former, but not the
latter, has the usual set-theoretic interpretation. This is due to the fact that definitions
by ordinary number recursion are always available set-theoretically whereas definitions
by bar-recursion depend on a certain well-foundedness condition (Spector’s condition).
Spector’s theory enjoys the astonishing property that every functional whose type is of
the form (N — o) — N automatically satisfies Spector’s condition (cf. Kreisel’s trick
in Section 6). The property of well-foundedness is unconditionally associated with cer-
tain functionals, unlike in ordinary settings where one must always explicitly hypoth-
esize conditions for it. This feature is related to certain intuitionistic ideas according



to which uniform continuity automatically holds for real-valued functions defined on a
closed bounded interval.

The first rigorous proofs that certain structures are models of Spector’s T 4 BR only
appeared in the early seventies. If we put aside the term model (see [42] or [30]), Bruno
Scarpellini’s proof in [33] that the structure of all sequentially continuous functionals
is a model of T 4 BR is, to my knowledge, the first such rigorous proof. Spector’s
condition of the pertinent functionals is assured by the continuity condition mentioned
in the previous section. Together with the fact that al/l functions with domain the (dis-
crete topological) space of the natural numbers are sequentially continuous, it ensures
— as we saw — that bar recursive functionals can be defined (one has also to check
that they are sequentially continuous). Anne Troelstra shows in [42] that the structures
ICF® and ECF® of the intensional (respectively, extensional) continuous functionals
are models of T 4+ BR (it can be proven that the extensional structure is isomorphic
to Scarpellini’s model — cf. [19]). These structures, based on continuity assumptions,
are natural to consider because they flow from the very intuitionistic ideas that were
at the source of Spector’s interpretation (see the next section). In 1985, Marc Bezem
presents a quite different model. Bezem’s structure [2] uses the so-called strongly ma-
jorizable functionals and admits discontinuous functionals. Spector’s condition of the
pertinent functionals is assured by the bounding condition mentioned in the previous
section. Since all infinite sequences of (strongly) majorizable functionals are, them-
selves, strongly majorizable (i.e., are in Bezem’s model), bar recursive functionals can
be defined (of course, one must also check that the functionals so obtained are strongly
majorizable). All rigorous proofs that some structures are models of Spector’s theory
appeared quite some years after 1962. This fact is a source of amazement for me, and
it tells much about the spell of intuitionism among some logicians at the time.

As in the case of Godel’s T, we can extend the quantifier-free language of the theory
T + BR to a quantificational language L& and consider the corresponding quantifica-
tional theory PA“ + ACg; + BR. This theory consists of PA“ + AC;, allowing now
for the new formulas in the schemata of induction and quantifier-free choice, together
with the new bar axioms.

Theorem (Soundness theorem for bar recursion). Let A be a sentence of the language
of LEg. If PAY + AC‘(‘I} + BR F A, then there are closed terms (of appropriate types)
of Ter such that T + BR F Ag(z, tz).

Proof. The proof of the soundness of Shoenfield’s interpretation needs hardly any ad-
ditional work because the new bar axioms are universal closures of quantifier-free for-
mulas and, hence, are automatically interpreted (by themselves). U

5 What is bar recursion? Brouwerian considerations

Spector’s paper is entitled “Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles formulated in current intuitionistic math-
ematics.” According to Georg Kreisel in p. 161 of [29], the long title incorporates
contributions by Spector, Godel and Kreisel himself. Be that as it may, the catch-
word ‘extension’ is common to the title of Godel’s paper of 1958. Spector’s paper,
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like Godel’s, tries to reduce the consistency of a classical theory to the acceptance of
an extension of a certain foundational framework: Hilbert’s finitism in Godel’s paper,
Brouwer’s intuitionism in Spector’s case. Furthermore, both extensions share a simi-
lar pattern: they follow Godel’s cherished idea of “gain(ing) knowledge abstractly by
means of notions of higher type” (quoted from Godel’s [11]).

