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THE BOUNDED FUNCTIONAL INTERPRETATION OF THE DOUBLE
NEGATION SHIFT

PATRICIA ENGRACIA AND FERNANDO FERREIRA

Abstract. We prove that the (non-intuitionistic) law of the double negation shift has
a bounded functional interpretation with bar recursive functionals of finite type. As an
application, we show that full numerical comprehension is compatible with the uniformities
introduced by the characteristic principles of the bounded functional interpretation for the
classical case.

§1. Introduction and background. In 1962 [14], Clifford Spector gave a
remarkable characterization of the provably recursive functionals of full second-
order arithmetic (a.k.a. analysis). The central result of his paper is an extension,
from arithmetic to analysis, of the (then quite recent) dialectica interpretation of
Godel of 1958 [7]. Spector’s extension relies on a form of well-founded recursion
known as bar recursion. The name comes from the intuitionistic studies of L. E.
J. Brouwer and his contentious bar theorem of the nineteen twenties.

Spector extends the bar notions to all finite types. There are various in-
sights in Spector’s paper, but we find that the crucial insight is that the (non-
intuitionistic) law of the double negation shift,

DNS : Vn =—A(n) — —-—Vn A(n)

(n is a natural number variable, A is an arbitrary formula) has a dialectica
interpretation using bar recursive functionals of finite-type. The existence of this
interpretation is enough to ensure the interpretation of the negative translation
of full numerical comprehension

CAY: 3ftyn® (f(n) =0 0« A(n)),

where A is an arbitrary formula of the language of finite-order arithmetic. Here,
the superscripts denote the type of the variables: type 0 is the type of natural
numbers, type 1 is the type of the functions from natural numbers to natural
numbers. We assume that the reader is familiar with these type-theoretic nota-
tions. [1] and the recent [12] are good sources for the dialectica interpretation
and related issues (including bar-recursive functionals).

The bounded functional interpretation was introduced in [5]. It is an interpre-
tation based on a new transformation of formulas A ~» AB := JaVbAp (a,b) and
which relies essentially on majorizability notions. The characteristic principles
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of this interpretation state “uniformities” which are not set theoretically true.
A conspicuous result is that the characteristic principles (for the classical case)
refute, within a base theory, simple forms of comprehension for type 1 functions
(see section 8 of [3]). In other words, the mentioned “uniformities” are not com-
patible with type 1 comprehension. Notwithstanding, by the soundness theorem
of the interpretation, they entail (e.g.) true IT9-sentences only. The reader can
find in [3] some discussions and comparisons between Godel’s dialectica interpre-
tation, the bounded functional interpretation and, also, the related monotone
functional interpretation of Ulrich Kohlenbach (introduced in [11]). In the same
article, the second author expressed the belief that the uniformities introduced
by the bounded functional interpretation (for the classical case) are compatible
with full numerical comprehension (i.e., type 0 comprehension). The results of
Section 5 below confirm that this belief was correct.

The strong magjorizability relations were introduced by Marc Bezem in [2] (after
the seminal work of William Howard [10]):

v<jy=a<y
T <,y = Vul P (u <pv—au<jyvAyu <j yv)

Bezem also defines the structure M® of the strongly majorizable functionals
and proved that the bar recursors are well-defined in this structure (bar recursors
are not well-defined in the standard set-theoretical type structure). The bounded
functional interpretation uses an intensional version of Bezem’s majorizability
relations. These relations <0 (one for each finite type) are called intensional
because they are partly governed by a rule:

rdoy TSy,
zdpo y — Yu <, v(zu <o yv Ayu <o yo)
Apga ANu D, v — sud, to Atu <, to
Abd - S ﬁpﬂa t

where Apq is an intensional bounded formula and u and v are variables which do
not appear in the conclusion of the rule (named as RLg). We assume that the
reader is familiar with the intuitionistic arithmetic theory HA% and its bounded
functional interpretation. -

The main purpose of this paper is to show that DNS has a bounded func-
tional interpretation. As discussed in [13], the dialectica interpretation of the
intuitionistic law =—A A ==B — ——=(A A B) can be seen as a “finite” version
of the interpretation of DNS. Moreover, since this law is a theorem of HAY, it
must have a bounded functional interpretation. We work out this interpretation
explicitly in the brief Section 2 as a warm up for the interpretation of DNS. The
latter interpretation cannot be done solely in terms of the primitive recursive
functionals in the sense of Godel. Further terms are needed and, following the
work of Spector, we effect this interpretation using terms defined by bar recur-
sion. It turns out that the bounded functional interpretation of DNS is somewhat
delicate, and we dedicate Section 4 almost entirely to it. The preceding Section
3 describes the theory in which the interpretation of DNS is verified. This the-
ory contains the set A of all universal sentences (with intensional bounded
matrices) whose flattenings are true in the structure M<. This is not optimal,
of course. However, we chose this route because an optimal treatment would be
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a distraction from the main thrust of the interpretation of DNS. Moreover, the
treatment of CA® in Section 5 relies essentially on some facts of A .

