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Abstract. Frege’s Grundgesetze der Arithmetik is formally inconsistent. This sys-
tem is, except for minor differences, second-order logic together with an abstraction
operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that
the ramified predicative second-order fragment of the Grundgesetze is consistent.
In this paper, we show that the above fragment augmented with the axiom of
reducibility for concepts true of only finitely many individuals is still consistent,
and that elementary Peano arithmetic (and more) is interpretable in this extended
system.
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1. Introduction

“How did the serpent of inconsistency enter Frege’s paradise?” asks
Michael Dummett in the opening of a section of his book Frege: Philos-
ophy of Mathematics (1991). According to the traditional view, Frege’s
Grundgesetze der Arithmetik is formally inconsistent because of the
presence of an abstraction operator (viz. the value-range operator),
as regulated by the (in)famous Axiom V. The formal system of the
Grundgesetze is, except for minor differences, second-order logic aug-
mented by Frege’s Axiom V, which we may take as the scheme

(AxV) x̂.A(x) = x̂.B(x) ↔ ∀x(A(x) ↔ B(x)),

where A(x) and B(x) are arbitrary formulas of the language. In the
above, the value-range operator ˆ yields a first-order term x̂.A(x) when
applied to a formula A(x). Axiom V states a kind of extensionality
principle: The value-range of the concept given by the formula A(x) is
the same as the value-range of the concept given by the formula B(x)
if, and only if, the two concepts hold of exactly the same individuals.

Russell’s paradox is forthcoming in the above framework. Define
x ∈ y by the formula ∃G(Gx ∧ y = ẑ.Gz) and consider the concept R
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given by the formula Rx :↔ ¬(x ∈ x). The individual x̂.Rx is a member
of itself if, and only if, it isn’t: Russell dixit. Dummett blames the
inconsistency primarily on Frege’s insouciance concerning second-order
quantification. He rightly adds that without second-order quantifica-
tion the paradoxes would not be forthcoming,1 although at the cost
of paralysing the formal system (viz. the above membership relation
cannot be defined). In his analysis of the situation, Dummett does not
blame second-order quantification per se, but only the impredicativity
underlying it in Frege’s setting. In effect, the Russellian concept R
is specified by saying that an individual x falls under it if, and only
if, for all concepts G – including R itself, as it were – G is not true
of x whenever the value-range of G is x. The Russellian concept R is
specified in terms of a quantification that ranges over the concept being
specified: this is the hallmark of an impredicative definition.

A few years ago, Richard Heck (1996) gave some weight to Dum-
mett’s position by proving that the simple predicative fragment of
Frege’s Grundgesetze is consistent. In other words: On a predicative
reading, we may coherently assume that every concept has an extension.
Heck’s predicative fragment H is obtained from Frege’s system by suit-
ably restricting the comprehension scheme (a tacitly used instantiation
rule in Frege’s original setting) as follows:

∃G∀x(Gx ↔ A(x)),

where A(x) is any formula not containing the variable G and not
containing bound second-order variables. It is therefore pertinent to
ask how much arithmetic (and analysis) can be developed within H.
Heck proves that Raphael Robinson’s theory of arithmetic Q is in-
terpretable in the simple predicative fragment. This shows that the
predicative fragment is not trivial, since Q is a well-known example of
an essentially undecidable theory.2 Very recent work has also shown
that Q is not trivial in another respect, viz. in a more mathematical
sense. The present author and António Fernandes showed in (2002)
that Tarski’s elementary theory of the real-closed ordered fields (infor-
mally: elementary algebra and analysis, including analytic geometry)
is interpretable in Q, and hence in H. These facts not withstanding,
the theory Q is proof-theoretically very weak, and we believe that the
prospects for interpreting (say) primitive recursive arithmetic in the
predicative fragment are slim.

Heck also shows that the ramified predicative fragment of Frege’s
Grundgesetze is consistent.3 In the present paper, we show that this
ramified fragment augmented with the axiom of reducibility for con-
cepts true of only finitely many individuals is still consistent and able
to interpret elementary Peano arithmetic. We suggest that the axiom
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of finite reducibility – as opposed to (full) reducibility in settings like
that of Whitehead and Russell’s Principia Mathematica (1925) – is
an analytic truth, that is to say, true in virtue of the meaning of the
notions involved. In the closing section, we briefly compare our system
with Crispin Wright’s system based on Hume’s principle.

