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Abstract

We introduce a class of models of the bounded arithmetic theory PVn. These models,

which are generated by their tally part, have a curious feature : they have end-extensions or

satisfy BΣb
n only in case they are closed under exponentiation. As an application, we show

that if I∆0 + ¬exp � BΣ1 then the polynomial hierarchy does not collapse.

This paper is concerned with bounded theories of arithmetic, following Buss (1986). Nonethe-

less, as opposed to Buss’ classical setting – where the system of natural numbers forms the standard

model – we work with theories that aim to describe the language {0, 1}∗. Hence, we shall use the

notation of Ferreira (1990a & 1990b).

To help the reader unfamiliar with the notation we briefly describe the (first-order) stringlan-

guage that we use. This stringlanguage consists of three constant symbols ε, 0 and 1, two binary

function symbols � (for concatenation, usually omitted) and ×, and a binary relation symbol ⊆

(for initial subwordness). The interpretation of these symbols in the standard model {0, 1}∗ is

clear, except for the function symbol ×: x × y is the string x concatenated with itself length of y

times. Given an element e ∈ {0, 1}∗, we denote by ē the closed term of the language obtained by
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concatenating (via the function symbol �) the constants 0 or 1 according to the order of the bits

in e (for determinateness, we always associate � to the left). We use the following abbreviations:

x ⊆∗ y (subwordness of x with respect to y) abbreviates ∃z ⊆ y(z � x ⊆ y); x ≤ y (the length of

x is less than or equal to the length of y) abbreviates 1× x ⊆ 1× y; and x ≡ y (x and y have the

same length) abbreviates x ≤ y ∧ y ≤ x.

The theories studied in this paper are built upon fourteen basic open axioms, listed in Ferreira

(1990a). These theories differ by the amount of induction permitted. For the convenience of the

reader we provide a small lexicon that may be of some help :

Σb
n − NIA − Sn

2

Σb
n − IA − Tn

2

∆b
n − NIA − first-order version of PVn

where n ≥ 1. PVn is a theory described in Kraj́iček et al. (1991). However, we should point out

an idiosyncrasy concerning the way the theory ∆b
n − NIA is set up: its language has a function

symbol for each (canonical description) of a function in ✷p
n. In suitable contexts, we proceed ad

libitum and write f ∈ ✷p
n instead of saying that f is a function symbol of the language of ∆b

n−NIA

(in the framework of PVn, this means that the function f of ✷p
n is given by a standard index and

a standard polynomial bound).

An element u of a model M of ∆b
1 − NIA is called tally, and we write tally(u), if it consists of

a sequence of 1’s : more formally, if u = 1 × u. If M is a model of ∆b
n − NIA let,

Γn(M) = {f(u) : tally(u) & f ∈ ✷p
n}

Observe that Γn(M) is a model of ∆b
n−NIA, because ∆b

n−NIA is a universal theory ; moreover,

it is the smallest such model having the same tally part as M . It is clear that Γn(M) ≺∆b
n

M and

that Γn(Γn(M)) = Γn(M).
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Definition. Let M be a model of ∆b
n −NIA. We say that M is a ∆b

n-thin model if M = Γn(M).

The models just defined share some curious features. In order to describe these features we

introduce (remind of) some concepts. Given M and N two structures for the stringlanguage, with

M ⊆ N , we say that N is an end-extension of M if whenever a ∈ M , b ∈ N and b ≤ a then b ∈ M

(that is, N has no new elements having length which is smaller than or equal to the length of an

element of M). The Bt∆b
n-collection scheme consists of the following :

∀x ≤ a ∃u (tally(u) ∧ A(x, u)) → ∃v (tally(v) ∧ ∀x ≤ a ∃u ⊆ v A(x, u))

where A is a ∆b
n-formula and v is a new variable (parameters are allowed).

Given an element a of a model M of ∆b
1−NIA, a perspicuous way of saying that “2a exists” is to

state that there is an element b ∈ M such that ∀x ≤ a (x ⊆∗ b). An alternative, and perhaps more

ordinary way of saying that “2a exists”, involves the so-called binary length function. This function,

denoted by �h(·), has the following recursive definition : �h(ε) = ε, �h(x0) = �h(x1) = S(�h(x)),

where S is the successor function associated with the canonical linear order <� (see the appendix).

