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Both authors acknowledge Centro de Matemática, Aplicações Fundamentais e Investigação
Operacional (Universidade de Lisboa) and the associated support of Fundação para a Ciência
e a Tecnologia (FCT) [UID/MAT/04561/2013]. The second author is also grateful to FCT
[UID/CEC/00408/2013 and grant SFRH/BPD/93278/2013] and to Large-Scale Informatics
Systems Laboratory (Universidade de Lisboa).

F. Ferreira
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1 Introduction

Benno van den Berg, Eyvind Briseid and Pavol Safarik introduced and studied
in [3] a cluster of herbrandized functional interpretations of intuitionistic the-
ories of nonstandard arithmetic. The functional interpretations are classified
as herbrandized because the witnesses of the existential quantifiers of the in-
terpreting formulas are accumulated into finite sets. Despite the nonstandard
setting of [3], the interpretations make perfect sense for theories of standard
arithmetic and even, as we shall see in this paper, for pure logic.

There are also other interpretations in the literature that accumulate exis-
tential witnesses. The earlier one seems to be the bounded functional interpre-
tation of Paulo Oliva and the first author of this paper [8], where witnesses are
accumulated below certain majorants. A realizability version was studied in
[7]. Another one is the functional interpretation of Jeremy Avigad and Henry
Towsner [2] of the arithmetical theory ID1 of non-iterated inductive definitions.
In this case, witnesses are accumulated into denumerable sets. A feature com-
mon to these so-called cumulative interpretations is a monotonicity property
to the effect that the existential quantifications of the interpreting formulas
are upward closed in the sense that if a certain existential functional is fit to
work then a “bigger” functional is also fit (the notion of “bigger” varies from
interpretation to interpretation).

In this paper, we consider classical first-order predicate logic without equal-
ity. This is also the calculus analyzed by Philipp Gerhardy and Ulrich Kohlen-
bach in [9]. Their paper presents an interpretation of classical logic based on
the original (functional) dialectica interpretation of Kurt Gödel (cf. [10]). It
actually follows a direct interpretation of classical first-order arithmetic (Peano
arithmetic) due to Joseph Shoenfield in [12]. The Gerhardy-Kohlenbach inter-
pretation is able to cope with the well-known contraction problem of functional
interpretations (see [1] and [5] for a discussion of this issue) by means of con-
ditional functionals. In 1974, Justus Diller and Werner Nahm had already
found a way around the contraction problem. Their solution in [6] was pro-
posed in the framework of intuitionistic arithmetic and, instead of conditional
functionals, it uses finite sets in the interpretation of implication. Cumula-
tive interpretations use the same blueprint in the interpretation of implication
and, as a consequence, they are also able to cope with the contraction problem.
The Diller-Nahm interpretation is not, however, a cumulative interpretation
in our sense because it does not accumulate existential witnesses. In fact, ac-
cumulation is not needed for analyzing intuitionistic logic. However, if one
goes to certain semi-intuitionistic systems (or to classical theories), we are led
naturally to cumulative interpretations.

At first appearance there is an obvious difficulty with herbrandized func-
tional interpretations in the context of logic (as opposed to arithmetic) because
we have to speak of finite sets, and finiteness is not a logical notion. The way
out of this situation is to separate the interpreted theory (classical first-order
logic) from the interpreting language. The verification of the interpreting for-
mulas can be done semantically, i.e., seen to be true in a certain structure
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or, alternatively, verified in a certain theory (see the comments in Section 4
below). It can also be done, as we do here, in a purely logical way (modulo
a certain combinatory calculus). In Section 2, we present and study the com-
binatory calculus that will be used in the paper. We prove that this calculus
is strongly normalizable and satisfies the Church-Rosser property, and estab-
lish some consequences of these facts. These consequences are instrumental in
defining the notion of a formula (of the interpreting language) being tautologi-
cal in character. This is discussed in Section 3. The functional interpretation is
defined in Section 4, and a soundness theorem is formulated and proved. Some
examples are discussed. We finish the paper with a new proof of Herbrand’s
theorem concerning existential first-order sentences provable in classical first-
order logic.

2 The star combinatory calculus

Let us fix a language L of pure first-order logic (equality is not present) with
at least one constant symbol. In this section we study a combinatory calculus
based on L: the star combinatory calculus of L.

Definition 1 The types of the star combinatory calculus of L are constructed
from an atomic type (the ground type G) by means of two type-forming op-
erations, → and ∗, in the following way:

(i) The ground type is a type.
(ii) If σ and τ are types then σ → τ is a type.

(iii) If σ is a type, then σ∗ is a type (a so-called star type).

The novelty are the star types. The intended meaning of σ∗ is to give the
type of all nonempty finite subsets of elements of type σ. It is clear that types
have the form σ1 → . . .→ σn → ρ (n ≥ 0) with ρ either the ground type or a
star type (i.e., ρ is G or ρ is σ∗, for a certain type σ).

The star calculus has three kinds of constants:

L-constants. For each constant c of L, we have a ground constant of the
type calculus, also denoted by c. For each function symbol f of L, we have a
constant of the type calculus, also denoted by f , of type G → . . . → G → G
(the number of arrows is the arity of f).

Logical constants or combinators. A combinator Πσ,τ of type σ → τ → σ
for each pair of types σ, τ . A combinator Σρ,σ,τ of type (ρ→ σ → τ)→ (ρ→
σ)→ ρ→ τ , for each triple of types ρ, σ, τ .

Star constants. A constant sσ of type σ → σ∗ for each type σ. A constant
∪σ of type σ∗ → (σ∗ → σ∗) for each type σ. A constant

⋃
σ,τ of type σ∗ →

(σ → τ∗)→ τ∗ for each pair of types σ, τ .