2. Finite reducibility

The language of pure ramified second-order logic with equality is that
extension of the language of pure first-order logic with equality ob-
tained by adding an infinite stock of second-order variables (concept
variables) F 0, G0, . . . , F 1, G1, . . . , etc., Fn, Gn, . . . and the like, for
each (natural number) superscript n, the so-called level of the concept
variable. Concept variables behave syntactically like unary predicades
in ordinary first-order logic, with the conspicuous exception that we
may quantify over them. We should further note that equality is a
primitive symbol that infixes only between first-order variables. This
being said, the formulas of pure ramified second-order language are
built up in the usual way, as in (Heck, 1996). The comprehension axioms
of second-order ramified predicative logic consist of all formulas of the
form

(PComp) ∃Gn∀x(Gnx ↔ A(x)),

where Gn is a n-th level concept variable not occuring in A(x), with
the proviso that the formula A(x) contains no bound variables of levels
greater than or equal to n, and no free variables of level greater than n
(the latter variables, as well as the first-order free variables that might
also appear in A(x), are called the parameters of this particular instance
of the comprehension scheme). Heck’s ramified system also includes the
value-range operator which, when applied to any formula A(x), yields
a first-order term x̂.A(x) in which x and the bound variables of A(x)
are bound. The value-range operator is regulated by axiom scheme
(AxV). A proper treatment of these syntactical matters demands a
definition of ‘term’ and ‘formula’ by simultaneous induction, but this
is straightforward. By definition, the comprehension axioms (PComp)
also apply to formulas of the extended Fregean language, with the
proviso also including the free and bound variables of the value-range
operators. The theory which concerns this paper is Heck’s ramified
theory augmented with the scheme of finite reducibility. We will call
this theory HFR. The following paragraphs describe the scheme of finite
reducibility.
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We have followed Heck (1996) in setting up the Fregean language
with concept variables of one argument-place only, although Frege him-
self also uses binary concept variables (binary relational variables)
in the Grundgesetze. While the restriction to (unary) concept vari-
ables simplifies notation enormously, it does not, in the context of
Heck’s ramified predicative fragment, represent any loss of generality.
We may introduce ordered pairs via the well-known Wiener-Kuratowski
definition:

〈u, v〉 := x̂.(x = ŷ.(y = u) ∨ x = ŷ.(y = u ∨ y = v)).

In the presence of (AxV), one easily proves

∀x∀y∀u∀v(〈x, y〉 = 〈u, v〉 ↔ (x = u ∧ y = v)).

We can therefore speak of binary relational variables simply by
explicating them in terms of (unary) concept variables true of the
pertinent ordered pairs. We use the infix notation xRy for saying that
the (unary) concept R is true of the pair 〈x, y〉. We may also say that
concept H is linearly ordered by a relation R, and write Lin(R, H).
By this, we mean that the elements of R are pairs of the form 〈x, y〉,
with H true of x and y, and that these pairs form an anti-reflexive,
transitive and trichotomic relation. Notice that the quantifications that
occur in the formula Lin(R, H) are all first-order. The same is the case
with the formulas Min(x, R) and Max(y, R) that naturally represent
the properties that x is the least and (respectively) y is the greatest
element of the linear order R.

In 1907, Paul Stäckel defined a finite set as one which can be doubly
well-ordered, that is, one for which there is a (necessarily linear) or-
dering with respect to which every non-empty subset has both a least
and a greatest element.4 Our formal definition of the notion of a zeroth
level concept H0 being true of only finitely many individuals is an
adaptation of Stäckel’s definition. Let Dwo(R0, H0) be the conjunction
of Lin(R0, H0) with

∀G0(∅ 
= G0 ⊆ H0 → ∃x Min(x, R0|G0) ∧ ∃y Max(y, R0|G0)),

where ∅ 
= G0 ⊆ H0 abbreviates ∃xG0x ∧ ∀x(G0x → H0x) and R0|G0

is the relation true of the pairs 〈x, y〉 in R0 such that G0 is true of both
x and y. A finite zeroth level concept is formally defined as follows:

Fin0(H0) :↔ ∃R0Dwo(R0, H0), (1)

We are now ready to state the axiom scheme of finite reducibility (one
single axiom for each level n):

∀H0∀Fn(Fin0(H0) ∧ Fn ⊆ H0 → ∃G0∀x(Fnx ↔ G0x)), (2)
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where Fn ⊆ H0 abbreviates ∀x(Fnx → H0x). This scheme formalizes
the idea that a sub-concept of a finite concept must be finite and,
therefore, must be co-extensional with a zeroth level concept (see the
discussion in the next section). It is easy to check that this zeroth level
concept is finite according to our formal definition (1). In a similar vein,
we define finitude for non-zero level concepts Hn:

Finn(Hn) :↔ ∃G0(Fin0(G0) ∧ ∀x(Hnx ↔ G0x)), (3)

Suppose that Fin0(H0) holds and that R0 is a double well-ordering
of H0 in the sense of the definition of finiteness for zeroth level concepts,
i.e., such that every non-empty zeroth level sub-concept of H0 has an
R0-least element and an R0-greatest element. Then, in fact, every non-
empty sub-concept of H0, zeroth level or not, has an R0-least element
and an R0-greatest element. This follows from the axiom scheme of
finite reducibility since the sub-concept in question is co-extensional
with a zeroth level concept.

