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Abstract

Every model of I∆0 is the tally part of a model of the stringlanguage theory Th-FO (a
main feature of which consists in having induction on notation restricted to certain AC0 sets).
We show how to “smoothly” introduce in Th-FO the binary length function, whereby it is
possible to make exponential assumptions in models of Th-FO. These considerations entail
that every model of I∆0 + ¬exp is a proper initial segment of a model of Th-FO and that a
modicum of bounded collection is true in these models.
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1 Introduction

Consider a model of Samuel Buss’ bounded arithmetic theory S1
2 (see [1]). The elements of this

model can be seen as finite (standard and non-standard) sequences of zeroes and ones (strings).
Its tally elements (i.e., its elements that are strings of ones) make up, in a natural way, a model of
I∆0 (where, for instance, addition is given by the concatenation of two strings). In fact, the tally
part of this model is even a model of Buss’ stronger theory V 1

1 . Furthermore, any model of V 1
1 is

the tally part of a model of S1
2 . A perfect matching, we may say. This correspondence is much

more general than this particular case. For instance, the tally parts of models of Si
k+1 are, exactly,

the models of V i
k . These results are essentially due to Jan Kraj́ıček [2]. They also appeared in the

first version of this paper [3], and syntactic formulations of them were obtained by Gaisi Takeuti
and Alexander Razborov (in [4] and [5], respectively). A question pops out: what is exactly the
theory of which I∆0 is the tally part? That is, we want to solve the “equation”:

S1
2

V 1
1

=
x

I∆0

Contrary to the case of the theories S1
2 and V 1

1 , there is a (seemingly) unavoidable change of
language between the language of arithmetic of I∆0 and the stringlanguage of the theory Th-FO
that is the solution to the above “equation” (formulations of the this theory were also independently
given by Domenico Zambella [6] and Peter Clote & Gaisi Takeuti [7]). The problem concerns
the multiplication function. More specifically, the theory Th-FO has induction on notation for
predicates in Neil Immerman’s class FO of first-order expressible properties (these are defined in
terms of first-order definability in suitable finite structures with domain {0, 1, . . . , n}; Immerman’s
original paper is [8]). This class is included in AC0, the class of sets that can be decided by constant
depth, polynomial size circuit families (one should view the class of FO-relations as a rather robust
uniform version of AC0). Well, it stems from deep work of M. Ajtai [9] and, independently, of M.
Furst, J. Saxe and M. Sipser (see [10] for an exposition of this latter work) that the multiplication
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function is not an AC0 notion (however, it is an open question whether the graph of multiplication
is in AC0).

The language which we use for formulating Th-FO was introduced in [11], and an interesting
feature of it is that although multiplication is conspicuous by its absence, it is nevertheless possible
to formulate exponential assumptions in Th-FO. More precisely, the binary length function �h(x),
which gives (in binary notation) the length of a string, is an FO-function and provably satisfies
in Th-FO some basic properties. This has some nice implications, namely that every model of
I∆0 + ¬exp sits, as a proper initial segment, in a model of Th-FO. This, in turn, implies that a
modicum of bounded collection is provable in I∆0 + ¬exp. Moreover, this modicum is almost the
best that we can, at present, hope for (some more of bounded collection entails a positive answering
to the P �= NP question). These results give insight into a question of Alex Wilkie and Jeff Paris,
on whether the theory I∆0 + ¬exp proves the scheme of collection for bounded formulae.

This paper is organized in the following way. In the next section we establish and give a precise
meaning to the correspondence between Th-FO and I∆0. While at this, we define FO-relations
and functions in arbitrary models of Th-FO. In the third section we expand the original language
of Th-FO in order to have available a function symbol for each (description of a) FO-function. This
expansion is technically useful in the final section and, incidentally, permits the characterization
of the provably total functions (with appropriate graphs) of Th-FO. In the fourth section we show
how to make exponential assumptions in models of Th-FO and prove that a modicum of bounded
collection holds in models of I∆0+¬exp. The last result of the paper separates the theories Th-FO
and I∆0 by a Π0

1-sentence.

2 The correspondence between I∆0 and Th-FO

The first-order stringlanguage of the binary tree of the finite sequences of zeroes and ones consists
of three constant symbols ε, 0 and 1, two binary function symbols� (for concatenation, sometimes
omitted) and ×, and a binary relation symbol ⊆ (for initial subwordness). There are fourteen basic
open axioms:

x � ε = x x× ε = ε
x � (y � 0) = (x � y)� 0 x× (y � 0) = (x× y)� x
x � (y � 1) = (x � y)� 1 x× (y � 1) = (x× y)� x
x � 0 = y � 0 → x = y x � 1 = y � 1 → x = y

x ⊆ ε ↔ x = ε
x ⊆ y � 0 ↔ x ⊆ y ∨ x = y � 0
x ⊆ y � 1 ↔ x ⊆ y ∨ x = y � 1
x � 0 �= y � 1
x � 0 �= ε

x � 1 �= ε

The interpretations of the symbols of the stringlanguage in the standard model are immediately
clear, except (perhaps) for ×. The language is simple and natural, but unfamiliarity takes a toll.
For ease and convenience of reference, we present a small table:
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symbol formal definition standard interpretation