The combinators above are as usual, and the L-constants are a natural
thing to consider. The intended meaning of sσ is to map each element tσ to
the singleton set constituted by t. The intended meaning of ∪σ is to map
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elements c and d of type σ∗ to their union c∪d. Finally, the intended meaning
of
⋃
σ,τ is to map c : σ∗ and f : σ → τ∗ to the indexed union

⋃
w∈c fw.

Definition 2 The terms of the star combinatory calculus of L are generated
by the following clauses:

(i) Constants are terms.
(ii) For each type σ there are denumerably many variables of type σ: xσ, yσ, zσ,

etc. Variables are terms.
(iii) If tσ→τ and qσ are terms, then tq is a term of type τ .

The calculus has the following conversions:

Σtqr  tr(qr) and Πtq  t. These are as usual.⋃
(st)q  qt. This conversion corresponds to the set-theoretical equality⋃
w∈{t} qw = qt.⋃
(∪tq)r  ∪(

⋃
tr)(

⋃
qr). This conversion corresponds to the set-theoreti-

cal equality
⋃
w∈t∪q rw = (

⋃
w∈t rw) ∪ (

⋃
w∈q rw).

We use the standard terminology of redexes and contracta, and have the
usual definitions of reduction in one step and reduction (from one term t to
another term q of the same type). We write t �1 q and t � q for these
reductions, respectively. A term is normal if it has no redexes and so we can no
longer apply a conversion. A term t is strongly normalizable if all the reduction
sequences starting with t have finite length, i.e., t has a finite reduction tree.
If a term t is strongly normalizable, we denote by ν(t) the maximum of the
lengths of the reduction sequences starting with t.

The next order of business is to show that every term of the star calculus
is strongly normalizable. We use the technique of reducibility introduced by
William Tait in [14] (see, also, [16]). We need the following technical definitions:

Definition 3 Given a term t of type σ∗, we define a finite set of terms of type
σ, the surface members of t, denoted by SM(t). The definition is by induction
on the complexity of t according to the following specification: unless t is of
the form sr or ∪qr, SM(t) is the empty set; otherwise, SM(sr) is {r} and
SM(∪qr) is SM(q) ∪ SM(r).

Notice that the surface members of a term are not invariant with respect
to reductions. I.e., if t � q then SM(t) and SM(q) need not be the same set.

Definition 4 We say that a term tσ is reducible if t ∈ Redσ, where Redσ is
defined by recursion on the complexity of the type σ as follows:

t ∈ RedG :≡ t is strongly normalizable.

t ∈ Redσ→τ :≡ for all q, if q ∈ Redσ then tq ∈ Redτ .

t ∈ Redσ∗ :≡ t is strongly normalizable and, given any term in the reduction
tree of t, its surface members are reducible.
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The third clause in the definition above is new. Note that every term in
the reduction tree of t has type σ∗ and so its surface members have type σ.
Therefore, the clause is well-defined.

Lemma 1 Let x be a variable of type σ1 → . . . → σn → ρ, with ρ the
ground type or a star type. If t1, . . . , tn are strongly normalizable terms of
types σ1, . . . , σn (respectively), then xt1 . . . tn ∈ Redρ.

Proof Since t1, . . . , tn are strongly normalizable, it is clear that xt1 . . . tn is
strongly normalizable. Thus, when ρ is G we are done. For the case when ρ is
σ∗, we need to check that the surface members of the terms in the reduction
tree of xt1 . . . tn are reducible. Let q be a term in the reduction tree of xt1 . . . tn.
Then q has the form xt′1 . . . t

′
n with ti � t′i (1 ≤ i ≤ n) and, therefore, SM(q) =

∅. Thus, xt1 . . . tn ∈ Redσ∗ . ut

Lemma 2 We have the following:

(a) If tσ ∈ Redσ then tσ is strongly normalizable.
(b) xσ ∈ Redσ.

Proof We prove (a) and (b), simultaneously, by induction on the complexity of
the type σ. The case when σ is G is immediate. Let us analyse the case when σ
is of the form τ → θ. Take tτ→θ ∈ Redτ→θ. We want to prove that t is strongly
normalizable. By induction hypothesis (b) for type τ , we know that xτ ∈ Redτ .
Thus tx ∈ Redθ. By induction hypothesis (a) for θ, we have that tx is strongly
normalizable. Therefore, t is strongly normalizable. For (b), we need to show
that xτ→θ ∈ Redτ→θ. Let t ∈ Redτ . We need to prove that xt ∈ Redθ. Suppose
that θ is σ1 → . . . → σn → ρ, with ρ either the ground type or a star type.
Let t1, . . . , tn be reducible terms of types σ1, . . . , σn respectively. By induction
hypothesis (a) for types τ, σ1, . . . , σn, we know that t, t1, . . . , tn are strongly
normalizable. Thus, by Lemma 1, we have that xtt1 . . . tn ∈ Redρ. Therefore
xt ∈ Redθ.

Finally, let us turn to the case when σ is of the form ρ∗. Property (a)
is immediate. Regarding (b), note that the reduction tree of xρ

∗
has a single

term, the variable itself, and that SM(xρ
∗
) = ∅. Thus xρ

∗ ∈ Redρ∗ . ut

Lemma 3 If tσ ∈ Redσ and tσ � qσ then qσ ∈ Redσ.

Proof The proof is done by induction on the complexity of the type σ. The base
type G is clear. The arrow case is immediate by definition of reducibility. Let
us study the case when σ is τ∗. So, assume that t ∈ Redτ∗ and t � q. We want
to prove that q ∈ Redτ∗ . By definition, t is strongly normalizable. Therefore,
q is strong normalizable as well. Note also that any term in the reduction
tree of q is a term in the reduction tree of t. Thus (because t ∈ Redτ∗) the
surface members of any term in the reduction tree of q are reducible. Hence,
q ∈ Redτ∗ . ut

Lemma 4 We have the following:
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(a) Let t be a term of ground type. If all terms that result from t via a one step
reduction are reducible then t is also reducible.

