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Abstract

It is well known that Frege’s system in the Grundgesetze der Arith-
metik is formally inconsistent. Frege’s instantiation rule for the second-
order universal quantifier makes his system, except for minor differ-
ences, full (i.e., with unrestricted comprehension) second-order logic,
augmented by an abstraction operator that abides to Frege’s basic
law V. A few years ago, Richard Heck proved the consistency of the
fragment of Frege’s theory obtained by restricting the comprehension
schema to predicative formulae. He further conjectured that the more
encompassing ∆1

1-comprehension schema would already be inconsis-
tent. In the present paper, we show that this is not the case.
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1 Introduction.

In the context of the recent Frege renaissance in the philosophy of mathe-
matics, much attention has been paid to consistent fragments of the theory
of Frege’s Grundgesetze der Arithmetik [3]. Russell’s well-known paradox
arises through the interplay between second-order comprehension and Frege’s
value-range operator as governed by basic law V. Hence, there are essentially
two options for arriving at consistent subtheories of Frege’s system: restrict
axiom V, or restrict the comprehension schema. We are here concerned only
with the latter strategy.

The first result in this direction was obtained by Terence Parsons [7], who
showed that the first-order fragment of Grundgesetze (that is essentially first-
order logic together with a schematic version of basic law V) is free from
contradiction. While Parsons’ proof is model-theoretic, a constructive proof
of this result has recently been given by John Burgess [2]. Warren Goldfarb
[4] has shown the first-order fragment to be undecidable.

Richard Heck [5] has shown that the predicative fragment of Grundgesetze,
i.e. the subtheory obtained by restricting the second-order comprehension
schema to instances where the comprehension formula contains no second-
order quantifiers, is consistent and interprets Robinson’s arithmetic Q. At
the same time, Heck conjectured that the more encompassing schema of ∆1

1-
comprehension would lead to inconsistency.

Wehmeier [8] defined a Fregean theory T∆ containing the ∆1
1-comprehension

schema and proved its consistency. However, Wehmeier’s technical setting
is different from that of Parsons and Heck (see the last section), yielding a
theory which is unable to nest some first-order abstracts and which is very
weak in terms of ∆1

1-definability. For instance, Wehmeier’s model-theoretic
consistency proof produces a model of T∆ whose ∆1

1-sets consist only of the
finite and co-finite (i.e., with finite complement) sets. Even though the the-
ory T∆ is very limitative from this viewpoint, it did permit Wehmeier to
make some interesting philosophical points concerning the existence of non-
logical objects (see [8]). In the end, it remained open the question whether a
contradiction would be derivable in Heck’s predicative fragment augmented
by the schema of ∆1

1-comprehension.

In the present note we show that this is not the case, i.e., that the theory
consisting of schema V plus ∆1

1-comprehension is free from contradiction,
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thereby fully refuting Heck’s conjecture. The proof goes roughly as follows.
Heck proved the consistency of the predicative fragment of Grundgesetze
by (essentially) extending Parsons’ first-order model with a second-order
part consisting of the first-order definable sets of that model. The exten-
sion duly results in a model of predicative comprehension. In the present
paper, we carry out the same construction with the following modification:
we start with a recursively saturated elementary extension of Parsons’ first-
order model. As a result, it follows that the second-order extended model
satisfies ∆1

1-comprehension. This happens for reasons similar to those of the
following theorem of Barwise and Schlipf [1]: The class of first-order defin-
able sets of a recursively saturated model of elementary Peano Arithmetic
validates the schema of ∆1

1-comprehension.

Finally, we note that the ∆1
1-comprehension schema is on the verge of incon-

sistency. In fact, as Heck has pointed out in [5], Russell’s paradox can be
reproduced in the fragment of Frege’s system in which the comprehension
schema is restricted to Σ1

1-formulae (equivalently, to Π1
1-formulae).

2 Terminology and Basic Notions.

The linguistic setting is as in [5]: The Frege language LF arises from the
language of pure monadic second-order logic (with first-order equality) by
the addition of the value-range (VR) operator ˆ , whose syntax is given by
the clause: If x is an individual variable and A any formula, then x̂A is a
term (a VR term, as we shall say). The first-order expressions of LF are
those expressions that contain no second-order variables (which we shall also
call ‘concept variables’). L1

F is the first-order fragment of LF .

