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THE BOUNDED FUNCTIONAL INTERPRETATION OF THE DOUBLE
NEGATION SHIFT

PATRÍCIA ENGRÁCIA AND FERNANDO FERREIRA

Abstract. We prove that the (non-intuitionistic) law of the double negation shift has

a bounded functional interpretation with bar recursive functionals of finite type. As an

application, we show that full numerical comprehension is compatible with the uniformities

introduced by the characteristic principles of the bounded functional interpretation for the

classical case.

§1. Introduction and background. In 1962 [14], Clifford Spector gave a
remarkable characterization of the provably recursive functionals of full second-
order arithmetic (a.k.a. analysis). The central result of his paper is an extension,
from arithmetic to analysis, of the (then quite recent) dialectica interpretation of
Gödel of 1958 [7]. Spector’s extension relies on a form of well-founded recursion
known as bar recursion. The name comes from the intuitionistic studies of L. E.
J. Brouwer and his contentious bar theorem of the nineteen twenties.

Spector extends the bar notions to all finite types. There are various in-
sights in Spector’s paper, but we find that the crucial insight is that the (non-
intuitionistic) law of the double negation shift,

DNS : ∀n ¬¬A(n)→ ¬¬∀n A(n)

(n is a natural number variable, A is an arbitrary formula) has a dialectica
interpretation using bar recursive functionals of finite-type. The existence of this
interpretation is enough to ensure the interpretation of the negative translation
of full numerical comprehension

CA0 : ∃f1∀n0 (f(n) =0 0↔ A(n)),

where A is an arbitrary formula of the language of finite-order arithmetic. Here,
the superscripts denote the type of the variables: type 0 is the type of natural
numbers, type 1 is the type of the functions from natural numbers to natural
numbers. We assume that the reader is familiar with these type-theoretic nota-
tions. [1] and the recent [12] are good sources for the dialectica interpretation
and related issues (including bar-recursive functionals).

The bounded functional interpretation was introduced in [5]. It is an interpre-
tation based on a new transformation of formulas A ; AB := ∃̃a∀̃bAB(a, b) and
which relies essentially on majorizability notions. The characteristic principles
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of this interpretation state “uniformities” which are not set theoretically true.
A conspicuous result is that the characteristic principles (for the classical case)
refute, within a base theory, simple forms of comprehension for type 1 functions
(see section 8 of [3]). In other words, the mentioned “uniformities” are not com-
patible with type 1 comprehension. Notwithstanding, by the soundness theorem
of the interpretation, they entail (e.g.) true Π0

2-sentences only. The reader can
find in [3] some discussions and comparisons between Gödel’s dialectica interpre-
tation, the bounded functional interpretation and, also, the related monotone
functional interpretation of Ulrich Kohlenbach (introduced in [11]). In the same
article, the second author expressed the belief that the uniformities introduced
by the bounded functional interpretation (for the classical case) are compatible
with full numerical comprehension (i.e., type 0 comprehension). The results of
Section 5 below confirm that this belief was correct.

The strong majorizability relations were introduced by Marc Bezem in [2] (after
the seminal work of William Howard [10]):

x ≤∗0 y := x ≤ y
x ≤∗ρ→σ y := ∀uρ, vρ (u ≤∗ρ v → xu ≤∗σ yv ∧ yu ≤∗σ yv)

Bezem also defines the structure Mω of the strongly majorizable functionals
and proved that the bar recursors are well-defined in this structure (bar recursors
are not well-defined in the standard set-theoretical type structure). The bounded
functional interpretation uses an intensional version of Bezem’s majorizability
relations. These relations E (one for each finite type) are called intensional
because they are partly governed by a rule:

x E0 y ↔ x ≤ y,
x Eρ→σ y → ∀u Eρ v(xu Eσ yv ∧ yu Eσ yv)
Abd ∧ u Eρ v → su Eσ tv ∧ tu Eσ tv

Abd → s Eρ→σ t

where Abd is an intensional bounded formula and u and v are variables which do
not appear in the conclusion of the rule (named as RLE). We assume that the
reader is familiar with the intuitionistic arithmetic theory HAωE and its bounded
functional interpretation.

The main purpose of this paper is to show that DNS has a bounded func-
tional interpretation. As discussed in [13], the dialectica interpretation of the
intuitionistic law ¬¬A ∧ ¬¬B → ¬¬(A ∧ B) can be seen as a “finite” version
of the interpretation of DNS. Moreover, since this law is a theorem of HAωE, it
must have a bounded functional interpretation. We work out this interpretation
explicitly in the brief Section 2 as a warm up for the interpretation of DNS. The
latter interpretation cannot be done solely in terms of the primitive recursive
functionals in the sense of Gödel. Further terms are needed and, following the
work of Spector, we effect this interpretation using terms defined by bar recur-
sion. It turns out that the bounded functional interpretation of DNS is somewhat
delicate, and we dedicate Section 4 almost entirely to it. The preceding Section
3 describes the theory in which the interpretation of DNS is verified. This the-
ory contains the set ∆Mω of all universal sentences (with intensional bounded
matrices) whose flattenings are true in the structure Mω. This is not optimal,
of course. However, we chose this route because an optimal treatment would be
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a distraction from the main thrust of the interpretation of DNS. Moreover, the
treatment of CA0 in Section 5 relies essentially on some facts of ∆Mω .

We would like to thank Jaime Gaspar and Paulo Oliva for some discussions.
We also thank an anonymous referee for pertinent observations which improved
the final version of this paper. We are special grateful to the referee for pointing
out an improvement in the case of arithmetical comprehension.