(b) Let t be a term of star type. If all the surface members of t are reducible
and all terms that result from t via a one step reduction are reducible, then
t is also reducible.

Proof Part (a) is obvious. To prove part (b), take a term t of type τ∗ in
the conditions of the hypothesis. Clearly, t is strongly normalizable. A term
in the reduction tree of t is either the term t itself or it is a term in the
reduction tree of t′, with t′ such that t �1 t

′. Since, by hypothesis, t′ ∈ Redτ∗

we know that given any term in the reduction tree of t′ its surface members
are reducible. Also, by hypothesis, the surface members of t are reducible.
Therefore t ∈ Redτ∗ . ut

Proposition 1 All the terms of the star combinatory calculus are reducible.

Proof The proof is by induction on the complexity of the term. By Definition
4 we know that if t ∈ Redσ→τ and q ∈ Redσ then tq ∈ Redτ . Thus it suffices to
prove that the constants of the calculus are reducible. (Note that we already
know, by Lemma 2(b), that the variables are reducible.)

It is clear that cG ∈ RedG, where cG is a constant of the calculus that
results from a constant c in the language L. Let f be a constant of type
G→ . . .→ G→ G that results from a n-ary function symbol f in the language
L. In order to prove that f is reducible, we need to show that if s1, . . . , sn are
reducible terms of type G (i.e., strongly normalizable) then fs1 . . . sn is also
reducible of type RedG (i.e., strongly normalizable). This is obvious.

After having discussed the L-constants, we study the logical constants
(combinators). Let us argue that Πσ,τ ∈ Redσ→τ→σ. Take t ∈ Redσ and
q ∈ Redτ in order to show that Πσ,τ tq ∈ Redσ. Suppose that σ has the form
σ1 → . . .→ σn → ρ (n ≥ 0 and ρ is either G or a star type). Let s1, . . . , sn be
reducible terms of types σ1, . . . , σn. We need to prove that Πtqs1 . . . sn ∈ Redρ.
The reasoning is as in p. 107 of [16], and we do not repeat it here. We just
notice that it relies on Lemma 4 and that the new case when ρ is of star type
does not present any problem. The case of the combinators Σρ,σ,τ is similar.

The really new cases to consider are the star constants. Let us start by
showing that sσ ∈ Redσ→σ∗ . Take t ∈ Redσ in order to show that st ∈ Redσ∗ .
Since t ∈ Redσ, by Lemma 2(a) we know that t is strongly normalizable.
Therefore, st is strongly normalizable because any reduction in st results from
a reduction in t. In fact, any term in the reduction tree of st has the form st′

with t � t′. Well, SM(st′) = {t′}. So, the surface members of every term in
the reduction tree of st are reducible (use Lemma 3). We have proved that
st ∈ Redσ∗ .

Let us prove that ∪σ ∈ Redσ∗→(σ∗→σ∗). Take t, q ∈ Redσ∗ in order to show
that ∪tq ∈ Redσ∗ . The proof is done by induction on ν(t)+ν(q) (this is possible
because t and q are strongly normalizable). The one step reductions from ∪tq
are of the form ∪t′q or ∪tq′ with t �1 t

′ and q �1 q
′. Since ν(t′) + ν(q) <

ν(t) + ν(q), ν(t) + ν(q′) < ν(t) + ν(q) and t′ and q′ are reducible (by Lemma
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3), by induction hypothesis we have that ∪t′q and ∪tq′ are reducible. On the
other hand, SM(∪tq) = SM(t) ∪ SM(q). Well, the elements of SM(t) and of
SM(q) are reducible because t, q ∈ Redσ∗ . Hence, the surface members of ∪tq
are reducible. By Lemma 4(b), we conclude that ∪tq ∈ Redσ∗ .

Let us finally prove that
⋃
σ,τ ∈ Redσ∗→(σ→τ∗)→τ∗ . We need to show that⋃

tq ∈ Redτ∗ , for t ∈ Redσ∗ and q ∈ Redσ→τ∗ . Since SM(
⋃
tq) = ∅, by

Lemma 4(b) it is enough to show that every one step reduction of
⋃
tq leads

to a reducible term. The proof is done by main induction on ν(t) + ν(q) and
sub-induction on c(t), where c(t) measures the complexity of the term t in the
following way: c(constant) = c(variable) = 1; c(tq) = c(t) + c(q). The one step
reductions from

⋃
tq are of the form:

(i)
⋃
t′q with t �1 t

′

(ii)
⋃
tq′ with q �1 q

′

(iii) qr, if t is sr
(iv) ∪(

⋃
rq)(

⋃
sq), if t is ∪rs.

In cases (i) and (ii), ν(t′) + ν(q) and ν(t) + ν(q′) are stricty less than
ν(t) + ν(q). We can apply the induction hypothesis (using Lemma 3) and con-
clude that

⋃
t′q and

⋃
tq′ are reducible. Let us analyse case (iii). By hypoth-

esis, sr ∈ Redσ∗ (note that t is sr). By Definition 4, r ∈ Redσ. Since we also
have q ∈ Redσ→τ∗ , we get qr ∈ Redτ∗ , as wished. In case (iv), by hypothesis,
∪rs ∈ Redσ∗ (note that t is ∪rs). We first argue that r ∈ Redσ∗ and s ∈ Redσ∗ .
It is clear that both r and s are strongly normalizable (an infinite reduction
sequence starting in one of them would entail the existence of an infinite re-
duction sequence in ∪rs). Let r′ be a term in the reduction tree of r. Then
∪r′s is a term in the reduction tree of t. Since SM(∪r′s) = SM(r′) ∪ SM(s)
and t ∈ Redσ∗ , we can conclude that the surface members of r′ are reducible.
Thus, given a term in the reduction tree of r (similarly for s), its surface mem-
bers are reducible. Therefore r, s ∈ Redσ∗ . Since ν(r) ≤ ν(t) and c(r) < c(t),
we have by induction hypothesis that

⋃
rq ∈ Redτ∗ . Similarly

⋃
sq ∈ Redτ∗ .