ε primitive empty word

0 primitive one bit word 0

1 primitive one bit word 1

x � y primitive concatenation of x with y

x× y primitive x � x � . . . � x, length(y) times

x ⊆ y primitive x is an initial subword of y

x ⊂ y x ⊆ y ∧ x �= y x is a proper initial subword of y

x ⊆∗ y ∃z ⊆ y(z � x ⊆ y) x is a subword of y

tally(x) x = 1 × x x is a string of 1’s

x ≤ y 1 × x ⊆ 1 × y length(x)≤length(y)

x ≡ y x ≤ y ∧ y ≤ x x and y have the same length

bit(x, u) = 1 ∃w ⊆ x(w ≡ u ∧ w1 ⊆ x) the (length(u) + 1)-bit of x is 1

bit(x, u) = 0 ∃w ⊆ x(w ≡ u ∧ w0 ⊆ x) the (length(u) + 1)-bit of x is 0

The class of sw.q.-formulae (“subword quantification formulae”) is the smallest class of formulae
containing the atomic formulae and closed under Boolean operations and subword quantification,
i.e., quantification of the form ∀x ⊆∗ t(. . .) or ∃x ⊆∗ t(. . .), where t is a term in which the variable
x does not occur. Let Ψ be a class of formulae of the stringlanguage. The theory Ψ-NIA (for
Notation Induction Axioms) consists of the fourteen basic open axioms plus the induction scheme:

F (ε) ∧ ∀x(F (x) → F (x0) ∧ F (x1)) → ∀xF (x) (1)

where F ∈ Ψ, possibly with parameters. In the sequel, we will use at ease plenty of simple facts
that can be deduced in the theory sw.q.-NIA. Here is a sample of them: 0 �= 1; (xy)z = x(yz);
x ⊆ xz; xy ⊆ xw → y ⊆ w; x ≡ y ∧ x ⊆ y → x = y; x ⊆ z ∧ y ⊆ z → x ⊆ y ∨ y ⊆ x;
x ⊂ y → x0 ⊆ y ∨̇x1 ⊆ y; and x ⊆ y ∧ y ⊆ x → x = y. A longer list of simple facts like these,
together with deductions of them in sw.q.-NIA, can be found in [11]. Two properties of sw.q.-NIA
are directly relevant for this paper. Firstly, the tally part of a model of sw.q.-NIA is a model of I∆0

in a natural way: just interpret the constant 0 by ε, the successor function S by “concatenation
with 1”, “+” by ”�”, “·” by “×” and “≤” by “⊆”. Secondly, the following holds:

Proposition. sw.q.−NIA � ∀x∀y(x ≡ y ∧ ∀u ⊂ 1 × x(bit(x, u) = 1 ↔ bit(y, u) = 1) → x = y).

Proof : We reason inside an arbitrary model of sw.q.-NIA. Suppose that the antecedent of the
implication holds. We show, by induction on notation on the variable z, that ∀z(z ⊆ x ∧ ∀u ⊂
1 × z(bit(z, u) = 1 ↔ bit(y, u) = 1) → z ⊆ y)). Note that the case z = x yields x ⊆ y. Similarly,
we can show that y ⊆ x and, hence, conclude that x = y.

The base case of the induction is clear. Assume that z0 ⊆ x and that ∀u ⊂ 1× z0(bit(z0, u) =
1 ↔ bit(y, u) = 1) (the case for z1 is handled similarly). By induction hypothesis, we can conclude
that z ⊆ y. Moreover, it is easy to argue that z �= y. (Just this once we present the full argument:
z = y ⇒ z ≡ y ⇒ z ≡ x ⇒ 1 × z = 1 × x ⇒ (1 × z)1 �⊆ 1 × x ⇒ 1 × z0 �⊆ 1 × x ⇒ z0 �⊆ x.)
Hence, either z0 ⊆ y or z1 ⊆ y. The second case leads to a contradiction. In effect, if z1 ⊆ y then
bit(y, 1 × z) = 1 and, by assumption, bit(z0, 1 × z) = 1, which is a contradiction. ✷

We caution the reader not to be misled by the apparent strength and elegance of the theory
sw.q.-NIA. In our opinion, this theory is uninteresting and artificial (see [12] for a discussion of
this). The same cannot be said of the following theory,
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Definition. The theory Th-FO is the theory sw.q.-NIA plus the following string-building principle:

∀u(tally(u) → ∃x ≡ u∀v ⊂ u(bit(x, v) = 1 ↔ F (v))) (2)

where F is a sw.q.-formulae, possibly with parameters.

In order to “grow” a model of Th-FO out of an arbitrary “I∆0-tally”, it is convenient to work
with a second-order (or relativized) version of I∆0. This theory, called ∆0 − CA0 (“CA” for
comprehension axiom), is formulated in a two-sorted language with number variables, w, y, z, . . .
and set variables W,Y,Z, . . .. A first-order formula is a formula that does not contain any quan-
tifications over set variables; following [1], we say that a formula is bounded if it does not con-
tain any unbounded quantifications over number variables (it may contain quantifications over
set variables or bounded quantifications over number variables). Equality between set variables
“Y = Z” is not a primitive notion, but rather defined by “∀w(w ∈ Y ↔ w ∈ Z)” and,
hence, it is not a bounded formula. The axioms of ∆0 − CA0 are the basic axioms of I∆0

(see, for instance, the fifteen axioms of PA− in chapter 2 of [13]), plus the induction axiom
∀W (0 ∈ W ∧ ∀w(w ∈ W → w + 1 ∈ W ) → ∀w(w ∈ W )) and the comprehension scheme
∃W∀w(w ∈ W ↔ A(w)), where A is a bounded first-order formula, possibly with number or
set parameters. Remark that the combination of the axiom of induction with the comprehension
scheme gives rise to the scheme of induction for bounded first-order formulae (i.e., I∆0 is a sub-
theory of ∆0 −CA0). A structure for the language of ∆0 −CA0 is a pair M = (M,S), where M is
a structure for the language of first-order arithmetic, and S is a set of subsets of M (occasionally,
we will use the notation SM to make visible the fact that S comes from the model M). The main
thing to observe in the clauses for the truth definition is that the set variables range over S. This
means that the logic of the theory ∆0 − CA0 is first-order logic.

Proposition. For any model M of I∆0, there is S a set of subsets of M such that (M,S) is a
model of ∆0 − CA0.

Proof : Just let S be the set of all ∆0-definable subsets of M . ✷

Corollary. The theory ∆0 − CA0 is conservative over I∆0.

