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Commuting conversions vs.
the standard conversions of
the “good” connectives

Abstract. Commuting conversions were introduced in the natural deduction calculus

as ad hoc devices for the purpose of guaranteeing the subformula property in normal

proofs. In a well known book, Jean-Yves Girard commented harshly on these conversions,

saying that ‘one tends to think that natural deduction should be modified to correct

such atrocities.’ We present an embedding of the intuitionistic predicate calculus into a

second-order predicative system for which there is no need for commuting conversions.

Furthermore, we show that the redex and the conversum of a commuting conversion of the

original calculus translate into equivalent derivations by means of a series of bidirectional

applications of standard conversions.
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Introduction

In [1], the first author showed how to embed the intuitionistic propositional
calculus into atomic PSOLi, a calculus with only two connectives: the con-
ditional and the second-order universal quantifier. The word ‘atomic’ is
justified by the restriction of the elimination rule of the second-order univer-
sal quantifier to atomic instantiations. The proof of the correctness of the
embedding is straightforward once one hits upon the idea that the embed-
ding might work at all. It is somewhat surprising that this simple idea has
not arisen before in Proof Theory (recently, we learned that Tor Sandqvist
rediscovered the embedding – see [4]).

The embedding is made possible by a phenomenon dubbed instantiation
overflow. We easily extend the embedding to the intuitionistic predicate
calculus. In this extended case, it consists of an embedding into a second-
order calculus whose connectives are the conditional and first and second-
order universal quantifiers. Observe that the bad connectives (cf. p. 80
of [2]) ⊥, ∨ and ∃ are conspicuously absent. The main part of the present
paper is devoted to answering the following question: how do the commuting
conversions of the intuitionistic predicate calculus (these are conversions
associated with the ‘bad’ connectives ⊥, ∨ and ∃) translate via the above
embedding? The main theorem of the paper shows that the redex and the
conversum of a commuting conversion translate into equivalent derivations
by means of a series of bidirectional applications of standard conversions.
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2 Fernando Ferreira and Gilda Ferreira

1. Preliminaries

In this section, we describe the calculus atomic QSOLi (an acronym for
quantifier second-order logic). The language of this calculus is based on
a pure first-order language. It has, furthermore, second-order sentential
variables, F,G,H, . . . and a corresponding second-order universal quantifier.
The second-order universal quantifier together with the first-order univer-
sal quantifier and the conditional are the sole primitive logical connectives.
Atomic formulas are either second-order variables or expressions of the form
P (t1, . . . , tn), where P is a n-ary relational symbol and t1, . . . , tn are first-
order terms. The class of formulas is the smallest set containing the atomic
formulas and closed under the conditional and first and second-order uni-
versal quantifiers. I.e.: if A and B are formulas, then (A → B), ∀1x.A and
∀2F.A, with x a first-order variable and F a second-order variable, are also
formulas. In the sequel, we usually omit the subscripts of ∀1 and ∀2.

The logic of atomic QSOLi is intuitionistic logic (or, if one prefers, min-
imal logic, since we are in a setting without ⊥ as a primitive symbol of the
language) and the proof system used is framed in the natural deduction cal-
culus. Natural deduction in atomic QSOLi has the usual introduction rules
for the conditional and the universal quantifiers:

[A]
.
.
.
B →I

A → B

.

.

.
A ∀1I∀x.A

.

.

.
A ∀2I∀F.A

where x and F do not occur free in any undischarged hypothesis (respec-
tively). It also has elimination rules:

.

.

.
A → B

.

.

.
A →E

B

.

.

.

∀x.A ∀1E
Ax

t

.

.

.
∀F.A ∀2E
AF

S

with t a term (free for x in A), S an atomic formula (free for F in A), and
Aαβ results from A by replacing all the free occurrences of α by β.