3. On the notion of finiteness

The axiom of reducibility states that every concept is co-extensional
with a predicative (i.e., zeroth level) concept. In our Fregean setting,
it is not difficult to see that (full) reducibility engenders a Russell type
inconsistency. On the other hand, the axiom of reducibility restricted to
concepts true of only finitely many individuals is arguably an analytic
truth, that is to say, true in virtue of the meaning of the notions
involved. Let us spell out the argument. If a concept is true of only
finitely many individuals then, on the intended interpretation, it is
true of only the items of a finite list of pairwise distinct individuals,
say a1, a2, . . . , ak. Thus, the concept has a zeroth level co-extensional
definition, viz. x = a1 ∨ x = a2 ∨ . . . ∨ x = ak.5,6

In our formal setting, the principle of finite reducibility is given by
the mutual contributions of two definitions and an axiom scheme: (1)
the definition of finiteness for zeroth level concepts; (2) the scheme of
finite reducibility strictu sensu; and (3) the definition of finiteness for
non-zeroth level concepts. As argued, if one is justified in accepting (1)
as a proper characterization of finiteness (for zeroth level concepts),
then one is justified in accepting (2) and (3).

Whereas the adaptation of Stäckel’s definition of a finite set (see
previous section) to the framework of second-order logic does not raise
any particular questions, its use in ramified predicative second-order
logic poses a problem. Take our definition (1) in isolation: Even though
every non-empty zeroth level sub-concept of G0 has an R0-least element
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and an R0-greatest element, it is conceivable that this is no longer true
of higher level sub-concepts. For sure, we have argued in the end of the
previous section that this very possibility is precluded. However, our
argument rested on the acceptance of (2), a principle whose accepting
grounds lie precisely on the acceptance of (1) as a correct rendering of
the notion of finiteness. We are in a circle. A virtuous circle, it may
well be argued, but a circle nonetheless.

The circle can be broken. Let us grant that the notion of a concept
being true of only finitely many individuals is meaningfully available
for use in any (interpreted) language based on first-order logic with
equality. We claim that definition (1) in isolation faithfully captures
that notion (for zeroth level concepts) provided that in interpreting our
language we require that the class of zeroth level concepts be closed
under the operator “there are finitely many.”7 Let us see why. Consider
an interpretion of our language and let us use the quantifier notation
FxHx for expressing the ordinary notion that concept H is true of only
finitely many individuals. Suppose that Fin0(H0) holds. We must argue
that FxH0x also holds (the converse statement is straightforward: see
endnote 6 and the discussion which it affixes). By hypothesis, let R0

be a double well-ordering of H0 witnessing (1). Consider the concept:

Gx :↔ H0x ∧ Fz(zR0x).

We have mandated that this concept G be available at the zeroth level.
Moreover, if H0 is true of something then G is also true of something,
namely of the R0-least element of H0. Therefore, G has an R0-greatest
element. It is easy to argue that this maximum element is, in fact, the
R0-greatest element of H0. This entails that FxH0x, as wanted.8

Let us pause for a moment. We showed that if finiteness is a war-
ranted notion – meaningfully available for use in any interpreted lan-
guage based on first-order logic with equality – then it has a purely
logical definition in ramified predicative second-order logic, viz. the
one given by (1) and, for higher level concepts, by (3). It would take us
far afield to pin down the idea of a warranted notion. At the moment,
I am only prepared to say that a warranted notion must not engender
contradictions. This very weak injunction may, nevertheless, baffle some
readers. After all, if a notion is at all formalizable within a language (in
our case, within the language of pure ramified predicative second-order
logic) then it should be so by means of a definition, and definitions
cannot engender contradictions. Plainly, a mere abbreviation like (1)
cannot engender a contradiction. However, if (1) – as argued – is in-
deed a proper formalization of the ordinary notion of a concept being
true of only finitely many individuals, then on reflection upon that
ordinary notion and upon our uses of language we are bound to ac-
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cept the scheme of finite reducibility (2). We may say, using a catchy
phrase,9 that the axiom scheme of finite reducibility makes explicit
within language certain uses of language. Namely: We do use the fact
that concepts true of only finitely many individuals are co-extensional
with concepts expressed by suitable disjunctions. When the individuals
falling under these concepts are listed explicitly, such disjunctions may
be given forthwith; otherwise, they are usually indicated by means of
the meta-linguistic device of inserting ellipsis points. A fortiori, these
disjunctions yield concepts belonging to the zeroth level fragment of the
language. It is this aspect of finitude (together with the feature that a
sub-concept of a concept true of only finitely many individuals is true
of only finitely many individuals) that the axiom of finite reducibility
(2) makes explicit within language.