Proof : This is a consequence of the above proposition and the completeness theorems. ✷

A bounded formula of the theory ∆0−CA0 is called strictly bounded, if all its atomic subformulae
of the form t ∈W occur in the context t ∈W ∧ t < w (abbreviated, t ∈Ww), with w not occuring
in the term t. Given a model M = (M,S) of ∆0 − CA0, and given α ∈M and Ω ∈ S, we denote
by Ωα the pair ({β ∈M : M |= β ∈ Ω ∧ β < α}, α). The element α is called the M-length of the
pair. (Note that the first entry of Ωα is in S.) Call Sb the set of all these pairs.

Definition. A description of a k-ary FO-relation is a first-order strictly bounded formula

A(w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )

where all the free variables are as shown.

Let A be as in the previous definition. Given M = (M,S) a model of ∆0 − CA0, there is a
natural way of defining a k-ary relation [A]M in Sb: we say that (Ωα1

1 , . . . ,Ω
αk

k ) ∈ [A]M if, and
only if, M |= A(α1, . . . , αk,Ωα1

1 , . . . ,Ω
αk

k ). Let us give some examples/definitions:

1. equal(Ww, Y y): w = y ∧ ∀z < w(z ∈Ww ↔ z ∈ Y y).

2. initial(Ww, Y y): w ≤ y ∧ ∀z < w(z ∈Ww ↔ z ∈ Y y).
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3. part(Ww, Y y): ∃x ≤ y(x+ w ≤ y ∧ ∀z < w(z ∈Ww ↔ x+ z ∈ Y y)).

4. Given A and B descriptions of k-ary FO-relations, define neg(A) and and(A,B) by ¬A and
A ∧B, respectively.

5. Given A(w,w1, . . . , wk,W
w,Ww1

1 , . . . ,W
wk

k ) a description of a (k+1)-ary FO-relation, define
the (k + 1)-ary FO-relation all(A) by

∀x ≤ w∀v ≤ w(x ≤ v → A(v − x,w1, . . . , wk,W
w||[x,v],W

w1
1 , . . . ,W

wk

k ))

with x and v new variables. In the above, . . . ,Ww||[x,v], . . . modifies the formula at hand by
replacing its subformulae of the form t ∈ Ww by x + t ∈ W v. This definition is contrived
so that, given any model M = (M,S) of ∆0 − CA0 and given Ωα,Ωα1

1 , . . . ,Ω
αk

k in Sb then,
(Ωα,Ωα1

1 , . . . ,Ω
αk

k ) ∈ [all(A)]M if, and only if, for all Σβ such that M |= part(Σβ ,Ωα),
(Σβ ,Ωα1

1 , . . . ,Ω
αk

k ) ∈ [A]M.

Definition. A description of a k-ary FO-function is a pair consisting of a first-order strictly
bounded formula

A(u,w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )

and a term t(w1, . . . , wk), where all the free variables are as shown. The variable u is called the
special variable of the description.

Let (A, t) be as in the previous definition. Given M = (M,S) a model of ∆0 − CA0, we want
to define a k-ary total function [A, t]M in Sb. Take Ωα1

1 , . . . ,Ω
αk

k elements of Sb. By (something
equivalent to) the least number principle in ∆0 − CA0, there is a unique α ∈ M such that M |=
L[A,t](α, α1, . . . , αk,Ωα1

1 , . . . ,Ω
αk

k ), where L[A,t](u,w1, . . . , wk,W
w1
1 , . . . ,W

wk

k ) is the following first-
order strictly bounded formulae:

[∀w ≤ t(w1, . . . , wk)A(w,w1, . . . , wk,W
w1
1 , . . . ,W

wk

k ) ∧ u = 0]∨

∨ [u ≤ t(w1, . . . , wk) ∧ ¬A(u,w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )∧
∧∀w ≤ t(w1, . . . , wk)(u < w → A(w,w1, . . . , wk,W

w1
1 , . . . ,W

wk

k ))]

Now, define [A, t]M(Ωα1
1 , . . . ,Ω

αk

k ) = {β ∈ M : M |= A(β, α1, . . . , αk,Ωα1
1 , . . . ,Ω

αk

k )}α. The idea
is that α, which is the greatest element not exceeding t for which A is false (otherwise, α is 0),
operates as a mark for the M-length of [A, t]M(Ωα1

1 , . . . ,Ω
αk

k ).
The following are some examples/definitions:

6. conc(Ww, Y y): (u ∈Ww ∨ (w ≤ u ∧ u− w ∈ Y y), w + y).

7. prod(Ww, Y y): (∃q < y∃r < w(u = qw + r ∧ r ∈Ww), wy).

8. tail(Ww, Y y): (y + u ∈Ww ∨ y + u > w,w).

9. Constants (0-ary functions) are not ruled out in the above definition. The next three 0-ary
description will be of use later: (u = u, 0), (u �= u, 1), and (u = 0, 1).

10. Let (A, t) be a description of a k-ary FO-function such that, for any model M of ∆0 −CA0,
the M-length of any value in the range of [A, t]M is 1. We may consider this description the
characteristic function of the k-ary FO-relation given by the description,

A(0, w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )

A suitable formulation of the converse statement also holds.
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11. Given a descriptionD = (B(u, y1, . . . , yk, Y
y1
1 , . . . , Y

yk

k ), t(y1, . . . , yk)) of a k-ary FO-function,
and given k descriptions Di = (Ai(u,w1, . . . , wr,W

w1
1 , . . . ,W

wr
r ), ti(w1, . . . , wr)), 1 ≤ i ≤ k,

of r-ary FO-functions, we define (the composition of these functions by) the r-ary function
description comp(D;D1, . . . , Dk) whose first component is

∃y1 ≤ t1(2w) . . .∃yk ≤ tk(2w) (
∧

1≤i≤k

L[Di](yi, 2w,W
w1
1 , . . . ,W

wr
r )

∧ (B(u, 2y, Y y1
1 |A1 , . . . , Y

yk

k |Ak
) ∨ u > t(y1, . . . , yk)))

and whose second component is t(t1(2w), . . . , tk(2w)). In the above, . . . , Y y|A, . . . modifies
the formulae at hand by replacing its subformulae of the form t ∈ Y y by A(t, . . .) ∧ t <
y. This definition is contrived to make the following true: if M = (M,S) is a model
of ∆0 − CA0 then, for all Ωα1

1 , . . . ,Ω
αk

k in Sb, [comp(D;D1, . . . , Dk)]M(Ωα1
1 , . . . ,Ω

αk

k ) =
[D]M([D1]M(Ωα1

1 , . . . ,Ω
αk

k ), . . . , [Dk]M(Ωα1
1 , . . . ,Ω

αk

k )).

