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Abstract

We show how to interpret weak Konig’s lemma in some recently de-
fined theories of nonstandard arithmetic in all finite types. Two types
of interpretations are described, with very different verifications. The
celebrated conservation result of Harvey Friedman about weak Koénig’s
lemma can be proved using these interpretations. We also address some
issues concerning the collecting of witnesses in herbrandized functional
interpretations.

1 Introduction

Benno van den Berg, Eyvind Briseid and Pavol Safarik introduced and studied in
[4] a cluster of functional interpretations of theories of nonstandard arithmetic.
They were able to prove pertinent soundness theorems and, as a consequence, to
extract computational information from proofs in these theories. In their work,
van den Berg et al. started by considering intuitionistic nonstandard theories
but their analysis was also adapted to the classical setting. Their interpretations
are dubbed herbrandized because the witnesses of the existential quantifiers of
the interpreting formulas are collected into finite sets. More recently, the second
author of this paper and Jaime Gaspar studied in [9] a variation in which the
existential witnesses are given below certain given bounds (using the notion of
strong majorizability of Marc Bezem [6]). The goal for studying this variation
was to show that the bounded functional interpretation of [10] can be seen (at
least for the classical seeting of [7]) as the trace left by an interpretation of
nonstandard arithmetic into a purely standard setting.

The theories considered in [4] and [9] are suitable for interpreting weak
Konig’s lemma. Both can interpret this lemma by internally considering Scott
sets given by so-called standard systems (see [11] for these concepts). The theory
in [9] can nevertheless interpret weak Konig’s lemma in a more direct fashion,
as we will see. This is in agreement with what Jeremy Avigad says in his report
of [9] in [2]: “[it] is a natural setting for carrying out and eliminating certain
kinds of compactness arguments.” Even though the elimination of weak Konig’s
lemma makes perfect sense over a theory of the strength of Peano Arithmetic
(without arithmetical comprehension), it is more traditional to consider weak
Kénig’s lemma over theories enjoying at most ¥9-induction. This is what we
do in this paper and, accordingly, we recover the celebrated result of Harvey



Friedman that the theory of Reverse Mathematics WKL, is conservative over
the theory 1329 for T19-sentences (Stephen Simpson’s opus [16] is the place where
the reader can find a thorough discussion of these matters). Friedman’s re-
sult can also be proved using functional interpretations for theories of standard
arithmetic. The first such proof is due to Ulrich Kohlenbach in [12]. The proof
in [7] is related to the argument that we give in the next section.

This paper has another theme, pace the title of the paper. We have found
that the manner of collecting finitely many witnesses in the herbrandized func-
tional interpretations of [4] is somewhat artificial. This is not the place to
elaborate on this opinion, but we advance now two reasons for this: one concep-
tual, the other connected with the work at hand. The conceptual reason lies in
the fact that the herbrandized functional interpretations do not work directly
with the arrow type ¢ — 7* between two types o and 7* (the superscript *
means that one is considering the type of finite sequences of elements of type
7), but rather with the type (¢ — 7*)*. One is nevertheless forced to see the
elements of the type (¢ — 7*)* as, somehow, functions from the elements of
type o to the elements of type 7*. This is possible, but at the cost of some
artificiality. The other reason is that the properties of finiteness needed to pull
through the herbrandized interpretation are very minimal. The herbrandized
functional interpretation can actually be given a sense for pure classical logic,
as shown in [8]. Of course, in the context of arithmetic, the notions of finiteness
and (natural) number must be closely related on pain of straining one (or both)
of them. In this paper we strove to separate the minimal properties of finite-
ness needed to take care of the herbrandized functional interpretation from the
properties of finiteness that come hand in hand with the properties of number
in our system.

The paper is organized as follows. In the next section we consider a (primi-
tive recursive) version of the theory of [9] and show how WKL, can be interpreted
in it. The following section does the same thing for the (classical) theory of [4].
The verifications of the interpretations are different in each case. The other
theme of the paper, concerning the herbrandized functional interpretation, is
developed in Section 4. In the closing section, we address the question of the
treatment of finiteness in our weak theories and show how the conservation
result of Friedman can be obtained from the interpretations discussed.