By definition of reducibility, both
⋃
rq and

⋃
sq are strongly normalizable,

and this easily entails that ∪(
⋃
rq)(

⋃
sq) is strongly normalizable. It re-

mains to show that the surface members of the terms in the reduction tree of
∪(
⋃
rq)(

⋃
sq) are reducible. The root of the reduction tree is ∪(

⋃
rq)(

⋃
sq).

Well, SM(∪(
⋃
rq)(

⋃
sq)) = SM(

⋃
rq) ∪ SM(

⋃
rs) = ∅ ∪ ∅ = ∅. Any other

term of the reduction tree of ∪(
⋃
rq)(

⋃
sq) is of the form ∪uv, where

⋃
rq � u

and
⋃
sq � v. Since SM(∪uv) is SM(u) ∪ SM(v), the elements of SM(∪uv)

are reducible (because
⋃
rq,
⋃
sq ∈ Redτ∗). Therefore, ∪(

⋃
rq)(

⋃
sq) ∈ Redτ∗ .

ut

By the above proposition and Lemma 2(a), we have the following important
result:

Theorem 1 (Strong normalization) The star combinatory calculus enjoys
the property of strong normalization.

We also have the Church-Rosser property:
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Theorem 2 (Church-Rosser property) The star combinatory calculus is
confluent, i.e. it enjoys the Church-Rosser property.

Proof We have already shown that the star calculus enjoys the property of
strong normalization. So, by Newman’s Lemma (see [15] for a proof and the
reference to the original work of Maxwell Newman), it is enough to prove that
the calculus is weakly confluent, i.e., if t �1 t

′ and t �1 t
′′ then there is a term

t′′′ such that t′ � t′′′ and t′′ � t′′′.
Of course, if the conversions leading from t to t′ and from t to t′′ concern

disjoint redexes, then t′′′ is simply obtained by converting both redexes. Let us
analyse the situation where the redexes are nested. There are various cases to
consider, depending on the conversions. The cases regarding the combinators
are dealt as usual (cf. [16]). So, let us focus on the cases that concern the new
conversions.

If t ≡ . . .
⋃

(sr)q . . ., t′ ≡ . . . qr . . . and t′′ ≡ . . .
⋃

(sr′)q . . . with r �1 r
′

then t′′′ ≡ . . . qr′ . . . and t′ � t′′′ in a single step via r �1 r
′ and t′′ � t′′′ in a

single step via
⋃

(sr′)q �1 qr
′.

If t ≡ . . .
⋃

(sr)q . . ., t′ ≡ . . . qr . . . and t′′ ≡ . . .
⋃

(sr)q′ . . . with q �1 q
′

then t′′′ ≡ . . . q′r . . . and t′ � t′′′ in a single step via q �1 q
′ and t′′ � t′′′ in a

single step via
⋃

(sr)q′ �1 q
′r.

If t ≡ . . .
⋃

(∪sq)r . . ., t′ ≡ . . . ∪ (
⋃
sr)(

⋃
qr) . . . and t′′ ≡ . . .

⋃
(∪s′q)r . . .

with s �1 s
′ then t′′′ ≡ . . . ∪ (

⋃
s′r)(

⋃
qr) . . . and t′ � t′′′ in a single step via

s �1 s
′ and t′′ � t′′′ in a single step via

⋃
(∪s′q)r �1 ∪(

⋃
s′r)(

⋃
qr).

If t ≡ . . .
⋃

(∪sq)r . . ., t′ ≡ . . . ∪ (
⋃
sr)(

⋃
qr) . . . and t′′ ≡ . . .

⋃
(∪sq′)r . . .

with q �1 q
′ then t′′′ ≡ . . . ∪ (

⋃
sr)(

⋃
q′r) . . . and t′ � t′′′ in a single step via

q �1 q
′ and t′′ � t′′′ in a single step via

⋃
(∪sq′)r �1 ∪(

⋃
sr)(

⋃
q′r).

If t ≡ . . .
⋃

(∪sq)r . . ., t′ ≡ . . . ∪ (
⋃
sr)(

⋃
qr) . . . and t′′ ≡ . . .

⋃
(∪sq)r′ . . .

with r �1 r
′ then t′′′ ≡ . . .∪(

⋃
sr′)(

⋃
qr′) . . . and t′ � t′′′ with two applications

of r �1 r
′ and t′′ � t′′′ in a single step via

⋃
(∪sq)r′ �1 ∪(

⋃
sr′)(

⋃
qr′). ut

It is clear that first-order terms of the language L have natural analogues
in the star combinatory calculus. We identify these pairs of terms.

Proposition 2 (Ground normal form) If t is a closed normal term of
ground type, then t is a (closed) first-order term of the language L.

Proof It is clear that closed terms are of the form at1 . . . tm with m ≥ 0, where
a is a constant and t1, . . . , tm are closed terms. Therefore, a normal closed term
must be of one of the forms: c, f , fr1, fr1r2, . . . , fr1 . . . rn, Σ, Σt, Σtv, Π,
Πq, s, sq, ∪, ∪u1, ∪u1u2,

⋃
,
⋃
s or

⋃
sp, for c a constant in the language L, f

a n-ary function symbol in the language L and r1, r2, . . . , rn, t, v, q, u1, u2, s, p
closed normal terms of appropriate types. If, further, the closed normal term
is of ground type then it must be c or of the form fr1 . . . rn, as above. By an
inductive argument, we may suppose that r1, . . . , rn are first-order terms. We
are done. ut

We finish this section with a simple, but important, proposition.
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Definition 5 A term t of star type is called set-like if it is built from terms
of the form sqσ and the binary union operator ∪σ.