We would like to thank Jaime Gaspar and Paulo Oliva for some discussions.
We also thank an anonymous referee for pertinent observations which improved
the final version of this paper. We are special grateful to the referee for pointing
out an improvement in the case of arithmetical comprehension.

82. A not so simple interpretation. Let A and B be arbitrary formulas
of the language of HAY and suppose that AP is glalgblAB(al,bl) and B is
JasVbs B (ag2,b2). As a matter of fact, we should have written (possibly empty)
tuples of variables in the previous quantifications. However, for ease of reading,
we have omitted (and will omit) the tuple notation. In order to obtain the
bounded functional interpretation of == AA——=B — == (AAB), a straightforward
computation shows that we must produce monotone aj, a3, g7 and g5, depending
on monotone f1, fo, ¢1 and ¢o, such that the three clauses

(1) Vg1 < gi Va1 < ¢1g1-Vb1 < grar Ap(ar,br)
(2) Vgo < g5—Vas < ¢aga—Vby < goas Bp(az,bs)
(3) V(Zl Sl G,T, a9 S] a;_'Vbl Sl f1a1a2Vb2 S] f2a1a2 (AB(al, bl) A\ BB(G,Q, bg))

lead to a contradiction.

Take
g7 = Az frz(d2(Ay. fazy))
aj = 197
95 = Ay. faaly
a; = $295

Since fi1, f2,¢1 and ¢ are monotone, it follows that g7, g5,a7, a3 are also
monotone (the rule RL is heavily used in showing this). Assume that we have
the clauses (1), (2) and (3) for the g7, af, g3, a’ as defined above. We must
reach a contradiction.

Take a monotone a; with a; < aj, and define go := Ay. foa1y. Take, now, a
monotone ag with as < ¢ags. Then go < g5 and as < al. We get the following:

Vby < gay Ap(ay,by) AVby 9 gaas Bp(ag, by) —
Vb1 9 fiaraz Ap(a1,b1) AVba < faaras Bp(asg, bs)
because we have fia1as < gjaq by the definition of g7 and the fact that aa < @290
(note, also, that goas = faajas). By (3),
Vb1 < fra1asVby < faaras (Ap(ar,bi) A Bplaz, bs)) — L.
Hence, we may conclude that Vb < giay Ap(ay,by) — Vb < goas Bg(asz,bs).
Due to the arbitrariness of as, we even get
Vb1 < gtar Ap(ar,bi) — Vaz < ¢aga—by < gaas Bp(as,bo).
By (2), it follows —b; < gfa; Ap(a1,b). By the arbitrariness of ay,
Yay 9 ¢1g;-Vby < giar Ap(ai,by).

This contradicts (1) when we instantiate g1 by g;.
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83. The bounded functional interpretation extended to bar recur-
sors. In this section, we extend the language of HA% with new constants B”?,
the bar recursors, and consider the following defining axioms BR, ;:

Vap(0=P)=0 511 g2 00 $0=r (57 <o n — BP7pzuns =, 2ns,m) A
(Ys;m >0 n — BP%Yzuns =, u(AzP.BPpzu(n + 1)(5;7 * x))ns,m))
where ;1 =0 — (0 = p) —0), 2= (p —0) = ((0 > (0 — p)) — o), and
(5,m)°77 and (5,7 % 2)°~" are defined as

sk ifk<gn
1 0 otherwise

sk if k<gn
if k = n
otherwise

(smxa)k =,

o8

Note that whereas s9~” denotes infinite sequences of objects of type p, 5,7,
although formally of type 0 — p, is meant to stand for the initial subsequence
of s with length n, (sg,s1,...,8,-1,0,0,...), and 5,7 * 2 is the concatenation
of the finite sequence 5,7 with x (‘S;7 % 2’ is meant to be a “ternary” functional
in s, n and x).

Following the treatment of Kohlenbach in [12], we officially take simultane-
ous bar-recursion with tuples of variables (note that the ‘neutral’ treatment of
equality in HA% does not seem to allow a reduction to ordinary bar recursion
without tuples). As in the previous section, we omitted (and will omit) the tuple
notation. Let us write BR for the collection of all the statements of the form
BR,,-. Bar recursion is a principle of definition while bar induction is a corre-
sponding principle of proof, in analogy with the usual recursors and induction.
The scheme of bar induction Bl applied to formulas P and @ is given by

Hypl A Hyp2 A Hyp3 A Hypd — Vs € MY n € NQ(5,7,n),

where

Hypl: Vse M"3neN P(57,n)

Hyp2: Vse& MY neNVm <n(P(s,m,m)— P(5m,n))
Hyp3: Vse MY neN (P(3m,n)— Q(5m,n))

Hypd: Vse MY neN (Vaf QEa+z,n+1) — Q(5m,n))

It is well-known that we can argue by bar induction in the structure M% (see,
for instance, [12] for a closely related formulation).