A form of bar induction commonly accepted in intuitionistic mathematics is mono-
tone bar induction. In the following, we formulate this principle in the language of
finite-type arithmetic £%. The type ¢ and the formulas P and () below are unrestricted
(note that, in Brouwerian intuitionism, o must be the type N of the natural numbers):
If

Hypl. VaN=73kNP(z(k))

Hyp2. ¥s°~ Vi < |s|(P(s]:) = P(s))
Hyp3. Vs7~ (P(s) = Q(s))

Hypd. Vs~ (Vuw?Q(s * (w)) — Q(s))

then Q(().

It is easy to argue that this principle is set-theoretically true (contrast this fact with
bar recursion). Suppose that Q(()) is false. Then, by Hyp4, there is wq such that
—Q({wp)). By Hyp 4 again, there is wy with =Q({wo,w1)). We can continue this
process and get a sequence w of elements of type o such that Vk € N-Q(w(k)). Of
course, a form of dependent choices is needed to arrive at this conclusion. By Hyp3,
Vk € N-P(w(k)). This contradicts Hypl. Notice that the monotonicity condition
Hyp2 was not used in the argument. Even though Hyp?2 is not needed to justify classi-
cally the principle of bar induction, without Hyp2 the principle is not intuitionistically
acceptable (because it would entail the lesser principle of omniscience, a form of ex-
cluded middle rejected by the intuitionists: cf. exercise 4.8.11 in [41]).

Together with a continuity argument, the above principle of bar induction proves
(intuitionistically) the existence of the bar recursive functionals. Take F', G and Y as

in the previous section. Let P(s"<N) be 3i < |s|(Y(g\\l) < 1) and define Q(s"<N) by:

BV [(P(s*t) AB(st) = F(sxt)) V
(=P(s*t) AB(sxt) = G(s*t, \w?.B(s xt x (w))))]

where the variables have appropriate types. It is clear that Hyp2 and Hyp3 hold. The
verification of Hyp4 uses an intuitionistically admissible form of choice. Hypl is true
by appealing to the continuity of the functional Y (this is the only place in the argument
which is not set-theoretically sound). Therefore, we can conclude Q(()), i.e., that there
exists the bar functional B(F, G,Y). It is also not difficult to prove (by bar induction)
that this functional is unique.

We have shown that bar recursion of type ¢ reduces intuitionistically to bar induc-
tion of the same type (with the aid of a principle of continuity). Can bar recursion of
finite type be constructively justified? The matter was taken up in a seminar on the
foundations of analysis led by Kreisel at Stanford in the summer of 1963, and a report
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[27] circulated. The answer was that “for the precise formulation in this report of con-
structive principles implicit in known intuitionistic mathematics, the answer is negative
by a wide margin (...).” What are these principles? They “concern primarily functionals
of finite and transfinite types, free choice sequences, and generalized inductive defini-
tions.” The story of the accomplishments of the seminar and of the ensuing work over
the next years is long-winded. To cut through the fog, I believe that it is fair to say
that the proof-theoretic strength of the principles of intuitionistic mathematics consid-
ered by Kreisel lies at the level of the theory ID; of non-iterated monotone inductive
definitions. They are enough to justify bar recursion of type N (i.e., when ¢ is N) and
perhaps (by slightly stronger theories) also of type N — N (see section 7 of [18]), but
not more. The results were certainly disillusioning. Kreisel confides in [28] that “when
I originally considered the extension of [Spector] to analysis I believed that the partic-
ular notion of functional of finite type there described could be proved by intuitionistic
methods to satisfy [the functional interpretation of analysis]. Put differently, I thought
that the existing intuitionistic theory of free choice sequences, especially if one uses
the formally powerful continuity axioms, was of essentially the same proof theoretic
strength as full classical analysis!” (italics as in the original). As we now know, ID;
has the proof-theoretic strength of I1}-comprehension without set parameters and it is
a far cry from full second-order comprehension.