12. Given D(w,w1, . . . , wk,W
w,Ww1

1 , . . . ,W
wk

k ) a description of a (k + 1)-ary FO-relation, let
witness(D) be the (k + 1)-ary function description whose first component is

∀v ≤ w[D(v, w1, . . . , wk,W
v,Ww1

1 , . . . ,W
wk

k )∧

∧∀x < v¬D(x,w1, . . . , wk,W
x,Ww1

1 , . . . ,W
wk

k ) → u ∈W v ∨ u > v]
and whose second component is w. Consider M = (M,S) a model of ∆0 − CA0, and take
Ωα,Ωα1

1 , . . . ,Ω
αk

k elements of Sb for which there is β ≤ α such that (Ωβ ,Ωα1
1 , . . . ,Ω

αk

k ) ∈
[D]M. Then [witness(D)]M(Ωα,Ωα1

1 , . . . ,Ω
αk

k ) = Ωβ , for the least such β.

13. Given D(w1, . . . , wk,W
w1
1 , . . . ,W

wk

k ) a description of a n-ary FO-relation and given two de-
scriptions Di = (Ai(u,w1, . . . , wk,W

w1
1 , . . . ,W

wk

k ), ti(w1, . . . , wk)), i ∈ {0, 1}, of k-ary func-
tions, let case(D;D1, D2) be the k-ary function description whose first component is

[D(w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )

∧(A1(u,w1, . . . , wk,W
w1
1 , . . . ,W

wk

k ) ∨ u > t1(w1, . . . , wk))]

∨ [¬D(w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )

∧(A2(u,w1, . . . , wk,W
w1
1 , . . . ,W

wk

k )) ∨ u > t2(w1, . . . , wk))]

and whose second component is t1(w1, . . . , wk) + t2(w1, . . . , wk). Consider M = (M,S) a
model of ∆0 − CA0 and take Ωα1

1 , . . . ,Ω
αk

k elements of Sb. Then,

[case(D;D1, D2)]M(Ωα1
1 , . . . ,Ω

αk

k ) =

=

{
[D1]M(Ωα1

1 , . . . ,Ω
αk

k ) if (Ωα1
1 , . . . ,Ω

αk

k ) ∈ [D1]M
[D2]M(Ωα1

1 , . . . ,Ω
αk

k ) otherwise

Theorem. Every model of I∆0 is the tally part of a model of Th-FO.

Proof : Let M be a model of I∆0 and take S such that M = (M,S) is a model of ∆0 − CA0.
The model M is the basis for the construction of a model M� of Th-FO whose tally part is M .
The universe of M� is Sb; the interpretations of the constant symbols ε, 0 and 1 are M0, ∅1 and
{0}1, respectively; the interpretation of ⊆ is [initial]M; and the interpretations of � and × are,
respectively, [conc]M and [prod]M. It is straightforward to show that N satisfies the fourteen basic
axioms and that the map i(α) := {β ∈ M : β < α}α is an isomorphism between M and the tally
part of M�. The following are also easy to check:
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i) for all Ω in S, M� |= Ω0 = ε;

ii) for all α, β in M and Ω ∈ S, β ≤ α iff M� |= Ωβ ⊆ Ωα;

iii) for all α, β in M and Ω, Σ in S, M |= part(Ωα,Σβ) iff M� |= Ωα ⊆∗ Σβ ;

iv) for all α in M and Ω in S, α ∈ Ω (resp., α �∈ Ω) iff M� |= Ωα+1 = Ωα � 1 (resp., Ωα � 0);

v) for all α, β inM and Ω in S such that β < α, β ∈ Ω (resp., β �∈ Ω) iff M� |= bit(Ωα, i(β)) = 1
(resp., = 0).

vi) for all α in M and Ω in S, M� |= tally(Ωα) iff Ωα = i(α).

The following fact is crucial to showing that the schemes (1) and (2) hold in M� for sw.q.-
formulae:

(F1) For every sw.q.-formula F (x1, . . . , xk) of the language of Th-FO, there is a first-order strictly
bounded formula F �(w1, . . . , wk,W

w1
1 , . . . ,W

wk

k ) of the language of ∆0 −CA0 such that, for
all elements Ωα1

1 , . . . ,Ω
αk

k in Sb,

M� |= F (Ωα1
1 , . . . ,Ω

αk

k ) ⇔ M |= F �(α1, . . . , αk,Ωα1
1 , . . . ,Ω

αk

k )

The map � is defined in two steps. Firstly, to each r-ary term t of the language of Th-FO we
associate a description t� for a r-ary FO-function such that, for all Ωα,Ωα1

1 , . . . ,Ω
αr
r in Sb, M� |=

t(Ωα1
1 , . . . ,Ω

αr
r ) = Ωα ⇔ [t�]M(Ωα1

1 , . . . ,Ω
αr
r ) = Ωα. This term-to-term map is easily defined by

induction on the complexity of t with the aid of the examples 6, 7, 9, and 11. Secondly, the map
� is expanded to the sw.q.-formula with the aid of examples 1, 2,4, 5, 10, and 11.