Let M be a non-empty set and S a collection of subsets of M . The pair
M = (M, S) is a so-called generalised structure for pure monadic second-
order logic: First-order variables are intended to range over M , whereas
second-order variables range over S. We shall write D1M for M and D2M

for S. L1
F (M) is L1

F augmented by an individual constant c for every element
c ∈ M , where the constant c is to be interpreted by the element c. LF (M) is
LF augmented by an individual constant c for each c ∈ D1M as before and
a predicate constant H for each H ∈ S, where again the predicate constant
H is to be interpreted by the set H.

A structure for LF is a pair (M, I), where M is a generalised second-order
structure, and I is a function mapping every closed VR term x̂A of LF (M) to
an element of D1M. Similarly, a structure for L1

F is a pair (M, I) consisting
of a non-empty set M , and a function I mapping every closed VR term x̂A
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of L1
F (M) to an element of M .

Given a structure (M, I) for LF , closed LF (M)-formulae are evaluated se-
mantically as usual, where the denotations of the closed VR terms x̂A are
supplied by the function I, and similarly for L1

F .

With respect to LF , schema V is the set of all universal closures (with respect
to both first- and second-order variables) of instances of

x̂A = ŷB ↔ ∀z(Ax[z] ↔ By[z]),

for every pair A, B of LF -formulae, where z is a fresh variable. With respect
to L1

F , schema V is the set of all such sentences for every pair A, B of L1
F -

formulae.

A predicative formula of LF is a formula with no second-order quantifiers.
A Σ1

1-formula of LF is a formula of the form ∃X1 . . .∃XnA, where A is pred-
icative. Negations of Σ1

1-formulae are called Π1
1-formulae. The LF -schema of

predicative comprehension is the set of all universal closures of all instances
of

∃X∀x(Xx ↔ A),

where A is a predicative formula and X has no free occurrences in A. The LF -
schema of ∆1

1-comprehension is the set of universal closures of all instances
of

∀x(A ↔ B) → ∃X∀x(Xx ↔ A),

where A is a Σ1
1-formula, B is a Π1

1-formula and X is not free in A.

Let L be a recursive first-order language. A structure M for L is recursively
saturated if, for any recursive set Φ of L-formulae in at most finitely many
free variables x, ȳ and every finite tuple n̄ of elements of M , there is a finite
subset Ψ of Φ such that

M |= ∀x
∨

Φȳ[n̄] → ∀x
∨

Ψȳ[n̄].

More precisely: If for every element m of M there is a formula A ∈ Φ
such that M |= Ax,ȳ[m, n̄], then there is a finite subset Ψ of Φ such that,
for each m ∈ M , there is an A ∈ Ψ with M |= Ax,ȳ[m, n̄] (the definition
is often formulated contrapositively in the literature). The important fact
about recursive saturation is the following: Given any countable structure
M for a recursive language L, there exists a countable recursively saturated
elementary extension N of M . For a detailed proof, see e.g. [6, pp. 148-9].
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3 The Model Construction.

The aim of this paper is to construct a structure (M, I) for LF satisfying
every instance of schema V plus the schema of ∆1

1-comprehension. This
will be done by first constructing a recursively saturated structure for L1

F

satisfying schema V, which can easily be expanded to a structure for LF

satisfying schema V plus predicative comprehension. The recursive satura-
tion of the first-order model will ensure that the second-order model satisfies
∆1

1-comprehension.

We start by considering the L1
F -structure defined in [5]. It is a structure

abiding to schema V, whose domain is the set of all natural numbers, and
such that there are infinitely many elements of the domain which are not
denotations of VR terms.

Since L1
F is a recursive language, there exists a countable recursively satu-

rated elementary extension (N, I) of the above structure. By elementarity,
(N, I) satisfies schema V, and still there are infinitely many elements in the
domain N which are not denotaions of VR terms (these elements make room
for the denotations of the impredicative VR terms yet to be considered).

Clarification. A slight complication actually arises in applying the recursive
saturation theorem to L1

F , as this is not a first-order language, owing to the
presence of the VR operator. This difficulty may be circumvented by refor-
mulating the Frege language L1

F into the first-order language used by Burgess
in [2]. Here, VR terms x̂A are rendered as terms ex,A,ȳ(ȳ), where ex,A,ȳ is a
function symbol and FV (A) \ {x} = ȳ. Schema V then takes the form

er,A,v̄x̄ = es,B,w̄ȳ ↔ ∀z(Ar,v̄[z, x̄] ↔ Bs,w̄[z, ȳ]),

where z is a fresh variable, the x̄ are free for the v̄ in A and the ȳ are free
for the w̄ in B. It should be noted, however, that the Burgess language
is not, strictly speaking, a notational variant of L1

F , as several translations
correspond to the same VR term. Thus, x̂(x = ŷ(y = y)), for instance, could
be rendered as either ex,x=z,z(ey,y=y,∅) or ex,x=ey,y=y,∅∅. Nevertheless, it is easy
to see that there exists a recursive fragment of the Burgess language that is
indeed a notational variant of L1

F . We shall ignore these niceties and simply
work with L1

F , taking the applicability of the recursive saturation theorem
for granted. End of Clarification.