In saying that a warranted notion – formalized via a definition –
must not engender contradictions, we are using the word ‘definition’
in a wider (and more vague) sense than that of a mere abbreviation.10

If we concede that contextual definitions (in the sense of Frege) are
definitions in this wider sense,11 then the ominous example of an un-
warranted notion is that of the extension of a concept, as regulated by
Axiom V, in the framework of second-order logic.

Reassuringly, we have the following:

THEOREM 1. The theory HFR is consistent.

Proof. Our proof is a simple adaptation of Heck’s proof of the consis-
tency of the predicative (and ramified predicative) fragment of Frege’s
Grundegesetze. In the sequel, we assume familiarity with Heck’s argu-
ment as exposed in his (1996).

The consistency of the theory HFR is proved by presenting a model
of it. Therefore, we must give a suitable domain for the individual
variables, give suitable domains for the concept variables, one for each
level, consisting of subsets of the individual domain, and give a suitable
interpretation of the value-range operator. In fact, our structure is
the reduct of a structure for a slightly expanded language, viz. the
one obtained from the language of pure ramified second-order logic
by adding a constant symbol n for each natural number n and binary
function symbols + and ×.

Following Heck, the individual domain of our structure is the set
of natural numbers. The extra constants and function symbols are
interpreted in the usual arithmetical manner. The next step consists
in interpreting the value-range terms in which concept variables are
wholly absent. Following Terence Parsons (1987b), Heck defined such
interpretations satisfying Frege’s axiom V, with the further property

amending.tex; 10/10/2002; 15:06; p.7



8 Fernando Ferreira

that the range of these value-range terms form a co-infinite subset
of the natural numbers. We let the domain of the zeroth level con-
cept variables be constituted by the definable subsets of the natural
numbers obtained by means of formulas A(x) which contain no free
variables other than ‘x’ and which contain no concept variables at all
(note that these formulas may contain value-range terms which do not
contain themselves concept variables). It is now easy to show that this
interpretation determines the interpretations of the value-range terms
in the zeroth level fragment of the ramified language in which concept
quantification does not occur (concept parameters may appear). The
scheme (PComp) can now be evaluated for n = 0, and it is easy to see
that it turns out to be true. Finally, Heck shows how to extend the
interpretation to all the value range terms of the zeroth level fragment
of the language (i.e., also to those value-range terms which have quan-
tified zeroth level concept variables). The extended interpretation also
satisfies Frege’s axiom V and is such that the range of these value-range
terms is still co-infinite.12

Thus far, we have fully interpreted the zeroth level fragment of the
ramified language. The extension of this interpretation to the higher
reaches of ramification can be obtained by a simple iteration of the
above procedure. This iteration is thoroughly explained in (Heck, 1996).
As argued by Heck, we end up with a model of the ramified predicative
fragment of Frege’s Grundgesetze. It now remains to see that this model
also satisfies the axiom scheme of finite reducibility (2).

The sole difference between the above structure and Heck’s structure
is the inclusion of arithmetical function symbols + and × in our starting
language, interpreted ordinarily. Therefore, the arithmetical sets (i.e.,
the sets of natural numbers definable by formulas of the language of
first-order Peano arithmetic) are included in the domain of variation
of the zeroth level concept variables. Pick your favorite arithmetical
coding procedure in order to code finite sets by natural numbers. More
specifically: Take arithmetical formulas Code(z) and Elem(x, z), with
their free variables as displayed, such that for each finite set F of natural
numbers there is a natural number c so that ‘Code(c)’ is true and, for
all natural numbers n, n ∈ F iff the sentence ‘Elem(n, c)’ is true. Con-
versely, if c is a natural number such that the sentence ‘Code(c)’ is true,
then the set of natural numbers n for which the sentence ‘Elem(n, c)’
holds true is finite. It is now easy to see that the domain of variation of
the zeroth level concept variables is closed under the application of the
operator “there are finitely many.” In effect, the claim that there are
finitely many individuals x such that A(x) holds is formally expressible
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by the following first-order clause:

∃z(Code(z) ∧ ∀x(A(x) ↔ Elem(x, z))).