In order to show that (1) holds in M�, take F (x, . . .) an arbitrary sw.q.-formula and sup-
pose that M� �|= F (Ωα, . . .), for some Ωα in Sb and for some parameters. By (F1), M �|=
F �(α, . . . ,Ωα, . . .). Due to the fact that M is a model of ∆0−CA0, either M� �|= F �(0, . . . ,Ω0, . . .)
or M� |= F �(β, . . . ,Ωβ , . . .)∧¬F �(β+1, . . . ,Ωβ+1, . . .), where β is an element ofM preceding α. In
the first alternative, M� �|= F (ε, . . .); in the second alternative, M� |= F (Ωβ , . . .) ∧ ¬F (Ωβ+1, . . .)
and by the above property iv, we get the right conclusion. To show that (2) holds in M�, take
again a sw.q.-formula F (x, . . .), and let α ∈ M . We need to prove that there is Ω in S such that,
for all β < α, β ∈ Ω iff M |= F �(β, . . . , i(β), . . .). The existence of such an Ω is a consequence of
the comprehension scheme of ∆0 − CA0. ✷

Conversely, to a model N of Th-FO we can associate a model N� of ∆0 − CA0. The first-
order part of N� is tally(N) := {a ∈ N : N |= tally(a)} which, as we have already mentioned, is
naturally a model of I∆0. Given a ∈ N , let s(a) := {v ∈ tally(N) : N |= v ⊂ 1×a∧ bit(a, v) = 1}.
Take SN the set of all subsets Ω of tally(N) satisfying the following condition: for all u ∈ tally(N),
there is a ∈ N , a ≡ u, such that s(a) = {v ∈ tally(N) : v ⊂ u ∧ v ∈ Ω}. The structure N� is, by
definition, (tally(N), SN ).

Theorem. Let N be a model of Th-FO. Then N� is a model of ∆0 − CA0.

Proof : We have to check that the induction axiom and the ∆0-comprehension scheme hold in
N�. To argue for the truth of the induction axiom, take Ω ∈ SN , u ∈ tally(N), and assume that
0 ∈ Ω ∧ u �∈ Ω. By definition of SN , there is a ∈ N such that s(a) = {v ∈ tally(N) : v ⊂ u �
1∧v ∈ Ω}. Hence, N |= bit(a, ε) = 1∧¬bit(a, u) = 1. Now, the scheme of induction on notation for
sw.q.-formulae guarantees the existence of v ⊂ u such that N |= bit(a, v) = 1∧¬bit(a, v � 1) = 1,
i.e., v ∈ Ω and v +N�

1N� �∈ Ω.
In order to so show that the ∆0-comprehension scheme holds in N� we need a lemma and the

following fact:
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(B1) For every first-order strictly bounded formula A(w1, . . . , wk,W
w1
1 , . . . ,W

wk

k ) of the language
of ∆0 −CA0, there is a sw.q.-formula A�(x1, . . . , xk) of the language of Th-FO such that, for
all elements a1, . . . , ak in N ,

N� |= A(1 × a1, . . . , 1 × ak, s(a1)1×a1 , . . . , s(ak)1×ak) ⇔ N |= A�(a1, . . . , ak)

The map � is specified in three steps. Firstly, to each term t(y1, . . . , yr, w1, . . . , wk) of the
language of ∆0 − CA0 we associate a term t�(y1, . . . , yr, x1, . . . , xk) of the language of Th-FO,
obtained from t by replacing each occurence of 0 by ε, of + by �, of · by ×, and each occurence
of wi by 1 × xi. Secondly, we define (t = q)� as t� = q�, (t ≤ q)� as t� ⊆ q�, and (t ∈ Wwi

i )�

as bit(xi, t
�) = 1. Finally, let (¬A)� be ¬A�, (A ∧ B)� be A� ∧ B�, and let (∀y ≤ tA(y, . . .))� be

∀y ⊆ t�A�(y, . . .).

Lemma. Let A(y1, . . . , yk,W1, . . . ,Wr) be a bounded formula of the language of ∆0−CA0, where
all the free variables are as shown. Then the theory I∆0, enlarged with the logical axioms for the
second order language, proves the following sentence:

∀y∃z∀x ≥ z∀W1...∀Wr∀y1 ≤ y...∀yk ≤ y(A(y1, ..., yk,W1, g,Wr) ↔ A(y1, ..., yk,W x
1 , ...,W

x
r ))

Proof of the lemma : The proof is by induction on the complexity of A. There are only
three cases we need worrying about. When A is t(y1, . . . , yk) ∈ W , put z = t(y, . . . , y). This z
does the job because all terms of the language of I∆0 are provably monotonous. Consider now
the case when A is ∃WB(y1, . . . , yk,W,W1, . . . ,Wr): given y there is, by induction hypothesis,
an element z that works for the formula B. The very same z works for A. Lastly, suppose
A is ∀x ≤ t(y1, . . . , yk)B(x, y1, . . . , yk,W1, . . . ,Wr). Given y, let y′ = max{y, t(y, . . . , y)} . By
induction hypothesis, take z that works for B and y′. Then z does the job for A and the original
y. ✷ (of the lemma)

We are now in position to show that the ∆0-comprehension scheme holds in N�. Given a first-
order bounded formula A(y, y1, . . . , yk,W1, . . . ,Wr) and given elements u1, . . . , uk in tally(N) and
Ω1, . . . ,Ωr in SN , we need to show that the set {v ∈ tally(N) : N� |= A(v, u1, . . . , uk,Ω1, . . . ,Ωr)}
is in SN . According to the definition of SN , this is equivalent to showing that for all u ∈ tally(N)
there is a ∈ N such that s(a) is equal to the set Σ = {v ∈ tally(N) : v ⊂ u and N� |=
A(v, u1, . . . , uk,Ω1, . . . ,Ωr)}. By the previous lemma, Σ is {v ∈ tally(N) : v ⊂ u and N� |=
A(v, u1, . . . , uk,Ωα