§2. A not so simple interpretation. Let A and B be arbitrary formulas
of the language of HAωE and suppose that AB is ∃̃a1∀̃b1AB(a1, b1) and BB is
∃̃a2∀̃b2BB(a2, b2). As a matter of fact, we should have written (possibly empty)
tuples of variables in the previous quantifications. However, for ease of reading,
we have omitted (and will omit) the tuple notation. In order to obtain the
bounded functional interpretation of ¬¬A∧¬¬B → ¬¬(A∧B), a straightforward
computation shows that we must produce monotone a∗1, a

∗
2, g
∗
1 and g∗2 , depending

on monotone f1, f2, φ1 and φ2, such that the three clauses

∀̃g1 E g∗1¬∀̃a1 E φ1g1¬∀̃b1 E g1a1 AB(a1, b1)(1)

∀̃g2 E g∗2¬∀̃a2 E φ2g2¬∀̃b2 E g2a2 BB(a2, b2)(2)

∀̃a1 E a∗1, a2 E a∗2¬∀̃b1 E f1a1a2∀̃b2 E f2a1a2 (AB(a1, b1) ∧BB(a2, b2))(3)

lead to a contradiction.
Take

g∗1 = λx.f1x(φ2(λy.f2xy))
a∗1 = φ1g

∗
1

g∗2 = λy.f2a
∗
1y

a∗2 = φ2g
∗
2

Since f1, f2, φ1 and φ2 are monotone, it follows that g∗1 , g
∗
2 , a
∗
1, a
∗
2 are also

monotone (the rule RL is heavily used in showing this). Assume that we have
the clauses (1), (2) and (3) for the g∗1 , a∗1, g∗2 , a∗2 as defined above. We must
reach a contradiction.

Take a monotone a1 with a1 E a∗1, and define g2 := λy.f2a1y. Take, now, a
monotone a2 with a2 E φ2g2. Then g2 E g∗2 and a2 E a∗2. We get the following:

∀̃b1 E g∗1a1 AB(a1, b1) ∧ ∀̃b2 E g2a2 BB(a2, b2)→
∀̃b1 E f1a1a2 AB(a1, b1) ∧ ∀̃b2 E f2a1a2 BB(a2, b2)

because we have f1a1a2 E g∗1a1 by the definition of g∗1 and the fact that a2 E φ2g2

(note, also, that g2a2 = f2a1a2). By (3),

∀̃b1 E f1a1a2∀̃b2 E f2a1a2 (AB(a1, b1) ∧BB(a2, b2))→ ⊥.
Hence, we may conclude that ∀̃b1 E g∗1a1 AB(a1, b1)→ ¬∀̃b2 E g2a2 BB(a2, b2).

Due to the arbitrariness of a2, we even get

∀̃b1 E g∗1a1 AB(a1, b1)→ ∀̃a2 E φ2g2¬∀̃b2 E g2a2 BB(a2, b2).

By (2), it follows ¬∀̃b1 E g∗1a1 AB(a1, b1). By the arbitrariness of a1,

∀̃a1 E φ1g
∗
1¬∀̃b1 E g∗1a1 AB(a1, b1).

This contradicts (1) when we instantiate g1 by g∗1 .
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§3. The bounded functional interpretation extended to bar recur-
sors. In this section, we extend the language of HAωE with new constants Bρ,σ,
the bar recursors, and consider the following defining axioms BRρ,σ:

∀ψ(0→ρ)→0, zτ1 , uτ2 , n0, s0→ρ ((ψs, n <0 n→ Bρ,σψzuns =σ zns, n) ∧
(ψs, n ≥0 n→ Bρ,σψzuns =σ u(λxρ.Bρ,σψzu(n+ 1)(s, n ∗ x))ns, n))

where τ1 = 0 → ((0 → ρ) → σ), τ2 = (ρ → σ) → ((0 → (0 → ρ)) → σ), and
(s, n)0→ρ and (s, n ∗ x)0→ρ are defined as

s, n k =ρ

{
sk if k <0 n
0 otherwise

(s, n ∗ x)k =ρ

 sk if k <0 n
x if k =0 n
0 otherwise

Note that whereas s0→ρ denotes infinite sequences of objects of type ρ, s, n,
although formally of type 0 → ρ, is meant to stand for the initial subsequence
of s with length n, 〈s0, s1, . . . , sn−1, 0, 0, . . . 〉, and s, n ∗ x is the concatenation
of the finite sequence s, n with x (‘s, n ∗ x’ is meant to be a “ternary” functional
in s, n and x).

Following the treatment of Kohlenbach in [12], we officially take simultane-
ous bar-recursion with tuples of variables (note that the ‘neutral’ treatment of
equality in HAωE does not seem to allow a reduction to ordinary bar recursion
without tuples). As in the previous section, we omitted (and will omit) the tuple
notation. Let us write BR for the collection of all the statements of the form
BRρ,σ. Bar recursion is a principle of definition while bar induction is a corre-
sponding principle of proof, in analogy with the usual recursors and induction.
The scheme of bar induction BI applied to formulas P and Q is given by

Hyp1 ∧Hyp2 ∧Hyp3 ∧Hyp4→ ∀s ∈MN, n ∈ NQ(s, n, n),

where

Hyp1 : ∀s ∈MN∃n ∈ N P (s, n, n)

Hyp2 : ∀s ∈MN, n ∈ N∀m ≤ n(P (s,m,m)→ P (s, n, n))

Hyp3 : ∀s ∈MN, n ∈ N (P (s, n, n)→ Q(s, n, n))

Hyp4 : ∀s ∈MN, n ∈ N (∀xρ Q(s, n ∗ x, n+ 1)→ Q(s, n, n))

It is well-known that we can argue by bar induction in the structure Mω (see,
for instance, [12] for a closely related formulation).