The argument in the fourth paragraph of this section shows that
the above closure property entails that zeroth level concepts H0 such
that Fin0(H0) holds in the structure are true of only finitely many
individuals. As we saw, this implies that the axiom scheme of finite
reducibility (2) holds in our structure. �

We shall see in the next section that HFR is able to interpret elemen-
tary Peano arithmetic. Technically, the strength of our formal definition
(in the wide sense of the word ‘definition’) of finiteness lies squarely with
the scheme of finite reducibility: If a contradiction can be engendered
by our formal notion of finiteness, then it is engendered by the axiom
scheme (2). Even though we have just proved that no such contradiction
is forthcoming, our proof is merely relative to a (say) suitable fragment
of set theory. We know that we cannot aspire to more on this regard.
Such is life after Gödel.

4. Arithmetic in the amended system

Although Frege’s Grundgesetze is inconsistent, this does not (by itself)
render worthless the way Frege derived the axioms of second-order
arithmetic from it (together with appropriate definitions of the arith-
metical notions). It was first noted by Charles Parsons in his (1965)
that Frege’s proof of the axioms of second-order arithmetic proceeds in
two independent steps. Firstly, Frege uses the value-range operator (as
regulated by Axiom V) to define a cardinality operator # that yields
first-order terms #x.A(x) when applied to formulas A(x), and that
satisfies Hume’s Principle,

(HP) #x.A(x) = #x.B(x) ↔ A ≈x B,

where A ≈x B is a formula saying that the As are in one-one cor-
respondence with the Bs. Secondly, Frege essentially shows that the
axioms of second-order arithmetic (suitably interpreted) follow from
second-order logic together with Hume’s Principle. The point is that
the value-range operator and Axiom V quietly drop out of sight in this
second stage. The theory consisting of second-order logic augmented
with a primitive operator # satisfying Hume’s Principle (HP) is called
Frege’s Arithmetic FA. The second step described above is now known
as Frege’s theorem.13
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The proof of Frege’s theorem uses impredicative definitions through
and through. There are two quite different reasons for this. On the one
hand, Frege’s theorem shows that second-order arithmetic – a blatantly
impredicative theory with full comprehension – is interpretable in FA.
No wonder that impredicative definitions are essential in this regard.
On the other hand, Frege’s definition of the natural numbers uses his
well-known notion of the ancestral of a given relation, a prima facie
impredicative notion. This wouldn’t be decisive were it not for the
fact that in the proof of Frege’s theorem one needs to use the notion
of the ancestral of the predecessor relation as a concept for reasons
other than proving comprehension. More specifically, one needs the
concept of the ancestral of the predecessor relation in order to prove
the induction axioms (even for proving arithmetical induction) and the
statement that every natural number has a successor. The formation of
this concept amounts to a suitable use of (prima facie impredicative)
comprehension. In this section, we make two observations: (a) If the
operator “there are finitely many” is predicatively justified, then the
notion of the ancestral of a relation is predicative; (b) If the notion of
the ancestral of a relation is predicative, then it is possible to prove a
restricted form of Frege’s theorem, viz. the one in which second-order
arithmetic is replaced by predicative second-order arithmetic (more on
this later). To show (a), we argue that the first level fragment of HFR
is able to deal effectively with the concept of ancestrality. To show (b),
we consider George Boolos’ pointed reconstruction of Frege’s theorem
as expounded in the appendix of his (1998b) and observe that his
reconstruction pulls through, almost unmodified, within the first level
fragment of HFR for predicative second-order arithmetic.

For ease of notation, in the remainder of this section all unsu-
perscripted concept variables are first level concept variables of the
language of HFR. Given a (first level) concept R, we define its ancestral
relation R∗ as follows:

DEFINITION 1. R∗(x, y) iff

∀F (∀a∀b(((a = x ∨ Fa) ∧ aRb) → Fb) → Fy).

The relation R∗ is prima facie of second level. The following propo-
sition is crucial. The idea of its proof is straightforward: R∗(x, y) can
be expressed by the first level concept saying that there is a way of
going from x to y in finitely many steps according to the given relation
R.

PROPOSITION 1. The theory HFR proves the sentence:

∀R∃Q∀x∀y (R∗(x, y) ↔ xQy).
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Proof. Let A(L0, H0, R) abbreviate the conjunction of Dwo(L0, H0)
with ∀a∀b(Pred(a, b, L0) → aRb), where Pred(a, b, L0) says that a is
an immediate L0-predecessor of b, i.e., aL0b ∧ ¬∃c(aL0c ∧ cL0b).14 We
claim that R∗(x, y) is equivalent to

∃H0∃L0(A(L0, H0, R) ∧ Min(x, L0) ∧ ∀z(Max(z, L0) → zRy)).