2 The interpretation of weak Konig’s lemma in
E-PRAZ

The theory E-PAZ of nonstandard arithmetic was introduced in [9]. It is built
upon the well-known theory of (standard) arithmetic E-PA®: Peano Arithmetic
in all finite types with full extensionality (see [13] for the precise definition that
we use, with only primitive equality at type 0). As discussed, we need to restrict
this theory to a theory of the strength of primitive recursive arithmetic. The
restriction amounts to allow only the recursor Ry of type 0 and restrict induction
to the quantifier-free induction principle:

©(0) AV (p(x) = p(x + 1)) = Yz (),

where ¢ is a quantifier-free formula. This is the theory E-PRA®. Note that the
recursor Ry is exactly what is needed to introduce the primitive recursive func-



tions. A version of this theory is defined in [1], but we have full extensionality.
Also, we do not have, nor need to have, the conditional functionals (although
it would be harmless to adjoin them) of page 22 of [1]. For further clarification
on this issue the reader can consult note 11 of [3].

The theory E-PRAZ; of nonstandard arithmetic extends this theory in the
following way. With regard to the language one adds unary predicate symbols
st? for each finite type o (the predicates for standardness). The axioms are
extended with the following standardness axioms:

1. 2=y — (st7(z) — st (y))

o

st7(y) = (z <% y — st (z))

e

st?(t), for each closed term ¢ of type o
4. st777(z) = (st?(z) — st™(zx))

where the types o and 7 are arbitrary. Except for the second axiom, there
is hardly any need for comment. Just notice that equality in type o is defined
extensionally. In the statement of the second standardness axiom, z <} y means
that x is strongly majorizable by y. The definition of strong majorizability is
by induction on the finite type:

r<fyisz <y
<),y is VoVu <Sv (zu <Fyv Ayu <jyv)

For more information the reader can consult [13] where, instead of our nota-
tion x < vy, it is used y s-maj, x. Notice that in type 0 the strong majorizability
relation is the usual less than or equal relation. The second standardness axiom
for type 0 is an obvious requirement and it permits do deduce the following form
of induction:

p(0) A"z (p(2) = p(z +1)) = V2 p(z),

where ¢ is an internal quantifier-free formula. (An internal formula is a formula
in which the standardness predicates do not occur. Note that the formulas in
schematic position in both induction principles are the same.)

However, in higher types, the second standardness axioms are very peculiar.
They are intrinsic to the functional interpretation of [9] and, somewhat sur-
prisingly, they refute the so-called transfer principle of nonstandard arithmetic
(even for universal formulas: cf. the appendix of [9]). The transfer principle
is one of a triad of Edward Nelson’s theory IST for nonstandard set theory (cf.
[14]). Both idealization (the | of IST) and standardization (the S of IST) have, as
we will comment, counterparts in the theories studied in [9] and [4]. The third
piece of the triad, transfer (the T of IST) is missing because, as we have ob-
served, it is incompatible with E-PRAY. In the context of [4], transfer is related
with comprehension-like principles (cf. [5]).

There are three principles that play a fundamental role in the functional
interpretation of [9] (the formulas ¢ below are internal):

I. Monotone choice mACY: V5027 3%y o(x,y) — Fh VYt aTy <* ha p(z,y).

IL. Idealization 1“: V527 3x™Vy <* z ¢ (z,y) — IxV*y ¢ (z,7).



1. Majorizability axioms MAJY: V3ta Pty (x <X y).

Idealization is fundamental from a nonstandard point of view because it
guarantees the existence of nonstandard elements (of every type). As the name
indicates, it is a form of idealization in the sense of Nelson, where one replaces
being in a finite set by being majorized. Of course, the quantifications V*'z (.. .)
and Iz (...) abbreviate Vz (st(x) — ...) and 3z (st(z) A ...), respectively.
The tilde above the quantifiers indicates that the quantification is restricted to
monotone functionals, i.e., functionals x such that x <* z. Monotone choice
can be seen as a form of standardization. The rationale for the majorizability
axioms is ultimately connected with the bounded functional interpretation of
the second author and Paulo Oliva [10].