1 , . . . ,Ω
α
r )}, for some α ∈ tally(N). Take a1, . . . , ar in N such that Σ =

{v ∈ tally(N) : v < u and N� |= A(v, u1, . . . , uk, s(a1)α, . . . , s(ar)α)}. According to property
(B1), there is a sw.q.-formula F such that N |= F (v, u1, . . . , uk, a1, . . . , ar, α) if, and only if,
N� |= A(v, u1, . . . , uk, s(a1)α, . . . , s(ar)α). By the string-building principle (2), pick a satisfying the
following property: for all v ∈ tally(N) with v ⊂ u, N |= bit(a, v) ↔ F (v, u1, . . . , uk, a1, . . . , ar, α).
This a does the job. ✷ (of the theorem)

Let N be a model of Th-FO. It is straightforward to argue that N�� is isomorphic to N in a
natural way (and we write, N�� ≈ N). Conversely, consider M = (M,S) a model of ∆0 − CA0.
It is easy to argue that M�� is (up to a natural isomorphism) of the form (M,S′), with Sb = S′b
(we write, M�� ≈b M). Hence, although M�� and M are not necessarily isomorphic, the above
condition is sufficient to insure that bounded formulae are absolute between M�� and M (the
lemma inserted in the proof of the previous theorem is used to proving this). These considerations
allow us to speak of natural pairs (M, N), where M is a model of ∆0 − CA0, N is a model of
Th-FO, N ≈ M�, and N� ≈b M.

Consider (M, N) a natural pair and let Ωα ∈ SMb and a ∈ N . We say that Ωα and a are in
natural correspondence if α = 1× a and {v ∈M : v < α & v ∈ Ω} = {v ∈ tally(N) : v ⊂ α & N |=
bit(a, v) = 1}. With this terminology, if Ωα1

1 , . . . ,Ω
αk

k and a1, . . . , ak are parwise corresponding
elements, then the properties (F1) and (B1) can be rephrased as follows:
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(F2) Given F (x1, . . . , xk) a sw.q.-formula of the language of Th-FO, F � is a first-order strictly
bounded formula of the language of ∆0 − CA0 such that,

N |= F (a1, . . . , ak) ⇔ M |= F �(α1, . . . , αk,Ωα1
1 , . . . ,Ω

αk

k )

(B2) Given A(w1, . . . , wk,W
w1
1 , . . . ,W

wk

k ) a first-order strictly bounded formula of the language
of ∆0 − CA0, A�(x1, . . . , xk) is a sw.q.-formula of the language of Th-FO such that,

M |= A(α1, . . . , αk,Ωα1
1 , . . . ,Ω

αk

k ) ⇔ N |= A�(a1, . . . , ak)

A consequence of the above discussion and of the completeness theorems is that the formulae
F and F �� (resp., A and A��) are equivalent in Th-FO (resp., in ∆0 − CA0).

3 The theory Th-FO expanded

In this section we define an expansion Th-FO+ of the theory Th-FO. The language of this new
theory consists of the original language of Th-FO plus a k-ary function symbol fD for each de-
scription D of a k-ary FO-function. The axioms of Th-FO+ are those of Th-FO plus two function
axioms for each such description D = (A, t):

∀x∀x1 . . .∀xk(L�
[D](x, x1, . . . , xk) ↔ fD(x1, . . . , xk) ≡ x) (3)

∀u∀x1 . . .∀xk(u ⊂ 1 × fD(x1, . . . , xk) → (bit(fD(x1, . . . , xk), u) = 1 ↔ A�(u, x1, . . . , xk))) (4)

Lemma.

a) Let D be a k-ary FO-description, N a model of Th-FO+, and take M a model of ∆0 −
CA0 such that (M, N) is a natural pair. If a, a1, . . . , ak and Ωα,Ωα1

1 , . . . ,Ω
αk

k are pairwise
corresponding elements then,

N |= fD(a1, . . . , ak) = a⇔ [D]M(Ωα1
1 , . . . ,Ω

αk

k ) = Ωα

b) The map � can be extended to the open formulae of the language of Th-FO+, with the
equivalence (F2) still holding.

c) Let D be a description of a k-ary function. Then there is a term q of the language of Th-FO
such that,

Th− FO+ � ∀x1 . . .∀xk fD(x1, . . . , xk) ≤ q(x1, . . . , xk)

d) For each term t(x1, . . . , xk) of the language of Th-FO+, there is a description D of a k-ary
FO-function such that,

Th− FO+ � ∀x1 . . .∀xk t(x1, . . . , xk) = fD(x1, . . . , xk)

e) If F1(x1, . . . , xk), . . . , Fr(x1, . . . , xk) are open formulae of the language of Th-FO+ and if
D1, . . . , Dr, Dr+1 are descriptions of k-ary FO-function symbols, then there is a description
D′ of a k-ary FO-function such that,

Th−FO+ � (F1∧fD′ = fD1)∨ (¬F1∧F2∧fD′ = fD2)∨ . . .∨ (¬F1∧ . . .∧¬Fr ∧fD′ = fDr+1)
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f) For any open formulae F (x, x1, . . . , xk) of the language of Th-FO+, there is a (k + 1)-ary
description D of a FO-function such that,

Th− FO+ � (∃y ⊆ xF (y, x1, ..., xk)) → fD(x, x1, ..., xk) ⊆ x ∧ F (fD(x, x1, ..., xk), x1, ..., xk)

The same is true (with a different D) if “initial subwordness” is replaced by “subwordness”.

