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Abstract

In the course of ten short sections, we comment on Gödel’s seminal
“Dialectica” paper of fifty years ago and its aftermath. We start by sug-
gesting that Gödel’s use of functionals of finite type is yet another instance
of the realistic attitude of Gödel towards mathematics and in tune with his
defense of the postulation of ever increasing higher types in foundational
studies. We also make some observations concerning Gödel’s recasting of
intuitionistic arithmetic via the “Dialectica” interpretation, discuss the
extra principles that the interpretation validates, and comment on exten-
sionality and higher order equality. The latter sections focus on the role
of majorizability considerations within the “Dialectica” and related inter-
pretations for extracting computational information from ordinary proofs
in mathematics.

I

Kurt Gödel’s realism, a stance “against the current” of his time, is now well-
known and documented. Later in life, Gödel even wrote that his realism was
important for his mathematics (of course, retrospective judgements have to be
approached with much caution). In a letter to Hao Wang in December 7, 1967,
Gödel wrote: “This blindness (or prejudice, or whatever you may call it) of
logicians is indeed surprising. But I think the explanation is not hard to find. It
lies in a widespread lack, at that time, of the required epistemological attitude
toward metamathematics and toward non-finitary reasoning” (see [Göd03b]).
The fruitfulness of this “epistemological attitude” for Gödel’s work is usually
illustrated by his proof of the completeness theorem (which is of necessity non-
finitary, since it must use weak König’s lemma or something equivalent) and by
his definition of the constructible universe (which takes all ordinals for granted,
instead of trying to “construct” the ordinals as well). These may be considered
illustrations of his set-theoretic realism. I suggest a third illustration of Gödel’s
realistic stance in mathematics, viz the introduction of the notion of computable
functional of finite type over the natural numbers in his Dialectica paper of 1958.
The latter illustration has the benefit of exemplifying in a clear way Gödel’s wide

∗This work was partially supported by cmaf, poci2010/fct and feder.

1



realism in mathematics, one that goes beyond the mere set-theoretic – indeed,
a conceptual realism of sorts.1

The stated purpose of Gödel’s Dialectica paper is to present a consistency
proof of first-order Peano arithmetic PA by way of an extension of the finitary
viewpoint according to which the requirement that constructions must be of and
over “concrete” objects is relaxed to be of and over certain abstracta, namely
computable functionals of finite type over the natural numbers. Gödel defines
a truth-functional quantifier-free theory T whose terms are built from symbols
denoting the new abstracta and whose formulas are Boolean combinations of
equations between the terms. There is an evident formal parallelism between
T and the theory PRA (primitive recursive arithmetic): T is, essentially, PRA
extended with new terms. The Dialectica interpretation assigns to each formula
A of the language of first-order arithmetic a formula AD(x, y) of the language of
T. The technical result says that if a sentence A is derivable in Heyting arith-
metic HA, then there is a closed term t of the language of T such that AD(t, y)
is derivable in T.2 In particular, the consistency of HA (and therefore, via the
Gödel-Gentzen negative translation, that of PA) is reduced to the consistency
of T because (0 = 1)D is simply 0 = 1.

The move of extending the notion of calculable function, or effective rule, to
finite types is in line with Gödel’s view of mathematics and, in particular of set
theory, according to which the postulation of ever increasing types in set theory
– via large cardinal axioms – is the royal road to the study of the universe of sets.
It is significant that in a lecture of 1941 (posthumously published in [Göd41]),
and that both in the Dialectica paper and its 1972 descendant ([Göd58] and
[Göd72], respectively), Gödel suggests extending the notion of effective rule to
(constructive) transfinite types. Effective rules in higher types give rise to new
effective rules which compute additional functions from the natural numbers N
to the natural numbers N.3 For instance, the language of T has a closed term of
type 1 (i.e., denoting a function from N to N) which computes the Ackermann
function (via a set of reduction rules in the technical sense of a normalization
procedure). In analogy with set theory, where new types give rise to new Π0

1-
consequences, the acceptance of effective rules in higher types gives rise to new
effective rules for computing functions of type 1.

The new consistency proof of Gödel must rely only on the extended finitism
and should not use intuitionistic logic. The lecture of 1941, in which Gödel
already presents the interpretation of the 1958 paper, reveals a disatisfaction
with the “lack of precision” (see p. 4 of [Göd41]) of the intuitionistic notion of
proof and with the ordinary view of intuitionistic logic.4 In the lecture, Gödel
presented his interpretation as a recasting of intuitionistic reasoning – in the
context of number theory – via the extended finitary standpoint achieving, as
it were, a replacement of the intuitionistic notion of proof by the more precise
notion of computable functional. Given this background, it would be of no
“epistemological significance [if] the concept of computable function used and
the insights that these functions satisfy the axioms of T (...) implicitly involve
intuitionistic logic or the concept of proof as used by Heyting” (see note 6 of
[Göd72]).
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In defining the computable functionals of finite type, Gödel relies on the
primitive concept of operation, always performable5 (and constructively recog-
nized as such), on given computable functionals of appropriate (lower) type.
He simply takes this concept “as immediately intelligible.” Within this arena,
Gödel accepts particular functionals (known today as the primitive recursive
functionals in the sense of Gödel) as being computable. A paradigmatic case is
iteration: let g be a computable functional of type σ → σ, i.e., a computable
functional from computable functionals of type σ to computable functionals of
type σ; one must deem computable the functional that assigns to each natural
number n and computable functional h of type σ the computable functional
gn(h) of type σ. According to Gödel, “one may doubt whether we have a suf-
ficiently clear idea of the content of this notion [computable function of finite
type], but not that the axioms [of T] hold for it.” I agree with this statement
insofar as it says that the primitive constants of T (e.g., constants for primitive
recursion in finite-types)6 denote evidently computable functionals. This point
must be granted if a discussion on the foundational aspects of the Dialectica
paper is to be made at all.7