This takes care of the first-order fragment. We say that a subset H of N
is L1

F -definable over (N, I) if there is an L1
F -formula A in at most the free

variables x, ȳ and a tuple n̄ of elements of N such that H = {m ∈ N :
(N, I) |= Ax,ȳ[m, n̄]}. Let S be the collection of all L1

F -definable subsets
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of N . Let N be the generalised second-order structure (N, S). In order to
turn N into a structure for the full Frege language LF , we need to extend
the function I to a function I∗ which is also defined on (a) those closed VR
terms of LF (N) which have set parameters from D2N, but no second-order
quantifiers (predicative VR terms), and (b) those closed VR terms of LF (N)
in which second-order quantifiers do occur (impredicative VR terms). This
can be done exactly as in [5]: for (a), replace second-order parameters by their
first-order definitions, for (b), repeat the original Parsons procedure on the
impredicative VR terms. As in [5], the resulting structure will satisfy both
schema V and the predicative comprehension axioms. It remains to show
that our structure (N, I∗) is also a model of the schema of ∆1

1-comprehension.
This is the task of the next section.

4 The Schema of ∆1
1-Comprehension.

We have followed Heck [5] in setting up the Frege language with concept
variables of one argument-place only, although Frege himself uses also binary
second-order variables in Grundgesetze. While the restriction to unary con-
cept variables simplifies notation enormously, it does not, in the presence of
schema V, represent any loss of generality: We may introduce ordered pairs
via the well-known Wiener-Kuratowski definition

〈u, v〉 :≡ x̂[x = ŷ(y = u) ∨ x = ŷ(y = u ∨ y = v)].

In the presence of schema V, one easily proves

∀xyuv(〈x, y〉 = 〈u, v〉 ↔ (x = u ∧ y = v)).

With this observation, it is clear that we can speak of binary second-order
variables simply by rendering them via unary concept variables true of the
pertinent ordered pairs. Since the definition of pairs is entirely first-order,
unary predicative comprehension immediately yields binary predicative com-
prehension: Given that A is predicative,

∃X∀x(Xx ↔ ∃uv[x = 〈u, v〉 ∧ A])

is still an instance of predicative comprehension (and similarly for ∆1
1-compre-

hension). The same is clearly true for ternary second-order variables, using
the definition 〈u, v, w〉 :≡ 〈〈u, v〉, w〉, etc.

Given a formula A of the full Frege language, R a second-order variable, and
x and y first-order variables, we denote by AX [Rx,y] the formula obtained
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from A by substituting each ocurrence of Xt in A by R〈x, y, t〉.
The main step in proving that the structure (N, I∗) is a model of the schema
of ∆1

1-comprehension is the following proposition, which says in effect that
(N, I∗) assents to a form of Σ1

1-choice. This is the only place in the proof
where we use the recursive saturation of the structure (N, I):

Proposition. The structure (N, I∗) satisfies the schema

∀x∃XA → ∃R∀x∃yAX [Rx,y]

where A is a predicative formula, and R and y are fresh variables.

Proof: Assume that (N, I∗) � ∀x∃XA. Substitute the second-order pa-
rameters of A by their first-order definitions. Without loss of generality, we
may suppose that these first-order definitions only require a single first-order
parameter p ∈ N : this is because we have a pairing function. (We shall
use this reduction to a single parameter in the definitions whenever conve-
nient.) Therefore, there is a formula B with no second-order parameters,
and with an extra free variable w, such that ∀x∀X(A ↔ Bw[p]) holds in
(N, I∗). Hence, by assumption, (N, I∗) � ∀x∃XBw[p]. Thus, given an ele-
ment a ∈ N , there is H ∈ D2N such that (N, I∗) � Bw,x,X [p, a, H]. Since
everything in D2N is L1

F -definable, there is a first-order formula C with ex-
actly two free variables u and y, and there is (a parameter) n ∈ N such that
H = {m ∈ N : (N, I) � Cu,y[m, n]}.
Let us introduce some notation: For each first-order formula C, let BX [{u :
C}] be the first-order formula obtained from B by substituting each oc-
curence of the form Xt by Cu[t]. With this new notation, we have (N, I) �
BX [{u : C}]w,x,y[p, a, n]. Given that a is arbitrary, we conclude that

(N, I) � ∀x
∨

Φw[p]

where Φ is the set of first-order formulae of the form ∃y(BX [{u : C}]), with
C a first-order formula in exactly the two free variables u and y. This set
Φ is clearly recursive. Thus, by recursive saturation, there are first-order
formulae C1, C2, . . . , Ck such that

(N, I) � ∀x∃y

k∨

i=1

BX [{u : Ci}]w[p].

