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1 A technical note

The syntax of intuitionistic propositional second-order logic PSOLi consists
of a set of propositional constants P , Q, R, etc, a denumerable set of propo-
sitional variables F , G, H, etc, together with the primitive logical signs
of the conditional and the universal propositional quantifier, and ponctu-
ation signs (parenthesis). The formulas of PSOLi are the smallest class of
expressions of the language such that:

1. Propositional constants and variables are formulas.

2. If A and B is a formula, then (A → B) is a formula.

3. If A is a formula and F is a propositional variable, then ∀F (A) is a
formula.

We sometimes write ∀F.A instead of ∀F (A). We also follow standard usage
regarding parentheses. A predicative formula is a formula with no second-
order quantifiers. They are, in the present setting, the quantifier-free for-
mulas. The logic of PSOLi is intuitionistic logic, which we formulate in the
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natural deduction calculus, with introduction and elimination rules for the
conditional and the universal propositional quantifier. We need not com-
ment on the rules for the conditional, nor on the introduction rule for the
propositional quantifier. They are as usual (see [3]). If the range allowed for
the ∀-elimination rule is unrestricted with respect to formulas (discounting
clashing of variables), we get impredicative PSOLi. On the contrary, if the
range is restricted to quantifier-free formulas only, we get predicative PSOLi.
According to a 1965 celebrated work of Dag Prawitz (cf. [3]), in the im-
predicative case the other logical connectives can be defined in terms of the
conditional and the universal propositional quantifier:

¬A =df A → ∀F.F
A ∧B =df ∀F ((A → (B → F )) → F )
A ∨B =df ∀F ((A → F ) → ((B → F ) → F ))
∃G.A =df ∀F (∀G(A → F ) → F ).

where F is a new propositional variable. Prima facie, in order to prove that
the above defined connectives obey the usual introduction and elimination
rules of the natural deduction calculus, it is required that no restrictions are
in place when instantiating generalizations. That notwithstanding, the very
same definitions do work in the predicative case.

Theorem 1. Predicative PSOLi proves the usual introduction and elimi-
nation rules of the natural deduction calculus for the connectives defined
above.

Observation 1. In the ∃-introduction rule, where ∃G.A follows from AG
P

(P free for G in A), the formula P must be quantifier-free.

Proof. It is clearly sufficient to prove that, for any formula C of the language
of PSOLi, one has:

1. ¬A → (A → C)

2. A ∧B → ((A → (B → C)) → C)

3. A ∨B → ((A → C) → ((B → C) → C))

4. ∃G.A → (∀G(A → C) → C)

(Of course, in 4 above, G must not occur in C.) The proof is by induction
on the complexity of C. We only discuss part 3. Assume A ∨ B. Suppose
that C is C1 → C2, and let A → (C1 → C2) and B → (C1 → C2). Then,
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C1 → (A → C2) and C1 → (B → C2). By induction hypothesis applied to
C2, we can conclude that C1 → C2, i.e., C. Now, suppose that C is ∀G.D,
and let A → ∀G.D and B → ∀G.D. Then ∀G(A → D) and ∀G(B → D),
changing the bound variable if necessary. By induction hypothesis applied
to D, we can conclude that ∀G.D, i.e. C.

2 Commentary

1. The predicativist inclined philosopher takes for granted a linguistic
base whose semantics is unproblematically bivalent. In our setting, this
corresponds to a bivalent semantics for the propositional constants. Un-
der these circumstances, the predicativist should accept the stability law
∀F (¬¬F → F ) on the grounds that the intended range of F is constituted
by propositional sentences built up from bivalent atomic propositions using
the conditional only. Let us try to articulate this idea better. Assume that
the propositional constants come in polar opposite pairs, P , P , where each
element of the pair contradicts the other and, moreover, the components
of each pair exhaust the logical space of possibilities. We are led to the
following laws:

a1. ∀G(P → (P → G))

b1. ∀G((P → G) → ((P → G) → G))