Observe that in the second-order elimination rule ∀2E, the instantiation
of F is restricted to atomic formulas. This explains why we dub our calculus
atomic. As we will see, this restriction is not as severe as one might first be
led to think. A phenomenon, dubbed instantiation overflow, ensures that for
formulas A with a certain structure, we can instantiate ∀F.A by any formula
of the language whatsoever.
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2. The embedding

We now define the embedding of the intuitionistic predicate calculus into
atomic QSOLi. The embedding follows a definition that Prawitz gave for the
impredicative setting (see [3]):

⊥:= ∀F.F
A ∧B := ∀F ((A→ (B → F ))→ F )

A ∨B := ∀F ((A→ F )→ ((B → F )→ F ))

∃x.A := ∀F (∀x(A→ F )→ F )

where F is a second-order variable which does not occur in A or B.
As observed, this embedding works fine in the impredicative calculus (i.e.,

where the elimination rule ∀2E is unrestricted). Prawitz’s embedding im-
merses the intuitionistic predicate calculus into impredicative second-order
logic, a much stronger system from the proof-theoretic point of view. Note,
furthermore, that in this system it does not make sense to define the notion of
subformula because the instantiations of ∀F.A can be arbitrarily complex.
On the other hand, there is a perfectly natural definition of subformula
within atomic QSOLi: just say that the (proper) subformulas of ∀F.A are
the formulas AFS , where S is an atomic formula (free for F in A).

We claim that the above embedding is already operative into the strict
predicative theory atomic QSOLi. To see this, we need to ensure that in
atomic QSOLi the rules for ⊥, ∧, ∨ and ∃ remain valid after translated
according to Prawitz’s definition. The following result is instrumental:

Proposition 1 (Instantiation overflow). In atomic QSOLi, instantiation
overflow is available for every formula of the type above, i.e. from

- ∀F.F
- ∀F ((A→ (B → F ))→ F )

- ∀F ((A→ F )→ ((B → F )→ F ))

- ∀F (∀x(A→ F )→ F ),

where F is a second-order variable which does not occur in A or B, we can
deduce

- C

- (A→ (B → C))→ C
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- (A→ C)→ ((B → C)→ C)

- ∀x(A→ C)→ C,

for any formula C, respectively. (In the last case, x must not occur in C.)

Proof: The first three cases can be studied in a similar way to [1], where the
study is effected within the context of the propositional calculus. Although
here we have a richer language (with more formulas), the same strategy, by
induction on the complexity of the formula C, works. It remains to study
the fourth case. Suppose that we have ∀F (∀x(A → F ) → F ). We must
show that it is possible to deduce ∀x(A → C) → C, for any formula C (in
which x does not occur). The proof proceeds by induction on the complexity
of C.

If C is an atomic formula, the result is immediate, applying the ∀2E rule.
Let us study the case C := C1 → C2.

∀F (∀x(A → F ) → F )
I.H.

∀x(A → C2) → C2

[∀x(A → (C1 → C2))]

A → (C1 → C2) [A]

C1 → C2 [C1]

C2

A → C2

∀x(A → C2)

C2

C1 → C2

∀x(A → (C1 → C2)) → (C1 → C2)

The double line is used to indicate that we are hiding a portion of the
proof (between the two lines). In the present situation that proof exists by
the induction hypothesis (I.H.).

We now present the discussion of the case C := ∀y.C1 (the case ∀G.C1

is similar, and we omit it). Suppose, without loss of generality, that y does
not occur in A. We have:

∀F (∀x(A → F ) → F )
I.H.

∀x(A → C1) → C1

[∀x(A → ∀yC1)]

A → ∀yC1 [A]

∀yC1

C1

A → C1

∀x(A → C1)

C1

∀yC1

∀x(A → ∀yC1) → ∀yC1
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The previous inductive proof provides an algorithmic method for obtain-
ing instantiation overflows for the four types of formulas studied. We call
these types logical types. We refer to the method of instantiation above as
the canonical way of disclosing the portion of the proof hidden when using
an instantiation overflow.

Theorem 1. The introduction and elimination rules of natural deduction
for the connectives of the intuitionistic predicate calculus are valid in atomic
QSOLi when translated according to Prawitz’s definition.

Proof: The rules for→ and ∀1 are primitive in atomic QSOLi. The validity
of the rules for ⊥, ∧ and ∨ can be established as in [1]. Therefore, ∃1I and
∃1E are the only rules requiring attention. The first is immediate:

.

.

.
A

[∀x(A → F )]

A → F
F

∀x(A → F ) → F

∀F (∀x(A → F ) → F ) := ∃x.A

The second uses the previous proposition, i.e. from ∀F (∀x(A→ F )→ F )
we can deduce ∀x(A→ C)→ C, for any formula C where x does not occur.