Proof : Let D = (A, t) and suppose that N |= fD(a1, . . . , ak) = a. The axiom (3) en-
tails that N |= L�

[D](α, a1, . . . , ak). By (F2), M |= L��
[D](α, α1, . . . , αk, i(α),Ωα1

1 , . . . ,Ω
αk

k ) and,
hence, calM |= L[D](α, α1, . . . , αk,Ωα1

1 , . . . ,Ω
αk

k ). This shows that the second component of
[D]M(Ωα1

1 , . . . ,Ω
αk

k ) is, indeed, α. On the other hand, the axiom (4) implies that M |= ∀w <
α(w ∈ Ωα ↔ A��(w,α1, . . . , αk, i(w),Ωα1

1 , . . . ,Ω
αk

k )). Hence,

M |= ∀w < α(w ∈ Ωα ↔ A(w,α1, . . . , αk,Ωα1
1 , . . . ,Ω

αk

k ))

From the above, we conclude that the [D]M(Ωα1
1 , . . . ,Ω

αk

k ) = Ωα. The converse statement now
follows from the bitwise characterization of the elements of N (see the opening proposition of this
paper). Part b) is a consequence of part a) and of the examples given in the previous section. The
proof of part c) stems easily from the proof of part a). The statements d) and e) and the first part
of f) follow from a), the examples 6, 7, 9, 11 (for d), 13 (for e), 12 (for f) of the previous section, and
the completeness theorems. The second part of f) reduces to two applications of the first part. In
effect, by the example 8 of the previous section, there is a description tail of a binary FO-function
such that Th−FO+ � ∀x∀y(y ⊆ x→ y � ftail(y, x) = x). Now, observe that Th-FO+ proves the
equivalence ∃y ⊆∗ xF (y, . . .) ↔ ∃z ⊆ x∃y ⊆ ftail(z, x)F (y, . . .). ✷

Proposition. If N is a model of Th-FO+ and R is a substructure of N (with respect to the
language of Th-FO+), then R is also a model of Th-FO+.

Proof : The truth of the fourteen basic axioms is obviously inherited by R, since these axioms
are universal. The scheme of induction on notation for sw.q.-formulae can be reformulated by

F (ε) ∧ ¬F (y) → ∃x ⊂ y(F (x) ∧ ((x0 ⊆ y ∧ ¬F (x0)) ∨ (x1 ⊆ y ∧ ¬F (x1))))

where F is a sw.q.-formulae. Hence, the inheritance by R of the truth of this scheme follows from
the fact that sw.q.-formulae are absolute between N and R. More specifically: if F (x1, . . . , xk)
is a sw.q.-formula and a1, . . . , ak are elements of R, then R |= F (a1, . . . , ak) if, and only if, N |=
F (a1, . . . , ak). This fact is proved by induction on the complexity of F , using property f) of the
above lemma.

There remains to show that the string-building principle (2) is true in R. To see this, take
F (x, x1, . . . , xk) a sw.q.-formula, a1, . . . , ak elements of R and α ∈ tally(N). Consider the following
description D of a (k + 1)-ary FO-function:

(u < wk+1 ∧ F �(u,w1, . . . , wk, i(u),Ww1
1 , . . . ,W

wk

k ), wk+1)

where u is the special variable. Pick M a model of ∆0 −CA0 such that (M, N) is a natural pair,
and let Ωα1

1 , . . . ,Ω
αk

k be the parwise corresponding elements to a1, . . . , ak. Then, for α ∈M ,

[D]M(Ωα1
1 , . . . ,Ω

αk

k , i(α)) = {v ∈M : v < α ∧ F �(v, α1, . . . , αk, i(v),Ωα1
1 , . . . ,Ω

αk

k )}α

According to (B2), the first component of this pair, which we designate by Σ, is {v ∈ tally(N) :
N |= v ⊂ α ∧ F ��(v, a1, . . . , ak)}. Hence, Σ = {v ∈ tally(N) : N |= v ⊂ α ∧ F (v, a1, . . . , ak)}.
By hypothesis, the element fD(α, a1, . . . ak) is in R. By a) of the above lemma, this element is
the corresponding element to Σα. It follows from the definition of “corresponding element” that
fD(α, a1, . . . , ak) is the value a such that N |= a ≡ α ∧ ∀v ⊂ α(bit(a, v) = 1 ↔ F (v, a1, . . . , ak)).
Due to the absoluteness of the sw.q.-formulae, this equivalence holds in R. ✷
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Theorem. Suppose that Th− FO+ � ∀x1 . . .∀xk∃yF (x1, . . . , xk, y), where F is an open formula
of the language of Th− FO+. Then there is a description D of a k-ary FO-function such that,

Th− FO+ � ∀x1 . . .∀xkF (x1, . . . , xk, fD(x1, . . . , xk))

Proof : By the previous proposition, Th-FO+ is a universal theory. Due to d) and e) of the above
lemma, the result follows from Herbrand’s theorem for universal theories. ✷

Theorem. Every model of Th-FO is the reduct of a model of Th-FO+.

Proof : Take N an arbitrary model of Th-FO and let D be a description of a k-ary FO-function.
We define the interpretation of fD inN in the obvious way: given a1, . . . , ak elements ofN , consider
Ωα1

1 , . . . ,Ω
αk

k their parwise corresponding elements in a model M - with (M, N) a natural pair
- and define fD(x1, . . . , xk) as the corresponding element to [D]M(Ωα1

1 , . . . ,Ω
αk

k ). It is now a
straightforward consequence of the properties (F2) and (B2) that the axioms (3) and (4) hold. ✷

Corollary. The theory Th-FO+ is conservative over Th-FO. ✷

Define a sw.q.+−formulae exactly like a sw.q.-formula, except for permitting the new function
symbols fD in the language to start the recursive definition. By b) and f) of the above lemma and
by (B2), every such formula is equivalent (modulo ThFO+) to a sw.q.-formula (we will say that
this latter formula is obtained by “unwinding” the former formula). Hence, instantiations of the
schemes (1) and (2) by sw.q.+-formulae are still valid in Th-FO+. This is a very convenient fact.
In effect, it enables the work with function symbols that witness the truth of ∀∃sw.q.-sentences
which are provable in Th-FO in order to prove in Th-FO+ a sentence F of the original language,
and - finally - to conclude (by the above corollary) that Th − FO � F . We describe this process
as “working with smoothly introduced function symbols”.