It is part and parcel of Gödel’s extended finitism that closed equations must
be decidable. The foundational justification of the truth-functional interpreta-
tion of T lies just in this fact. But how can we decide whether t = q, even for
t and q closed terms of the type 0 (the type of N)? William Tait showed in
[Tai67] that these terms reduce mechanically to numerals (the terms normalize
to numerals). Numerals are the same, or not, and this decides the equation.
Nevertheless, as aptly observed by Georg Kreisel in p. 112 of [Kre87], the nor-
malization of terms is not apparent by the inspection of the notion of computable
functional of finite type.8,9 There is an intolerable gap between the obviousness
of the acceptance of Gödel’s effective rules in finite types (as one does with
iteration) and the lack of evidence for the normalization of closed terms of type
0. In what concerns the decidability of closed equations of T, the alleged “im-
mediate intelligibility” of the notion of computable functional does not seem to
pay off. I reckon that this gap was the source of the intellectual hesitations of
Gödel with respect to the project of publishing an English translation of his
1958 Dialectica paper. From the time that Paul Bernays brought the matter to
Gödel’s attention in September 1965, almost eight years of vicissitudes passed
until the project finally faded away.

II

Even though Gödel tried to found intuitionistic logic – at least within the scope
of number theory – in terms of the notion of computable functional of finite
type, he did not view his recasting as being faithful to the intended meaning
of intuitionistic logic. He was explicit on that: in the 1958 paper, Gödel says
that “obviously, we do not claim that [the clauses of the Dialectica interpreta-
tion] reproduce the meaning of the logical particles introduced by Heyting and
Brouwer.” It is precisely this unfaithfulness that makes the Dialectica interpre-
tation mathematically interesting and surprising. It is an obvious point that
the more faithful you are the less surprises you get.
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One of the nicest features of the Dialectica interpretation is that it inter-
prets both formulas ∃n¬Aqf(n) and ¬∀nAqf(n) in essentially the same way (for
quantifier-free Aqf). Their equivalence is Markov’s principle. Though not intu-
itionistically valid, Markov’s principle has a valid computational interpretation:
the acceptance of the latter statement assures that an unbounded search pro-
cedure will eventually halt with a natural number n such that ¬Aqf(n). One
cannot but agree with Tait in his assessment given in the last paragraph of
[Tai06]: “I would rather view Markov’s principle as an example of why, if one is
looking for methods of proof which automatically yield algorithms for comput-
ing a witness for existential theorems, intuitionistic logic is too narrow.” Yet,
the Dialectica interpretation has more surprises on this regard. Under a simple
extension of the interpretation to HAω (the intuitionistic theory obtained from
T by adjoining quantifications in all finite types) the Dialectica still gives essen-
tially the same interpretation to both ∃x¬Aqf(x) and ¬∀xAqf(x), where x may
be of any finite type σ. Observe that in higher types it is certainly a misnomer
to call the equivalence between ∃x¬Aqf(x) and ¬∀xAqf(x) ‘Markov’s principle’
since there is no search procedure available for finding a witness for ¬Aqf(x).

The soundness theorem of the Dialectica interpretation holds for HAω ad-
joined with Markov’s principle (in higher types) MPω, as well as with the axiom
of choice ACω and the independence of premisses principle IPω

∀ for universal
antecedents. The principles are:

MPω: ¬∀xAqf(x) → ∃x¬Aqf(x),

ACω: ∀x∃yB(x, y) → ∃f∀xB(x, f(x)),

IPω
∀ : (∀xAqf(x) → ∃yC(y)) → ∃y(∀xAqf(x) → C(y)),

where x and y may be of any type, Aqf is quantifier-free and B,C are arbitrary.
An extension of the soundness theorem of Gödel can the stated as follows:

Theorem. If HAω + MPω + ACω + IPω
∀ ` A, where A is a sentence, then for

some closed terms t, T ` AD(t, y).

A fortiori, if we let AD be ∃x∀yAD(x, y), we get HAω ` AD. What is the
relationship between A and AD? When A follows from AD in HAω we obtain
a conservation result. This is the case for formulas in prenex normal form. In
general, we have the following characterization theorem:10

Theorem. HAω + MPω + ACω + IPω
∀ ` A ↔ AD.