Bearing this in mind, we can say that “2a exists” if there is a tally element u in M such that

�h(u) = a. These two definitions, albeit of a different character (observe that the first one poses

an “absoluteness” question, while the second does not), coincide in models of ∆b
1 − NIA :

Lemma.

∆b
1 − NIA � ∃z ∀x ≤ a (x ⊆∗ z) ↔ ∃u (tally(u) ∧ �h(u) = a). ✷

We postpone an outline of the proof of this lemma to the appendix. The axiom exp is the

statement ∀x“2x exists”. It is immediate from the definitions that models of ∆b
n − NIA + exp are

∆b
n-thin.

Lemma (Main properties of ∆b
n-thin models).

The following properties hold in the category of models of ∆b
n − NIA:
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1 – The class of ∆b
n-thin models is elementary.

2 – In ∆b
n-thin models not satisfying exp, the Bt∆b

n-collection scheme does not hold.

3 – ∆b
n-thin models not satisfying exp do not have proper end-extensions which are models of

∆b
n − NIA.

4 – There are models of ∆b
n − NIA which are not ∆b

n-thin.

Proof. 1 – The concept of an oracle Turing machine can be “smoothly” formalized in ∆b
1 − NIA

by a ∆b
1-formula T (x). Moreover, if A ∈ Σb

n then the ternary relation

{e}A(x;u) ↓ := T (e) ∧ tally(u)∧ “the Turing machine computation of {e}A(x) comes to the

halting state in less than length of u steps”

is defined by a ∆b
n+1-formula. And the following ternary function, being in ✷

p
n+1, is given by a

ternary function symbol of the language of ∆b
n+1 − NIA :

{e}A(x;u) =




{e}A(x) if {e}A(x;u) ↓

ε otherwise

Let Kn be a natural Σb
n-complete set (put K0 = φ). We shall use the following fact :

(∗) Given any unary function symbol f of the language of ∆b
n − NIA, there is an element

ef ∈ {0, 1}∗ and a term tf , called a natural time bound for f , such that the theory ∆b
n−NIA

proves :

T (ēf ) ∧ ∀x[tally(tf (x)) ∧ {ēf}Kn−1(x; tf (x)) ↓ ∧

∧ f(x) = {ēf}Kn−1(x; tf (x))]

Now we can show that the class of ∆b
n-thin models is elementary. Consider the following

predicate and function symbols of the language of ∆b
n − NIA :

Qn(x) := tally(x) ∧ {�h((x)1)}Kn−1((x)2; (x)3) ↓

thinn(x) :=




{�h((x)1)}Kn−1((x)2; (x)3) if Qn(x)

ε otherwise
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Here λx.(x)1, λx.(x)2 and λx.(x)3 are the decoding functions of a tally word viewed as a triple

of tally words (observe that the set of tally words of a model of ∆b
1 − NIA is naturally a model

of I∆0 ; hence, we can use twice our favorite ∆0-pairing function to code a triple of tally words

u1, u2, u3 by a tally word 〈u1, u2, u3〉). Note that thinn defines, indeed, a function in ✷p
n.

We claim that a model M of ∆b
n − NIA is ∆b

n-thin if, and only if,

M |= ∀x ∃u(Qn(u) ∧ thinn(u) = x).

The “sufficient” direction is an immediate consequence of the definition of a ∆b
n-thin model.

Conversely, suppose that M is ∆b
n-thin and let a be an arbitrary element of M . By the thinness

of M there is a function symbol f of the language of ∆b
n − NIA and a tally element u such that

M |= a = f(u). Using (∗), pick ef ∈ {0, 1}∗ the Gdel number of the (natural) Turing machine

associated with the function symbol f and let tf be its natural time bound. Then,

M |= f(u) = {ēf}(u; tf (u)).

Now, take o ∈ {1}∗ with �h(o) = ef . Clearly,

M |= Qn(〈ō, u, tf (u)〉) ∧ thinn(〈ō, u, tf (u)〉) = a.