Note, however, that the answer is negative as measured against existing intuition-
istic theory. The title of Spector’s paper explicitly mentions an extension of principles
formulated in current intuitionistic mathematics. We believe that the benefits of Spec-
tor’s consistency proof have to be judged on its own terms: against the intuitionistic
plausibility of the extension proposed. In the Stanford report, Kreisel writes that, ac-
cording to Godel, “if one finds Brouwer’s argument for the bar theorem conclusive
then one should accept the generalization in Spector’s paper.” (Interestingly, it is added
that “nothing much was intended to follow from this because [Godel] does not find
Brouwer’s argument conclusive.” In the same vein, Spector says in his paper that the
bar theorem is itself questionable and in need of a suitable foundation.) I see in Godel’s
opinion the implication that a conclusive argument for the bar theorem would gener-
alize to bar induction in finite types. It would be expedient if the specialists who are
convinced by Brouwer’s argument could give their assessement of its possible gener-
alization to higher types. There is also the other leg of the argument, the one regarding
the continuity condition. In an intuitionistic setting, continuity is a consequence of
Brouwer’s doctrine about choice sequences. Their analogue in Spector’s framework
are sequences of higher type functionals (vis-a-vis sequences of concrete natural num-
bers). Do choice sequences of higher-order abstracta make sense for the ‘creating
subject’?

6 Bar recursion entails bar induction (in the presence
of quantifier-free choice)

We prove a result that is preparatory for interpretating analysis in Spector’s T+BR, viz.
that a certain simplified form of bar induction is a consequence of PA“ + ACy; + BR.
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The next proposition is instrumental in showing this. It says that, in the presence of
BR, functionals of type Y N=?)=N automatically satisfy Spector’s condition:

Proposition (Kreisel’s trick [26]). For any type o, the theory PA¥ + BR proves the
sentence VY N=0)>NygpN=o ;N (Y (7(j)) < i).

Proof. Fix Y and z. Define W : <N — N by bar recursion in the following way:

—

=4 0 if 30 < |s] (Y(s];) <19)
Wis): { 1+ W(s*(z(]s]))) otherwise

and let h(k) := W (z(k)). By definition, it is clear that

_fo if i < k (V(2(0)) <)
h(k) = { 1+ h(k+1) otherwise

Let k be given. Clearly, if h(k) # 0 and i < k, then 2(0) = ¢ + h(¢). In particular,
if h(k) # 0, h(0) = k + h(k). Instantiating k& by h(0), we can conclude that if
h(h(0)) # 0 then h(0) = h(0) + h(h(0)). Therefore, h(h(0)) = 0. By definition of

—

h, we conclude that 3¢ < h(0) (Y (Z(7)) < 7). O

Given a type o and an existential formula P(s) with a distinguished variable s of
type <N, we consider the following simplified version of monotone bar induction,
denoted by Bl : From the three hypotheses

H1. V2N=o3kN P(z(k))
H2. Vs Vi < |s| (P(s];) — P(s))
H3. Vs~ (Vwo P(s = (w)) = P(s))
one can conclude P(()).
Theorem (after Howard). The theory PAY + AC(; 4 BR proves BI3.

Proof. Let P(s) be the existential statement Ja” Py¢(s, a), where s has type o<~ and
Pyt is a quantifier-free formula. Assume the hypotheses of bar-induction. By the first
hypothesis, Yz3k, aPys (7 (k), a). By ACg;, there are functionals Y : (N — o) — N
and H : (N — o) — 7 such that

Hl. Vz Py(Z(Yx), Hz)

By the second hypothesis, VsVi < |s|Va3b(Py(s|i,a) — Pye(s,b)). Hence, by
/—\C‘a’f, there is a functional F' : <N — N — 7 — 7 such that

H2. VsVi < |s|Va (Py(s]i,a) = Pyi(s, F(s,i,a)))