Theorem. The theory WKL is interpretable in the theory E-PRAG +mACH +1¢.

Proof. The interpretation is as follows: the number sort is interpreted by the
standard numbers, and the set sort is interpreted by the type 1 functionals x
such that x < 1. (Here, z < 1 abbreviates Vw®(zw < 1). Note that this is the
same as saying that z <* 1, where here 1 stands for the constant function of
type 1 which always takes the number 1 as value.) The membership operation
w® € z! is interpreted by zw = 0. This is the interpretation.

Except for the ¥9-induction scheme, the first-order axioms of WKL, are ob-
viously interpretable in E-PRA alone. The interpretations of ¥¢-induction and
AY-comprehension scheme follow — by an adaptation of well-known arguments
— from the following form of choice:

(C) Vstxoastyo (p(x, y) N EIStf1VSt.TO <p(:v, f$)7

where ¢ is an internal quantifier-free formula. This form of choice is a con-
sequence of monotone choice. Monotone choice applied to = and y of type 0
gives the consequent F'A1V5t2x03y < hx p(x,y). A functional witness f! as in
(C) can be obtained from h by a bounded search (this is possible because ¢
is an internal quantifier-free formula). Let us briefly rehearse the above men-
tioned well-known arguments within our setting. Suppose that 3%y (0, y) and
that Vs'z (F'y o(z,y) — F'yp(z + 1,y)), where x and y are of type 0 and ¢
is an internal quantifier-free formula (possibly with parameters). Take a stan-
dard number yo such that ¢(0,y9) and, by the choice principle (C), take a
standard f! such that V*'z,y (o(z,y) — o(x, fzy)). Using the recursor Ry it
is possible to define g such that g0 = yo and Vz (g(z + 1) = f(x,gz)). By
the standardness axioms 3 and 4, this ¢ is standard. By the second form of
induction, it is clear that V*'z ¢(z, gz). Therefore, by the standardness axiom
4, V¥ o3ty p(x,y). We have proved that the interpretation of ¥9-induction
holds. In order to show that the interpretation of A9-comprehension holds,
suppose that Vtx (5t p(x,y) < Vtz(z, 2)), where z, y and z are of type
0 and both ¢ and v are internal quantifier-free formulas (possibly with pa-
rameters). By the right-to-left direction of the above equivalence, we have
Vst 3ty 2 (Y(x, 2) = ¢(z,y)). By the choice principle (C), take f! and g! stan-
dard such that V*'z (¢(x, gz) — ¢(z, fx)). Since ¢ is an internal quantifier-free
formula, there is a type 1 functional h such that Va (hx = 0 < (z, fz)). Tt
is clear that we can take this functional so that h < 1. It is easy to see that
Vst (ha = 0 +» Ity (z,y)) is provable in the theory E-PRAY + mACs. This is
what we need to interpret AY-comprehension.



To finish the proof, it remains to verify weak Konig’s lemma. This is the
place where the principle of idealization enters. Weak Konig’s lemma says that
every infinite binary tree has an infinite path. Let us analyze the interpretation
of this statement (sentence). Let T be a functional of type 1 such that T < 1.
To say that T is a binary tree is interpreted by the conjunction of the sentence
vetzO (T = 0 — Sega(x)), where Seqa() is a primitive recursive predicate
saying that 20 is the code of a binary sequence, with the sentence

Vo, 7r(To=0ATCo—Tr =0),

where 7 C o says that the binary sequence coded by 7 is an initial segment of
the binary sequence coded by ¢. The interpretation of the infinitude of T is

Vw03t (To = 0 A |o| = w),
where |o| denotes the length of the sequence coded by o. We claim that
Vwda < 1VEk < w (T(ak) = 0).