Proposition 3 (Star normal form) If t is a closed normal term of star
type σ∗, then t is set-like and SM(t) is a nonempty finite set of closed normal
terms of type σ.

Proof Looking at the proof of Proposition 2 and taking into account that this
time the closed normal term t is of star type σ∗ (and not of ground type),
then t must fall into one of the following cases: (i) t is sσ→σ

∗
qσ, (ii) t is

∪σ∗→(σ∗→σ∗)uσ
∗

1 uσ
∗

2 or (iii) t is
⋃θ∗→(θ→σ∗)→σ∗

sθ
∗
pθ→σ

∗
.

Let us prove the result by induction on the complexity of t. Case (i) is
immediate, because it is obviously set-like with SM(t) = {q}. For case (ii) we
have, by induction hypothesis, that u1 and u2 are set-like. So, t is also set-like.

We finish the proof by arguing that case (iii) cannot hold. Take
⋃
sp a

closed normal term of type σ∗ as above. Since s is a closed normal term of
star type, by induction hypothesis it is set-like. Hence s is either of the form
sr or of the form ∪s1s2. In either case,

⋃
sp would not be normal. ut

3 Bounded mixed formulas and the propositional calculus

In this section we introduce a language Lmix which is a combination of the
propositional part of the first-order language L and the terms of the combi-
natory star calculus based on L. Moreover, this mixed language has also a
new sort of quantification: a particular kind of bounded quantification. The
atomic formulas of the bounded mixed language Lmix are formulas of the form
P (t1, . . . , tn), where P is a n-ary predicate symbol of the language L and
t1, . . . , tn are ground terms of the combinatory star calculus. Note that these
ground terms include the first-order terms of L but go beyond them (for in-
stance, it also includes terms like ΠxGyρ). Therefore, the atomic formulas of
the bounded mixed language include, but are not restricted to, the atomic
formulas of L. The formulas of Lmix (the bounded mixed formulas) are ob-
tained from the atomic formulas by means of propositional connectives (we use
negation, conjunction and disjunction as primitives; sometimes we also use im-
plication, seen as the usual abbreviation) and bounded quantifiers of the form
∀xσ ∈ tσ∗

(. . .) and ∃xσ ∈ tσ∗
(. . .), where t is a term (of star type σ∗) in which

the variable x (of type σ) does not occur. There is certainly an underlying
intended meaning in our use of the membership sign in the quantifications but
in this work the bounded set quantifiers should be seen as a mere syntactic
matter. We will use below the membership sign both as a syntactic sign of
the mixed language Lmix and naively as it is usual in mathematics, but the
intended use will always be clear from the context.

As it is well-known, there is a propositional calculus associated with the
first-order language L, where the atomic propositional formulas are the closed
atomic formulas of L. In the next definition we are going to associate to each
sentence of Lmix a formula of the propositional calculus of L. In order to do
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this, we need the results of the previous section. In particular, if t is a term of
the star combinatory calculus, we denote by nf(t) the (unique) normal form
of t. If t is a closed term of type σ∗, we denote by ts the set SM(nf(t)). By
Proposition 3, this is a nonempty finite set of closed normal terms of type σ.
Clearly, if t and q have the same normal form, then ts = qs.

The following lemma is crucial:

Lemma 5 Let t be a closed normal term of type σ.

(a) t ∈ (st)s.
(b) Let q and r be closed terms of type σ∗. If t ∈ qs or t ∈ rs, then t ∈ (∪qr)s.
(c) Let q be a closed term of type τ∗ and r be a closed term of type τ → σ∗.

Suppose that u is a closed term of type τ , and assume that u ∈ qs and
t ∈ (ru)s. Then t ∈ (

⋃
qr)s.

Proof For (a), note that (st)s = SM(nf(st)) = SM(s(nf(t))) = SM(st) = {t}.
For (b), just observe that

(∪qr)s = SM(nf(∪qr)) = SM(∪nf(q)nf(r)) = SM(nf(q))∪SM(nf(r)) = qs∪rs.

In order to show (c) we may assume, without loss of generality, that q
is normal. This is clear because qs = (nf(q))s and (

⋃
qr)s = (

⋃
nf(q)r)s.

The proof is by induction on the complexity of the closed normal term q. By
Proposition 3, q is set-like. Suppose that q is sv for a given term v of type τ .
We have qs = SM(nf(q)) = SM(q) = SM(sv) = {v}. Since, by hypothesis,
u ∈ qs, we conclude that u and v are the same term. But,(⋃

qr
)s

=
(⋃

(sv)r
)s

= SM
(

nf(
⋃

(sv)r)
)

= SM(nf(rv)) = (rv)s.

Also by hypothesis, t ∈ (ru)s. Hence, t ∈ (rv)s and, therefore, t ∈ (
⋃
qr)s.

It remains to see the case when q = ∪q1q2, for given terms q1 and q2
(necessarily closed and normal) of type τ∗. It is easy to see that qs = qs1 ∪ qs2.
Moreover(⋃

qr
)s

= SM
(

nf(
⋃
qr)
)

= SM
(

nf(∪(
⋃
q1r)(

⋃
q2r))

)
=

SM
(
∪nf(

⋃
q1r)nf(

⋃
q2r)

)
= SM

(
nf(
⋃
q1r)

)
∪ SM

(
nf(
⋃
q2r)

)
=(⋃

q1r
)s
∪
(⋃

q2r
)s

By hypothesis, u ∈ qs. Without loss of generality, we assume that u ∈ qs1.
Since t ∈ (ru)s we get, by induction hypothesis, that t ∈ (

⋃
q1r)

s. By the
above equality, t ∈ (

⋃
qr)s. ut

Let us finish this section with the definitions of two important notions.