By AC, it is easy to see that Vs, f777 3w, b (Py(s * (w), fw) — Py(s, b)) is
equivalent to the last hypothesis of bar induction. Using ACgf to witness w and b and
then disregarding the witness of w, there is G : <N — (0 — 7) — 7 such that
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H3. Vs, f (VwPy(s * (w), fw) — Py(s, G(s, f)))

Lat us define, by bar-recursion, the following functional:

—_—

By m { F. YOI HGL)) i3 < 1 (V6T <)
G(s,\w.B(s* (w))) otherwise
where i is the least number ¢ such that Y(;|:) <i.
We claim that, for all s of type <N, if 3i < |s| Y (s|;) < 4, then Py¢(s, Bs). In fact,
by HI, we have Pas(s]i, (Y (s]i)), H (s]i,)). Since Y (s[i) < io < |s], the finite se-

quence 5/|Z(Y(s/\;)) is actually the sequence S‘Y(s/\'\ . Hence, qu(s|y(S|A_)7 H(s/|;))
0 0

)
Using H2, we get Py (s, F(s, Y (s]iy), H(s]iy))), that is, Py(s, Bs).

Secondly, we claim that, for all s of type <N, if Vi < |s| Y (s|;) > i, then
VwPas(s * (w), B(s x (w))) = Pat(s, Bs).

To see this, suppose that Vw Py¢ (s (w), B(s*(w))). Let f := Aw.B(s*(w)). With
this notation, we have Vw Pyt (s * (w), fw). By H3, we conclude that Py (s, G(s, f)),
that is, Py¢(s, Bs).

Of course, the above two claims entail that, for every s of type o <N,

VwPye (s * (w), B(s * (w))) — Pt (s, Bs).
Therefore,

Vs [Pyt (s, Bs) — Jw—Py(s * (w), B(s * (w)))].
By AC;}, there is a functional 7" : <N — ¢ such that

Vs [=Py(s, Bs) = = Pye(s x (T's), B(s = (T's)))].

We now define, by recursion, a functional z of type N — ¢ according to the
following clause: z(k) = T'({z(0), 2(1),...,z(k — 1))). Note that z(0) = T'(()). By
construction, we have

Py (Z(k), B(z(k))) = =Py (Z(k + 1), B(Z(k + 1)),

for every natural number k.

Suppose, in order to reach a contradiction, that the conclusion of bar-induction
fails, i.e., that =P (()). Therefore, Ya—Py((), ). In particular, =Py (Z(0), B(2(0))).
By induction, we get —Py¢(2(k), B(z(k))), for all kN. This contradicts the fact that, by

g

Kreisel’s trick, there is i~ such that Y (2(7)) < 7 and, hence, by the first claim above,
that Pys(Z(7), B(Z(1))). O
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We finish this section with a discussion concerning equality. At a certain point
of the previous argument, we apparently used the axiom of extensionality. The finite

sequences s|;, (Y (s;,)) and s, (sl are extensionally equal. As a result, we used the
implication

_ - - —

at (1o (Y (siq ), H (5i0)) = Pat(sly 7 H (slio)),

which amounts to a substitution salva veritate. Actually, by carefully defining the
notion of finite sequence, this implication can be justified without any extensionality
assumptions, and the theorem above is correct as it stands (i.e., based on the mini-
mal theory PA“). There are alternatives, though: one way out is not to worry about
the precise definition of finite sequences and simply admit in our theory the universal

-y

statements j < i < |s| A ®(s|;(j)) — P(s|;). Granted, this is an ad hoc maneuver
(but quite an admissible one). A more systematic way of getting the desired universal
statements is to include in our base theory a so-called weak extensionality rule. This is
the choice of Spector in his original paper. In [25], Kohlenbach follows this route and
the reader is directed to this reference for a thorough discussion of this rule.