2 – Let M be a ∆b
n-thin model in which the Bt∆b

n-collection scheme holds. We claim that M

satisfies exp. Let a be an arbitrary element of M . By thinness and the proof of 1,

M |= ∀x ≤ a ∃u(Qn(u) ∧ thinn(u) = x).

Applying Bt∆b
n-collection we get

M |= ∀x ≤ a ∃u ⊆ v(Qn(u) ∧ thinn(u) = x)

for a certain tally element v of M . Let b be the concatenation of all the elements thinn(u), with

u ⊆ v : the notation is b =
∑

u⊆v thinn(u) – note that this makes sense, because λv.
∑

u⊆vthinn(u)
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is in ✷p
n. Clearly,

M |= ∀x ≤ a(x ⊆∗ b).

Hence “2a exists”.

3 – The proof of this property uses an underspill argument in the manner of Paris & Kirby

(1978). However, a direct underspill argument purporting to show the implication

M ⊂e N |= ∆b
n − NIA =⇒ M |= Bt∆b

n

fails. The reason stems from the fact that we (do not seem to have) induction on notation for

Πb
n-formulae in models of ∆b

n − NIA. Hence, a preliminary maneuver is needed. Consider M a

∆b
n-thin model with a proper end-extension N satisfying ∆b

n −NIA. Let a be an arbitrary element

of M . The following is true,

b ∈ M ⇒ N |= b ⊆∗
∑
u⊆v

thinn(u)

for any tally element M < v ∈ N .

Now, using the fact that N is an end-extension of M we get,

N |= ∀x ⊆∗
∑
u⊆v

thinn(u) [x ≤ a → (x0 ⊆∗
∑
u⊆v

thinn(u) ∧

∧ x1 ⊆∗
∑
u⊆v

thinn(u))]

The formula above, following the symbol “|=”, is ∆b
n. Hence, by an underspill argument, there

is a tally element u0 in M such that,

N |= ∀x ⊆∗
∑

u⊆u0

thin(u) [x ≤ a → (x0 ⊆∗
∑

u⊆u0

thinn(u) ∧

∧ x1 ⊆∗
∑

u⊆u0

thinn(u))]

By absoluteness, this also holds in M . It is easy to see, by induction on notation on x, that

M |= x ≤ a → x ⊆∗ ∑
u⊆u0

thinn(u). Therefore, “2a exists”.
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4 – By the previous result, any model of ∆b
n − NIA + ¬exp with an end-extension to a model

of ∆b
n − NIA will do. ✷

The general form of the collection scheme is as follows:

∀x ≤ a ∃y A(x, y) → ∃z ∀x ≤ a ∃y ≤ z A(x, y)

where z is a new variable (parameters are allowed). If we only permit bounded formulae A,

we have the bounded collection scheme, a.k.a. the BΣ1-scheme. If the formulae A are further

restricted to the nth-level of the hierarchy of bounded formulae, we have the BΣb
n-scheme. Note

that BΣb
n ⇒ Bt∆b

n.

Corollary. PVn + ¬exp �� BΣb
n. ✷

Corollary. If S2 collapses then S2 + ¬exp �� BΣ1. In particular, if I∆0 is finitely axiomatizable

then I∆0 + ¬exp �� BΣ1. ✷

There is a proof (but not a statement) of the latter result in Paris, Wilkie & Woods (1988). As

a matter of fact, we have more.

Lemma. Let M ⊆ N be models of ∆b
1-NIA and suppose that {x ∈ N : tally(x)} ⊆ M . If M

satisfies exp then so does N .

Proof. Assume that M satisfies exp and take a an arbitrary element of N . By hypothesis, 1×a ∈ M .

Hence, there is u ∈ M ⊆ N such that N |= tally(u) ∧ lh(u) = a. We use the following property:

($) ∆b
1 − NIA � x ≤� �h(u) → ∃v ⊆ u (x = �h(v)).

Due to the fact that a ≤� 1× a, this entails that N |= ∃v ⊆ u(lh(v) = a). Hence, N |= “2a exists”.