Let us consider the set A as described in the introduction: the set of
all universal sentences (with intensional bounded matrices) whose flattenings
happen to be true in the structure M%“ of the majorizable functionals. We
remind the reader that the flattening of a formula of the intensional language is
obtained by replacing each sign < by the corresponding majorizability sign <*
(see [4], or the end of section 6 of [5]). Even though the statements in BR are in
A pqe (they are universal), we will write HA% + BR+ Ay« instead of the shorter
HAY 4 A . The inclusion of the acronym ‘BR’ has the advantage of indicating
that our language contains the bar recursive functionals.
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THEOREM 3.1. HA% + BR + Apqe is a majorizability theory (i.e., for every
closed term t there is a closed term q such that HA% +BR+Apme FtDg).

PRrROOF. It suffices to check that the bar recursive functionals have majorants
(within the theory). Let B* be given by B*yzuns = max;<, BP¢zuis where
BPyzuns is

zn(5,nM) it y5;nM <n

{ max{zn(5,7M), u(Ax.BPyzu(n + 1) (5,7 * 2))n(5,7M)}  otherwise
and s (n) stands for max;<, s(i). In Kohlenbach’s recent book [12], it is shown
that M*“ |= B <* B*. Hence, the sentence B < B* is in Apqw. -

We have just seen that HAY 4+ BR+ A v is a majorizability theory. Moreover,
the sentences of BR + A are universal (with bounded intensional matrices)
and, therefore, self-interpretable. Hence, by the main result of [5]:

THEOREM 3.2 (Soundness). Let A(z) be a formula of the language of HAZ +
BR + A with free variables z, and assume that AP(z) is EIQQQAB(;, bo). If
HAG + BR + Ape + P[] F A(2)

then, there are monotone closed terms t of appropriate type such that
HAY +BR+ A VaVz < aVe Ap(z,ta,c).
Moreover, M*“ = VaVz <* aVe (Ap)*(z,ta,c).
In the above, P¥[d] consists of the characteristic principles of the bounded

functional interpretation for the intuitionistic case. These principles are de-
scribed in [5]. (We use the notation A* for the flattening of the formula A.)

84. The interpretation of the double negation shift. This section is
dedicated to the proof of the following theorem:

THEOREM 4.1. DNS has a bounded functional interpretation in HAZ + BR +
AMw . B

COROLLARY 4.2. HAYG + BR + A + P[] - DNS.

PROOF. Let A be (the universal closure of) an instance of DNS. By the above
theorem, HAY 4+ BR + A F AP, The result now follows by characterization

theorem (see [5]) of the bounded functional interpretation (intuitionistic case).
_|
In order to prove Theorem 4.1, let A(n°) be an arbitrary formula of the lan-
guage of HA% + BR and suppose that A”(n) is 3a¥bAg(n,a,b) (we simplify and
omit parameters). A straightforward calculation shows that to interpret DNS, as
formulated in the introductory section, we must produce monotone n*, f* and

g* (depending only on given monotone ¢, and 1s) such that the statement

Vn < n*‘&g < g*—\ga < gimg—\%b < ga Ag(n,a,b) —
VS D [V < G fVb S e f Ap(n, fn,b)

is provable in HA% 4+ BR+ Ay« (note that, as observed in the previous section,

we disregard tuples of functionals). Since the above statement is universal (in ¢,
11 and 13), we need only to show that its flattening
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Vn < n*Vg <* g*—Va <* ¢ng—vb <* ga Ag(n,a,b) —
SVf T TR < gV <F i f Ag(n, f,b)

is true in M¥ (given ¢, ¢ and 12 monotone in the ordinary, flattened, sense).
Of course, if the concern is with truth in M¥, then we can simplify the above
formula and substitute the negative universals by appropriate existentials. That
notwithstanding, we will argue intuitionistically below (in tune with the argu-
ment of Section 2). For instance, the argument given below can be adapted to
show that it holds for the theory HAY + BR + A;, where A; is the set of all
universal sentences (with intensional bounded matrices) whose flattenings are
provable in E-HA® + BR + BIl. Here, the acronym E means that full extension-
ality is present (we are being careful at this point because our actual uses of
extensionality probably do not require E). Notice that A; C Apqe.

From here onwards and until the end of the section, we work with the ordinary
majorizability sign. The statements that we prove are meant to be true in M* (as
noticed, with suitable modifications, they are even provable in E-HA* +BR+ BI).
When we use abbreviations concerning monotonicity, they are meant to be in
the ordinary sense. We use Vo <* a A to abbreviate Vz (z <* a — A), etc.

We introduce a bit of notation: if ¢ is in M(y_, )., write ¢’ for the functional
of the same type defined by 1's := 9(sM). In the sequel, we use some simple
properties ([12] is a good reference). For instance, if s(i) is monotone for i < n,
then Vi < n(s(i) <* sM(n)). Also, Vi(r(i) <* s(i)) entails r™ <* sM. Finally,
the following fact is handy: for monotone r, 0 <* r (here 0 denotes the zero
functional of the same type as r).