Notice that, if the above equivalence obtains, then by (PComp) we
can form a first level concept for R∗. Assume R∗(x, y). Consider the
(first level) concept F defined by

Fw :↔ ∃H0∃L0(A(L0, H0, R)∧Min(x, L0)∧∀z(Max(z, L0) → zRw)).

In order to show Fy, suppose a = x∨Fa, aRb. It is enough to show
Fb. If a = x, let H0 and L0 be (respectively) the concepts [w : w = x]
and [w : w 
= w].15 Clearly, Fb. If Fa and a 
= x, then there are
concepts H0 and L0 such that A(L0, H0, R), Min(x, L0), and zRa for
z the L0-greatest element of H0. There are two cases to consider. In
the first case, H0 is not true of a. Let Ȟ0 and Ľ0 be the concepts
[w : H0w ∨ w = a] and [〈u, v〉 : uL0v ∨ (H0u ∧ v = a)] (respectively).
Fb follows. In the second case, H0 is true of a. Let Ȟ0 and Ľ0 be the
concepts [w : wL0a ∨ w = a] and [〈u, v〉 : uL0v ∧ (vL0a ∨ v = a)]
(respectively). Fb follows.

Conversely, assume A(L0, H0, R), Min(x, L0), and zRy for the L0-
greatest element z of H0. Let F be an arbitrary first level concept
and suppose ∀a∀b(((a = x ∨ Fa) ∧ aRb) → Fb). We must show Fy.
If z = x, then Fy follows by letting a = x, b = y. If z 
= x, consider
the first level sub-concept [w : Fw∧H0w] of the finite concept H0. By
finite reducibility, this sub-concept is co-extensional with a zeroth level
concept and, moreover, it is true of something, viz. of the immediate
L0-successor of x. Therefore, it has an L0-greatest element, say u. If
u isn’t z, take v such that Pred(u, v, L0). We thus have Fu and uRv.
Therefore, Fv. Contra the choice of u. So, u is z. Hence Fz. Fy follows
by letting a = z, b = y. �

Frege’s theorem is based upon Hume’s Principle (HP). We use Weak
Hume’s Principle (WHP)16 instead. In a nutshell, we restrict (HP) to
finite concepts. Following Frege, given a finite concept H0 we define:

#H0 := ẑ.∃G0(H0 ≈ G0 ∧ z = x̂.G0x),

where H0 ≈ G0 abbreviates the formula which says that there is a
zeroth level one-one correspondence between the H0s and the G0s.
With this definition, we clearly have:

(WHP) Fin0(H0) ∧ Fin0(G0) → (#H0 = #G0 ↔ H0 ≈ G0).

We modify Frege’s definition of the predecessor relation accordingly:
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DEFINITION 2. xPy iff

∃H0∃z(Fin0(H0) ∧ H0z ∧ #H0 = y ∧ #[w : H0w ∧ w 
= z] = x).

By (PComp), this relation is indeed given by a first level concept.
Boolos’ above mentioned reconstruction of Frege’s theorem adapts to
our framework. The following is accomplished: There is a first level
concept N (the concept ‘Finite’ in Boolos’ reconstruction) and an indi-
vidual 0 such that the theory HFR proves,

1. N0

2. Nx ∧ xPy → Ny

3. ∀x∀y∀z(Nx ∧ xPy ∧ xPz → y = z)

4. ∀x∀y∀z(Nx ∧ Ny ∧ xPz ∧ yPz → x = y)

5. ¬∃x(Nx ∧ xP0)

6. ∀x(Nx → ∃y xPy)

7. ∀F (F0 ∧ ∀x∀y(Fx ∧ xPy → Fy) → ∀x(Nx → Fx))

In the framework of second-order logic, the above constitutes a
Dedekind-Peano axiomatization of second-order arithmetic, a system
with full comprehension. That much comprehension is simply a by-
product of the logic in question. In our ramified predicative frame-
work HFR, we obtain comprehension for arithmetical formulas with
(individual and concept) parameters. The second-order theory of arith-
metic ACA0 (an acronym for arithmetical comprehension axioms) is the
second-order extension of elementary Peano arithmetic PA which has
comprehension for arithmetical formulas (with first and second order
parameters), and the axiom of induction as in point 7 above. Summing
up: We have interpreted ACA0 in HFR.17,18

The theory ACA0 has attracted some attention in recent years be-
cause it seems capable of formalizing most (if not all) of the mathe-
matics that is necessary for scientific applications. I refer the reader to
Stephen Simpson’s book (1999) – specially to its introduction – for a
discussion of this and other subsystems of second-order arithmetic, and
to Solomon Feferman’s articles (1998a), (1998b) and (1998c) for very
incisive discussions on the philosophical importance of systems related
to ACA0 and on the scope of the indispensability arguments.
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5. Brief comparisons