Let us consider the set ∆Mω as described in the introduction: the set of
all universal sentences (with intensional bounded matrices) whose flattenings
happen to be true in the structure Mω of the majorizable functionals. We
remind the reader that the flattening of a formula of the intensional language is
obtained by replacing each sign E by the corresponding majorizability sign ≤∗
(see [4], or the end of section 6 of [5]). Even though the statements in BR are in
∆Mω (they are universal), we will write HAωE +BR+∆Mω instead of the shorter
HAωE + ∆Mω . The inclusion of the acronym ‘BR’ has the advantage of indicating
that our language contains the bar recursive functionals.
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Theorem 3.1. HAωE + BR + ∆Mω is a majorizability theory (i.e., for every
closed term t there is a closed term q such that HAωE + BR + ∆Mω ` t E q).

Proof. It suffices to check that the bar recursive functionals have majorants
(within the theory). Let B∗ be given by B∗ψzuns = maxi≤nBpψzuis where
Bpψzuns is{

zn(s, nM ) if ψs, nM < n
max{zn(s, nM ), u(λx.Bpψzu(n+ 1)(s, n ∗ x))n(s, nM )} otherwise

and sM (n) stands for maxi≤n s(i). In Kohlenbach’s recent book [12], it is shown
that Mω |= B ≤∗ B∗. Hence, the sentence B E B∗ is in ∆Mω . a

We have just seen that HAωE +BR+∆Mω is a majorizability theory. Moreover,
the sentences of BR + ∆Mω are universal (with bounded intensional matrices)
and, therefore, self-interpretable. Hence, by the main result of [5]:

Theorem 3.2 (Soundness). Let A(z) be a formula of the language of HAωE +
BR + ∆Mω with free variables z, and assume that AB(z) is ∃̃b∀̃cAB(z, b, c). If

HAωE + BR + ∆Mω + Pω[E] ` A(z)

then, there are monotone closed terms t of appropriate type such that

HAωE + BR + ∆Mω ` ∀̃a∀z E a∀̃c AB(z, ta, c).

Moreover, Mω |= ∀̃a∀z ≤∗ a∀̃c (AB)∗(z, ta, c).

In the above, Pω[E] consists of the characteristic principles of the bounded
functional interpretation for the intuitionistic case. These principles are de-
scribed in [5]. (We use the notation A∗ for the flattening of the formula A.)

§4. The interpretation of the double negation shift. This section is
dedicated to the proof of the following theorem:

Theorem 4.1. DNS has a bounded functional interpretation in HAωE + BR +
∆Mω .

Corollary 4.2. HAωE + BR + ∆Mω + Pω[E] ` DNS.

Proof. Let A be (the universal closure of) an instance of DNS. By the above
theorem, HAωE + BR + ∆Mω ` AB . The result now follows by characterization
theorem (see [5]) of the bounded functional interpretation (intuitionistic case).

a
In order to prove Theorem 4.1, let A(n0) be an arbitrary formula of the lan-

guage of HAωE + BR and suppose that AB(n) is ∃̃a∀̃bAB(n, a, b) (we simplify and
omit parameters). A straightforward calculation shows that to interpret DNS, as
formulated in the introductory section, we must produce monotone n∗, f∗ and
g∗ (depending only on given monotone φ, ψ1 and ψ2) such that the statement

∀n ≤ n∗∀̃g E g∗¬∀̃a E φng¬∀̃b E ga AB(n, a, b)→
¬∀̃f E f∗¬∀n ≤ ψ1f ∀̃b E ψ2f AB(n, fn, b)

is provable in HAωE + BR + ∆Mω (note that, as observed in the previous section,
we disregard tuples of functionals). Since the above statement is universal (in φ,
ψ1 and ψ2), we need only to show that its flattening
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∀n ≤ n∗∀̃g ≤∗ g∗¬∀̃a ≤∗ φng¬∀̃b ≤∗ ga A∗B(n, a, b)→
¬∀̃f ≤∗ f∗¬∀n ≤ ψf ∀̃b ≤∗ ψ2f A

∗
B(n, fn, b)

is true in Mω (given φ, ψ1 and ψ2 monotone in the ordinary, flattened, sense).
Of course, if the concern is with truth in Mω, then we can simplify the above
formula and substitute the negative universals by appropriate existentials. That
notwithstanding, we will argue intuitionistically below (in tune with the argu-
ment of Section 2). For instance, the argument given below can be adapted to
show that it holds for the theory HAωE + BR + ∆i, where ∆i is the set of all
universal sentences (with intensional bounded matrices) whose flattenings are
provable in E-HAω + BR + BI. Here, the acronym E means that full extension-
ality is present (we are being careful at this point because our actual uses of
extensionality probably do not require E). Notice that ∆i ⊆ ∆Mω .

From here onwards and until the end of the section, we work with the ordinary
majorizability sign. The statements that we prove are meant to be true inMω (as
noticed, with suitable modifications, they are even provable in E-HAω+BR+BI).
When we use abbreviations concerning monotonicity, they are meant to be in
the ordinary sense. We use ∀x ≤∗ aA to abbreviate ∀x (x ≤∗ a→ A), etc.

We introduce a bit of notation: if ψ is in M(0→ρ)→σ, write ψ′ for the functional
of the same type defined by ψ′s := ψ(sM ). In the sequel, we use some simple
properties ([12] is a good reference). For instance, if s(i) is monotone for i ≤ n,
then ∀i ≤ n(s(i) ≤∗ sM (n)). Also, ∀i(r(i) ≤∗ s(i)) entails rM ≤∗ sM . Finally,
the following fact is handy: for monotone r, 0 ≤∗ r (here 0 denotes the zero
functional of the same type as r).

