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Abstract

In 1962, Clifford Spector gave a consistency proof of analysis using so-called bar
recursors. His paper extends an interpretation of arithmetic given by Kurt Goédel in
1958. Spector’s proof relies crucially on the interpretation of the so-called (numerical)
double negation shift principle. The argument for the interpretation is ad hoc. On
the other hand, William Howard gave in 1968 a very natural interpretation of bar
induction by bar recursion. We show directly that, within the framework of Godel’s
interpretation, (numerical) double negation shift is a consequence of bar induction.

The 1958 paper [4] of Kurt Godel presented an interpretation (now known as the
dialectica interpretation) of Heyting arithmetic HA into a quantifier-free calculus T of
finite-type functionals. The terms of T denote certain computable functionals of finite
type (a primitive notion in Godel’s paper, as it were): the so-called primitive recursive
functionals in the sense of Godel. These terms can be rigorously defined and they include
as primitives the combinators (a burocracy of terms for dealing with the “logical” part of
the calculus) and the arithmetical constants: 0, the successor constant and, importantly,
the recursors.! The dialectica interpretation assigns to each formula A of the language of
first-order arithmetic a (quantifier-free) formula Ap(x,y) of the language of T, and Gdodel
showed that if HA = A, then there is a term ¢ (in which y does not occur free) of the
language of T such that T = Ap(t,y).> The combinators play a central role in showing
the preservation of the interpretation under (intuitionistic) logic and, unsurprisingly, the
recursors play an essential role in interpreting the induction axioms.

It is convenient to extend the dialectica interpretation to Heyting arithmetic in all
finite types HA*.3 Within the language of this theory, one can formulate the characteristic
principles of the interpretation:

'The reader can consult [11], [1] or [7] for a precise description of the calculus T and of its terms in
particular. These are good references for details concerning the dialectica interpretation.

2We are taking some liberties here (and will take in the sequel). Rigorously, either one should speak of
tuple of variables = := z1,...,z, and y := y1, ..., ym or allow convenient product types.

3Some delicate issues concerning equality in higher types arise at this point (if not before). See [1] for a
discussion of these matters.



ACY: Vo3yB(z,y) — 3fVeB(z, f(z)),
MPY: =VzA(x) — Jz—A(x),
IPY: (VzA(z) — FyC(y)) — Jy(VzA(x) — C(y)),

where x and y may be of any finite type, A is quantifier-free and B, C' are arbitrary. The
first principle is a form of choice, the second is a finite-type form of Markov’s principle, and
the third is an independence of premises statement. These principles arise in virtue of the
very definition of the assignment A ~ Ap and, accordingly, have trivial interpretations.
They are sufficient to prove the equivalence between a given formula A of the language of
HA“ and its dialectica translation AP := JaxVyAp(z,y).*

The dialectica interpretation extends to (finite-type) Peano arithmetic PA“ by com-
posing it with a negative translation A ~» AY. Therefore, if A is a consequence of PA¥
then A9 is provable in HA“ and, hence, there is a term t of the language of T such that
T+ (49)p(t,y).

In the last paragraph of his 1958 paper, Godel suggests the construction of systems
stronger than T. Presumably, calculi with more terms can interpret (via de dialectica
blueprint) stronger systems of arithmetic. In this note, we are concerned with the sys-
tem obtained from PA“ by adding full numerical comprehension (obviously, this theory
contains full second-order arithmetic, a.k.a. analysis). The formulation of the numerical
comprehension principle CA in finite type arithmetic takes the form

Jfvn(fn =0+ A(n)),

for arbitrary formulae A (n is a number variable). Clifford Spector isolated in [10] the
so-called principle of numerical double negation shift (principle F' in Spector’s own paper):

Vn—-—-P(n) = -=VnP(n),

where n is a number variable and P is arbitrary. This principle is important because of
the following result:’

Theorem (Kreisel). The negative translation of CA is provable in the theory HAY + ACY
together with the principle of numerical double negation shift.

Proof. The theory HA® proves Vn——(A9(n)V—A49(n)). By numerical double negation shift,
—=Vn(A9(n) V —A9(n)). Equivalently, =—Vn3k((k = 0 — A9(n)) A (kK # 0 — —A9(n))).
Therefore, by AC*, =—3fVn((fn =0 — A9(n)) A (fn # 0 — =A9(n))). This formula is
intuitionistically equivalent to the negative translation of CA. O

“This result is due to Mariko Yasugi in [14]. There is a brief discussion in [3] clarifying the role of the
characteristic principles.
5See [8] and note 4 of [10].



Spector’s paper [10] was published posthumously.® The paper was submitted by Kreisel
on Spector’s behalf. The first footnote (written by Kreisel, as were all footnotes) and a
postscript by Godel explain the origin of the paper. In the paper, Spector generalizes
Brouwer’s principle of bar induction to higher types.” We work with the following version
of bar induction: For any given formulas A and B, if

1) Vf3k A(f(k))
2) Vs, s'(A(s") A s’ is a initial subsequence of s — A(s))
) v
)

(

(

(3) Vs(A(s) = B(s))

(4) Vs (VaB(sz) — B(s))

then B(()). In the above, z is of an arbitrary given type, f is an infinite sequence of
elements of the type of x, and s, s’ are finite sequences of elements of the type of z (also,
f(k) is the finite sequence (f0,..., f(k — 1)) and sz is the sequence s concatenated with
the element x).8:? The great novelty is that Spector also introduces definitions by so-called
bar recursion.!® There are now new terms, arising from the bar recursors: an extension of
Godel’s T calculus has been produced. Spector points that “since our immediate objective is
to obtain a quantifier-free interpretation of analysis, bar recursion rather than bar induction
is appropriate.” The goal is, of course, to witness (with the help of the new terms) the
dialectica translations of the instances of the numerical double negation shift principle. By
Kreisel’s result above, this would solve the problem of providing an interpretation for CA.
In the crucial Section 10 of his paper, Spector produces an ad hoc witness solution.!!