The inconsistency of a formal system is a global property of its axiom
system. In general, no single axiom is the culprit. If in Frege’s Grundge-
setze der Arithmetik we trade the value range operator, as governed by
Axiom V, for the cardinality operator, as governed by Hume’s Principle,
we get Frege’s Arithmetic FA – a consistent system. If, on the other
hand, we keep the value range operator and Axiom V, but replace
second-order logic by ramified predicative second-order logic together
with the axiom scheme of finite reducibility, we get HFR – again a
consistent theory. These consistency results show that there are several
choices – able to develop significant parts of arithmetic – for amending
Frege’s inconsistent system. These amendments are important insofar
as they may contribute to chart the prospects for vindicating one form
or other of logicism.

The neo-Fregeans – with Crispin Wright at the forefront – claim that
Frege’s Arithmetic is a partial vindication of logicism. Critics have ad-
vanced several problems concerning this claim. One of these criticisms
concerns whether second-order logic really is logic. Quine famously
quipped that second-order logic is set theory in sheep’s clothing.19 The
question whether predicative (or ramified predicative) second-order
logic is logic can be (and has been) put as well. However, I believe that
a positive answer to this latter question faces much better prospects
than that of the case of second-order logic.

A vindication of Frege’s Arithmetic as a form of logicism must ar-
gue that Hume’s principle is analytic in some sense or other. Hume’s
principle is an abstraction principle, i.e., a principle of the form

(Abst) ∀G∀H(%G = %H ↔ Eq(G, H)),

where Eq is an equivalence relation between concepts. In the framework
of second-order logic, abstraction principles can lead to inconsistency,
as Frege’s value-range operator shows. A fortiori, there are abstraction
principles that are not analytic. The neo-Fregean must explain why
certain abstraction principles are analytic (viz. Hume’s principle) while
others aren’t. The easy answer that merely draws the line at inconsis-
tency won’t do because George Boolos showed in (1998b) that there
are pairs of abstraction principles, each one of which is consistent in
isolation, but which are inconsistent when put together. This is Boolos’
“bad company” objection. Let us show that predicative second-order
logic is immune to Boolos’ objection.

In the framework of predicative second-order logic, the value-range
operator is a universal operator in the following sense: Any abstraction
operator on concepts can be defined from it. Let us define %G by

amending.tex; 10/10/2002; 15:06; p.13



14 Fernando Ferreira

ẑ.∃H(Eq(G, H) ∧ z = x̂.Hx). With this definition, Heck’s predicative
system H proves (Abst). Therefore, the bad company objection does
not apply to the framework of predicative second-order logic.20 Similar
sorts of considerations also indicate that the bad company objection
does not apply to the framework of ramified predicative second-order
logic.

We choose to focus on criticisms of neo-Fregeanism that do not (or
do not fully) apply to HFR. However, we want to mention a criticism
that applies to both systems FA and HFR: The fact that both systems
imply the existence of infinitely many individuals. We ourselves are won
over by Boolos’ view expressed in (1998a) that no logic, no logicism,
and that logic doesn’t entail the existence of infinitely many individuals.
Hence, we are not proposing HFR as a vindication of logicism. We
are rather putting the above criticism in between parentheses while
studying and discussing the merits and weaknesses of amendments to
Frege’s Grundgesetze. Simply put: We want to discuss the matter.21
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Notes

1 This is a result of Terence Parsons in (1987b).
2 See, for instance, (Boolos and Jeffrey, 1990).
3 On a different direction, we showed – in collaboration with Kai Wehmeier – that

adding the principle of ∆1
1-comprehension to the predicative fragment is consistent:

see our (2002). In this paper, we conjecture that neither this fragment nor the
ramified fragment are able to carry much more mathematics than the predicative
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fragment. Notes 1 and 2 of (Burgess and Hazen, 1998) have some pertinent remarks
on related matters.

4 See (Parsons, 1987a) for references.
5 Observe that the justification of axiom scheme (2) also depends on the feature

that a sub-concept of a concept true of only finitely many individuals is still true of
only finitely many individuals.

6 For later reference, notice that the double well-ordering relation true of precisely
the pairs 〈ai, aj〉, for 1 ≤ i < j ≤ k, is predicative. This relation can be presented
by a disjunction of k(k − 1)/2 suitable disjuncts.

7 Given our starting assumption, this is a meaningful requirement. We require it
by fiat: were it unfulfilled, we would enlarge the class of the zeroth level concepts
by closing it under applications of the operator “there are finitely many.” To put it
in other words: In our intended interpretations, the zeroth level concepts are closed
under the application of the operator “there are finitely many.”