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → C) → C

[A]
.
.
.
C

A → C
∀x(A → C)

C

By a canonical translation of an intuitionistic proof in the predicate
calculus into a proof in atomic QSOLi, we mean a translation, rule-by-rule,
according to the proof of the theorem above.

3. Properties and advantages of atomic QSOLi

The rules of elimination for the connectives ⊥, ∨ and ∃ have been subjected
to some criticism because they are not as natural and as well behaved as
the other inferential rules. On the face of it, this is a curious line of criti-
cism because ∨ and ∃ are the most characteristic connectives of intuitionistic
logic. In the well known book ‘Proofs and Types’ ([2], p. 74), in a section
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entitled ‘Defects of the System,’ Jean-Yves Girard says that ‘the elimination
rules [of these connectives] are very bad’ and adds that ‘what is catastrophic
about them is the parasitic presence of a formula C which has no structural
link with the formula which is eliminated.’ Moreover, in order to have nor-
mal proofs with the subformula property, there is the need to add some ad
hoc conversions: the commuting conversions (also called permutative conver-
sions). Girard adds that ‘the need to add these supplementary rules reveals
an inadequacy of the syntax.’ Some pages afterwards (p. 80), apropos these
conversions, it is said that ‘one tends to think that natural deduction should
be modified to correct such atrocities.’ We take it that Girard is complaining
against the artificiality of the commuting conversions, blaming the need for
these extra conversions on the elimination rules of the connectives ⊥, ∨ and
∃.

Girard writes that ‘if a connector has such bad rules, one ignores it (a very
common attitude) or one tries to change the very spirit of natural deduction
in order to be able to integrate it harmoniously with the others.’ Ignoring
⊥, ∨ and ∃ is, actually, a very common attitude in presentations of the
lambda calculus. We make the following proposal: embed the intuitionistic
predicate calculus into atomic QSOLi, where there are no bad rules. We
tentatively suggest that this is the right way to see the connectives ⊥, ∨
and ∃ in Structural Proof Theory: through the lens of the above embedding.
This is a very natural move and, after all, ‘the (⊥, ∨, ∃) fragment of the
calculus is [not] etched on tablets of stone’ (cf. Girard, ibidem). Of course,
the suggestion must be grounded on technical work. The present article
does not address this question, but we point out that it has been shown that
the disjunction property can be obtained within the new framework (see the
final part of [1]).

The conversions of atomic QSOLi are the standard ones, namely the usual
proof-theoretic transformations (reductions) applied to an introduction rule
followed immediately by an elimination rule of the same connective. For
instance:

.

.

.
A

∀F.A

AF
S

 

.

.

.

AF
S

where S is an atomic formula free for F in A, and on the right-hand side
the proof above the formula AFS is obtained from the proof above A by
replacing each suitable occurrence of the free variable F by S. To avoid
syntactic rabble, we are not being totally precise at this juncture (syntactic
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matters concerning normalization are well understood: see, for instance, the
discussion on proper parameters in [3]). The redex of the above conversion
is the configuration on the left-hand side, whereas the configuration on the
right-hand side is called the conversum of the conversion.

4. Translation of the commuting conversions

There are no commuting conversions in atomic QSOLi (NB the connectives
⊥, ∨ and ∃ are absent). A curious question may, nevertheless, be raised: how
are the commuting conversions of the intuitionistic predicate calculus trans-
lated into atomic QSOLi? In trying to answer this question, we discovered
the following: the redex and the conversum of a commuting conversion trans-
late into second-order derivations of atomic QSOLi which are, in a certain
precise sense, equivalent.

We remind the reader of the three types of commuting conversions (c.c.)
of intuitionistic predicate calculus:

1) conversion ⊥E

.

.

.

⊥ ⊥E
C

.

.

.
r

D

c.c.
 

.

.

.

⊥ ⊥E
D

2) conversion ∨E

.

.

.
A ∨B

[A]
.
.
.
C

[B]
.
.
.
C ∨E

C

.

.

.
r

D

c.c.
 

.

.

.
A ∨B

[A]
.
.
.
C

.

.

.
r

D

[B]
.
.
.
C

.

.

.
r

D ∨E
D

3) conversion ∃1E

.

.

.

∃xA

[A]
.
.
.
C ∃1E

C

.

.

.
r

D

c.c.
 

.

.

.