Let us fix φ, ψ1 and ψ2 monotone of appropriate types. We define B′ns
according to the following clauses:

B′ns :=
{
s, k if k ≤ n, ψ′1s, k < k and ∀i < k(ψ′1s, i ≥ i)
B′(n+ 1)(s, n ∗ c) if ∀k ≤ n(ψ′1s, k ≥ k)

where n is a natural number, s ∈MN
ρ , c = φngs,n and

gs,n = λx.ψ′2(B′(n+ 1)(s, n ∗ x)).
The value B′ns is in MN

ρ . In fact, we should think of this value as a finite
sequence of elements of Mρ. It is clear that B′ can be defined by bar recursion.

Before we give n∗, f∗ and g∗, it is convenient to study some properties of B′.

Lemma 4.3. Take n ∈ N and s ∈MN
ρ , then

∀i ≤ n (ψ′1s, i ≥ i)→ ∀i < n (s, n i = B′n(s, n)i).

Proof. We argue by bar induction. Take

P (s, n) = ∃i ≤ n (ψ′1s, i < i)
Q(s, n) = ∀i ≤ n (ψ′1s, i ≥ i)→ ∀i < n (s, n i = B′n(s, n)i).

Let us see that we have Hyp1-Hyp4 of bar induction. As we know, Hyp1 holds
in the structure of majorizable functionals. Hyp2 and Hyp3 are clear. Let us
focus on Hyp4. Take arbitrary s and n and assume that, for every x ∈Mρ,

∀i ≤ n+1 (ψ′1(s, n ∗ x, i) ≥ i)→ ∀i < n+1 ((s, n∗x) i = B′(n+1)(s, n∗x)i).
We must showQ(s, n, n). Suppose that ∀i ≤ n (ψ′1s, i ≥ i). By definition ofB′,

B′n(s, n) = B′(n+1)(s, n∗c) with c given by c = φn(λx.ψ′2(B′(n+1)(s, n∗x))).
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Either ψ′1(s, n ∗ c) < n + 1 or ψ′1(s, n ∗ c) ≥ n + 1. If the first case occurs, then
B′(n+ 1)(s, n ∗ c) = s, n ∗ c and also B′ns, n = s, n ∗ c. From this it follows that
∀i < n (s, n i = B′n(s, n)i). On the other hand, if ψ′1(s, n∗c) ≥ n+1, then, by the
initial assumption with x = c, we get ∀i < n+ 1((s, n∗ c)i = B′(n+ 1)(s, n∗ c)i).
It clearly follows that ∀i < n (s, ni = B′n(s, n)i), as desired. a

The following lemma (and respective proof) is similar to the corresponding
result concerning the majorability proof of section 11.5 of [12].

Lemma 4.4. If n ∈ N and s, r ∈MN
ρ , then

∀i < n (si ≤∗ ri)→ ∀j (B′nsj ≤∗ B′nrj).

Proof. We argue by bar induction. Take

P (r, n) := ∃k ≤ n (ψ′1r, k < k)
Q(r, n) := ∀s (∀i < n(si ≤∗ ri)→ ∀j(B′ns, nj ≤∗ B′nrj)).

As in the lemma above, Hyp1 and Hyp2 hold. Let us check that Hyp3 obtains.
Suppose that P (r, n, n). Take s such that ∀i < n(si ≤∗ ri). Let k0 be the least
natural number such that ψ′1r, k0 < k0. Note that k0 ≤ n. By the monotonicity
of ψ1 and the observation that s, k0

M ≤∗ r, k0
M

, ψ′1s, k0 ≤ ψ′1r, k0 < k0. Take k1

least such that ψ′1s, k1 < k1. Note that k1 ≤ k0. Therefore, we have B′ns, n =
B′ns = s, k1 and B′nr, n = B′nr = r, k0. Hence, ∀j(B′ns, nj ≤∗ B′nr, nj). So,
Q(r, n, n).

It remains to see Hyp4, i.e., ∀xQ(r, n ∗x, n+ 1)→ Q(r, n, n). So, assume that
∀xQ(r, n ∗ x, n+ 1). If ∃k ≤ n(ψ′1r, k < k), then by what was shown in Hyp3 we
get Q(r, n, n). We are restricted to the case ∀k ≤ n(ψ′1r, k ≥ k). Let s be given
such that ∀i < n(si ≤∗ ri). By definition of B′, B′nr, n = B′(n + 1)(r, n ∗ c),
where c = φngr,n and gr,n = λx.ψ′2(B′(n+ 1)(r, n ∗ x)).

We claim that gr,n is monotone. We must show that
x ≤∗ z → ψ′2(B′(n+ 1)(r, n ∗ x)) ≤∗ ψ′2(B′(n+ 1)(r, n ∗ z)).

Given that x ≤∗ z, it is clear that ∀i < n + 1((r, n ∗ x)i ≤∗ (r, n ∗ z)i). Since
we have Q(r, n ∗ z, n+ 1) we may conclude that

∀j(B′(n+ 1)(r, n ∗ x)j ≤∗ B′(n+ 1)(r, n ∗ z)j),
and, therefore, by the monotonicity of ψ2, it follows that ψ′2(B′(n+1)(r, n∗x)) ≤∗
ψ′2(B′(n+ 1)(r, n ∗ z)).

We also claim that c is monotone. However, this is an immediate consequence
of the definition of c and the previous claim, given that φ is monotone.

With these two claims proved, we show that ∀j(B′ns, nj ≤∗ B′nr, nj). We
discuss two cases.

The first case is when ∀k ≤ n(ψ′1s, k ≥ k). In this case, we have B′ns, n =
B′(n+ 1)(s, n ∗ d), where d = φngs,n and gs,n = λx.ψ′2(B′(n+ 1)(s, n ∗ x)).

We prove that gs,n ≤∗ gr,n. It is sufficient to show that
x ≤∗ z → ψ′2(B′(n+ 1)(s, n ∗ x)) ≤∗ ψ′2(B′(n+ 1)(r, n ∗ z)).