To see this, pick a standard number w. By the infinitude of T, take a binary
sequence ¢ with |o| = w+ 1 and To = 0. Given that T is a tree, note that
Tr = 0, for all 7 € 0. Now, let o' be such that ak = o, for all & < w,
and ak = 0 otherwise. It is clear that this o does the job. Here we are using
the notation oy for the kth entry of o and ak for the (code of the) sequence
(a0,...,a(k —1)). By I¥, the claim readily entails

Ja < 1V°'k (T(ak) = 0).

This is the interpretation of the sentence saying that 7" has an infinite path.
O

3 The interpretation of weak Konig’s lemma in
E-PRAY

The theory of nonstandard arithmetic E-PA%" was introduced in [4]. It is based
upon the theory of (standard) arithmetic E-PA“*. They are both theories of
arithmetic in all finite types and the notational star is meant to indicate that
there is a type constructor that, to each finite type o, associates the type o*
of all finite sequences of elements of type o (this is known as Kleene’s star
operation in semigroup theory). In fact, what is really needed for the following
is that, given a type o, we can speak of (non-empty) finite sets of elements of
type o. This is accomplished by speaking instead of finite sequences of elements
of type o and by saying that an element belongs to such a finite sequence if it is
an entry of that sequence. One needs to introduce some special functionals and
axioms in order to deal with the new types. Among these new functionals figure
the so-called list recursors which, prima facie, pose a problem for adapting the
theories E-PA%" and E-PA“* to the weaker setting of primitive recursion. The
present paper has to deal with this technical issue somehow. What we chose to
do is the following. In this section we define the theories E-PRAZ" and E-PRA®*
but we omit the treatment of the star type. This will be done in the last section



of this paper. Meanwhile, in order to follow this section, the reader only needs to
know that one can define in the language of E-PRA%" a closed term M : 0* — 0
such that the theory E-PRAZ" proves

(P) Ve Va2l (z € ¢ = z < Me).

So, we will assume this property in the present section.

As indicated, the theory E-PRA®* extends E-PRA“ by enriching the term lan-
guage with combinators (and associated axioms) for the new types, and some
special constants and axioms in order to deal with the star types. Note that,
as in E-PRA“”*, there is only the recursor Rg and induction is still restricted
to quantifier-free formulas (there are now more quantifier-free formulas because
there are new types and new constants, but this is not a very important feature
of the new system). Similarly to the previous section, the theory E-PRAY" of
nonstandard arithmetic extends E-PRA“* by having unary standardness predi-
cates for each type (including, of course, the new star types) and the following
standardness axioms:

1. 2 =, y = (st?(x) = st?(y))

2. st%(y) — (z <y — st(z))

3. st7(t), for each closed term ¢t of type o
4. st777(2) = (st7(x) — st7(z2))

Observe that the second standardness axiom is restricted to type 0 (Berg
et al. do not need this second axiom because they can prove it using exter-
nal induction). There are two principles that play a fundamental role in the
interpretation of [4] (the formulas ¢ below are internal):

I. Herbrandized choice HAC;yy: V'™ 3%y o(z,y) — FhvstzIy € ha p(z,y).
I Idealization |: 527" 3x7Vy € z p(z,y) — Iz p(z, 7).

The first thing to notice is that the principle of choice (C) of the previous
section is a consequence of HAC;,; and of the existence of the functional M.
In fact, for z and y standard of type 0, hx is standard of type 0* and, by
property (P), all elements of hx fall below M(hx). As usual, a precise (standard)
witness functional f can be obtained by bounded search. On the other hand,
idealization entails the existence of nonstandard elements. To see this, notice
that we have V*'c?" Ju’Va € c(z < wu). This is immediate by property (P).
Hence, by idealization, Ju°v**2%(z < u). This u is obviously nonstandard.

Theorem. The theory WKL is interpretable in the theory E-PRALG +HAC;n+1.