The above three principles are called the characteristic principles of the
Dialectica interpretation. The characterization theorem also ensures that we
are not missing any principles besides MPω, ACω and IPω

∀ in the statement
of the extended soundness theorem. To see this suppose that we could state
the soundness theorem with a further principle P. Since P is a consequence of
itself, from soundness it would follow that HAω ` PD. By the characterization
theorem, we get HAω + MPω + ACω + IPω

∀ ` P. In conclusion, P is superfluous.
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III

Gödel understood equality between higher-type functionals as intensional equal-
ity in the sense that the functionals have the same procedure of computation
(definitional equality). This notion only has a precise sense within a partic-
ular framework. Gödel was well aware of this. He writes the following in a
letter to Bernays in July 14, 1970: “The mathematicians will probably raise
objections against [intensional equality], because contemporary mathematics is
thoroughly extensional and hence no clear notions of intensions have been de-
veloped. But it is nevertheless certain that, at least within the framework of a
particular language, completely precise concepts of this kind could be defined”
(see [Göd03a]). No precise proposal was advanced. A good candidate is to say
that two terms are definitionally equal if they have the same normal form (thus
obtaining the term model of T, described in 4.3 of [Tro90]). Another interpreta-
tion is considered by Gödel in note g of his 1972 paper: to identify functionals
as arguments or values of higher-type functionals with the code numbers of their
Turing machines. This yields the model HRO of the hereditarily recursive op-
erations, described by Troelstra in 4.2 of [Tro90]. But one would be wrong in
mistaking HRO for Gödel’s intended model of T, even under the assumption of
Church’s thesis. In the above cited note g, as well as in the following note h,
it is clear that Gödel considers HRO as a mere interpretation, among others, of
T. Anyway, given Gödel’s aims, the HRO proposal does not work: as explained
by Troelstra in 4.4 of [Tro90], the arithmetical complexity of the statement ‘n
is the code number of a functional of type σ’ increases with the type of σ and
runs through all the stages of the arithmetical hierarchy. The punch line is that
(essentially) full HA is necessary to show that HRO is a model of T.

The evidence is that Gödel considered the notion of computable functional
of finite type as a primitive notion, to be made precise and analyzed via new
axiomatic insights (e.g. concerning effective rules in constructive transfinite
types). In tandem, Gödel also included in T primitive signs for intensional
equality =σ in each non-zero type σ.11 Unaccompanied by characteristic terms
Eσ satisfying the equivalence Eσ(x, y) = 0 ↔ x =σ y, it turns out that it is
formally impossible to interpret the innocent looking axiom A → A ∧ A.12,13

This is not a serious problem. One may just as well introduce the missing terms
as primitives or, more elegantly, give up for good both the intensional equality
signs and the accompanying terms because, for the matters at hand, it is enough
to express equality between terms t and q of common non-zero type σ by the
replacement scheme s[t] = s[q], for arbitrary terms s[xσ] of type 0.14

As opposed to definitional equality, extensional equality is expressible in
HAω. In type 1, α =1 β is just ∀n(αn = βn). The corresponding axiom of
extensionality is ∀Φ2∀α1, β1(α =1 β → Φα = Φβ).15 Why not stick with exten-
sional equality, as mathematicians do? The discussion around extensionality is
not idle, or a mere bizarrerie of philosophers. There are also mathematical con-
cerns (only now are we beginning to understand that the use of extensionality in
mathematical proofs may pose problems for the extraction of numerical bounds;
see the discussions in section 3 of [Koh05]). It is not an option for Gödel’s par-
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ticular interpretation (extended to HAω) to have extensional equality. Already
the above instance of extensionality is not interpretable. It is worthwhile to
see why this is so. The argument is due to William Howard in [How73]. We
introduce a variant of Howard’s majorizability relations due to Mark Bezem
in [Bez85] (strong majorizability). These are defined inductively on the types
according to the following clauses:

(a) x ≤∗0 y := x ≤ y

(b) x ≤∗ρ�σ y := ∀uρ, vρ (u ≤∗ρ v � xu ≤∗σ yv ∧ yu ≤∗σ yv)

A majorizable functional F of type σ → 0 has an important uniformity
property: given a functional z of type σ, the set of natural numbers {F (x) :
x ≤∗ z} is bounded. In other words, there is a uniform (or common) bound for
the F (x)’s, with x ≤∗ z. Certainly, this is not the case for all type 2 set-theoretic
functionals. Notwithstanding, we have a fundamental result of Howard:

Theorem. For each closed term t of the language of T, there is a closed term
q such that HAω ` t ≤∗ q.

If the above form of extensionality were interpretable then there would be a
closed term E of type 2 → 1 → 1 → 0 such that

∀Φ2∀α1, β1(α(E(Φ, α, β)) = β(E(Φ, α, β)) → Φα = Φβ)

is provable in HAω and, therefore, is true.16 By Howard’s theorem, take q a
closed term such that E ≤∗ q. Consider the natural number n = q(12, 11, 11),
where 12 and 11 are the constant functions equal to 1, of appropriate types. It
immediately follows that

∀Φ ≤∗2 12 ∀α ≤ 11∀β ≤ 11(∀k ≤ n(αk = βk) → Φα = Φβ).17

This is obviously false for Φ defined by:

Φ(α) =
{

0 if ∀k ≤ n + 1 (αn = 1)
1 otherwise

The above proof is quite general. Basically, it only uses the fact that each
closed term of the theory HAω has a majorant.