Definition 6 We define a map φ 7→ φp from sentences φ of the bounded mixed
language Lmix to formulas φp of the propositional calculus of L according to
the following clauses:
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(a) (P (t1, . . . , tn))p is P (nf(t1), . . . ,nf(tn)), where P is a n-ary predicate sym-
bol of L and t1, . . . , tn are closed terms of ground type of the star combi-
natory calculus.

(b) (¬φ)p is ¬(φp), (φ ∧ ψ)p is φp ∧ ψp, and (φ ∨ ψ)p is φp ∨ ψp.
(c) (∀x ∈ t φ(x))p is

∧
q∈ts φ(q)p and (∃x ∈ t φ(x))p is

∨
q∈ts φ(q)p, where t is

a closed term of star type.

The following lemma is straightforward:

Lemma 6 Let φ(x1, . . . , xn) be a formula of Lmix with its free variables among
x1, . . . , xn. Let t1, . . . , tn and q1, . . . , qn be closed terms of appropriate types.
If, for each i with 1 ≤ i ≤ n, the terms ti and qi have the same normal form,
then φ(t1, . . . , tn)p is the same propositional formula as φ(q1, . . . , qn)p.

In the next section, we will need to work with open formulas of Lmix. The
following definition is important:

Definition 7 Let φ(x1, . . . , xn) be a formula of Lmix with its free variables
among x1, . . . , xn. We say that φ(x1, . . . , xn) is tautological in character if, for
all closed normal terms t1, . . . , tn (of appropriate types) of the combinatory
star calculus, φ(t1, . . . , tn)p is a tautology.

4 The herbrandized interpretation

We present in this section a herbrandized functional interpretation of pure
classical logic. We work with the primitives ¬, ∨ and ∀. The other connectives
are defined (classically) as usual.

Definition 8 To each formula φ of the first-order language L we assign for-
mulas φSH and φSH so that φSH is of the form ∀a∃b φSH(a, b), with φSH(a, b) a
bounded mixed formula, according to the following clauses:

1. φSH and φSH are φ, for quantifier-free formulas φ of L.

For the remaining cases, if we have already interpretations for φ and ψ
given (respectively) by ∀a∃b φSH(a, b) and ∀d∃eψSH(d, e) then we define:

3. (φ ∨ ψ)SH is ∀a, d∃b, e [φSH(a, b) ∨ ψSH(d, e)],
4. (¬φ)SH is ∀f∃a′ [∃a ∈ a′ ¬φSH(a, fa)],
5. (∀xφ(x))SH is ∀x, a∃b [φSH(x, a, b)],

where the bounded mixed formulas between square brackets are the corre-
sponding lower SH-formulas.

In the above, the letters a, b, d and e stand for (possibly empty) tuples
of variables of the star combinatory calculus, but we speak of them as if they
were only a single variable. The formulas φSH(a, b) also have the free first-order
variables of the interpreted formula φ (note that first-order variables can be
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considered ground type variables of the star combinatory calculus). We omit
showing them unless it is convenient or necessary. In these cases, we often use
a single (first-order) variable to stand for a tuple.

We have used unbounded quantifications with respect to variables of the
star combinatory calculus. Our language Lmix does not have such quantifica-
tions, but the use is incidental. It is customary in functional interpretations to
use such expressions because they help convey the meaning of the lower SH-
formulas. These bounded mixed formulas are the ones that have real meaning
(together with the information saying which variables are in universal or exis-
tential positions). When φ(x) is a quantifier-free first-order formula of L, it is
worth noting that (∃xφ(x))SH is ∃aG∗∃x ∈ aφ(x), modulo classical logic in the
lower SH-formulas. This is seen by computing the interpretation of ¬∀x¬φ(x)
according to the clauses (1), (4) and (5) of Definition 8.

We now turn to the soundness theorem. The original plan of the paper
was to state soundness with a semantical verification of the interpreting for-
mulas. The verification would say that certain formulas of Lmix are true in the
finite-order set-theoretical structure naturally arising from a given first-order
structure for L (see definition 6 of [9]). Actually, in [9], the verifications are
done within a finite-order logical theory (of which the set-theoretical finite-
order stuctures are models). When writing this paper, it dawned on the first
author that the verification can be done in a particularly nice way, via the
notion of tautology in character of Section 3. This is how we will state the
soundness theorem below.

As it is usual with functional interpretations which accumulate witnesses,
we have a monotonicity property. For the next lemma, the reader should notice
that the types of the existential variables b in φSH(a, b) are necessarily of star
type (the universal variables a need not be of star type).

Lemma 7 (Monotonicity) Let t and q be closed terms of star type σ∗, and
let φ(x) be a first-order formula of L. Suppose that ts ⊆ qs. Then the implica-
tion φSH(x, a, t)→ φSH(x, a, q) is tautological in character.