Proof. As it is well known, in primitive recursive arithmetic we can code finite
sets by numbers. Therefore, in E-PRAZ" there are two ways of speaking about
finite sets of numbers: via elements of type 0* and by elements of type 0 which
are primitive recursive codes of finite sets of numbers. In our setting, these two
manners amount essentially to the same thing (see Section 5). However, in this
proof, we make a distinction between finite sets of numbers (given by elements
of type 0*) and codes of finite sets of numbers (elements of type 0).



The interpretation is as follows: the number sort is interpreted by the stan-
dard numbers, and the set sort is interpreted by number codes (standard and
nonstandard) of finite sets of numbers (standard and nonstandard). The mem-
bership operation w® € ¥ is interpreted by “w is an element of the finite set
coded by x.” As opposed to the interpretation of the last section, the second-
order sort is interpreted by elements, not of type 1, but of type 0. It is, in
short, interpreted by the standard system considered internally within the the-
ory E-PRAS" + HAC; + I

As before, with the exception of X{-induction, the first-order axioms of WKLg
are clearly interpretable in E-PRAY* alone, and X9-induction itself follows, as
in the last section, from the choice principle (C). For recursive comprehension
and weak Konig’s lemma, we repeat the argument of Theorem 4.4 of [1]. The
argument is as follows. Using the proof of Lemma IV.4.4 of [16], it is clear
that both of these principles are a consequence of the so-called scheme of X9-
separation. An instance of this scheme is an implication with antecedent

V- (Jy p(a, y) A Iz 1h(x, 2))
and consequent
IVVz (Fye(z,y) >z € V)AFz9y(x,2) > x ¢ V)).

The formulas in schematic position ¢ and v are bounded internal formulas,
possibly with parameters. The sentence V*'z—(3y ¢(z,y) A P2 9(x, 2)) is the
interpretation of the antecedent. Fix a nonstandard number w. Consider the
code v° of the finite set

{z <w:3y <w(plx,y) AVz <y(z, 2))}.

This code exists because the theory E-PRAZ" is able to code bounded sets defined
by comprehension using bounded (internal) formulas. It is easy to check that v°
codes a set that separates the standard elements x such that 'y o(z,y) from
those that satisfy 3z ¢(z, 2). O

Plainly, WKL can also be interpreted in the theory E-PRAZ + mACH + I
of the previous section using the interpretation of the above proof.

The interpretations of this and the previous section are, in some sense, the
same because it is possible to go from (type 1) Boolean functions to finite sets
below certain nonstandard elements, and vice-versa. However, the checking that
the interpretations work are very different in each case.

4 The herbrandized functional interpretation

In this section we present a more natural way of dealing with the finite collections
of witnesses in the herbrandized functional interpretations. As it happens, the
solution is — in the setting of classical logic — rather straightforward. As an
aside, there is also a solution, not as straightforward (but also rather simple),
for semi-intuitionistic systems. This will be the subject of a future paper of the
second author.

We present a herbrandized functional interpretation of the theory E-PRAZ +
HACin + 1 and prove a corresponding soundness theorem (the verification of the



soundness is done in the theory E-PRA“*). Even though we have not yet fully
described E-PRA®* (nor its nonstandard version), this is not important for most
of the arguments in this section. In fact, the missing axioms are internal and
the interpretation keeps the internal formulas unchanged.

What is important for this section is to isolate the properties of finiteness
needed to prove the soundness theorem. We need three kinds of functionals.
Functionals of type ¢ — ¢* whose intended meaning is to map each element
27 to the singleton set {«}. Functionals of type o* — ¢* — ¢* whose intended
meaning is to map elements ¢ and d of type ¢* to their union cUd. Finally, we
also need functionals of type (¢ — 7*) — (¢* — 7*) whose intended meaning
is to map f: o0 — 7" and ¢ : 0* to the union |J, .. fw. From a purely logical

point of view, we only need the following three properties (in our case, provably
in E-PRA“™):

(a) = € {z}
(byzecvezed—zecUd

() z€chz € fz—=x€ Uy fw

We will also apply the usual logical properties of equality (indiscernibilty
of identicals) but it is curious to observe that we do not need to have that co-
extensional elements of star type are equal. It is also curious that the empty
set is nowhere needed.