If we also have conjunction as a primitive connective of the language (an
innocent addition), we can extend the notion of a polar opposite to all
quantifier-free sentences: A → B is A ∧ B and A ∧B is A → B. It is
understood that, for propositional constants P , the polar opposite of P is
P (and vice versa). It is now easy to prove by induction on the complexity
of A that,

a2. ∀G(A → (A → G))

b2. ∀G((A → G) → ((A → G) → G))

for quantifier-free sentences A.
In predicative PSOLi, the intended range of the quantifiers consists of

the quantifier-free sentences (formally, of course, the universal instantiation
rule must admit quantifier-free formulas, with their free variables envisaged
as parameters for quantifier-free sentences). Therefore, in the light of the
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above discussion, it is natural to work also with polar opposite pairs F , F
of propositional variables, and uphold the conditions:

a3. ∀F∀G(F → (F → G))

b3. ∀F∀G((F → G) → ((F → G) → G)),

with the understanding that the polar opposite of F is F (and vice-versa).
Syntactically, only propositional constants and variables can have an over-
strike, and then only one. The range of a ∀-elimination rule is formed by the
quantifier-free formulas and, when they come out with overstrikes, they are
evaluated in the manner of the quantifier-free sentences above. The condi-
tions (a3) and (b3) entail that ∀(F → ¬F ) and ∀F (¬F → F ) are derivable.
The stability law ∀F (¬¬F → F ) follows easily now. This law is the base
case for a proof by induction on the complexity of formulas that the con-
ditional ¬¬A → A is derivable for every formula A of the language. This
follows from well-known results in proof theory, since the connectives of our
language are all “negative”: ‘→’, ‘∧’ and ‘∀’. With the stability scheme in
place we get, in effect, classical logic. This is the punch line.

2. The philosophical cast of predicativism is nonrealistic, in the sense that
the second-order entities do not subsist independently of us but are, in a
way, legitimized by our being able to present (define) them. Warren Gold-
fard voices in [2] the concern that this non-realism poses a difficulty for the
legitimacy of the use of classical logic. The previous comment can be seen
as a response to such an objection. Of course, in this paper we restricted
ourselves to propositional second-order logic, whereas the real action of pred-
icativism is in settings with an underlying first-order domain, like in the
traditional predicativist position in the foundation of mathematics associ-
ated with the names of Henri Poincaré, Hermann Weyl, Solomon Feferman
et al. In order to encompass these cases, the discussion above would have to
be extended to include first-order formulas, and that brings problems of its
own. We think that these problems can be met, but we leave them at this
juncture.

3. In §10.1 of [1], Jean-Yves Girard et al. say that the elimination rules for
falsum, disjunction and existential quantification are very bad. They add
that “what is catastrophic about them is the presence of a parasitic formula
C which has no structural link with the formula which is being eliminated.”
In fact, (e.g.) the rule of disjunction elimination permits the inference of
C from A ∨ B if one has deductions of C from A and of C from B. They
say that “the adoption of these rules (and let us say that there is currently
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no alternative) contradicts the idea that natural deductions are the “real
objects” behind the proofs.” Indeed, certain “commuting” conversions, quite
apart from the natural conversions associated with the connectives (removal
of local peaks), must be made available in order to have a decent theory of
normalization of derivations.

Girard et al. point out that there is currently no alternative to the
bad rules, although they hasten to say that the fragment of the calculus
with falsum, disjunction and existential quantification “is [not] etched on
tablets of stone.” Here is a preliminary alternative: embed the intuitionistic
propositional calculus into predicative PSOLi, where there are no bad rules.
This is a nice alternative, but we discuss another one. Namely, restrict the
range of the ∀-elimination rule to atomic formulas. For lack of a better name,
let us call this restricted calculus atomic PSOLi. Observe that Theorem 1
still goes through with atomic PSOLi (instead of predicative PSOLi). The
notion of a subformula is defined as usual, with the extra clause that says
that the subformulas of a quantification ∀F.A are the quantification itself
together with the subformulas of formulas of the form AF

P , where P is either
a propositional variable (free for F in A) or a propositional constant.