7 The interpretation of analysis

Analysis, a.k.a. full second-order arithmetic PA,, is the extension of first-order arith-
metic PA to a language £2 with a new sort of (second-order) variables for sets of
natural numbers, a new kind of atomic fomulas taking the form ‘¢ € X, where ¢ is a
first-order term and X is a second-order variable, and whose axioms include the full
comprehension scheme:

AXVz (z € X < A(x))

where A is any formula of £? (first and second-order parameters are allowed). Induc-
tion in PA, can be stated by the single axiom

VX0e X AVz(x € X = Sz € X) — Va(z € X))

Given that we have full comprehension, induction actually applies to every formula
of the second-order language. The language £? can be embedded into £ by letting
the number variables run over arguments of type N, letting the set variables run over
variables of type N — N subjected to a process of normalization (so that they take
values in {0, 1}), and by interpreting t € X by X (t) = 0.

We need three definitions within £:

Definition. The principle of full numerical comprehension CAY is the following scheme:
FN-NyeN(fr =0 < A(w))

where A is any formula.

15



Definition. The principle of dependent choices DC” is the following scheme:
V2o 3y A(x,y) — Yu?IfN"9(f0 = u AVEA(fk, f(k+1))),

where o is any type and A is any formula. The restriction of the above principle to
universal formulas A is denoted by DCY;.

Definition. The principle of numerical choice ACN“ s the following scheme:
VEk3x® Ak, z) — IfN"VE Ak, fk),

where o is any type and A is any formula. The restriction of this principle when o is
the type of natural numbers N is denoted by AC™N.

Proposition (Easy facts).
1. PA¥ +BI5 F DCY
2. PA® + ACY; + DCY + DC¥
3. PA® + DC¥ F ACY¥
4. PA¥ + AC™N | CAY

Proof. Let A(x?,y”) be a universal formula such that Y23y A(x, y). Fix u”. We must
show that there is f : N — o such that f0 = u and VEA(fk, f(k + 1)). Take v” such
that A(u,v) and define the following existential formula P(s7<N):

P(s) := Fi < |s|=A(((u, v) % 8)i, ((u,0) * 8)is1)

By the choice of v, it is clear that =P(()). We claim that the hypotheses H2 and
H3 of BI5 hold for P. This is straightforward for H2 and not so difficult to verify for
H3. Supose that, for a given s”<N one has VwP(s * (w)). This means that, for all w?,
either

Fi < [s[2A(({w, 0) # 55 (W), ((u, 0) 5% (W))it1)

or “A(((u,v) x5 % (W))|s41, ({1, V) * 5 % (W))s|12). The first disjunct is equivalent
to P(s) whereas the second is equivalent to ~A(z,w), where z = v if |s| = 0 and
2 = 5|5|—1 otherwise. By the arbitrariness of w, one has P(s) V Vw—A(z,w). This
entails P(s) and, therefore, the verification of H3 is finished.

By Bl5, we must conclude that H1 fails for P. Therefore,

NIV <k A(((u, 0) * Z(R))i, ((u,0) * B(K)) 1)
It is now clear that the function

U ifk=0
flk)=¢ v ifk=1
a(k—1) ifk>2
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satisfies f0 = v and VEA(fk, f(k + 1)).

We have just proved the first easy fact. (This argument is basically in the ap-
pendix of [14].) In order to prove the second fact, take A(x?,y?) any formula such
that Vo3yA(z,y) and fix u?. By Proposition 2, the formula A(x,y) is equivalent to
Vw3zAs(w, 2, 2,y) for w and z of appropriate types. Using ACg;, A(z,y) is equiva-
lent to FhVwAg(w, hw, x, y). By hypothesis, and inserting a dummy variable g (of the
same type as h), we have

Y, gy, hWWwAg(w, hw, z,y)

Since Ag is quantifier-free, we are in the conditions of application of DCy. There-
fore, there are fN~° and appropriate [ such that f(0) = v and

ViVwAs(w, 1k + D)w, fk, f(k + 1))

We conclude that VEA(fk, f(k + 1)).