The herbrandized functional interpretation below is done directly for clas-
sical logic. Our direct treatment is such that the existential variables of the
interpreting formulas are always of star type and, moreover, a monotonicity
property is sustained. This is quite different from the treatment in [4] of the
classical case. In fact, while the intuitionistic interpretation of Berg et al. in
[4] is herbrandized with a typical monotonicity property associated, their treat-
ment of the classical case does not seem to have an associated monotonicity
property, even though it is obtained from the intuitionistic case (via a negative
translation).

We work with the logical calculus of Joseph Shoenfield in [15], with primitives
-, Vand V.

Definition. To each formula ® of the language of E-PRAL”, we assign formulas
OS¢ and ®g,, so that @5 is of the form V**a3F*h ®g_ (a,b), with ®g (a,b) an
internal formula, according to the following clauses:

1. @5t and ®g_, are simply ®, for internal formulas @,
2. (st(t))S is Fte(t € c).

For the remaining cases, if we have already interpretations for ® and ¥ given
(respectively) by V**a3%°b Pg_, (a,b) and V**'dF*e Vg, (d, e) then we define:

3. (®VW)Sst 45 Vta, d Fh, e [@s,, (a,b) V Vs, (d,e)],
4. (@) is VS fIFta’ [Fa € o <P, (a, fa)],
5. (Yo ®(z))S is Va3 [Va @y, (a, b, 7)),



where the internal formulas between square brackets are the corresponding lower
Sst-formulas.

The letters a and b (and similar) above stand for (possibly empty) tuples
of variables, but we speak of them as if they were only one variable. The
abbreviations are as usual, but we need to be clear about the quantification
Itz (...): it abbreviates =Vz (=st(x)V—(...)). Do notice, and this is important,
that if ®5t is V5ta3%tb ®g_, (a,b), then b is of star type (not so for a though, but
this does not cause trouble). Hence, the following monotonicity property makes
sense and, moreover, it is easily seen to be provable in E-PRA®* (cf. Section 5
for the complete definition of this theory):

g, (a,b) ANbC ¢ — Dg_, (a,c).
Of course, b C ¢ abbreviates Vz (—mz € bV z € ¢).
Lemma. Let ¢ and i be internal formulas. Then:
(i) (Vtzp(x))S is VsteVa € co(x).
(ii) (Ftxp(z))5t is FtdTe € Tz € cp(x).
(iii) (VtaFtyy(z,y))S is Vd3Ite'Va € dIc € /Ty € cy(z,y).

It is easy to check the above claims. Morally, the interpretation of 3%*z ¢(z)
should be F**c3z € c () but formally it is as in (ii) above.

Theorem (Soundness). Suppose that
E-PRAY" + HAC;n, + | - @,

where ® is an arbitrary formula (it may have free variables). Then there are
closed terms t of appropriate types such that

E-PRA“" I Va @g_, (a, ta).

Proof. The proof is by induction on the number of steps of the derivation of ®.
We rely on the complete axiomatization of classical logic described in sections
2.6 and 8.3 of [15]. We omit the study of the law of excluded middle and of
the propositional rules since the checking is essentially the one done in [8] (the
property of monotonicity is used in this part). The situation with the axiom of
substitution and the rule of V-introduction is different because the clause for the
interpretation of the universal quantifier is unusual in nonstandard arithmetic.

Substitution: Yz ®(z) — ®(t). Suppose that ®(z)%t is V*ta3tb ®g_ (a, b, ).
Then (Vz ®(z) — ®(t))5 is

VU, d3F e (Va € o'V g, (a, fa,z) — Pg_, (d,e,t)).
We need to exhibit close terms ¢ and ¢ such that
Vf,d(Va € tfdVx @g_ (a, fa,x) — Ps_, (d,qfd,1)).

It is clear that we can take terms ¢ and ¢ such that tfd = {d} and qfd = fd.