∃xA

[A]
.
.
.
C

.

.

.
r

D ∃1E
D

where r stands for an elimination rule with principal premise C.
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The redex of a commuting conversion is the configuration on the left-
hand side, whereas the configuration on the right-hand side is called the
conversum of the conversion.

Definition 1. We say that two derivations of atomic QSOLi are →∀1∀2-
equivalent if one is obtained from the other by a finite series of standard
conversions of →, ∀1 and ∀2 in both directions.

Theorem 2 (Main Theorem). The canonical translations into atomic QSOLi

of the redex and the conversum of a commuting conversion are →∀1∀2-
equivalent.

The above result is not true for Prawitz’s embedding of the intuition-
istic predicate calculus into impredicative second-order logic (see [5]). For
example, if A and B are atomic formulas, the c.c.

...
⊥ ⊥E

A→ B

...
A →E

B

c.c.
 

...
⊥ ⊥E
B

translated into full (unrestricted) QSOLi has redex
...

∀F.F ∀2E
A→ B

...
A →E

B and conversum

...
∀F.F ∀2E
B

and these cannot be linked via standard conversions.
The correspondence works in atomic QSOLi because the translation re-

quires that ∀2E-rules are instantiated only with atomic formulas. In the
previous example, the redex becomes

...
∀F.F ∀2E
B

A→ B

...
A →E

B and the conversum

...
∀F.F ∀2E
B

and the latter is obtained from the former via a single standard conversion.

The remaining part of this article is dedicated to the proof of the above
Main Theorem. The proof proceeds in two steps. In this section, we take care
of the first step (which is of independent interest). We need the following
auxiliary notion:
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Definition 2. Let be given a logical type of the form ∀F.A and a derivation

...
A
∀F.A

such that the subderivation above A only has second-order elimination rules
∀2E applied to logical types. Let D be a formula free for F in A. We call the
following proof-transformation a standard block-conversion (considering D
as a block):

.

.

.
A

∀F.A

AF
D

 

.

.

.

AF
D

where, on the left hand-side the double line hides the canonical way of over-
flowing instantiation and, on the right-hand side, the configuration above
the formula AFD is obtained from the proof above A by replacing each suit-
able occurrence of the free variable F by D and by inserting the canonical
justifications of the instantiation overflows.

As usual, the redex of a standard block-conversion is the configuration
on the left-hand side, whereas the configuration on the right-hand side is
called the conversum of the block-conversion. The following proposition is
the first step towards proving the Main Theorem. We believe that it has
also independent interest because it uses conversions in one direction only:

Proposition 2. From the canonical translation of the redex of a commuting
conversion into atomic QSOLi we can obtain, through successive applications
of standard conversions and standard block-conversions, the canonical trans-
lation of the conversum of the commuting conversion.

Proof: We study in detail the case of the commuting conversion for ∃1E.
The other commuting conversions can be studied in a similar way.

We show that from the canonical translation of

.

.

.

∃xA

[A]
.
.
.
C ∃1E

C

.

.

.
r

D
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into atomic QSOLi we obtain, by means of standard conversions and standard
block-conversions (where D is used as a block), the canonical translation of

.

.

.

∃xA

[A]
.
.
.
C

.

.

.
r

D ∃1E
D

We study exhaustively all the possibilities for the formula C:

• C cannot be an atomic formula because r is an elimination rule with
C as a principal premise.

• If C is the formula ⊥, the c.c. is

.

.

.

∃xA

[A]
.
.
.

⊥ ∃1E⊥
D

c.c.
 

.

.

.

∃xA

[A]
.
.
.

⊥
D ∃1E

D

The formula-by-formula translation of the redex of the c.c. to atomic
QSOLi yields (for ease of notation, we ignore the translations of A and D)

.

.

.

∀F (∀x(A → F ) → F )

[A]
.
.
.

∀F.F

∀F.F
D

We will be somewhat detailed in the discussion of this case. By effecting
the canonical translation into atomic QSOLi we get:

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → F ) → F

[∀x(A → ∀F.F )]

A → ∀F.F [A]

∀F.F
F

A → F
∀x(A → F )

F
∀F.F

∀x(A → ∀F.F ) → ∀F.F

[A]
.
.
.

∀F.F
A → ∀F.F

∀x(A → ∀F.F )

∀F.F

D

Three standard conversions yield
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.