Proof Under the hypothesis of the lemma, we must show that the bounded
mixed formula ¬φSH(x, a, t) ∨ φSH(x, a, q) is tautological in character. The
proof is straightforward by induction on the complexity of φ, but the negation
case is proved directly. In the negation case, we must show that the bounded
mixed formula ¬∃a ∈ t¬φSH(x, a, fa) ∨ ∃a ∈ q ¬φSH(x, a, fa) is tautological
in character. Let s be a closed first-order term and r closed normal terms of
appropriate types. We must argue that

(¬∃a ∈ t¬φSH(s, a, ra) ∨ ∃a ∈ q ¬φSH(s, a, ra))p

is a tautology. By definition, this propositional formula of L is

¬
∨
u∈ts
¬φSH(s, u, ru)p ∨

∨
u∈qs
¬φSH(s, u, ru)p

The above is clearly a tautology because the last disjunction includes the
disjuncts of the first disjunction. ut
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It is this monotonicity property that distinguishes our interpretation as
a cumulative interpretation in the sense discussed in the introduction. The
accumulation is, of course, done into finite sets. The intuitionistic interpre-
tations of nonstandard arithmetic of Berg et al. in [3] also enjoy a similar
monotonicity property (curiously, their classical interpretation is not cumula-
tive). Of course, there is an extra ingredient in [3] that is totally absent in our
interpretation. Since Berg et al. have to deal with nonstandardness, they have
a “compactness” feature incorporated in their interpretation in order to deal
with the unrestricted quantifiers (by the way, this feature is also present in
the bounded functional interpretation [8] in the interpretation of the bounded
quantifiers). With respect to the logical part, the manner in which the exis-
tential witnesses are accumulated in our interpretation and in the functional
interpretations of [3] differs slightly. In the treatment of [3] there is an iden-
tification of elements of (σ → ρ∗)∗ with elements of σ → ρ∗, whereas in our
treatment no such identification takes place. The reader can consult [4] for
the modification of the interpretations of [3] along the lines underlying the
interpretation of the present paper.

Theorem 3 (Soundness) Let φ be a sentence of L and suppose that φ is
provable in classical first-order predicate logic without equality. Then there are
closed terms t (of appropriate types) of the star combinatory language such
that the bounded mixed formula φSH(a, ta) is tautological in character.

Proof Let φ(x) be a first-order formula of L whose free variables are among
x (this letter may stand for a tuple of variables). We show that if φ(x) is
provable in classical first-order predicate logic, then there are terms t, whose
free variables are among x, such that the bounded mixed formula φSH(x, a, ta)
is tautological in character. We consider a suitable logical calculus and prove
the result by induction on the number of inferences of the derivation. We use
a calculus due to Shoenfield, as described in sections 2.6 and 8.3 of [12]. The
calculus consists of two axiom schemas

– Excluded middle: ¬φ ∨ φ
– Substitution: ∀xφ(x)→ φ(t)

and five rules

– Expansion: from φ infer ψ ∨ φ
– Contraction: from φ ∨ φ infer φ
– Associativity: from φ ∨ (ψ ∨ γ) infer (φ ∨ ψ) ∨ γ
– Cut: from φ ∨ ψ and ¬φ ∨ γ infer ψ ∨ γ
– ∀-introduction: from φ(x) ∨ ψ infer ∀xφ(x) ∨ ψ, provided that x does not

occur free in ψ

We will present the witnessing terms that do the job. The verification
that these terms work (i.e., that they yield formulas tautological in character)
is straightforward using Lemma 5, Lemma 6 and the monotonicity lemma
(Lemma 7). We will, nevertheless, present the details of this verification for
the cut rule (this is the most involved case).
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Suppose φ is a first-order formula and that φSH is ∀a∃b φSH(a, b). It is easy
to see that (¬φ ∨ φ)SH is ∀f, d∃a′, e[∃a ∈ a′¬φSH(a, fa) ∨ φSH(d, e)]. We must
find terms t and q such that

∃a ∈ tfd¬φSH(a, fa) ∨ φSH(d, qfd)

is tautological in character. It is easy to see that t :≡ λf, d.sd and q :≡ λf, d.fd
work.

The SH-interpretation of the substitution axiom for the formula φ is (mod-
ulo classical logic in the lower SH-formulas)

∀f, ã∃cG
∗
∃a′, b [∀x ∈ c∀a ∈ a′ φSH(x, a, fxa)→ φSH(t, ã, b)].

We must present terms p, q and r such that

∀x ∈ pfã∀a ∈ qfã φSH(x, a, fxa)→ φSH(t, ã, rf ã)

is tautological in character. The terms p :≡ λf, ã.st, q :≡ λf, ã.sã and r :≡
λf, ã.ftã do the job.

Expansion is immediate provided that we show that every type is inhabited
by a closed term. Given a starting constant symbol c of L (by hypothesis, L
has at least a constant symbol), we can build systematically an inhabitant cσ

for every type σ: cG is just c; cτ→ρ is λxτ .cρ; and cτ
∗

is scτ . Associativity is
trivial.

Let us look at the contraction rule. Suppose that, by induction hypothesis,
there are terms t and q such that

φSH(a, tad) ∨ φSH(d, qad)

is tautological in character. Then, φSH(a,∪(taa)(qaa)) is tautological in char-
acter. For the verification, we use the monotonicity lemma (and (b) of Lemma
5).

The ∀-introduction rule does not present any trouble (the terms that wit-
ness the consequent are essentially the same that witness the antecedent).

We now discuss the cut rule. Suppose that ψSH is ∀d∃eψSH(d, e) and that
γSH is ∀u∃v γSH(u, v). By induction hypothesis, there are terms t, q, r and s
such that

(I) φSH(a, tad) ∨ ψSH(d, qad)

and

(II) ∃a ∈ rfu¬φSH(a, fa) ∨ γSH(u, sfu)

are tautological in character. Take the terms k :≡ λd, u.
⋃

(r(λa.tad)u)(λw.qwd)
and l :≡ λd, u.s(λa.tad)u. We claim that the bounded mixed formula

ψSH(d, kdu) ∨ γSH(u, ldu)

is tautological in character. To see this, we must show that, for all closed
normal terms d̃ and ũ of appropriate types, (ψSH(d̃, kd̃ũ) ∨ γSH(ũ, ld̃ũ))p is a
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tautology (we are ignoring first-order parameters). By (II), the propositional
formula  ∨