V-introduction: ®(x) V¥ = Yz &(z) V ¥, where x does not occur free in ¥.
Let ®(x)% be as above and U5t be V**d3%te Ug_ (d, e). By induction hypothesis
there are closed terms t and ¢ such that, for all z,

Ya,d (®g,, (a,tad,x) V ¥g_, (d, gad)).

Hence, Va,d (Vz ®g_, (a,tad,z) V Ys_ (d,qad)), as wished. The fact that the
terms ¢ and ¢ are closed (hence, they do not depend on z) is crucial in this step.

All the arithmetical axioms are internal and, hence, trivially interpreted. Let
us now turn to the four standardness axioms of Section 3. The interpretation
of the first of these axioms is

VieFtd(r =y — (x €c— y € d)).

Obviously, we can put d to be ¢. The interpretation of the third standard-
ness axiom is I*'c (¢t € c¢). Here the witnessing term {t} works (this term is
closed because ¢ is). The interpretation of the fourth standardness axiom is
Ve, dPe(z € ¢ = (# € d — zx € e)). We need to find a closed term ¢ such
that

Ve,d(z € ¢ — (x € d — zx € ted)).

We can just take ¢ such that ted = |J,..U,cq{27}. It remains to check the
second standardness axiom of Section 3. Its interpretation is

VO I (yee— (2 <y —yed).

Here we need a functional E : 0 — 0* such that the theory E-PRA“* proves
V¥ y° (x < y — x € By). This functional exists: see Section 5. Using the

functional E, we can define a closed term ¢ with tc = |J,,c, Ew. It is clear that

VOVl 0 (y € ¢ = (x <y — x € te)).

Let us now check the principles of idealization and herbrandized choice. We
look at idealization first. A simple computation shows that the interpretation
of idealization is

V' (Ve € V2 € c3aVy € 2 p(x,y) — FaVe € €'Vy € ep(x,y)).
Therefore, we need to exhibit a closed term ¢ such that
Ve! (Ve € te'Vz € c3aVy € z p(x,y) — JaVe € €'Vy € e p(z,y)).

We can take ¢ such that te’ = {{{J.c. €}}.
The analysis of the principle of herbrandized choice is more interesting. By
(iii) of the fact, the interpretation of V' 3%y p(z,y) is

VU3’ 3d € d'-Va € d3c € fdIy € co(x,y).
A simple computation shows that the interpretation of the consequent of HAC,,;

1S

VSIR3N € h'3h € WY € ShNx € dIy € ha p(x, y).

10



The typing is as follows: = : 7, y : 0, c: o*, d : 7%, d : 7™ f: 7" = o**,
h:t—=o*h:(r=0") bk :(r—=0c")*and 0 : (T = o*)* = 7**. We need
to exhibit closed terms ¢ and ¢ such that, for all f and 4,

(H) Vd etfoVe € d3ce fdIy € c p(x,y) —

I € qf63h € W' Vd € 5h' Vo € d3y € hx o(z,y).
We take g such that ¢f6 = {{Az.U.c () c}} and ¢ such that

tfs = U U {{w}

des({Az. U, oy cf) wET

Assume that Vd € tfdVe € d3c € fdIy € ¢ p(z,y). In order to see (H), take

do € 6({Az. e pqsy }) and xo € do in order to show 3y € U, 4,1 ¢ ©(20,9)-

Of course, {xo} € tfd. So, Jc € f{xo} Iy € ¢ p(xo,y). This is what we want.
O

5 Harvey Friedman’s conservation result

The interpretations of Section 2 and Section 3 can be used to prove that the
theory WKL, is I19-conservative over the theory I%. Suppose that WKL proves
a certain I19-sentence Vo 3y o(x, y), where ¢ is a bounded formula of the language
of arithmetic. Since WKLy is interpretable in E-PRAY + mACZ + 1 (Section
2), this latter theory proves V*'z3%'y p(x,y). The following proposition is a
consequence of the soundness theorem of [9] (suitably adapted for the primitive
recursive setting):

Proposition. If E-PRA + mACg + 14 + MAJ® = Va3 0(x,y), where 6 is
an internal quantifier-free formula, then E-PRAY = Va3y 0(x, y).