IV

It follows from the theorem of Howard that the majorizable functionals form
a model of Gödel’s T. Another model of T, defined independently by Stephen
Kleene (in [Kle59] under the name of countable functionals) and Kreisel (in
[Kre59]), is the model ECFω of the extensional continuous functionals.18 A
compactness argument shows that the type 2 continuous functional are ma-
jorizable. This is no longer the case for type 3 functionals. It is well known that
there is a fan functional F3 in ECFω such that
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∀Φ2∀α ≤1 1∀β ≤1 1 (∀k ≤ F(Φ)(αk = βk) → Φα = Φβ).

In other words, F(Φ) witnesses the uniform continuity of Φ restricted to the
Cantor space, i.e., 2N. However, the set {F(Φ) : Φ ≤∗2 12} is clearly unbounded.
Therefore, F is not majorizable in ECFω.19

The point of this little discussion was to show that continuous functionals
need not be majorizable. As we will see, it is the latter notion – not conti-
nuity – that plays the central role in the extraction of uniform bounds from
mathematical proofs (cf. the discussions regarding the monotone functional in-
terpretation in V and VI) and, via the bounded functional interpretation (cf.
VII), in injecting uniformities into mathematics. The remainder of this article
will concentrate on the role of majorizability within the Dialectica and related
interpretations for extracting computational information from ordinary proofs
in mathematics.

V

In 1993 (see [Koh93]), Ulrich Kohlenbach introduced a slight modification
of Gödel’s functional interpretation, dubbed the monotone functional interpre-
tation. It is based on the same assignment of formulas but it weakens the
conclusion of the soundness theorem. Instead of the existence of a closed term
t such that HAω ` ∀yAD(t, y), the new conclusion only demands that t is a ma-
jorant of a witness, i.e., that HAω ` ∃x ≤∗ t∀yAD(x, y). What is accomplished
by weakening the conclusion of Gödel’s theorem?

In his first published paper [Kre51], Kreisel stressed that (for sensible the-
ories) the addition of true (e.g., all true) Π0

1-sentences does not affect the class
of provably recursive functions. In the context of the Dialectica interpreta-
tion, this observation cashes in as follows: universal postulates (i.e., of the form
∀xAqf(x), with x of any type and Aqf quantifier-free) can be adjoined to the
theory HAω + MPω + ACω + IPω

∀ in the statement of the extended soundness
theorem provided that they are adjoined to the verifying theory HAω. The rea-
son for this is exceedingly simple, viz that a universal sentence is essentially its
own interpretation under the Dialectica. NB if the universal postulates are true
then the verification of the behaviour of the extracted terms follows from true
postulates and, therefore, is sound. In short: to extract correct computational
information (in the form of a term) via the Dialectica interpretation, one can
adjoin true universal sentences even though the evidence for their truth is not
manifested in the theory itself. For all we know, the evidence could have been
gotten via esoteric transfinite means in set theory. It is important to distinguish
between founding the truth of a statement and using the statement in proofs.

The monotone functional interpretation permits the generalization of Kreisel’s
observation to a wider class of sentences, not necessarily universal. Let us see
how this works for a toy – but illuminating – example, the lesser limited principle
of omniscience LLPO with a numerical parameter z:

∀k∀r(Aqf(z, k) ∨Bqf(z, r)) → ∀kAqf(z, k) ∨ ∀rBqf(z, r),
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where Aqf and Bqf are quantifier-free and k and r are numerical variables.
This principle is not intuitionistically acceptable and does not have a Dialectica
interpretation.20 Nevertheless, it has a monotone functional interpretation (in
a suitable verifying theory). A simple computation shows that one must find
closed terms t and q of types 0 → 0 and 0 → 0 → 0 → 0, respectively, such that

(?) ∃n ≤ t∃f, g ≤ q∀z∀k, r
(
Aqf(z, fzkr) ∨Bqf(z, gzkr) →

(nz = 0 → Aqf(z, k)) ∧ (nz 6= 0 → Bqf(z, r))
)
.

It turns out that t := λz.1 and q := λzλk, r. max(k, r) do the job. The proof
is simple, though not completely obvious. One considers the modified predicates

A(z, k) := ∀u ≤ kAqf(z, u) ∨ ∃u, v ≤ k(¬Aqf(z, u) ∧ ¬Bqf(z, v)) and

B(z, r) := ∀v ≤ rBqf(z, v) ∨ ∃u, v ≤ r(¬Aqf(z, u) ∧ ¬Bqf(z, v)),

and verifies that, for each z, ∀k, r(A(z, k) ∨ B(z, r)). By LLPO, one gets, for
each z, ∀kA(z, k) ∨ ∀rB(z, r). The function n is chosen to be 0 or 1 according
to whether the first or second leg of the disjunction holds. At this juncture, we
draw attention to the fact that a bit of choice is used. It is now straightforward
to finish the verification of (?).21