Let us fix ¢, 11 and 12 monotone of appropriate types. We define B'ns
according to the following clauses:

Blns — s, k if k <n, wi@< k and Vi < k()s,i > 1)
' B'(n+1)(s;m *c) if VE < n(yis, k> k)
where n is a natural number, s € MEI, ¢ = ¢ngsm and
e = Av:U5 (B (n + 1)(577 5 2))
The value B'ns is in M[I,\I. In fact, we should think of this value as a finite
sequence of elements of M,. It is clear that B’ can be defined by bar recursion.
Before we give n*, f* and g*, it is convenient to study some properties of B’.
LEMMA 4.3. Take n € N and s € ME, then
Vi <n (Yis,i>1i) — Vi<n (5;ni= B'n(sn)i).
Proor. We argue by bar induction. Take
P(s,n) =3i <n (5,7 < i)
Q(s,n)=Vi<n (Y|s,i >i) —Vi<n (5,n1i= Bn(smn)).
Let us see that we have Hyp1-Hyp4 of bar induction. As we know, Hyp1 holds

in the structure of majorizable functionals. Hyp2 and Hyp3 are clear. Let us
focus on Hyp4. Take arbitrary s and n and assume that, for every x € M,

Vi <n+1l (Wi (En*x,i) > i) = Vi <n+l ((Snxx) i = B (n+1)(5,n*x)i).
We must show Q(3,7,n). Suppose that Vi < n (1]s,4i > 4). By definition of B’,
B'n(s;m) = B'(n+1)(5,7*c) with ¢ given by ¢ = ¢n(Ax. 4 (B’ (n+1)(5,m*x))).



INTERPRETING THE DOUBLE NEGATION SHIFT 7

Either ] (5;m*¢) <n+ 1 or ¢ (s;m*c) > n+ 1. If the first case occurs, then
B'(n+1)(5;m*c) =3, xc and also B'ns,m = 5, * c. From this it follows that
Vi <n (5,11 = B'n(s;m)i). On the other hand, if ¢} (5;7*c) > n+1, then, by the
initial assumption with x = ¢, we get Vi < n+1((5;*c)i = B’ (n+1)(5,m*c)i).
It clearly follows that Vi < n (5;mé = B'n(s,7)i), as desired. !

The following lemma (and respective proof) is similar to the corresponding
result concerning the majorability proof of section 11.5 of [12].

LEMMA 4.4. Ifn e N and s,r € ME, then
Vi <n (si <*ri) > Vj (B'nsj <* B'nrj).
Proor. We argue by bar induction. Take
P(r,n):=3k <n (Pir k < k)
Q(r,n) :=Vs (Vi < n(si <* ri) — Vj(B'ns,nj <* B'nrj)).
As in the lemma above, Hypl and Hyp2 hold. Let us check that Hyp3 obtains.
Suppose that P(7,7,n). Take s such that Vi < n(si <* ). Let ko be the least
natural number such that ¥r, kg < ko. Note that kg < n. By the monotonicity
of 1 and the observation that s, ko <* 7 ko W5, ko < Y1 ko < ko. Take ki
least such that s, k1 < k1. Note that k1 < kg. Therefore, we have B'ns;n =
B'ns = s,k; and B'n7,n = B'nr = r, ko. Hence, Vj(B'ns,nj <* B'nr,mj). So,
Q)

It remains to see Hyp4, i.e., V2Q(T,m*xx,n+1) — Q(T, 7, n). So, assume that
VeQFmxx,n+1). If I3k < n(yYir, k < k), then by what was shown in Hyp3 we
get Q(7,m,n). We are restricted to the case Vk < n(¢r,k > k). Let s be given
such that Vi < n(si <* ri). By definition of B, B'nt,m = B'(n + 1)(7,7 * ¢),
where ¢ = ¢ngrm and grm = Ax.5(B' (n+ 1)(F R * x)).

We claim that g7 is monotone. We must show that

<"z =y (B (n+ 1)(Fmx x) <* Po(B'(n+1) (77 * 2)).

Given that x <* z, it is clear that Vi < n+ 1((F;7 * x)i <* (7,7 * 2)i). Since

we have Q(7,; 7 * z,n + 1) we may conclude that

Vi(B'(n+ 1)(Fn+x)j <* B'(n+ 1) (7m0 * 2)5),
and, therefore, by the monotonicity of 12, it follows that ¥4 (B’ (n+1) (7, mxx)) <*
4B (n+ 1) (77 + 2)).

We also claim that ¢ is monotone. However, this is an immediate consequence
of the definition of ¢ and the previous claim, given that ¢ is monotone.

With these two claims proved, we show that Vj(B'ns,nj <* B'nF,mj). We
discuss two cases.

The first case is when Vk < n(¢}s,k > k). In this case, we have B'ns,n =
B'(n+1)(5;m * d), where d = ¢ngsm and gsm = Az.y(B'(n+ 1)(5,7 + x)).