Well, if x ≤∗ z then ∀i < n+ 1((s, n ∗ x)i ≤∗ (r, n ∗ z)i). By Q(r, n ∗ z, n+ 1)
and the monotonicity of ψ2, the claim follows.

It is now clear that d ≤∗ c. Therefore, ∀i < n+ 1((s, n ∗ d)i ≤∗ (r, n ∗ c)i). By
Q(r, n ∗ c, n+ 1) we may infer ∀j(B′(n+ 1)(s, n ∗ d)j ≤∗ B′(n+ 1)(r, n ∗ c)j). At
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this point we only have to observe that B′(n + 1)(s, n ∗ d) = B′ns, n and that
B′(n+ 1)(r, n ∗ c) = B′nr, n.

Finally, the second case is when ∃k ≤ n(ψ′1s, k < k). Take k0 least such that
ψ′1s, k0 < k0. Note that k0 ≤ n. By definition of B′, B′ns, n = s, k0. By
the previous lemma, we have ∀i < n(r, ni = B′nr, ni). It readily follows that
∀j < k0(B′ns, nj ≤∗ B′nr, nj). The claim also extends for j ≥ k0 provided that
all the entries of the sequence B′nr, n are monotone (and, therefore, majorize
0). This is easily seen to be the case. Observe that Q(r, n∗ c, n+1) implies that,
for all j, B′(n+ 1)(r, n ∗ c)j is monotone. But, as we know, B′(n+ 1)(r, n ∗ c) =
B′nr, n. a

The following is an immediate consequence of the above lemma:

Corollary 4.5. Let n ∈ N. Consider s, r ∈ MN
ρ and suppose that si ≤∗ ri,

for all i < n. Then
λx.ψ′2(B′(n+ 1)(s, n ∗ x)) ≤∗ λx.ψ′2(B′(n+ 1)(r, n ∗ x)).

In particular, given r ∈ MN
ρ such that, for each i < n, ri is monotone, then

λx.ψ′2(B′(n+ 1)(r, n ∗ x)) is monotone.

In order to ease readability, we write 〈s0, s1, . . . , s(n− 1), 0, 0, . . . 〉 to denote
s ∈MN

ρ such that si = 0 for i ≥ n.
Let us define recursively

g∗0 = λx.ψ′2(B′1〈x, 0, 0, . . . 〉)
a∗0 = φ0g∗0

g∗i+1 = λx.ψ′2(B′(i+ 2)〈a∗0, a∗1, . . . , a∗i , x, 0, 0, . . . 〉)
a∗i+1 = φ(i+ 1)g∗i+1

Using the above corollary, it is clear by induction that the a∗i ’s and the g∗i ’s
are monotone. Define:

f∗ = 〈a∗0, a∗1, a∗2, . . . 〉M

n∗ = ψ1f
∗

g∗ = max
i≤n∗

g∗i .

Observe that f∗ and g∗ are monotone.
The remainder of the section is dedicated to proving that the monotone func-

tionals n∗, f∗ and g∗ defined above (which depend only on the given monotone
φ, ψ1 and ψ2) lend themselves to interpret DNS. More precisely, we show that
the two statements

∀n ≤ n∗∀̃g ≤∗ g∗¬∀̃a ≤∗ φng¬∀̃b ≤∗ ga AB(n, a, b)(4)

∀̃f ≤∗ f∗¬∀n ≤ ψ1f ∀̃b ≤∗ ψ2f AB(n, fn, b).(5)

entail a contradiction.

Definition 4.6. A sequence of monotone elements a0, . . . , an of Mρ is nice
if, for each 0 ≤ i ≤ n, ai ≤∗ φigi, where

gi = λx.ψ′2(B′(i+ 1)〈a0, . . . , ai−1, x, 0, 0, . . . 〉).
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Note that each gi above depends only on a0, . . . , ai−1 for its definition. We
prove some facts about nice sequences.

Lemma 4.7. Consider a0, . . . , an a nice sequence, with associated functions
g0 . . . , gn, gn+1. For all i ≤ n + 1, gi is monotone, gi ≤∗ g∗i and, for i ≤ n,
ai ≤∗ a∗i . Moreover, if i ≤ n∗ then gi ≤∗ g∗.

Proof. The result is easily proved by complete induction on i ≤ n using
Corollary 4.5. a

At this point, we can already prove the following:

Proposition 4.8. Under the hypothesis (4) we have, for all n ≤ n∗,
¬∀̃a0, . . . , an¬∀i ≤ n (ai ≤∗ φigi ∧ ∀̃b ≤∗ giai AB(i, ai, b)).

Proof. The proof is made by induction on n. For n = 0, the conclusion
comes from (4):

¬∀̃a ≤∗ φ0g0¬∀̃b ≤∗ g0a AB(0, a, b).

To prove the induction step, take the induction hypothesis:

¬∀̃a0, . . . , an¬∀i ≤ n (ai ≤∗ φigi ∧ ∀̃b ≤∗ giai AB(i, ai, b))

with n < n∗ and assume

∀̃a0, . . . , an+1¬∀i ≤ n+ 1 (ai ≤∗ φigi ∧ ∀̃b ≤∗ giai AB(i, ai, b)),

which is equivalent to{
∀̃a0, . . . , an∀̃an+1¬(∀i ≤ n (ai ≤∗ φigi ∧ ∀̃b ≤∗ giai AB(i, ai, b)) ∧

an+1 ≤∗ φ(n+ 1)gn+1 ∧ ∀̃b ≤∗ gn+1an+1 AB(n+ 1, an+1, b)).

By (4), if a0, . . . , an is a nice sequence and gn+1 is the (n + 1)th associated
function, then ¬∀̃a ≤∗ φ(n+ 1)gn+1¬∀̃b ≤∗ gn+1a AB(n+ 1, a, b). That is:

∀̃a0, . . . , an (∀i ≤ n (ai ≤∗ φigi)→
¬∀̃an+1¬(an+1 ≤∗ φ(n+ 1)gn+1 ∧ ∀̃b ≤∗ gn+1an+1AB(n+ 1, an+1, b))).