In general, the monotone functional interpretation permits the generalization
of Kreisel’s observation to sentences with the syntactical form ∃u ≤ r∀vAqf(u, v),
where Aqf is quantifier-free, r is a closed term and u, v may be of any type.
In other words, such sentences can be adjoined to HAω + MPω + ACω + IPω

∀ in
the statement of the extended soundness theorem for the monotone functional
interpretation provided that they are also adjoined to the verifying theory HAω.
Some well-known non-constructive principles can be put in this form (weak
König’s lemma is the pre-eminent example), whereby the analysis of proofs us-
ing these principles becomes possible.22 There is a small twist in this: typically
the principles studied take the form ∃u ≤ rz∀vAqf(u, v, z), with parameters z.
In this situation, one must consider instead their parameter-free uniform ver-
sions ∃u ≤ r∀v, zAqf(uz, v, z) – which have the right syntactical form – and the
verification takes place with the strengthened versions. Observe that if the orig-
inal principle is true, then so is its uniformization (which is obtained with a bit
of choice) and, therefore, computationally correct information is still obtained.

VI

There are two other benefits of the monotone functional interpretation that I
want to briefly address.

The bounds that one gets from the soundness theorem of the monotone
functional interpretation enjoy uniformity properties regarding certain values.
The canonical example is this: if ∀α1∀β ≤1 sα∃n0A(α, β, n), where s is a closed
term and A is arbitrary, is a consequence of HAω +MPω +ACω + IPω

∀ plus some
(true) statements of the form discussed in Part V, then it is possible to construct
a closed term t such that ∀α∀β ≤1 sα∃n ≤0 tαA(α, β, n). The point is that n
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is bounded by tα and that this value is independent of β. This is a very simple,
yet crucial, observation. Due to the presence of Markov’s principle, the above
example (with a suitaby reformulated base theory) also holds within classical
logic (via the Gödel-Gentzen negative translation) provided that A is quantifier-
free.23 It must be noted that, in aplications, compact spaces can be coded by
elements which are majorized (the Cantor space is a trivial example), and this
entails the existence of bounds which are uniform with respect to the values in
the compact spaces. Many striking uniform bounds in the field of numerical
functional analysis have been obtained in the recent past by Kohlenbach and
his co-workers using these ideas (see [KO03] and [Koh08]). Of course, the a
priori theoretical knowledge that such bounds must exist is instrumental in
the applied work. The recent introduction of new base types by Kohlenbach
(normed, metric and other spaces) even allows the obtainment of new uniform
bounds from metrically bounded, not necessarily compact, spaces.24 These are
exciting new developments (see [Koh05] and [Koh08]).

Kohlenbach’s analysis of proofs can be effected even if proofs use princi-
ples that go well beyond Peano arithmetic. Proofs which use full second-order
arithmetic can be unwound, and uniform bounds can still be obtained. This is
made possible by Clifford Spector’s 1962 deep generalization of Gödel’s interpre-
tation to second-order classical arithmetic using bar-recursive functionals (see
[Spe62]). NB the reason for the existence of uniform bounds rests, ultimately,
on the fact that Spector’s bar-recursive functionals are majorizable. One must
emphasize again that the important issue here is the a priori knowledge that
certain uniform bounds must exist, even in the presence of full second-order
arithmetic! (The theoretical bounds are staggering, but sensible bounds are
usually obtained in concrete applications.)

The applied work of obtaining uniform bounds from mathematical proofs via
the monotone functional interpretation has acquired a trait close to systematiza-
tion (via the monotone functional interpretation) and goes by the name of proof
mining.25 It has been a rather successful program. A further reason for this
success is that the non-constructive principles (discussed above) can be treated
as “black boxes” in the actual study of concrete mathematical proofs, and this
fact facilitates their analyses enormously. Moreover, the analyses by means of
the monotone functional interpretation are modular and one does not need to
work with fully formalized proofs, relying instead on logico-mathematical expe-
rience. If the success of proof mining carries over to more fields of mathematics,
it is fair to say that this “applied program” is the heir presumptive to the pro-
gram of “unwinding” of proofs launched by Kreisel in the fifties. Even though
the analysis of some specific mathematical proofs was suggested and some were
actually carried out (sometimes in very ingenious and illuminating ways), the
“unwindings” were scarce, isolated, and the original program fell rather short
of its promising beginnings.26

VII

In the monotone functional interpretation, the bounds (hence, the uniformities)
only show up at the end of the interpretation, in the conclusion of the soundness
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theorem. In a sense, the monotone functional interpretation only scratches the
surface. A new functional interpretation – dubbed bounded functional interpre-
tation – injects uniformities all the way in, via a new assigment of formulas (see
[FO05]). Many of the basic theoretic results of Kohlenbach have very perspicu-
ous proofs using the new interpretation. The nature of the injected uniformities
can be best described via the characteristic principles of the novel interpretation.
These principles prove LLPO and weak König’s lemma and refute extensionality
and the limited principle of omniscience LPO. The latter is:

∀α(∀n(αn = 0) ∨ ∃n(αn 6= 0)).27

The last couple of examples make it clear that the characteristic principles
are not set-theoretically sound. The bounded functional interpretation does in-
ject uniformities which are absent in the universe of sets and which are incom-
patible with it. Nevertheless, the soundness theorem guarantees that provable
sentences of low complexity (e.g., Π0

2-sentences) are not affected by the injection,
and this constitutes a tool for proving conservation results and for extracting
correct (uniform) bounds.