We prove that gz <* grm. It is sufficient to show that

<"z =y (B (n+1)(5mxx)) < ¢5(B'(n+ 1)(7,7 % 2)).
Well, if 2 <* z then Vi < n+ 1((;m*x)i <* (T, *2)i). By Q(F,m*2z,n+1)
and the monotonicity of 5, the claim follows.
It is now clear that d <* ¢. Therefore, Vi < n+ 1((5,m*d)i <* (F,;m*c)i). By
Q(F,m*c,n+1) we may infer Vj(B'(n+ 1)(5;nxd)j <* B'(n+1)(T,m*c)j). At
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this point we only have to observe that B'(n + 1)(5;m * d) = B'n3, 7 and that
B'(n+1)(F,n x ¢) = B'n7, 7.

Finally, the second case is when 3k < n(¢}s,k < k). Take kg least such that
Pis, ko < ko. Note that kg < m. By definition of B’, B'ng,n = s,ko. By
the previous lemma, we have Vi < n(7,ni = B'nF,ni). It readily follows that
Vi < ko(B'ns,mj <* B'nF,mj). The claim also extends for j > ko provided that
all the entries of the sequence B'n7,m are monotone (and, therefore, majorize
0). This is easily seen to be the case. Observe that Q(7,7*¢,n+ 1) implies that,
for all j, B'(n+ 1)(T;mm* ¢)j is monotone. But, as we know, B'(n+1)(F,txc) =
B'nr,m. -

The following is an immediate consequence of the above lemma:

COROLLARY 4.5. Let n € N. Consider s,r € M})\I and suppose that st <* ri,
for alli <n. Then

Ay (B (n 4+ 1)(57* x)) <* Aeaph(B'(n+ 1) (77 * x)).
In particular, given r € ME’ such that, for each i < n, ri is monotone, then
Az.py(B'(n + 1)(7,7 * x)) is monotone.

In order to ease readability, we write (s0,s1,...,s(n —1),0,0,...) to denote
s € MpN such that si = 0 for i > n.
Let us define recursively

9o = A\x.h(B'1(z,0,0,...))

ag = ¢0gg
g1 = Az y(B' (i + 2){ag, ai, - . ,a;,x,0,0,...))
aiy1 =00 +1)gi 4

Using the above corollary, it is clear by induction that the a}’s and the g;’s
are monotone. Define:

n* = wlf*
= Imnax
g 3Lt 9;

Observe that f* and ¢g* are monotone.

The remainder of the section is dedicated to proving that the monotone func-
tionals n*, f* and ¢g* defined above (which depend only on the given monotone
¢, Y1 and 1¥9) lend themselves to interpret DNS. More precisely, we show that
the two statements

(4) Vn < n*g’g <* g*—|‘5’a <* (ngﬁg’b <*ga Ag(n,a,b)
(5) Vf <* fron <y fYb < o f Ap(n, fn,b).
entail a contradiction.

DEFINITION 4.6. A sequence of monotone elements ao, ... ,a, of M, is nice
if, for each 0 < i < n, a; <* ¢ig;, where

gi = )\I‘wé(B/(Z + 1)(&0, R i .I‘,0,0, NN >)
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Note that each g; above depends only on aq,...,a;_1 for its definition. We
prove some facts about nice sequences.

LEMMA 4.7. Consider ag, ... ,a, a nice sequence, with associated functions
9o .- sGnsGn+1- For alli < n 41, g; is monotone, g; <* g} and, for i < n,

a; <* af. Moreover, if i < n* then g; <* g*.

PROOF. The result is easily proved by complete induction on ¢ < n using
Corollary 4.5. -

At this point, we can already prove the following;:

PROPOSITION 4.8. Under the hypothesis (4) we have, for all n < n*,
—Vag, ... ,an—Vi < n (a; <* ¢igi A\Vb <* gia; Ag(i,a;,b)).
PrOOF. The proof is made by induction on n. For n = 0, the conclusion
comes from (4):
—Va <* ¢0go—Vb <* goa Ap(0,a,b).
To prove the induction step, take the induction hypothesis:
—\g’ao, ooy anVE < n(a; < digp A Vb <* gia; Ap(i,a;,b))
with n < n* and assume
Vao, . . . 1 Vi <n+41 (a; <* ¢ig; AVh <* gia; Ap(i,a;,b)),
which is equivalent to
Vag, ... ,an‘g’anﬂ—'(Vi <n (a; <* ¢ig; AVD <* g;a; Ap(i,ai,b)) A
{ an+1 <* d(n+ 1)gnt1 A Vb <* In+1an+1 Ap(n+1,a,41,b)).