The property ($), and other properties that we will use in the appendix, are easy to prove within

∆b
1-NIA: the details can be found in Ferreira (1988). ✷
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Theorem. If Σp
n = ∆p

n then S2 + ¬exp �� BΣb
n.

Proof. Let us work under the assumption that Σp
n = ∆p

n. Take N a non-standard model of the

true theory of {0, 1}∗ and let M be an initial segment of N closed under multiplication of lengths,

but in which exp fails. Clearly M is a model of S2 and, hence, a model of ∆b
n − NIA. We claim

that bounded formulae are absolute between Γn(M) and M . This is due to the collapse of the

polynomial hierarchy at the nth-level : in effect, this collapse entails that every bounded existential

assumption can be witnessed via a ✷p
n-function on the parameters of the formula. Hence, Γn(M) is

a model of S2 (and, by the previous lemma, of ¬exp). By main property 2 of the ∆b
n-thin models,

the Bt∆b
n-collection scheme does not hold in Γn(M). In particular, Γn(M) �|= BΣb

n. ✷

Corollary. If the polynomial hierarchy collapses then I∆0 + ¬exp �� BΣ1. ✷

Wilkie & Paris (1989) asked whether I∆0 + ¬exp � BΣ1. The previous corollary shows that

a positive answer to this question is at least as difficult as proving that the polynomial hierarchy

(a.k.a. the Meyer-Stockmeyer hierarchy) does not collapse. We do not know if the hypothesis

of the previous corollary can be replaced by the seemingly more natural “the linear hierarchy

collapses”. A referee of this paper wrote that our results “are (for me) somewhat surprising”.

In fact, the previous theorem and corollary seem to run against a dictum in bounded arithmetic,

namely that more proofs ⇒ more algorithms. (The beautiful and seminal result of Kraj́iček et al.

(1991), saying that if the theory S2 collapses (more proofs) then so does the polynomial hierarchy

(more algorithms), is the most important manifestation of this dictum.) We consider the above

corollary as evidence that the theory I∆0 + ¬exp does not prove the scheme of collection for

bounded formulae.

Let us finish with the following independence result for relativized theories :

Proposition. S2(α) + ¬exp �� BΣ1(α).
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Proof. Take N a non-standard model of the true theory of {0, 1}∗, with an extra unary predicate

symbol α interpreted by a (fixed) PSPACE complete set. As in the proof of the previous theorem,

let M be an initial segment of N closed under multiplication of lengths, but in which exp fails.

Clearly M is a model of S2(α). Consider,

Γα
1 (M) = {f(u) : tally(u) & f ∈ ✷

p
1(α)}.

It is easy to convince ourselves that Γα
1 (M) |= S2(α). Moreover, by the same argument that

proves the main property 2 of thinness, Γα
1 (M) �|= BΣb

1(α). ✷

Appendix

The successor function S is defined by S(ε) = 0, S(x0) = x1 and S(x1) = S(x)0. The <�

canonical linear order of {0, 1}∗ is as follows :

x <� y ⇔ (x ≤ y ∧ x �≡ y) ∨ (x ≡ y ∧ ∃z ⊆ x(z0 ⊆ x ∧ z1 ⊆ y)).

One of the implications of the equivalence between the two notions of “2a exists” results from

the fact that if �h(u) = a, then ∀x ≤ a
(
x ⊆∗ ∑

v⊆u(�h(v) � 0 � �h(v) � 1)
)
. Let us explain

this bound. Take x ≤ a, with x �= ε, and denote by x− the string x without its last bit. It is clear

that x− <� a, and hence, by property ($) in the main text, there is v ⊆ u with x− = �h(v). We

conclude that either x = �h(v) � 0 or x = �h(v) � 1. This justifies the bound.

The converse implication is more involved and mainly consists of some programming. Suppose

that ∀x ≤ a (x ⊆∗ b). We consider four tasks :

1st task. Fix a tally element ε �= � ≤ a. Let c =
∑

x⊆b

∑
y⊆x d�(y, x), where y � d�(y, x) = x if

there is such d�(y, x) with the same length as � (otherwise, d�(y, x) = ε).