I want to discuss two characteristic principles in the sequel. In the mean-
time, we must introduce a notion of intensional majorizability (in the sense that
the majorizability relations are rule-governed). The language of HAω is supple-
mented by primitive binary relation symbols �σ (one for each type σ) and by
corresponding bounded quantifiers. The majorizability relations are governed
by the axioms

x �0 y ↔ x ≤ y;

x �ρ→σ y → ∀u �ρ v (xu �σ yv ∧ yu �σ yv).

Note that we do not have the biconditional above (otherwise, we would fall into
the Howard/Bezem extensional notion of majorizability). Instead, we have rules

Abd ∧ u � v → su � tv ∧ tu � tv
Abd → s � t

where s and t are terms, Abd is a bounded formula and u and v are variables
which do not occur in the conclusion. The only quantifiers in a bounded formula
are the bounded quantifiers, and these are regulated by the schemata

∀x � tA(x) ↔ ∀x(x � t → A(x)) and

∃x � tA(x) ↔ ∃x(x � t ∧A(x)).

Having rules, instead of axioms, is crucial. In the presence of the charac-
teristic principles, the extensional relations lead to inconsistency.28 The first
characteristic principle of the bounded functional interpretation that I discuss
is the intensional collection scheme:

∀x � c∃y A(x, y) → ∃b∀x � c∃y � b A(x, y),
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where b, c are of any type and A is an arbitrary formula. The principle says that
if one can find a witness y so that A(x, y), for each x with x � c, then there is a
uniform (or common) bound for these witnesses. Notice the formal similarities
of this principle with L. E. J. Brouwer’s fan theorem (for c of type 1 and y of
type 0).29 The collection scheme subsumes the so-called uniform boundedness
principles introduced by Kohlenbach in [Koh96].30,31

The other principle is the intensional bounded contra-collection scheme:

∀b∃x � c∀y � b Abd(x, y) → ∃x � c∀y Abd(x, y),

where b, c are of any type and Abd is a bounded formula. Of course, this principle
is classically equivalent to the previous one restricted to bounded matrices. The
point is that we are in an intuitionistic setting. It is not too difficult to show
that weak König’s lemma follows from this principle. We can give a Hilbertian
reading of this principle. It permits the conclusion of the existence of an element
x (with x � c) such that ∀yAbd(x, y) from the weaker statement that such x’s
only exist locally, in the sense that for each b there exists x (with x � c) such
that ∀y � b Abd(x, y). We may regard such an x as an ideal element that works
uniformly for every y and whose postulation does not affect real consequences
(because of the soundness theorem of the bounded functional interpretation).

VIII

The emphasis has been on intuitionistic systems but, as already noticed, after
applying the negative translation it is also possible to deal with systems of
classical arithmetic and analysis. Alternatively, one can proceed directly, as
Joseph Shoenfield does for Peano arithmetic in his well-known textbook [Sho67].
In the classical setting, the only characteristic principle for the Dialectica is the
quantifier-free axiom of choice (in all types).32

A similar situation happens with the bounded functional interpretation. An
interpretation that directly injects uniformities into Peano arithmetic was re-
cently defined in [Fer07]. Three characteristic principles (which embody the
injected uniformities) are necessary in this case. One is an unsound form of
choice for bounded matrices which, nevertheless, includes the sound AC1,0

qf (this
is quantifier-free choice for x of type 1 and y of type 0; see the statement in
Part II for the notation). Another is the intensional bounded contra-collection
principle. The remainder is the (unsound) intensional majorizability scheme:
∀x∃y(x � y).

We believe that the uniformities embodied by the above three characteristic
principles can also be injected into full second-order arithmetic, by way of Spec-
tor’s bar recursive functionals.33 What about other forms of comprehension?
How far can we go? There is definitely a limit for the insertion of uniformities.
For instance, simple forms of comprehension for type 1 functionals already can-
not be present in the theories. Specifically, there cannot be a type 2 functional
E such that:

∀α1(E(α) = 0 ↔ ∃n(αn = 0)).

11



Otherwise, using AC1,0
qf , it is possible to define a functional µ of type 2 satisfying

∀α (∃n(αn = 0) → α(µα) = 0). By the intensional majorizability scheme, we
get ∃z (µ �2 z). It is easy to see that this leads to a contradiction.

IX

I will end with a speculative note that strides a familiar line already discussed.
Mathematicians are very liberal (in the sense of not caring) in their use of induc-
tion (and comprehension). They are oblivious to the complexity of the state-
ments they are inducting over. Logicians, on the other hand, are very sensitive
to issues of definability and know that induction (together with comprehension)
is the main reason for the advent of fast growing bounds. Nevertheless, as a
matter of common mathematical experience, really fast growing functions al-
most never show up in ordinary mathematics. This is a puzzling phenomenon.
I want to point that certain forms of induction are tame in this respect, namely
induction for intensional bounded formulas. In these cases, induction takes the
form Abd(0) ∧ ∀n < m(Abd(n) → Abd(n + 1)) → Abd(m), with Abd a bounded
intensional formula. Statements like this are dealt by the bounded functional
interpretation effortlessly, with no need of recursors. They are basically self-
interpretable. To what extent can inductions in ordinary mathematics be put
in this form? In other words, to what extent are inductions in ordinary mathe-
matics tame?