Now, let D be the following first-order formula:

(C1 ∧ BX [{u : C1}]) ∨ (C2 ∧ BX [{u : C2}] ∧ ¬BX [{u : C1}]) ∨ . . .
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. . . ∨ (Ck ∧ BX [{u : Ck}] ∧
k−1∧

i=1

¬BX [{u : Ci}]).

Given a ∈ N , take n ∈ N such that

(N, I) �
k∨

i=1

BX [{u : Ci}]w,x,y[p, a, n]

and, at the same time, take the least i such that BX [{u : Ci}]w,x,y[p, a, n]
holds in (N, I). The formula D was defined so that the following equality
between sets holds:

{m ∈ N : (N, I) � Ci
u,y[m, n]} = {m ∈ N : (N, I) � Dw,x,y,u[p, a, n, m]}.

Therefore (N, I) � BX [{u : D}]w,x,y[p, a, n]. We have thus argued that

(N, I) � ∀x∃y(BX [{u : D}]w[p]).

Now, the set {〈a, n, m〉 ∈ N : (N, I) � Dw,x,y,u[p, a, n, m]} is a predicatively
defined set (ternary relation). We may conclude that

(N, I∗) � ∃R∀x∃yBX [Rx,y]w[p].

But BX [Rx,y]w[p] is Bw[p]X [Rx,y], and hence

(N, I∗) � ∃R∀x∃yAX [Rx,y].

�

Lemma. The structure (N, I∗) satisfies the schema

∀x∃X∃Y A → ∃R∃Q∀x∃yAX,Y [Rx,y, Qx,y]

where A is a predicative formula, and R, Q, and y are fresh variables.

Proof: This is a consequence of the previous proposition. Suppose that
∀x∃X∃Y A holds in (N, I∗). It is easy to see that (N, I∗) � ∀x∃ZB, where
Z is a fresh variable and the formula B arises from A by substituting the
occurences of the form Xt and Y t by Z〈0, t〉 and Z〈1, t〉, respectively. (Here
0 and 1 can be defined by x̂(x �= x) and x̂(x = 0), respectively.) By the
above proposition, we may conclude that

(N, I∗) � ∃S∀x∃yBZ [Sx,y].

This immediately yields our conclusion, since we may now define R〈x, y, u〉
by S〈x, y, 〈0, u〉〉, and Q〈x, y, u〉 by S〈x, y, 〈1, u〉〉. �
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We are now ready to argue that the structure (N, I∗) validates the schema of
∆1

1-comprehension. Using the trick of the proof of the above lemma, we may
collapse adjacent existential (respectively, universal) second-order quantifiers
into one existential (respectively, universal) quantifier. Thus, without loss of
generality, let A and B be predicative formulae, and suppose that

∀x(∃XA ↔ ∀Y B)

holds in the structure (N, I∗). In particular, we have:

(N, I∗) � ∀x∃X∃Y (¬B ∨ A).

By the above lemma,

(N, I∗) � ∃R∃Q∀x∃y(¬BY [Qx,y] ∨ AX [Rx,y]),

that is, there are sets H, L ∈ D2N such that, for each a ∈ N , we can find
n ∈ N so that

(#) (N, I∗) � ¬Bx,Y [a, Ha,n] ∨ Ax,X [a, La,n],

where Ha,n = {m ∈ N : 〈a, n, m〉 ∈ H}, La,n = {m ∈ N : 〈a, n, m〉 ∈ L}.
Now define

K := {a ∈ N : ∃n ∈ N (N, I∗) � Ax,X [a, La,n]}.

Note that K is predicatively defined and, thus, K ∈ D2N. We claim that
K = {a ∈ N : (N, I∗) � ∃XAx[a]}. Clearly, with this equality our argument
will be finished.

Suppose that a ∈ K. Take n ∈ N so that Ax,X [a, La,n] holds in (N, I∗).
Therefore, (N, I∗) � ∃XAx[a]. Conversely, take a ∈ N such that ∃XAx[a]
holds in (N, I∗). By assumption, we may suppose that (N, I∗) � ∀Y Bx[a].
By (#), we may conclude that (N, I∗) � Ax,X [a, La,n]. Hence a ∈ K.