ã∈(r(λa.tad̃)ũ)s
¬φSH(ã, tãd̃)p

 ∨ γSH(ũ, s(λa.tad̃)ũ)p

is a tautology. By (I), we know that for each of the finitely-many closed (nor-
mal) terms ã such that ã ∈ (r(λa.tad̃)ũ)s,

φSH(ã, tãd̃)p ∨ ψSH(d̃, qãd̃)p

is a tautology. It is clear that all these tautologies (tautologically) imply the
propositional formula ∨

ã∈(r(λa.tad̃)ũ)s
ψSH(d̃, qãd̃)p

 ∨ γSH(ũ, s(λa.tad̃)ũ)p

Therefore, the above formula is a tautology. Let us study each one of the
disjuncts above. The last one is (by Lemma 6) the formula γSH(ũ, ld̃ũ)p.
For each of the finitely-many terms ã in (r(λa.tad̃)ũ)s, we have (qãd̃)s ⊆
(
⋃

(r(λa.tad̃)ũ)(λw.qwd̃))s. This is a consequence of (c) of Lemma 5: just no-
tice that if a closed normal term p is in (qãd̃)s then p ∈ ((λw.qwd̃)ã)s. Hence,
by the monotonicity lemma,

ψSH(d̃, qãd̃)p → ψSH(d̃, kd̃ũ)p

is a tautology. It now follows that ψSH(d̃, kd̃ũ)p ∨ γSH(ũ, ld̃ũ)p is a tautology,
as wanted. ut

Example 1 Consider the first-order validity φ :≡ ∃x∀y (Px∨¬Py), where P is
a unary predicate. The SH-translation of φ is ∀f∃a [∃x ∈ a∀y ∈ fx (Px∨¬Py)],
modulo classical logic in the lower SH-formulas. By the above theorem, it is
possible to extract from a proof of φ a closed term Φ : (G → G∗) → G∗ that
“realizes” a in f . The closed term Φ :≡ λf. ∪ (sc)(fc) does the job (here c is
some constant of the language). So, we are claiming that

∃x ∈ ∪(sc)(fc)∀y ∈ fx (Px ∨ ¬Py)

is tautological in character. This means that, for every closed normal term q
of type G→ G∗, ∨

t∈(∪(sc)(qc))s

∧
r∈(qt)s

(Pt ∨ ¬Pr)

is a tautology. If (qc)s is the finite set {t1, . . . , tk} of closed first-order terms,
then (∪(sc)(qc))s = {c, t1, . . . , tk} and the above formula is

k∧
i=1

(Pc ∨ ¬Pti) ∨
k∨
j=1

∧
r∈(qtj)s

(Ptj ∨ ¬Pr)
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This is classically equivalent to

Pc ∨
k∧
i=1

¬Pti ∨
k∨
j=1

Ptj ∨
k∨
j=1

∧
r∈(qtj)s

¬Pr

which is obviously a tautology.
The way our interpretation works for this example is somewhat different

from the Gerhardy-Kohlenbach analysis in [9]. Compare also with Example 3
below.

Example 2 Let us now consider the first-order validity

φ := ∃x∀w∃y∃z ((Q(c, y) ∨Q(d, z))→ Q(x,w))

where c and d are contants and Q is a binary predicate. The SH-translation is
∀Φ∃X,F,H φ

SH
(Φ,X, F,H), where φ

SH
(Φ,X,F,H) is (modulo classical logic)

the following bounded mixed formula:

∃x∈X, f ∈F, h∈H ∀w∈Φxfh∃y∈fw, z∈hw ((Q(c, y) ∨Q(d, z))→ Q(x,w))

Let σ be the type of Φ, i.e., σ is G → (G → G∗) → (G → G∗) → G∗.
By the above theorem, there are closed terms t : σ → G∗ and q and r of
type σ → (G → G∗)∗ which “realize” X, F and H in Φ (respectively). The
following terms do the job: t = λΦ.∪(sc)(sd), q = λΦ.∪(sp)(s(λwG.Φcpp)) and
r = λΦ. ∪ (sp)(s(λwG.Φdpp)). Here p can be any closed term of appropriate
type. For definiteness, we can take p = λwG.(sw).

The verification that the above terms do the job hinges (informally) on a
discussion by cases, by considering whether (or not) there are y0 ∈ Φ(cpp) and
z0 ∈ Φ(dpp) such that ¬Q(c, y0) and ¬Q(d, z0).

We finish the paper with a new proof of Herbrand’s theorem:

Corollary 1 (Herbrand’s theorem) Let φ(x) be a quantifier-free formula
of the first-order language L, with x as the only free variable. Suppose that
∃xφ(x) is a theorem of classical logic. Then there are closed first-order terms
r1, . . . , rn such that φ(r1) ∨ . . . ∨ φ(rn) is a tautology.

Proof We remarked that (∃xφ(x))
SH

is ∃a∃x ∈ aφ(x). By the soundness theo-
rem, there is a closed term t of type G∗ such that (∃x ∈ t φ(x))p is a tautology.
This means that ∨

r∈ts
φ(r)

is a tautology. We are done. ut

Example 3 Let φ be the first-order validity ∃x (P (x) ∨ ¬P (f(x))), where P is
a unary predicate symbol and f is a unary function symbol. From a proof of φ
it is possible to extract a closed term t of type G∗ that “realizes” the bounded
mixed formula ∃x ∈ t (P (x) ∨ ¬P (f(x))). It is clear that we can take t to be
∪(sc)(s(fc)), where c is a constant of the language.
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The procedure underlying the construction of the terms in the proof of
the soundness theorem is of low complexity. The terms extracted need not
be in normal form, though. The well-known super-exponential feature on the
number of terms in Herbrand’s theorem (cf. [13]) is due to the fact that they
are obtained by carrying out the normalization of the extracted term t of type
G∗.
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