.

.

∀F (∀x(A → F ) → F )

∀x(A → F ) → F

[A]
.
.
.

∀F.F
F

A → F
∀x(A → F )

F
∀F.F

D

Applying a standard block-conversion (considering D as a block), we get

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → D) → D

[A]
.
.
.

∀F.F

D
A → D

∀x(A → D)

D

which is the canonical translation to atomic QSOLi of the conversum of the
commuting conversion.

• If C is a formula of the form C1 ∨ C2, the c.c. is

.

.

.

∃xA

[A]
.
.
.

C1 ∨ C2

C1 ∨ C2

[C1]
.
.
.

D

[C2]
.
.
.

D

D

c.c.
 

.

.

.

∃xA

[A]
.
.
.

C1 ∨ C2

[C1]
.
.
.

D

[C2]
.
.
.

D

D
D

The formula-by-formula translation of the redex of the c.c. to atomic
QSOLi yields (for ease of notation, we ignore the translations of A, C1, C2

and D)

.

.

.

∀F (∀x(A → F ) → F ))

[A]
.
.
.

∀F ((C1 → F ) → ((C2 → F ) → F ))

∀F ((C1 → F ) → ((C2 → F ) → F ))

[C1]
.
.
.
D

[C2]
.
.
.
D

D

Applying the canonical translation into atomic QSOLi we obtain, with
the aid of twelve standard conversions, the configuration in Fig. 1 (see the
appendix for this and other figures). By a standard block-conversion (con-
sidering D as a block), we get Fig. 2. With two more standard conversions
we get Fig. 3, which is the canonical translation into atomic QSOLi of the
conversum of the commuting conversion.



12 Fernando Ferreira and Gilda Ferreira

• If C is a formula of the form C1 → C2, the c.c. is

.

.

.

∃xA

[A]
.
.
.

C1 → C2

C1 → C2

.

.

.
C1

C2

c.c.
 

.

.

.

∃xA

[A]
.
.
.

C1 → C2

.

.

.
C1

C2

C2

The formula-by-formula translation of the redex of the c.c. to atomic
QSOLi yields (for ease of notation, we ignore the translations of A, C1 and
C2)

.

.

.

∀F (∀x(A → F ) → F )

[A]
.
.
.

C1 → C2

C1 → C2

.

.

.
C1

C2

Applying the canonical translation into atomic QSOLi, we obtain Fig. 4
and with four standard conversions we get Fig. 5, which is the canonical
translation into atomic QSOLi of the conversum of the commuting conver-
sion.

• We omit the study of conjunction to make the paper shorter. Actu-
ally, conjunction is also a ‘good’ connective and could have been taken as
primitive.

• If C is a formula of the form ∀yC1, the c.c. is

.

.

.

∃xA

[A]
.
.
.

∀yC1

∀yC1

C1

c.c.
 

.

.

.

∃xA

[A]
.
.
.

∀yC1

C1

C1

The formula-by-formula translation of the redex of the c.c. to atomic
QSOLi yields (for ease of notation, we ignore the translations of A and C1)

.

.

.

∀F (∀x(A → F ) → F )

[A]
.
.
.

∀yC1

∀yC1

C1
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Applying the canonical translation into atomic QSOLi, we obtain:

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → C1) → C1

[∀x(A → ∀yC1)]

A → ∀yC1 [A]

∀yC1

C1

A → C1

∀x(A → C1)

C1

∀yC1

∀x(A → ∀yC1) → ∀yC1

[A]
.
.
.

∀yC1

A → ∀yC1

∀x(A → ∀yC1)

∀yC1

C1

We now apply four standard conversions and get

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → C1) → C1

[A]
.
.
.

∀yC1

C1

A → C1

∀x(A → C1)

C1

which is the canonical translation into atomic QSOLi of the conversum of
the commuting conversion.

• Finally, suppose that C is a formula of the form ∃yC1. Its c.c. is

.

.

.

∃xA

[A]
.
.
.

∃yC1

∃yC1

[C1]
.
.
.
D

D

c.c.
 

.

.

.

∃xA

[A]
.
.
.

∃yC1

[C1]
.
.
.
D

D
D

The formula-by-formula translation of the redex of the c.c. to atomic
QSOLi yields (for ease of notation, we ignore the translations of A, C1 and
D)

.