The use of tame forms of induction is a particular case of using lemmata
which have trivial bounded functional interpretations (and which are true af-
ter flattening, that is, after interpreting the intensional relation signs by the
extensional Howard/Bezem majorizability relations). The universal closures
of bounded intensional formulas have such trivial interpretations. Can lem-
mata of this kind formulate statements with mathematically interesting conse-
quences?34,35

X

The title of this article is taken from p. 110 of Kreisel’s “Gödel’s excursions into
intuitionistic logic” (cf. [Kre87]). Gödel’s last published paper lacks the glamour
and impact of his most well-known results but this most artistic package of a
jumble of ideas has aged well in fifty years and continues to be a source of work
and ideas. The merits of Gödel’s interpretation have been rather positive but,
probably, we still do not have a full grasp of the potentialities of the Dialectica
and related interpretations. Even though we have insisted on the mathematical
and computational benefits of Gödel’s interpretation, we also believe that the
final word on its foundational merits has not yet been said. I gave a very
personal report on Gödel’s interpretation and its aftermath, a jumble of lines
on a jumble of ideas, unashamedly partial and opinionated.

I would like to thank Thomas Strahm for the invitation to participate in
this commemorating issue of Gödel’s “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunktes,” published half a century ago in this
very journal.36 It was an honor and a great pleasure to contribute.
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Notes
1In a letter to Paul Bernays in January 12, 1975, Gödel made an uncharacteristic callous

statement regarding these matters. After showing agreement with a “cautiously platonistic
point of view” endorsed by his friend, Gödel goes on to say that “to me a platonism of
this kind (also with respect to concepts) seems to be obvious and its rejection to border on
feeble-mindness.” See [Göd03a].

2I am assuming that the reader is familiar with Gödel’s Dialectica interpretation and I am
taking some notational liberties. For instance, x and y stand for tuples of variables, possibly
empty. Likewise, t stands for a tuple of terms (of the same arity and with the same types as
the tuple x). The reader should keep in mind these liberties in the remainder of the article.
Anyway, I suggest Anne Troelstra’s excellent introduction in [Tro90] to Gödel’s 1958 paper
and to its modification of 1972 (unpublished in Gödel’s lifetime) for interesting discussions
and, of course, the proper technical definitions and pointers to the relevant material. An
alternative (and more inclusive) option is [AF98].

3This feature is usually described by saying that T is impredicative. It is better described
as a lack of purity of methods within the type-hierarchy of computable functionals.

4The intuitionistic meaning of the logical particles is explained in terms of what constitutes
a proof of a logical compound statement in terms of the constituent statements. For instance,
a proof of A → B is a construction which, when applied to a proof of A, yields a proof of B.

5In the 1972 paper there is an emphasis on the termination of the computations for all the
inputs. Cf. the italics of the word ‘any’ on page 275 of [Göd72].

6Under a suitable setting, William Tait showed in [Tai06] that iteration and primitive
recursion are interchangeable as primitive notions in finite types.

7This is the suggestion of Bernays in a letter to Gödel in March 16, 1972: “one must
(...) use the assumption that if n is a constructible numeral and if, furthermore, a process
is intuitively described which, from given numerals, again provides a numeral, then the n-
fold iteration of that process can be carried out. A corresponding assumption must also be
employed for the recursive definitions of functionals.” See [Göd03a].

8Kreisel goes on saying that “in sharp contrast to sets where, for example, Zermelo’s axioms
are verified on sight for all limit ordinals from a description of segments of the cumulative
hierarchy” (original italics).

9Tait in his normalization proof needs the full apparatus of HA in order to show that all
concrete closed terms normalize.

10The extended soundness theorem is implicit in [Kre59], and the next theorem is due to
Mariko Yasugi [Yas63].

11A curious, if misguided proposal, would be to propose a notion of intensional equality for
type 0 as well. In this case, the problem of deciding equations between closed terms of type
0 becomes solvable by fiat, and the truth-functionality of (this modified version of) Gödel’s
T is immediate. Note, however, that the Dialectica interprets the quantifier-free part of HA
(essentially) by itself and, therefore, the quantifier-free theorems of HA must be theorems of
T. But HA is about numbers, whereas the modified T would be (in type 0) about procedures
for representing numbers. E.g., x + y = y + x fails on the latter interpretation.

12This was pointed to Gödel by Justus Diller in 1970. For the details and the possible
oversight of Gödel, see section 3.3 of [Tro90].

13This axiom is a contraction principle. After the work of Jean-Yves Girard on Linear
Logic, contraction cannot be regarded innocent anylonger.

14This way of dealing with equality was suggested by Gödel himself in note i4 of his 1972
paper and elaborated by Troelstra in [Tro90]. An alternative is to consider a suitable rule
of extensionality: this is Clifford Spector’s option in [Spe62]. In this paper, we opt for the
Gödel/Troelstra treatment of equality.