Let us now consider the third fact. Suppose that Vk3z:” A(k, z). Fix u such that
A(0,u). Clearly, Vk, z3n,y (n = k+1AA(n,y)). By DCY, there are fN~ and gN~N
such that f(0) = u, g(0) = 0 and Vk(g(k + 1) = g(k) + 1 A A(g(k + 1), f(k+1))).
It is clear, by induction, that Vk(gk = k). It easily follows that VEA(k, fk).

The proof of the fourth fact is well-known. Take an arbitrary formula A(kN).
Clearly, Vk3n((n = 0 A A(k)) V (n = 1 A =A(k))). By ACNYN, there is fNN
such that, for all kN, A(k) if, and only if, fk = 0. O

Howard’s theorem of the previous section, together the above facts, entails that
DC" is a consequence of the theory PA“ + ACY; + BR. We highlight the following
result:

Corollary. The theory PA* + AC; + BR proves CAN,

By the above corollary, PA; can be considered a subtheory of PA“ + ACG; + BR.
For ease of reading, in the next theorem we identify a formula of £2? with its translation
into £¥.

Theorem (after Spector). Let A be a sentence of the language of second-order arith-
metic. If PAy & A, then there are closed terms t (of appropriate types) of Tgr such that
T+ BRF Ag(x, tx).

Proof. Suppose that PA; = A. By the discussion above, PA“ + AC; + BR = A. By
the soundness theorem of Section 4, the result follows. O

Note that the above proof is finitistic. Therefore, by considering the formula A to
be 0 = 1, this theorem shows that the consistency of analysis is finistitically reducible
to the consistency of Spector’s quantifier-free theory T + BR.

The restriction of T+ BR to bar recursion of type N is very-well understood (see the
next section), and it has played a fruitful role in the foundations of mathematics. For
instance, Kohlenbach gave in [23] a particularly perspicuous analysis of arithmetical
comprehension based on the bar-recursor Bn NoN-
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8 Epilogue

Spector’s consistency proof is a beautiful and sophisticated piece of work. It provides
a surprising way of replacing the comprehension principles of analysis by forms of
transfinite recursion. But, as a consistency proof, does it command any epistemological
conviction? In Section 5, we defended that the most promising argument for a possible
epistemological gain provided by Spector’s proof is still the original intended one: to
rely on an extension of the principles of Brouwerian intuitionism by considering the
generalization of bar induction to finite types. It is nevertheless an almost universal
conviction that Brouwer’s argument for the bar theorem is inconclusive, let alone its
possible extension to higher types. With no conclusive arguments for the extension,
nothing much is attained.

Other readings of Spector’s proof are possible. Spector’s proof reduces the com-
prehension principles of analysis to the termination of some effective processes (viz,
to the normalization of the closed terms of 7gg). This is no mean achievement. The
postulation of the normalization of the closed terms of Tgr is sufficient to prove (mod-
ulo some weak arithmetic) the consistency of analysis. Proofs of normalization for the
terms of Tgr do exist in the literature (they, in fact, guarantee the existence of the term
model). The first such proof is, to my knowledge, due to Tait in [38]. Of necessity
(by Godel’s second incompleteness theorem), these proofs use proof-theoretic power
stronger than the power of analysis. Tait’s proof is not ordinal informative. However,
the situation is different for some subclasses of Tgr. There are proofs of the normal-
ization of the terms of Godel’s T by the method of assigning to them ordinals less than
€0 (see [40] for references), therefore providing another route to Gentzen’s proof of the
consistency of PA. Moreover, Helmut Vogel and Howard gave in [44], [16] and [17]
a detailed ordinal analysis of bar recursion of type N. As far as we are aware, ordinal
analyses of stronger forms of bar recursion have not been pursued.