5Spector died at the age of thirty in the summer of 1961 of acute leukemia, after spending the academic
year in the Institute for Advanced Study in Princeton, New Jersey.

"A statement of bar induction (or bar theorem) by Brouwer himself can be found in [2]. Van Atten has
a discussion of this principle in his book [12] on Brouwer.

8The usual presentation of finite type arithmetic has no primitive types for finite sequences (of a given
fixed type). However, there are manners of representing finite sequences in finite type arithmetic. We will
not worry about these issues here.

9Bar induction in the sense of Brouwer demands that « be a number variable. Brouwerian bar induction is
already sufficient to interpret X9 comprehension (and so, by a well-known fact, arithmetical comprehension).
This can be seen by analyzing carefully the proofs of the Kreisel result above and of the main result below.
Spector introduced bar induction for x of any given type.

10We do not define bar recursion in this paper (for modern references and discussions, see note 1).
In contrast to recursion, bar recursion is not well defined in the full set theoretic structure of finite type
functionals (it is not a classical principle). It is nevertheless defined in the structure of continuous functionals
and in the strong majorizability model. Bar induction is, on the other hand, a classical principle.

1 The heart of the matter is the solution of a system of equations arising from the dialectica translation
of the principle of double negation shift. Due the presence of many negations, this system is rather cryptic.
It is a kind of brute fact that, somehow, one is able to solve it with bar recursive functionals. (This is
not to say that the proof in unmotivated, as Spector describes in his paper the motivation for his proof.)
The intuitionistic laws =—A; A ... A =—A, — —-—(A1 A ... A Ay) are miniaturizations of the principle of



Why does Spector introduce and discuss bar induction? After all, his interpretation of
analysis does not formally require it. He explains that “bar induction (is discussed) primar-
ily to point out the relationship between bar recursion and the bar theorem” and candidly
observes that “bar recursion is a principle of definition and bar induction a corresponding
principle of proof.” This is exactly right. The situation is analogous with that of induc-
tion/recursion (pace the remark in note 10). In effect, William Howard proved in [6] that
the principle of bar induction is interpretable in the extended calculus, with bar recursors.
The proof is very natural and, if [ may add, has a certain character of inexorability about
it.12

So, there is this very satisfying picture:

induction B —— recursion
bar induction e bar recursion

The following result shows that the principle of double negation shift follows from
bar induction and, therefore (by Howard), has a dialectica interpretation in the extended
calculus.

Theorem. In the theory HAY together with the characteristic principles, the principle of
bar induction implies numerical double negation shift.

Proof. Under the hypothesis of the theorem, we must show that Yn—-—P(n) = =—VnP(n)
is a consequence of bar induction (P arbitrary). By the characteristic principles, the
formula P(n) is equivalent to a formula of the form JzVyQ(x,y,n), with @ quantifier-
free. Let us assume VYn——P(n) and =VnP(n) in order to derive a contradiction. Consider
A(s) := Fi < |s|Fy—Q(si,y,1) and B(s) := A(s), where s is of the type of finite sequences
of elements of type x (|s| denotes the length of s). It is clear that =B(()). Therefore, if one
proves the hypothesis (1) to (4) of the principle of bar induction, we get a contradiction.
Hypothesis (2) and (3) hold trivially. Hypothesis (1) is a consequence of the assumption
that =VnP(n). In effect, this assumption says that —VnIzVyQ(z,y,n). By AC* and
intuitionistic logic, we get Vf—=Vn, yQ(fn,y,n). Markov’s principle MP“| on the other hand,
entails Vf3In, y=Q(fn,y,n). Therefore, Vf3kIi < kIy-Q(fi,y,1i), i.e., VIRA(f(k)).
Let us argue (4). Given a finite sequence s, suppose Yz B(sx), i.e.:

V(i < [s|Fy—Q(si, y,1) V Iy—Q(z, vy, |s])).

double negation shift and, by Goédel’s paper, their dialectica translations have witnessing solutions in the T
calculus. It is a non trivial exercise to find such solutions, even for n = 2. Paulo Oliva in [9] discusses these
solutions in detail and tries to motivate the use of bar recursion for the dialectica interpretation of double
negation shift in terms of a limit process when the number of conjuncts goes to infinity.

12 Avigad and Feferman say in [1] that “while the proof requires some effort, the underlying idea is
straightforward.”




By the assumption Vn——P(n), we have -—P(|s|). Using intuitionistic logic and Markov’s
principle MP*, we get —=Vz3dy—Q(z,y,|s|). We now appeal to the intuitionistic law

V(¢ v (x)), Ve ihp(z) = ¢

(where x does not occur free in ¢) to infer =—3i < |s|Jy—Q(s;, y, 7). By Markov’s principle
MP* once again, we finally conclude B(s). O

Spector’s paper has an appendix in which he aims to “indicate how bar induction can
be used to obtain an interpretation (of analysis) in a system with quantifiers” (cf. p. 8 of
[10]). I read this statement as proposing to show that the translations AP of instances A
of (negative translations of ) numerical comprehension somehow follow from bar induction.
Rather than presenting an z-witnessing term for Ap(x,y), Spector sets himself the goal of
proving the statement JxVyAp(z,y). Section 12.1 of the appendix describes an informal
proof of this result for the particular case of comprehension for ¥{ predicates.'® Our result
above can be viewed as providing a formal argument for the general case.'*1?
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