15The superscripts denote the types of the variables. We assume familiarity with this
notation.

16The full set-theoretical model interprets the type 0 domain as N, and the domain of type
σ → τ as constituted by all the set-theoretic functions from the domain of σ to the domain of
τ . When we call a sentence of the language of HAω true or false, correct or incorrect, sound
or unsound, we always mean true or false with respect to the full set-theoretical model.
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17α ≤ β abbreviates ∀k(αk ≤ βk). Clearly, α ≤ 11 iff α ≤∗
1 11. In general, for x, y of type

σ → ρ, x ≤ y abbreviates ∀zσ(xz ≤ρ yz).
18For the definition of this model, see the encyclopedic [Tro73].
19I thank Dag Normann for this observation.
20It is a good exercise to show that a Dialectica interpretation of LLPO would entail the

recursive separability of r.e. sets. The clause for disjunction is (A∨B)D(n, x, x′, y, y′) := (n =
0 → AD(x, y)) ∧ (n 6= 0 → BD(x′, y′)), with an explicit flag n deciding which way to fork.
Were the clause, instead, AD(x, y)∨AD(x′, y′) then LLPO would have a trivial interpretation.
However, as Gödel observes in note l of his 1972 paper, the Dialectica version is needed to
prove the soundness of the interpretation of the inference A → C, B → C ⇒ A∨B → C. The
alternative interpretation is not sound for this rule of inference since (again) it would entail
the recursive separability of r.e. sets. As a matter of curiosity, Gödel made a faux pas in
his unpublished lecture of 1941 when he wrote the wrong clause for disjunction. (On finding
errors in Gödel, see the last paragraph of [Kre87].)

21This analysis of LLPO is related to, but not quite the same as the one in [Koh01].
22The principle LLPO can be put in this form, since it is equivalent to (?) within the theory

HAω + MPω + ACω + IPω
∀ . Sometimes, the difficult part is to show that a given principle can

be put in this form.
23The base theory must be PAω (the classical version of HAω) together with the axiom of

choice restricted to quantifier-free formulas. Cf. VIII.
24Interestingly, Gödel suggests extending his functional interpretation to branches of math-

ematics other than arithmetic in p. 18 of his 1941 lecture.
25The name is due to Dana Scott.
26Solomon Feferman gives a similar assessment of Kreisel’s “unwinding” program in [Fef96].
27On p. 26 of his 1941 lecture, Gödel says that with the help of the Dialectica interpretation

it can be shown that LPO is independent from intuitionistic logic. This can be seen, for
instance, by interpreting T by the hereditarily recursive operations (see [Tro95] for details).
The new bounded functional interpretation yields this independence result directly because it
refutes LPO. Other independence results can be obtained in this manner.

28The soundness theorem of the bounded functional interpretation guarantees that the
characteristic principles together with the rule-governed notion of majorizability are consistent
(modulo HAω). The inconsistency mentioned in the text makes it hard to see how such a
consistency result can be obtained by model-theoretic methods.

29For a nice introduction to intuitionism and intuitionistic mathematics, see [vA04].
30These principles usually incorporate a form of choice. We ignore this feature, for the sake

of perspicuity.
31Kohlenbach’s uniform boundedness principles use the extensional form of majorizability,

but always accompanied with some caveat concerning extensionality. Take, for instance, the
following form of uniform boundedness: ∀α ≤1 1∃n0A(α, n) → ∃m∀α ≤ 1∃n ≤ mA(α, n), and
suppose that A is extensional with respect to α, that is, ∀α, β(α =1 β ∧ A(α, n) → A(β, n)).
Suppose that ∀α ≤1 1∃nA(α, n). A fortiori, ∀α �1 1∃nA(α, n) because ∀α(α �1 1 → α ≤1 1).
By the intensional collection scheme, there is m such that ∀α �1 1∃n ≤ mA(α, n). It can
be shown that ∀α(min1(α, 1) �1 1), where min1 is the minimum function defined pointwise.
Therefore, ∀α∃n ≤ mA(min1(α, 1), n). Now, take α ≤1 1. Clearly, min1(α, 1) =1 α. By
extensionality, we get ∃n ≤ mA(α, n).

32This is essentially a result of Kreisel in [Kre59].
33At the time of this writing, this has not yet been verified.
34In a sense, the answer to this question is a trivial ‘yes’ because the statements considered

by Kohlenbach (see the end of Part V) can be dealt by lemmata of this kind. The question is
really meant for mathematical statements beyond those.

35Consider the following: we may assume that our language includes an intensional order
relation �R infixing between real numbers. The relationship between this intensional relation
and the ordinary extensional (set-theoretic) one is rather close: x <R y → x�R y and x�R y →
x ≤R y. (In applications, Kohlenbach and his co-workers often switch from <R to ≤R and
vice-versa in order to have the appropriate logical form, but this has limitations vis-à-vis
the use of an intensional order.) Maybe this fact, or similar ones, are relevant for finding
important lemmata as described above.
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36I also thank an anonymous referee for some suggestions of improvement.
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