By (4), if ag, ... ,a, is a nice sequence and g,4+1 is the (n + 1)th associated
function, then —Va <* ¢(n + 1)gp+1-Vb <* gpnt1a Ap(n+ 1,a,b). That is:
VYag, ... a, (Vi <n (a; <* ¢ig;) —

WVani17(ans1 <F O+ 1)gni1 AVD <* gni1an1AB(n+ 1, an41,b))).
Applying the intuitionist rule
VaVz —(H(x) AN A(x) A B(z,2)) Va (H(xz) — —Vz —B(x, 2))
Vo —(H(z) AN A(z))

we get
Vao, ... ,an—Vi <n (a; <* ¢ig; AVD <* g;a; Ag(i,a;,b)).
The contradiction follows from the induction hypothesis. B
In particular, under hypothesis (4), we have:
(6) —Vag, ..., ap-—Vi < n* (a; <* ¢ig; AVD <* g;a; Ag(i,a;,b)).

We will show that the above leads to a contradiction under the hypothesis (5).
Firstly, we need to prove some further facts about nice sequences:

LEMMA 4.9. Let ag,... ,an« be a nice sequence and go, ... ,gn* (and gnr4+1)
its associated functions. Then we have Yn < n*(gntr1an+1 <* gnay).
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PrOOF. Let n < n*. By definition, we have
Gnan = P5(B'(n+1){ag ... ,a,,0,0,...))
Gni1ans1 = V(B (n+2){ag ... ,an,anys1,0,0,...)).
We consider two cases. Suppose that there is & < n such that
Yilag, ... ,ar,0,0,...) <k+ 1.
Let kg be the least such k. Then, by definition of B’
B'(n+1){ag,... ,a,,0,0,...) = {(ag,... ,ax,,0,0,...)
B'(n+2){ag, ... ,an,an+1,0,0,...) = {ag,... ,ax,,0,0,...)

Therefore, gnt1an+1 = gnan. Note that g,a, is monotone, since ao, ... ,ag,
are monotone.
Now, for the second case: Vk < n ¥}{ag,...,ar,0,0,...) > k+1. In this case

B'(n+ 1){ag,...,an,0,0,...) = B'(n+2){ag, ... ,an,¢,0,0,...),
where ¢ = ¢(n + 1)gn41. Since, ant1 <* ¢(n+ 1)gny1 = ¢, then
Y5(B'(n + 2){ag, ... ,an, Gnt1,0,0,...)) <*
Y5 (B'(n + 2){ag, ... ,an,c,0,0,...}),
as desired. n
Given @ = ag, ... ,a,~ a nice sequence, ¥1(ag, ... ,an=,0,0,.. )M < f* =
n* < n*+ 1. Let kg be the least natural number < n* such that
V1{ag, - - a1, 0,0,.. WM < kg + 1.
Define fz as (ag, ... ,ak,,0,0,...). Observe that fz <* f* and 1 fz < n*.
LEMMA 4.10. Leta = ag, ... ,an+ be a nice sequence, with associated functions

905+ sgn* (and gpy1). Take fgz as defined above. Then, s fz <* gnay, for all
n <n*.

PROOF. We show that 15 fz = gpxa,+«. With the help of the previous lemma,

this entails our result. By definition, fz = (aq,... ,ax,,0,0,...)M  where kg is
least satisfying 1 (ag, ... ,ax,,0,0,...)M < kg + 1. According to the definition
of B,
B'(n* + 1){ag, ... ,an=,0,0,...) = {ag,... ,ak,0,0,...).

Therefore: s fa = ¥5(B'(n* 4+ 1){ag,... ,an*,0,0,...)) = gn*apn=. -

LEMMA 4.11. Assume that statement (5) holds, and let @ = ag, ... ,an~ be a
nice sequence, with associated functions go, ... ,gn+ (and gp=+1). In this situa-
tion,

—Vn < 1 fa¥b <* gnan Ap(n,an,b),
for fz defined as above.

PROOF. Assume Vn < 'l/}lfﬁgb <* gnan,Ap(n,a,,b). By the above lemma,
Vn < 1 fa¥b <* Yo fz Ap(n,an,b).
Let fz = {ag, ... ,ax,,0,0,...)M. By definition, ¥y fz < ko. Now, if n < 9y fa,
we clearly have a, <* fzn. Using the monotonicity of Ap in the entry of a,, we
get Vn < 11 fzVb <* o fz Ap(n, fan,b). This contradicts (5). -
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Let us take stock. We have showed in the previous lemma that, under the
hypothesis (5),

Yag, ... ,an- (Yn < n*(a, <* ¢ng,) — —¥n < 1 fa¥b < gnan, Ag(n,an,b)).
Equivalently,

Vag, . . . , (Vo < n*(ay, <* ¢ng,) AVn < V12V < gnan Ag(n,an,b)).
Now, since 11 fz < n*, this entails

Yag, ... ,ap-—Vn < n*(a, <* ¢pngn AL < gnan Ap(n,an,b)).
We have reached a contradiction with (6).
Theorem 4.1 is now proved.