8 For the record, the above argument only uses three properties of the ordinary
notion of finiteness. That ¬∃xHx → FxHx, that FxHx → ∀yFx(Hx ∨ x = y), and
that ∀x(Hx ↔ Gx) → (FxHx ↔ FxGx).

9 Making It Explicit is a well-known book of Robert Brandom.
10 Patrick Suppes’ book Introduction to Logic presents two criteria about the

character of definitions: (i) a defined symbol should always be eliminable from any
formula of the theory; (ii) a new definition does not permit the proof of relationships
among the old symbols which were previously unprovable. We bid good riddance to
the second criterium. Our use here of the word ‘definition’ is creative, in Suppes’
terminology. These two criteria are due to the Polish logician S. Leśniewski.

11 Under this concession, we are bidding good riddance to Leśniewski’s first crite-
rion as well (see the previous footnote).

12 The insistence on always having infinitely many natural numbers which are not
interpretations of any of the value-range terms so far considered is done in order to
make room for the interpretations of the value-range terms yet to be considered.

13 In Frege’s Conception of Numbers as Objects, Crispin Wright drew attention to
Hume’s principle, and conjectured that FA is consistent. A number of people (George
Boolos, John Burgess, Allen Hazen, and Harold Hodes) proved the conjecture soon
afterwards. A nice introduction to the story and philosophical significance of Frege’s
theorem can be found in Heck’s paper ‘Frege’s Theorem: an Introduction.’

14 If L0 doubly well-orders H0, it is an easy matter to show that, except for the
L0-least element of H0, every other element has a unique immediate predecessor.
Mutatis mutandis for the non L0-greatest elements of H0.

15 The notation [w : C(w)] is not primitive. It is to be understood in context, be
it in the context of a proof, be it in the context of a formula. As an example of the
latter context, #[w : C(w)] = x abbreviates ∃H0(#H0 = x ∧ ∀w(H0w ↔ C(w))).

16 The terminology is Heck’s, in the final pages of (1997).
17 At this juncture, the reader might be worried about the absence of the definitions

of the arithmetical operations of sum and product. As it is well-known, Dedekind in
his epoch-making Was sind und was sollen die Zahlen showed that (in modern terms)
the primitive recursive functions can be defined in second-order arithmetic, with zero
and the successor operation as the sole non-logical primitives. However, Dedekind’s
proof readily adapts to predicative frameworks like HFR, in which quantifying over
finite concepts is predicatively justified – see (Feferman and Hellman, 1995) and
(Feferman and Hellman, 1998) for a modern treatment of this issue – and where it
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is possible to prove that, for each natural number n, the collection of numbers not
exceeding n forms a finite concept (a fact that can be proved in HFR by induction).

18 The theory ACA is the extension of ACA0 in which the induction axiom is
replaced by the scheme A(0) ∧ ∀x∀y(A(x) ∧ xPy → A(y)) → ∀xA(x), for A(x)
any formula of the language of second-order arithmetic. Under the discussed inter-
pretation, this scheme is also provable in HFR. In effect, if A(x) is a formula of the
first level fragment of our ramified language which is true of 0 but false of a natural
number n, then the second level concept [w : A(w)∧w ≤ n] is true of 0 and false of
n. This concept is a sub-concept of a finite concept (see the previous note). Hence,
by finite reducibility (2), it is co-extensional with a zeroth level concept. This readily
entails a counterexample to the inductiveness of A(x).

19 “Set theory in sheep’s clothing” is the title of a section of W. O. Quine’s
Philosophy of Logic.

20 Whereas it makes no difference in second-order logic whether one formulates an
abstraction principle for concepts – as above – or for formulas, there is a difference in
the predicative setting. The above argument does not apply to abstraction principles
for formulas, i.e., to principles of the form %x.A(x) = %x.B(x) ↔ Eqx(A, B), where
A(x) and B(x) are formulas and Eqx( , ) is a formula skeleton yielding a schematic
equivalence relation. (The argument fails to prove the left to right implication for
lack of suitable comprehension.) However, even in this case, it is possible to see
that the bad company objection does not apply. Here is why. Embed H into Heck’s
ramified predicative fragment by mapping concepts into zeroth level concepts. Define
%x.A(x) by ẑ.∃G1(Eqx(G1, A) ∧ z = x̂.G1x). It can be seen that the equivalence
%x.A(x) = %x.B(x) ↔ Eqx(A, B) holds in Heck’s model of the ramified predica-
tive fragment of Frege’s Grundgesetze, as expounded in (Heck, 1996). Hence, no
contradiction can arise from abstraction principles for formulas.

21 These are Heck’s words in (1997).
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