.

.

∀F (∀x(A → F ) → F )

[A]
.
.
.

∀F (∀y(C1 → F )) → F )

∀F (∀y(C1 → F )) → F )

[C1]
.
.
.
D

D
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Applying the canonical translation into atomic QSOLi we obtain, with
the aid of six standard conversions,

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → F ) → F

[A]
.
.
.

∀F (∀y(C1 → F ) → F )

∀y(C1 → F ) → F [∀y(C1 → F )]

F
A → F

∀x(A → F )

F
∀y(C1 → F ) → F

∀F (∀y(C1 → F ) → F )

∀y(C1 → D) → D

[C1]
.
.
.
D

C1 → D

∀y(C1 → D)

D

Now, by a standard block-conversion (considering D as a block), we get:

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → D) → D

[A]
.
.
.

∀F (∀y(C1 → F ) → F )

∀y(C1 → D) → D [∀y(C1 → D)]

D
A → D

∀x(A → D)

D
∀y(C1 → D) → D

[C1]
.
.
.
D

C1 → D

∀y(C1 → D)

D

Applying a further standard conversion, we have

.

.

.

∀F (∀x(A → F ) → F )

∀x(A → D) → D

[A]
.
.
.

∀F (∀y(C1 → F ) → F )

∀y(C1 → D) → D

[C1]
.
.
.
D

C1 → D

∀y(C1 → D)

D
A → D

∀x(A → D)

D

which is the canonical translation into atomic QSOLi of the conversum of
the commuting conversion.

The proof of the proposition is finished.
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5. Analyzing block-conversions

In order to finish the proof of the Main Theorem, it is enough to show
that the standard block-conversions that were actually used in the proof of
Proposition 2 enjoy the following property: their redexes and conversa are
→∀1∀2-equivalent.

We study, in detail, the first standard block-conversion used in the proof
(case C :=⊥).

The standard block-conversion has redex
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and conversum
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The study is done by induction on the complexity of the formula D.

When D is an atomic formula, the standard block-conversion is, in fact,
a standard conversion. Graphically, denoting by ∆1 and ∆2 the redex and
the conversum of the standard block-conversion respectively and by arrows

the standard conversions, we have:
∆1• 1−→∆2•

If D := D1 → D2 the redex (∆1) of the standard block-conversion has
the form
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By induction hypothesis we obtain the following derivation (denoted by
∆)
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The conversum (∆2) of the standard block-conversion has the form
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Applying four standard conversions we obtain the derivation ∆. The

scheme is
∆1• IH←→∆• 4←−∆2•

If D := ∀yD1 (the case D := ∀GD1 is similar, and we omit it) the redex
(∆1) of the standard block-conversion has the form
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By induction hypothesis we have the following derivation (denoted by
∆)
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∀F (∀x(A → F ) → F )

∀x(A → D1) → D1

[A]
.
.
.

∀F.F

D1

A → D1

∀x(A → D1)

D1

∀yD1

The conversum (∆2) of the standard block-conversion has the form

.
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[∀x(A → ∀yD1)]

A → ∀yD1 [A]
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∀x(A → D1)
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∀x(A → ∀yD1) → ∀yD1

[A]
.
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∀F.F
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A → ∀yD1

∀x(A → ∀yD1)

∀yD1

Applying four standard conversions we obtain the derivation ∆. Again,

the diagram is
∆1• IH←→∆• 4←−∆2•

The other standard block-conversions can be examined in an entirely
analogous way. We will just indicate the number and direction of the stan-
dard conversions needed to establish the equivalences.

In the second standard block-conversion used in the proof of Proposition
2 (case C := C1 ∨ C2), the graphics are:

∆1• 1−→∆2• ,
∆1• IH←→∆• 2−→ • 6←−∆2• and

∆1• IH←→∆• 2−→ • 6←−∆2•
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for D an atomic formula, D := D1 → D2 and D := ∀yD1 respectively.
In the third standard block-conversion used in the proof of Proposition

2 (case C := ∃yC1), the graphics are:
∆1• 1−→∆2• ,

∆1• IH←→∆• 1−→ • 5←−∆2• and
∆1• IH←→∆• 1−→ • 5←−∆2•

for D an atomic formula, D := D1 → D2 and D := ∀yD1 respectively.
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