Applying the intuitionist rule

∀x∀z ¬(H(x) ∧A(x) ∧B(x, z)) ∀x (H(x)→ ¬∀z ¬B(x, z))
∀x ¬(H(x) ∧A(x))

we get

∀̃a0, . . . , an¬∀i ≤ n (ai ≤∗ φigi ∧ ∀̃b ≤∗ giai AB(i, ai, b)).

The contradiction follows from the induction hypothesis. a
In particular, under hypothesis (4), we have:

¬∀̃a0, . . . , an∗¬∀i ≤ n∗ (ai ≤∗ φigi ∧ ∀̃b ≤∗ giai AB(i, ai, b)).(6)

We will show that the above leads to a contradiction under the hypothesis (5).
Firstly, we need to prove some further facts about nice sequences:

Lemma 4.9. Let a0, . . . , an∗ be a nice sequence and g0, . . . , gn∗ (and gn∗+1)
its associated functions. Then we have ∀n < n∗(gn+1an+1 ≤∗ gnan).
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Proof. Let n < n∗. By definition, we have

gnan = ψ′2(B′(n+ 1)〈a0 . . . , an, 0, 0, . . . 〉)
gn+1an+1 = ψ′2(B′(n+ 2)〈a0 . . . , an, an+1, 0, 0, . . . 〉).

We consider two cases. Suppose that there is k ≤ n such that
ψ′1〈a0, . . . , ak, 0, 0, . . . 〉 < k + 1.

Let k0 be the least such k. Then, by definition of B′

B′(n+ 1)〈a0, . . . , an, 0, 0, . . . 〉 = 〈a0, . . . , ak0 , 0, 0, . . . 〉
B′(n+ 2)〈a0, . . . , an, an+1, 0, 0, . . . 〉 = 〈a0, . . . , ak0 , 0, 0, . . . 〉

Therefore, gn+1an+1 = gnan. Note that gnan is monotone, since a0, . . . , ak0
are monotone.

Now, for the second case: ∀k ≤ n ψ′1〈a0, . . . , ak, 0, 0, . . . 〉 ≥ k+ 1. In this case
B′(n+ 1)〈a0, . . . , an, 0, 0, . . . 〉 = B′(n+ 2)〈a0, . . . , an, c, 0, 0, . . . 〉,

where c = φ(n+ 1)gn+1. Since, an+1 ≤∗ φ(n+ 1)gn+1 = c, then
ψ′2(B′(n+ 2)〈a0, . . . , an, an+1, 0, 0, . . . 〉) ≤∗

ψ′2(B′(n+ 2)〈a0, . . . , an, c, 0, 0, . . . 〉),
as desired. a

Given a = a0, . . . , an∗ a nice sequence, ψ1〈a0, . . . , an∗ , 0, 0, . . . 〉M ≤ ψ1f
∗ =

n∗ < n∗ + 1. Let k0 be the least natural number ≤ n∗ such that
ψ1〈a0, . . . , ak0 , 0, 0, . . . 〉M < k0 + 1.

Define fa as 〈a0, . . . , ak0 , 0, 0, . . . 〉M . Observe that fa ≤∗ f∗ and ψ1fa ≤ n∗.

Lemma 4.10. Let a = a0, . . . , an∗ be a nice sequence, with associated functions
g0, . . . , gn∗ (and gn∗+1). Take fa as defined above. Then, ψ2fa ≤∗ gnan, for all
n ≤ n∗.

Proof. We show that ψ2fa = gn∗an∗ . With the help of the previous lemma,
this entails our result. By definition, fa = 〈a0, . . . , ak0 , 0, 0, . . . 〉M , where k0 is
least satisfying ψ1〈a0, . . . , ak0 , 0, 0, . . . 〉M < k0 + 1. According to the definition
of B′,

B′(n∗ + 1)〈a0, . . . , an∗ , 0, 0, . . . 〉 = 〈a0, . . . , ak0 , 0, 0, . . . 〉.
Therefore: ψ2fa = ψ′2(B′(n∗ + 1)〈a0, . . . , an∗ , 0, 0, . . . 〉) = gn∗an∗ . a

Lemma 4.11. Assume that statement (5) holds, and let a = a0, . . . , an∗ be a
nice sequence, with associated functions g0, . . . , gn∗ (and gn∗+1). In this situa-
tion,

¬∀n ≤ ψ1fa∀̃b ≤∗ gnan AB(n, an, b),
for fa defined as above.

Proof. Assume ∀n ≤ ψ1fa∀̃b ≤∗ gnanAB(n, an, b). By the above lemma,

∀n ≤ ψ1fa∀̃b ≤∗ ψ2fa AB(n, an, b).
Let fa = 〈a0, . . . , ak0 , 0, 0, . . . 〉M . By definition, ψ1fa ≤ k0. Now, if n ≤ ψ1fa,

we clearly have an ≤∗ fan. Using the monotonicity of AB in the entry of an, we
get ∀n ≤ ψ1fa∀̃b ≤∗ ψ2fa AB(n, fan, b). This contradicts (5). a
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Let us take stock. We have showed in the previous lemma that, under the
hypothesis (5),

∀̃a0, . . . , an∗(∀n ≤ n∗(an ≤∗ φngn)→ ¬∀n ≤ ψ1fa∀̃b ≤ gnan AB(n, an, b)).
Equivalently,
∀̃a0, . . . , an∗¬(∀n ≤ n∗(an ≤∗ φngn) ∧ ∀n ≤ ψ1fa∀̃b ≤ gnan AB(n, an, b)).