So, E-PRA% I Va3y o(x,y). We claim that this implies 129 F Va3y o(z, ).
This is the case because the theory E-PRA“ is interpretable into 1XY. The
interpretation is given by the model HEO of the hereditarily effective operations.
This internal model is well-known in the literature for interpreting E-PA“ into
Peano Arithmetic PA (see, for instance, [17]), but the argument also works for
our case. Let us briefly describe the model. We need to define the ranges of
the various finite types. To do this, we define in tandem the ranges of the
finite types and certain binary relations =,. The definition is inductive (on the
building of types): Ny is the universal predicate and =g is the equality relation
for natural numbers, N,_,.(e) is defined by

Ve (No(2) = {e}(z) 1) AVz,y (No(2) A No(y) N =5 y = {e}(z) = {e}(y))

and e =5, d := Vz(N,(z) = {e}(z) =, {d}(z)). Application between e
such that N,_,.(e) and = such that N, (z) is defined to be Kleene’s application
{e}(x). Tt is not difficult to complete the definition of this model. (Note that
we have claimed that the theory E-PRA® is interpretable into 1%Y, not in mere
primitive recursive arithmetic. If the reader thinks through, X{-induction is
needed when we try to make the argument for the interpretation explicit.)

As already mentioned, we could have used the interpretation of Section 3 in-
stead. In that case, we would have gotten E-PRAZS +HAC;u+1 - V' 3ty (2, ).
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The following proposition is a consequence of the soundness theorem in [4] for
classical arithmetic (suitably adapted for the primitive recursive setting), or
alternatively, it is a consequence of the soundness theorem of Section 4:

Proposition. If E-PRAS" +HAC;, + 1 F Vs'2 3y 0(x,y), where 6 is an internal
quantifier-free formula, then E-PRA“* FVz3y 0(z,y).

In order to obtain Friedman’s conservation result, we need to extend the
internal model HEO of IX{ to the theory E-PRA®*. At this juncture, we really
need to have the complete definition of the theory E-PRA“*. So far, we have
omitted some constants and axioms needed to deal with the star types.

The treatment of the finite sequences in star types given in [4] cannot, prima
facie, be adapted to our weak setting because of the so-called list recursors. List
recursors can simulate primitive recursion in finite types and, as a consequence,
yield a theory of the strength of Peano Arithmetic. We opt for a direct and
simple-minded treatment. For each type o, we include in E-PRA“* three con-
stants: C,, |- |, and F,. The constant C, has type (0 — ¢) — 0 — ¢* and
its intended meaning is to map an infinite sequence f : 0 — ¢ and a natural
number [ to the truncation of f at length I. The constant |- |, has type * — 0
and its intended meaning is to map an element s of type o* (a finite sequence)
to its length |s|,. The constant F, has type 0* — (0 — o) and its intended
meaning is to map s : 0* to a functional F,s : 0 — o such that F,sn = s, for
n < |s|y, (here, s, is the n-th entry of s).

We accept three kinds of axioms: |Cfl] = I, Vn < [(F(Cfl)n = fn) and
C(Fs)|s| = s. Given x of type o and s of type o*, we say that x € s if
In < |s|s (Fosn = x). Note that, by the standardness axioms of Section 3, if
st7 (s) and = € s, then st?(z). It is clear that with the help of these functionals
and axioms one can define the singleton functionals, the binary union functionals
and the indexed union functionals of Section 4 and prove the corresponding three
properties. The functional M of property (P) of Section 3 can be easily defined:
it is As?". maxo<n<|s| Fosn. The functional E of Section 4 is Ay".Co(Az?.2) (y+1).

We are now ready to extend the internal model HEO to the new star types.
Given a type o, we say that N,«(e) holds if e is the code of a finite sequence
of natural numbers, each of which satisfies the property N,. Also, we say that
e =y« d if e and d code finite sequences of the same length I, and e,, =, d,, for
each n < [. It is clear that the functionals C,, ||, and F, can be given in HEO,
even independently of the type o. The definition of the extension is completed.
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