§5. The interpretation of full numerical comprehension. As mentioned
in the introduction, Spector introduced bar recursive functionals in order to effect
a dialectica interpretation of full numerical comprehension. The interpretation
is done within the classical setting via a negative (Godel-Gentzen like) transla-
tion A ~» A9 of formulas. The soundness theorem of the bounded functional
interpretation within the classical setting reads as follows:

THEOREM 5.1 (Soundness). Let A(z) be a formula of the language of PAZ +
BR+A e with free variables z, and assume that (A9)5(2) is IbVc (A9)5(z, b, ¢).
If

PAZ + BR+ Ay + Phoy[<] F A(2)
then there are monotone closed terms t of appropriate type such that
HAY + BR+ Ape Vavz < aVe (A9)p(z,ta,c).
Moreover, M¥ |= VaVz <* aVe ((A9)B)*(z,ta,c).

In the above, Py,[d] is constituted by the characteristic principles of the
bounded functional interpretation for the classical case. These principles are
described in [5] and, in a more perspicuous form, in [4]. Our aim is to show that

PAY + BR + A e + Pgy[<] - CA®.

As discussed in [3] and [4], the principles in Pi,[<] embody uniformities which
are absent from the set-theoretic world. Already very simple instances of com-
prehension for type 1 functionals are incompatible with these uniformities. It
was nevertheless suggested in [3] that full numerical comprehension is compat-
ible with such uniformities. The above soundness theorem, together with the
fact that CA® is a consequence of PA% 4 BR 4 A yqe + P&,[<], shows that this is
indeed the case. We argue this fact in a rather indirect way, relying on the work
of the previous section. We will show that PAY + BR + A e + Piy[<] ACO¥
where AC®* is the form of choice ¥n93zA(n,z) — 3fV¥nA(n, fn), for arbitrary
formulas A (z can be of any type). It is well known how to derive CA° from AC®*
in a classical setting. In effect, let A(n) be an arbitrary formula. By classical
logic, Vn3k ((k = 0A A(n))V (k = 1 A—A(n))). By AC* (only AC?? is needed),
there is f97° which witnesses such k. Of course, we get Vn(fn =0 < A(n)), as
desired.

We first prove the weaker statement:
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PAY + BR + A e + Pgy[<] - bACY,

where bAC® is the principle vnO3zA(n, z) — 3fVvn3z < fnA(n,x), for arbitrary
formulas A (z can be of any type). Observe that if we follow the argument
above, this weaker statement is found wanting for deriving CA® because bAC%*
only provides a bound for the k (1 is a trivial bound), not an exact k.
In order to prove the weaker statement, we show that
HAY + BR 4+ A e + P[] - (bACH*)9.

Let us see why this does the job. On the one hand, by Theorem 3.2, we get
HAY +BR+A v F ((BAC*“)9)B (we must see each instance of bAC™* as given by
its corresponding universal closure). On the other hand, by the characterization
theorem of the bounded functional interpretation for the classical case (see [4]),
we have PAY + BR + P¢,[<I] F bAC* « ((bAC%*)9)5. The result follows.

We should point out that the characterization theorem of [4] was formulated for
a direct bounded functional interpretation of the classical theory PA%, whereas
here we are applying it to the indirect interpretation A ~» (A9)5, via a negative
translation. That notwithstanding, the characterization theorem still holds in
this indirect case. For instance, we can rely on Jaime Gaspar’s factorization [6] of
the direct interpretation in terms of a negative translation and the (intuitionistic)
bounded functional interpretation. Even though Gaspar’s factorization concerns
the so-called Krivine negative translation, it is not difficult to see that it also
applies to the Godel-Gentzen translation using the fact that both translations
are intuitionistically equivalent.

The presence of the bar recursors and of the corresponding axioms BR are
paramount for proving the next result.

PROPOSITION 5.2. HAY + BR + A + P[] F (bAC**)9.

PRrROOF. This relies on the adaptation of a well-known argument. The negative
translation of bAC®* may be taken to be

Vn——3zA9(n, z) — =—3fVn——3z I fnA9(n,z).

Assume Vn——3z A9(n,z). At this juncture, we rely on the work of the previ-
ous section, namely on Corollary 4.2. Therefore, we get —=vYnIzA9(n,z). Since
VnIzA9(n,z) — If¥nIz < fnA9(n,x) is included in P¥[]], we get (by intu-
itionistic logic)

——Yn3zAY(n,x) — ~-3f¥nIz < fnAI(n,x)
and, therefore, by Modus Ponens, ~—3fVn3z < fnA9(n,x). This entails our
result. —

We now prove AC%* from bAC®* within PAZ + BR + Ape + PEy[], and
this fact proves our aim. It is convenient to introduce the following form of
(ineffective) choice, which we call tameAC:

szlh < fVx (32 Q frApa(z, 2) — Apd(z, ha)),

for (intensional) bounded formulas Apg.