Now, since ψ1fa ≤ n∗, this entails
∀̃a0, . . . , an∗¬∀n ≤ n∗(an ≤∗ φngn ∧ ∀̃b ≤ gnan AB(n, an, b)).

We have reached a contradiction with (6).
Theorem 4.1 is now proved.

§5. The interpretation of full numerical comprehension. As mentioned
in the introduction, Spector introduced bar recursive functionals in order to effect
a dialectica interpretation of full numerical comprehension. The interpretation
is done within the classical setting via a negative (Gödel-Gentzen like) transla-
tion A ; Ag of formulas. The soundness theorem of the bounded functional
interpretation within the classical setting reads as follows:

Theorem 5.1 (Soundness). Let A(z) be a formula of the language of PAωE +
BR+∆Mω with free variables z, and assume that (Ag)B(z) is ∃̃b∀̃c (Ag)B(z, b, c).
If

PAωE + BR + ∆Mω + Pωbd[E] ` A(z)

then there are monotone closed terms t of appropriate type such that

HAωE + BR + ∆Mω ` ∀̃a∀z E a∀̃c (Ag)B(z, ta, c).

Moreover, Mω |= ∀̃a∀z ≤∗ a∀̃c ((Ag)B)∗(z, ta, c).

In the above, Pωbd[E] is constituted by the characteristic principles of the
bounded functional interpretation for the classical case. These principles are
described in [5] and, in a more perspicuous form, in [4]. Our aim is to show that

PAωE + BR + ∆Mω + Pωbd[E] ` CA0.

As discussed in [3] and [4], the principles in Pωbd[E] embody uniformities which
are absent from the set-theoretic world. Already very simple instances of com-
prehension for type 1 functionals are incompatible with these uniformities. It
was nevertheless suggested in [3] that full numerical comprehension is compat-
ible with such uniformities. The above soundness theorem, together with the
fact that CA0 is a consequence of PAωE + BR + ∆Mω + Pωbd[E], shows that this is
indeed the case. We argue this fact in a rather indirect way, relying on the work
of the previous section. We will show that PAωE + BR + ∆Mω + Pωbd[E] ` AC0,ω,
where AC0,ω is the form of choice ∀n0∃xA(n, x) → ∃f∀nA(n, fn), for arbitrary
formulas A (x can be of any type). It is well known how to derive CA0 from AC0,ω

in a classical setting. In effect, let A(n) be an arbitrary formula. By classical
logic, ∀n∃k ((k = 0∧A(n))∨ (k = 1∧¬A(n))). By AC0,ω (only AC0,0 is needed),
there is f0→0 which witnesses such k. Of course, we get ∀n(fn = 0↔ A(n)), as
desired.

We first prove the weaker statement:
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PAωE + BR + ∆Mω + Pωbd[E] ` bAC0,ω,

where bAC0,ω is the principle ∀n0∃xA(n, x)→ ∃̃f∀n∃x E fnA(n, x), for arbitrary
formulas A (x can be of any type). Observe that if we follow the argument
above, this weaker statement is found wanting for deriving CA0 because bAC0,ω

only provides a bound for the k (1 is a trivial bound), not an exact k.
In order to prove the weaker statement, we show that

HAωE + BR + ∆Mω + Pω[E] ` (bAC0,ω)g.

Let us see why this does the job. On the one hand, by Theorem 3.2, we get
HAωE+BR+∆Mω ` ((bAC0,ω)g)B (we must see each instance of bAC0,ω as given by
its corresponding universal closure). On the other hand, by the characterization
theorem of the bounded functional interpretation for the classical case (see [4]),
we have PAωE + BR + Pωbd[E] ` bAC0,ω ↔ ((bAC0,ω)g)B . The result follows.

We should point out that the characterization theorem of [4] was formulated for
a direct bounded functional interpretation of the classical theory PAωE, whereas
here we are applying it to the indirect interpretation A ; (Ag)B , via a negative
translation. That notwithstanding, the characterization theorem still holds in
this indirect case. For instance, we can rely on Jaime Gaspar’s factorization [6] of
the direct interpretation in terms of a negative translation and the (intuitionistic)
bounded functional interpretation. Even though Gaspar’s factorization concerns
the so-called Krivine negative translation, it is not difficult to see that it also
applies to the Gödel-Gentzen translation using the fact that both translations
are intuitionistically equivalent.

The presence of the bar recursors and of the corresponding axioms BR are
paramount for proving the next result.

Proposition 5.2. HAωE + BR + ∆Mω + Pω[E] ` (bAC0,ω)g.

Proof. This relies on the adaptation of a well-known argument. The negative
translation of bAC0,ω may be taken to be

∀n¬¬∃xAg(n, x)→ ¬¬∃̃f∀n¬¬∃x E fnAg(n, x).

Assume ∀n¬¬∃x Ag(n, x). At this juncture, we rely on the work of the previ-
ous section, namely on Corollary 4.2. Therefore, we get ¬¬∀n∃xAg(n, x). Since
∀n∃xAg(n, x) → ∃̃f∀n∃x E fnAg(n, x) is included in Pω[E], we get (by intu-
itionistic logic)

¬¬∀n∃xAg(n, x)→ ¬¬∃̃f∀n∃x E fnAg(n, x)

and, therefore, by Modus Ponens, ¬¬∃̃f∀n∃x E fnAg(n, x). This entails our
result. a

We now prove AC0,ω from bAC0,ω within PAωE + BR + ∆Mω + Pωbd[E], and
this fact proves our aim. It is convenient to introduce the following form of
(ineffective) choice, which we call tameAC:

∀̃f∃h E f∀x (∃z E fxAbd(x, z)→ Abd(x, hx)),

for (intensional) bounded formulas Abd.