A normalization theorem for atomic PSOLi can be easily proved (in the
manner of Theorem 2 of Section V of [3]). We also make the usual conven-
tions about Eigenvariables of ∀-introduction rules, namely that an Eigen-
variable in a derivation is the Eigenvariable of at most one inference, and
that the Eigenvariable occurs only above the conclusion of the inference.
From this we have the following result (after [1]):

Theorem 2. Let ∆ be a normal derivation in atomic PSOLi. Then

i) every formula in ∆ is a subformula of the conclusion or of a (undis-
charged) hypothesis of ∆ (Subformula Property);

ii) if ∆ ends in an elimination rule, it has a principal branch, i.e. a
sequence of formulas A0, A1, . . . , An such that

– A0 is an (undischarged) hypothesis;

– An is the conclusion;

– for i = 0, . . . , n− 1, Ai is the principal premise of an elimination
rule whose conclusion is Ai+1.

In particular, An is a subformula of A0.
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Proof. The proof is by induction on the number of inferences in ∆. The
base for induction is when ∆ consists solely of a hypothesis, in which case
there is nothing to do. If ∆ ends in an introduction rule, say in

...
A

∀G.A
∀i

just apply the induction hypothesis to the derivation that ends in A. If ∆
ends in an elimination rule, say in

...
∀G.A

AG
P

∀e

it is not possible that the penultimate inference rule is an introduction, since
otherwise the derivation wouldn’t be normal. Therefore, it is an elimination
rule and we now apply the induction hypothesis again.

As an application of the above discussion, we prove the following disjunc-
tion property. Let A and B be the translations into the language of PSOLi

of given formulas of the intuitionistic propositional calculus (according to
the embedding discussed above). If A∨B is derivable in atomic PSOLi then
so is either A or B (or both). Take a normal derivation of A ∨B, i.e., of

∀G((A → G) → ((B → G) → G)).

By the last remark of part (ii) of Theorem 2, the last rule of this derivation
must be an introduction rule. Therefore, the normal derivation has the form:

...
(A → G) → ((B → G) → G)

∀G((A → G) → ((B → G) → G)) ∀i

By (ii) of Theorem 2 again, the penultimate inference rule must also be an
introduction. We thus have:

[A → G]∗
...

(B → G) → G

(A → G) → ((B → G) → G) → i∗

∀G((A → G) → ((B → G) → G)) ∀i
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where A → G may be absent as a discharged assumption. We now argue
that the last rule of the normal derivation

A → G
...

(B → G) → G

can’t be an elimination rule. If it were, take its principal branch. Its top
formula is an undischarged assumption, viz. A → G. This assumption must
be the principal premise of an elimination rule. Therefore, this rule must be
of the form:

A → G

...
A

G
→ e

where ‘A → G’ on the left hand side is the top formula of the principal
branch. This is impossible because the derivation would have to terminate
at that point (i.e., at G).

We argued that the last rule of a (normal) derivation of (B → G) → G
from A → G is an introduction rule. Hence, we have a normal derivation of
the form:

A → G
.. .

B → G

..
.

G

The last line of this derivation is per force an elimination rule. Consider
the principal branch of this derivation. Its top is either the formula A → G
or the formula B → G. Suppose it is A → G (the other case is similar).
Then, it must be the principal premise of an elimination rule. Therefore,
the above derivation must have the form:

A → G

A → G
.. .

B → G

..
.

A
G

→ e

where the ‘A → G’ on the left side is the top formula of the principal branch,
which consists just of A → G followed by G.

We argue now that substituting G for any formula C on the top right
side derivation above yields a derivation of A from the premises A → C and
B → C (one or both of which may be absent). If both A → G and B → G
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are absent, then A is derivable without premises (as wanted). Otherwise,
the only thing to check is that all rules in the derivation involving formu-
las where G appears can be mimicked by rules where C appears instead.
This is obviously true for the implication rules, as well as for the quantifica-
tion rules provided that in a ∀-introduction G is not the Eigenvariable and
that the conclusion of a ∀-elimination is not obtained by substituting the
bound variable of the universal quantifier by the atomic variable G. Well,
a ∀-introduction rule with Eigenvariable G never occurs because G is in a
undischarged hypothesis above it. One must now study the ∀-elimination
rule. By the subformula property, all universal quantifications in the deriva-
tion are either falsum (i.e., of the form ∀F.F ), a conjunction or a disjunction
(see the definitions à la Prawitz). And for these universal quantifications,
we may suppose that their range consists of all formulas of the language (cf.
Theorem 1) and, in particular, the formula C.

To finish the proof of the disjunction property, just take C to be G → G.
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