LEMMA 5.3. The flattening of the instances of tameAC are true in M*.
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PROOF. We present the following (ineffective) proof. Given f monotone in
Mg,_.,, define h such that

I for some z € M, such that z <} fz A A},(z, 2)
0”7 otherwise

Such h exists by the axiom of choice, and it is clear that h <* f. Therefore,
h is in M,_,, and obviously witnesses the truth of the flattening of the given
instance of tameAC. -
The principle tameAC is not a universal statement. However, the following
weakening, dubbed w-tameAC, is universal (with bounded intensional matrix):
VIVbh3h < f¥z Qb (32 9 frApg(z, 2) — Apg(z, ha)).
By the above lemma, the flattenings of the instances of w-tameAC are true in
M. Since each such instance has the right syntactic form, they are in Apqw.

LEMMA 5.4. PA% + BR + Apge + Py (<] - tameAC.

PrOOF. The principle tameAC is an immediate consequence of w-tameAC in
the presence of the bounded (contra) collection principle of Py, [<]. -

LEMMA 5.5. The theory PAY + BR + A e + PEy[<] proves

Vf(Va3b < faA(a,b) — 3h < fYaA(a, ha)),
where A is an arbitrary universal formula (with bounded intensional matriz).

PROOF. Let f be monotone and assume that Va3b < favz Apd(a, b, z), where
Apg is a bounded formula. A fortiori, Vdva3b < faVz < d Apd(a,b, z) and, by
tameAC, it follows that

Vd3h < fVaV¥z < d Apg(a, ha, 2)
and, therefore, Ve,d3h < f¥a < ¥z < d Apd(a, ha,z). By bounded (contra)
collection (which is included in PE,[<]), we get 3h < f¥aVz Apa(a, ha, 2). !

We can finally prove the following:

PROPOSITION 5.6. PAY + BR + Apge + Pgy[<] + bAC® = ACY.

PROOF. Suppose Yn3zA(n,x), with arbitrary A. It is a consequence of the
characterization theorem of the bounded functional interpretation (classical case)
that, within PAY +BR+ P[], the formula A(x, n) is equivalent to a formula of
the form ﬁagbBbd(a, b,n,z), with Bpg bounded. Hence, VnﬂméagbBbd(a, b,n, ).
By bAC™, we get 3f, g¥nIz < fnIa < gnVb Bug(a, b, n, ).

By Lemma 5.5, there are h and s so that Yn¥b(sn <0 sn A Byg(sn, b,n, hn)). In
particular, we have that ‘v’ngla‘g’bBbd(a, b,n, hn), i.e., VnA(n, hn). As desired. -

Notice that this argument relies on the fact that the flattenings of the instances
of w-tameAC are among the set of sentences Apqw. Therefore, it is no longer
possible (as it was in Section 4) to replace this set of sentences by universal
sentences provable using Bl. The use of the ineffective principle stemming from
w-tameAC is essential in the above proof. However, it is not clear if the result per
se requires the use of such ineffective principle. In point of fact, the anonymous
referee pointed out that the principle can be avoided in the important special
case of arithmetical comprehension. Let us see why.
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On the one hand, it is well known that arithmetical comprehension follows from
II9-comprehension. On the other hand, this latter case of comprehension obvi-
ously follows from TI9-AC®? (i.e., AC®? restricted to IT9-matrices). We are left to
prove this form of choice. Let us assume Yn3kVrAqe(n, k, ), where n, k and r are
numerical variables and Aq¢(n, k, ) is a quantifier-free formula (possibly with pa-
rameters). By bAC%*, there is a monotone f such that Yn3k < fnvrAg(n, k,r).
In particular, Vivn3k < fnvr < [Ag(n,k,r). By bounded search, we get
VI3h <y fVn¥r <1Aq(n, hn,r). We may suppose

Vi3h <y fVnYr <A (n, hn,r),
either by appealing to the construction of h or, alternatively, by replacing h by
miny (h, f) and noticing that h appears only in the (extensional) context “hn”
in the matrix (observe that, for monotone f, min; (h, f) <; f). Hence

VsVI3h <y fVn < sVr < [Ag(n, hn,r),
and, by bounded (contra) collection, 3h <y f¥YnVrAge(n,hn,r). We conclude
IhVnVrAge(n, hn,r), as wanted.

Our last result subsumes the fact that the theory PA% + ACO® + Py, (<] has

a bounded functional interpretation by bar recursive functionals (verifiable in
HAG + BR + A ):

COROLLARY 5.7. Let A(z) be a formula of the language of PAZ + BR with free
variables z, and assume that (A9)B(z) is Ve (A9)p(z,b,c). If

PAY + AC™ + Py (D) F A(z)
then there are monotone closed terms t of appropriate type such that
HAY +BR + A Vavz < aVe (A9 p(z,ta,c).
Moreover, M*“ = VaVz <* aVc ((A9)Bg)*(z,ta,c).

Spector’s result of 1962 was subsequently improved by Howard [9], where it is
shown that (the negative translation of) the principle of dependent choices has
a dialectica interpretation using bar recursive functionals. We conjecture that
“dependent choices” has also a bounded functional interpretation.
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