Lemma 5.3. The flattening of the instances of tameAC are true in Mω.
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Proof. We present the following (ineffective) proof. Given f monotone in
Mσ→ρ, define h such that

xσ ;

{
z for some z ∈Mρ such that z ≤∗ρ fx ∧A∗bd(x, z)
0ρ otherwise

Such h exists by the axiom of choice, and it is clear that h ≤∗ f . Therefore,
h is in Mσ→ρ and obviously witnesses the truth of the flattening of the given
instance of tameAC. a

The principle tameAC is not a universal statement. However, the following
weakening, dubbed w-tameAC, is universal (with bounded intensional matrix):

∀̃f ∀̃b∃h E f∀x E b (∃z E fxAbd(x, z)→ Abd(x, hx)).
By the above lemma, the flattenings of the instances of w-tameAC are true in

Mω. Since each such instance has the right syntactic form, they are in ∆Mω .

Lemma 5.4. PAωE + BR + ∆Mω + Pωbd[E] ` tameAC.

Proof. The principle tameAC is an immediate consequence of w-tameAC in
the presence of the bounded (contra) collection principle of Pωbd[E]. a

Lemma 5.5. The theory PAωE + BR + ∆Mω + Pωbd[E] proves

∀̃f(∀̃a∃b E faA(a, b)→ ∃h E f ∀̃aA(a, ha)),
where A is an arbitrary universal formula (with bounded intensional matrix).

Proof. Let f be monotone and assume that ∀̃a∃b E fa∀z Abd(a, b, z), where
Abd is a bounded formula. A fortiori, ∀̃d∀̃a∃b E fa∀z E d Abd(a, b, z) and, by
tameAC, it follows that

∀̃d∃h E f ∀̃a∀z E d Abd(a, ha, z)
and, therefore, ∀̃c, d∃h E f ∀̃a E c∀z E d Abd(a, ha, z). By bounded (contra)
collection (which is included in Pωbd[E]), we get ∃h E f ∀̃a∀z Abd(a, ha, z). a

We can finally prove the following:

Proposition 5.6. PAωE + BR + ∆Mω + Pωbd[E] + bAC0,ω ` AC0,ω.

Proof. Suppose ∀n∃xA(n, x), with arbitrary A. It is a consequence of the
characterization theorem of the bounded functional interpretation (classical case)
that, within PAωE +BR+Pωbd[E], the formula A(x, n) is equivalent to a formula of
the form ∃̃a∀̃bBbd(a, b, n, x), with Bbd bounded. Hence, ∀n∃x∃̃a∀̃bBbd(a, b, n, x).
By bAC0,ω, we get ∃̃f, g∀n∃x E fn∃̃a E gn∀̃bBbd(a, b, n, x).

By Lemma 5.5, there are h and s so that ∀n∀̃b(sn E sn∧Bbd(sn, b, n, hn)). In
particular, we have that ∀n∃̃a∀̃bBbd(a, b, n, hn), i.e., ∀nA(n, hn). As desired. a

Notice that this argument relies on the fact that the flattenings of the instances
of w-tameAC are among the set of sentences ∆Mω . Therefore, it is no longer
possible (as it was in Section 4) to replace this set of sentences by universal
sentences provable using BI. The use of the ineffective principle stemming from
w-tameAC is essential in the above proof. However, it is not clear if the result per
se requires the use of such ineffective principle. In point of fact, the anonymous
referee pointed out that the principle can be avoided in the important special
case of arithmetical comprehension. Let us see why.
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On the one hand, it is well known that arithmetical comprehension follows from
Π0

1-comprehension. On the other hand, this latter case of comprehension obvi-
ously follows from Π0

1-AC0,0 (i.e., AC0,0 restricted to Π0
1-matrices). We are left to

prove this form of choice. Let us assume ∀n∃k∀rAqf(n, k, r), where n, k and r are
numerical variables and Aqf(n, k, r) is a quantifier-free formula (possibly with pa-
rameters). By bAC0,ω, there is a monotone f such that ∀n∃k ≤ fn∀rAqf(n, k, r).
In particular, ∀l∀n∃k ≤ fn∀r ≤ lAqf(n, k, r). By bounded search, we get
∀l∃h ≤1 f∀n∀r ≤ lAqf(n, hn, r). We may suppose

∀l∃h E1 f∀n∀r ≤ lAqf(n, hn, r),
either by appealing to the construction of h or, alternatively, by replacing h by
min1(h, f) and noticing that h appears only in the (extensional) context “hn”
in the matrix (observe that, for monotone f , min1(h, f) E1 f). Hence

∀s∀l∃h E1 f∀n ≤ s∀r ≤ lAqf(n, hn, r),
and, by bounded (contra) collection, ∃h E1 f∀n∀rAqf(n, hn, r). We conclude
∃h∀n∀rAqf(n, hn, r), as wanted.

Our last result subsumes the fact that the theory PAωE + AC0,ω + Pωbd[E] has
a bounded functional interpretation by bar recursive functionals (verifiable in
HAωE + BR + ∆Mω ):

Corollary 5.7. Let A(z) be a formula of the language of PAωE +BR with free
variables z, and assume that (Ag)B(z) is ∃̃b∀̃c (Ag)B(z, b, c). If

PAωE + AC0,ω + Pωbd[E] ` A(z)

then there are monotone closed terms t of appropriate type such that

HAωE + BR + ∆Mω ` ∀̃a∀z E a∀̃c (Ag)B(z, ta, c).

Moreover, Mω |= ∀̃a∀z ≤∗ a∀̃c ((Ag)B)∗(z, ta, c).

Spector’s result of 1962 was subsequently improved by Howard [9], where it is
shown that (the negative translation of) the principle of dependent choices has
a dialectica interpretation using bar recursive functionals. We conjecture that
“dependent choices” has also a bounded functional interpretation.
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