The most important benefits of Spector’s proof probably lie elsewhere. Not in con-
sistency proofs but in applications to the extraction of computational information from
ordinary proofs of mathematics. The methods of Kohlenbach’s proof mining (conve-
niently reported in [25]) can be applied to full second-order arithmetic because of the
work of Spector. Kohlenbach, as a matter of course, works with systems with full
second-order comprehension. In more recent studies, bar recursion has also been ex-
tended to new types, used to interpret — for instance — abstract normed spaces (see [24]
and [10]). Even though the uses of bar recursion have not yet shown up in an essential
way in the analyses of ordinary mathematical proofs, the situation can — in principle
— change. Kohlenbach’s methods are also deeply interwoven with questions of uni-
formity (i.e., the obtaining of bounds independent from some parameters), including a
set-theoretic false uniform boundedness principle. These methods are possible within
analysis because of the majorizability of the bar recursive constants. Majorizability
considerations have played an important role in the removal of ideal elements (con-
servation results). The paramount example is the elimination of weak K&nig’s lemma
(fan theorem) for theories without arithmetical comprehension: see [35] and [22]. The
bounded functional interpretation of Ferreira and Oliva [9] can be seen as a thorough
exploitation of majorizability properties. It was first defined for arithmetic but it ex-
tends to analysis via bar recursion (cf. [5] and [4]). The relations between functional
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interpretations, majorizability, uniformity results, elimination of ideal elements, ex-
traction of computational information and the role of some classically false principles
constitute a fascinating topic in the foundations of mathematics. My paper [6] includes
a general discussion on these issues.

9 Appendix

Let Tk be a Kleene binary tree, i.e., a primitive recursive infinite tree of finite binary
sequences with no infinite recursive path (Kleene introduced such an example in [20]).
The form of bar induction described in Section 6 can be used to prove that Tk has an
infinite path. This can be seen by considering the existential statement

P(stOU™) = NI 2 [s| A VHOU T (s 8] =1 = st ¢ Tc)

(The universal quantification on the finite binary sequence ¢ can be considered bounded
because the length of ¢ does not exceed [.) Both H2 and H3 hold but, since Kleene’s tree
is infinite, the conclusion P(()) fails. Therefore, H1 must fail and this readily entails
that there is an infinite path through T%. By the choice of T, this infinite Boolean
sequence is not recursive. A close inspection of the proof of Howard’s theorem in
Section 6 shows that the amount of quantifier-free choice needed to prove the required

bar induction is just AC;\?{OJ}’N (the meaning of this notation should be clear). This
amount of choice justifies the existence of a functional Y of type (N — {0,1}) - N
with the property that VozN—{01(Z(Yz) ¢ Tx), and this fact is sufficient to pull the
proof through.

It is the combination of bar recursion and quantifier-free choice that is responsible
for the introduction of non-recursive Boolean sequences in models of PA* (via forms
of bar induction or, what is classically the same thing, via dependent choices). The lack
of just one of these ingredients may result in the failure of introducing non-recursive
sequences. For instance, the structure HRO® of the hereditarily recursive operations is

a case where AC;\?{OJ}’N is available but BR fails. On the other hand, the term model
N-{0,1},N

is a case where BR holds but AC ¢
Boolean sequences.

Interestingly, the soundness theorem for bar recursion applies to the theory with
the combination of quantifier-free choice and bar recursion (see the end of Section 4).
Hence, bar induction is available and the theory proves the existence of non-recursive
Boolean sequences (of course, only a very restricted form of bar recursion is needed
for obtaining infinite paths through infinite binary recursive trees but, as we saw, unre-
stricted bar recursion even proves full second-order comprehension). From the sound-
ness theorem, one easily shows that PA~ + AC;’f + BR is conservative over PA“ + BR
with respect to sentences which, in prenex normal form, have quantifier prefix V3. The
existence of an infinite path through Kleene’s tree T is a statement of quantifier prefix
3V, and the conservation result does not apply. Spector’s interpretation is subtle indeed.

fails. Both structures only have recursive
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