Comments. c is a concatenation of all subwords of b of length equal to that of � : hence c ≡ � × t,
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for a certain tally t. Moreover, it is clear that t ≤ b × b. Notice that all this is true in models of

∆b
1 − NIA.

2nd task. The theory ∆b
1 − NIA proves the following

∀u ∀x ∀y (tally(u) ∧ x ≡ � × u → ∃v ⊆ u(∀w ⊂ v d�(x|�×w, x|�×w1) <� y ∧

∧ (v �= u → y ≤� d�(x|�×v, x|�×v1))))

where w ⊂ v abbreviates (w ⊆ v ∧ w �= v) and x|y is the truncation of x at the length of y. By

Herbrand analysis there is a function symbol q(u, x, y) of the language of ∆b
1 − NIA witnessing v

in the above formula.

Comments. In case the length of x is a multiple of the length of � (that is, x ≡ � × u), x can be

considered a sequence of words, each of length � ; q(u, x, y) picks the first place of this sequence

in which the corresponding word is lexicographically greater than or equal to y; if there is no such

place, it picks u.

3rd task. Consider the ✷
p
1-function,

p(u, x, y) =




x if y ⊆ d(x|�×q(u,x,y), x)

x|�×q(u,x,y) � y � d(x|�×q(u,x,y), x) otherwise

where d(y, x) is such that y � d(y, x) = x, if there is such d(y, x); otherwise d(y, x) = ε.

Comments. p(u, x, y) is the result of inserting the word y at the q(u, x, y)th-place of the sequence

given by x, provided y is not there.

4th task. If the length of x is a multiple of the length of �, the quotient of these lengths, given

by the length of u, is determined by x (and by the fixed �). Hence, we may consider p and q as

functions of only two arguments x and y. Define, by bounded recursion on notation,

r(ε) = ε
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r(w0) = r(w1) =




p (r(w), d (c|�×w, c|�×w1)) if w1 ≤ t

r(w) otherwise

This is a legal definition by bounded recursion, because � × t is a bound.

Comments. r(t) is the result of rearranging the sequence of words in c according to the lexicographic

order <�. Repetitions are omitted. It is easy to show that ∆b
1 − NIA proves this to be the case.

Notice that, in particular, the last element of the sequence r(t) is the word �.

We have shown that for each tally �, with � ≤ a, there is an element e�, with e� ≤ � × b × b,

which consists of the sequence of all elements of length � according to the lexicographic order.

We claim that ∀� ⊆ 1×a ∃z ⊆ �×b×b (�h(z) = �). In particular, there is z with �h(z) = 1×a.

Due to ($), this solves the problem. The proof is by induction on �. The base case � = ε is

immediate. Suppose �1 ⊆ 1 × a and assume, by induction hypothesis, that there is z ⊆ � × b × b

such that �h(z) = �. Take e�1 as above. By construction e�1 ≡ �1 × h, for some tally h ⊆ b × b. It

is easy to show, by induction on g, that

�h(z � g � 1) = d (e�1|�1×g, e�1|�1×g1) ,

for all g ⊂ h. In particular, �h(z � h) = �1. Finally, observe that

z � h ⊆ (� × b × b) � h ⊆ (� × b × b) � (1 × b × b) = �1 × b × b.

We are done.
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5. Kraj́iček, J., Pudlák, P., Takeuti, G.: Bounded Arithmetic and the Polynomial Hierarchy.

Annals of Pure and Applied Logic 52, pp. 143-153 (1991).

6. Paris, J., Kirby, L.: Σn-collection schemes in arithmetic. In: Macintyre, A., Pacholski, L.,

Paris, J. (eds.) Logic Colloquium ’77 (pp. 199-209). Amsterdam : North-Holland, 1978.

7. Paris, J., Wilkie, A., Woods, A.: Provability of the pigeonhole principle and the existence of

infinitely many primes. The Journal of Symbolic Logic 53, pp. 1235-1244 (1988).

8. Wilkie, A., Paris, J.: On the existence of end extensions of models of bounded induction.

In: Fenstad, J. E. et al. (eds.) Logic, Methodology and Philosophy of Science VIII (pp.

143-161). Amsterdam : Elsevier Science Publishers, 1989.

12