5 Closing remarks.

The main idea of this paper is taken from the argument of Barwise and
Schlipf in [1] that proves that the class of first-order definable sets of a recur-
sively saturated model of elementary Peano Arithmetic validates the schema
of ∆1

1-comprehension. Barwise and Schlipf’s proof is couched in the lan-
guage of admissible set theory but, in this paper, we strove for simplicity
and sidestepped this (inessential) feature. Barwise and Schlipf also showed
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that their model satisfies a form of Σ1
1-choice (from which it was well known

that the schema of ∆1
1-comprehension would follow). Their Σ1

1-choice princi-
ple is slightly different from ours. It is

∀x∃XA → ∃R∀xAX [Rx],

where A is a predicative formula. The reason why they do not need the extra
variable y (compare with our choice principle), is ultimately due to the fact
that Peano Arithmetic has a canonical way (via minimization) of choosing
elements from non-empty first-order definable sets. This feature is absent
from our Fregean setting.

The schema of Σ1
1-choice permits the transformation of a formula of the form

∀x∃XA, with A predicative, into a Σ1
1-formula. Thus, in the presence of Σ1

1-
choice, we may safely ignore first-order quantifications when trying to judge
whether a certain given formula is (equivalent to) a Σ1

1-formula. More pre-
cisely: Let us define the class of the essentially Σ1

1-formulas as the smallest
class of formulas containing all predicative formulas and closed under con-
junctions, disjunctions, universal and existential first-order quantifications
and existential second-order quantifications. In the presence of Σ1

1-choice,
every essentially Σ1

1-formula is equivalent to a Σ1
1-formula. Analogously, we

define the class of the essentially Π1
1-formulas, and we formulate the essen-

tially ∆1
1-comprehension schema. From the discussion above, it is clear that

this schema follows from Σ1
1-choice.

With the terminology introduced in the last paragraph, we may finally com-
pare the result of this paper with Wehmeier’s mathematical result of [8].
Wehmeier’s setting is (monadic) second-order logic with equality augmented
by a unary function symbol ε that, when attached to a second-order variable
X, yields a first-order term εX. Wehmeier’s theory T∆ is axiomatic second-
order logic with the axiom of comprehension restricted to ∆1

1-formulas (in
these formulas one allows the occurence of terms of the form εX) together
with the single Fregean axiom V:

∀X∀Y (εX = εY ↔ ∀x(Xx ↔ Y x)).

The rendering of the abstractor as a function symbol proper, instead of a
term-building operator as in the Parsons-Heck tradition, has the effect of
restricting severely the uses of nested (first-order) abstraction. As Wehmeier
remarks in his paper [8], it is impossible to ∆1

1-define in T∆ the set of single-
tons, i.e., the set of elements x such that ∃z(x = ŷ(y = z)). More precisely,
the theory T∆ does not prove the sentence

∃X∀x(Xx ↔ ∃z∃Z(∀y(Zy ↔ y = z) ∧ x = εZ)).
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Consequently, Wehmeier’s T∆ does not have a counterpart for the nested
(first-order) abstract x̂(∃z(x = ŷ(y = z))). Note, however, that the prop-
erty of being a singleton does indeed have an essentially ∆1

1-definition in
Wehmeier’s setting. In effect, axiom V readily implies the equivalence:

∀x(∃z∃Z(∀y(Zy ↔ y = z)∧ x = εZ) ↔ ∃z∀Z(∀y(Zy ↔ y = z) → x = εZ)).

Hence, T∆ does not validate the comprehension schema for essentially ∆1
1-

formulae and, a fortiori, does not validate Σ1
1-choice. It is this combination

of an abstraction function together with the failure of the essentially ∆1
1-

comprehension schema that makes Wehmeier’s theory T∆ a rather weak one
from the definability viewpoint, and therefore unable to nest some first-order
abstracts.

As our theory extends T∆, however, Wehmeier’s philosophical points continue
to hold here: Our theory proves the non-existence of the value-range concept
(it proves ¬∃X∀x(Xx ↔ ∃Y x = ŷY y)), as well as the existence of arbitrarily
finitely many non-value ranges (for each natural number n, our theory proves
∃x1, . . . , xn(

∧
i�=j xi �= xj ∧∀X

∧
i xi �= x̂Xx)). Thus, regardless of how much

of mathematics can be carried out in this theory (conjecture: not much more
than in Heck’s predicative fragment), for reasons discussed in [8], it does not
seem to be an attractive option for logicists.
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