4 Exponential assumptions and bounded collection

The formula “(x ≤ y ∧ x �≡ y) ∨ (x ≡ y ∧ ∃w ⊆ x(w0 ⊆ x ∧ w1 ⊆ y))”, abbreviated “x <� y”,
defines a total ordering in the standard model, first according to length and then, within the
same length, lexicographically. With the help of some easy checkings, we can smoothly introduce
a unary function symbol S(x) for “the immediate successor of x with respect to <�”. That is,
Th− FO+ � S(ε) = 0 ∧ ∀x(S(x0) = x1 ∧ S(x1) = S(x)0).

Lemma. There is a binary sw.q.-formula L(x, y) such that,

a) Th− FO � ∀x∃1y L(x, y)

b) Th− FO � L(ε, ε)

c) Th− FO+ � ∀x∀y(L(x, y) → L(x0, S(y)) ∧ L(x1, S(y)))

Proof : By results of James Bennett and Jeff Paris, we know that there is a ∆0-formula θ(w, y, z)
which expresses the relation wy = z in the standard model of arithmetic and such that the usual
defining recurrence relations of exponentiation are provable in I∆0. Hence, it is possible to “speak
in I∆0” of binary expansions of numbers (see [14] for the details). We may also (smoothly)
introduce in the language of I∆0 function symbols |w| and (w)u so that “if w =

∑s
u=0(1+δu)·2s−u,

where δu ∈ {0, 1}, then |w| = s + 1 and (w)u = δu”. As we know, the tally part of a model of
Th-FO is a model of I∆0. So, by the above discussion and the previous section, we can smoothly
introduce in the language of Th-FO two function symbols |x| and (x)u so that, if tally(x) then
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“x =
∑|x|−1

u=0 (1+ (x)u) · 2|x|−u−1, with all the arithmetic operations done in the tally part (and the
understanding that |0| = 0 and that the empty sum is 0)”. Let L(x, y) be the (unwinding of the)
following formula,

y ≡ |1 × x| ∧ ∀u ⊂ |1 × x| (bit(y, u) = 1 ↔ (1 × x)u = 1)

Part a) is a consequence of (2) and the bitwise characterization of the elements in models of Th-FO.
Part b) is trivial, and part c) holds because the theory I∆0 proves that both the indexes and the
length of the binary expansion of a number modify in the right way when a unit is added to it. ✷

According to the previous section, we can smoothly introduce in Th-FO a unary function
symbol �h such that: Th − FO+ � �h(ε) = ε and Th − FO+ � �h(x0) = �h(x1) = S(�h(x)). The
existence of this function symbol permits the formulation of exponential assumptions in models of
Th-FO without having to go through the definition of multiplication.

Lemma.

a) Th− FO+ � x ≤ y ∧ x �≡ y → �h(x) <� �h(y)

b) Th− FO+ � y <� �h(x) → ∃z ⊆ x �h(z) = y

Proof : To show a), fix x and prove by induction on notation on z that ∀z(z �= ε → �h(x) <�

�h(x � z)). To argue for b), pick y and x with y <� �h(x) and, to obtain a contradiction, assume
that ∀z ⊆ x �h(z) �= y. Argue by induction on notation on z that ∀z(z ⊆ x → �h(z) <� y). The
case z = x originates a contradiction. ✷

If we view each element x of an arbitrary model of I∆0 as the string of zeroes and ones
(x)0(x)1 . . . (x)|x|−1, it is clear that all the primitive symbols of the stringlanguage have a ∆0-
rendering in the language of arithmetic, except for the binary function symbol × (a model of I∆0

is closed under × if, and only if, it satisfies the so-called axiom Ω1). A sw.q.m − formula of
the stringlanguage is defined exactly as a sw.q.-formula except for the ×-function symbol, which
is replaced by a ternary relational graph counterpart. Clearly, the sw.q.m-formulae have natural
∆0-renderings. In the sequel, when we speak of sw.q.m-formulae in the language of arithmetic, we
mean their natural ∆0-renderings.

With the above observations in mind, considerM an arbitrary model of I∆0. As we have seen,
M is the tally part of a modelN of Th-FO. Let �h(N) be the set {x ∈ N : ∃y ∈ tally(N) �h(y) = x}.
By b) of the previous lemma, �h(N) is an initial segment of N , i.e., if x, y ∈ N , x <� y and
y ∈ �h(N) then x ∈ �h(N). On the other hand, �h(N) can be seen as a copy of M by viewing
it as inheriting the ∆0-structure of M via the binary length function (which is injective in the
tally part of N). Due to the way the things are set up, the relations of �h(N) that come from
sw.q.m-relations in M via the function �h coincide with the sw.q.m-relations that come from the
fact that �h(N) is a substructure of N . Furthermore, it is clear that the order < of M translates
(via �h) into the order <�, and that the successor operation in M translates into the S operation.

The discussion in the previous paragraph is summarized by the first part of the following result:

Main Theorem. Every model M of I∆0 is the initial segment of a model N of Th-FO such that
�h(N) =M . Moreover, if M is not a model of exp, then M is a proper initial segment of N .

Proof : In order to prove the second part of this result, we need to make a preliminary observation.
In the observation, as well as in the remaining of the proof, we identify M with tally(N) (this
is not so in the statement of the theorem). Suppose that y ∈ tally(N) is an element such that
x = �h(y) ∈ tally(N). Since x is a string of ones in N we conclude, by the definition of �h, that
M |= “y =

∑x−1
u=0 2x−u”, i.e., M |= “y = 2x+1 − 2”. (The converse also holds, i.e., if x, y ∈M and

M |= “y = 2x+1 − 2” then N |= �h(y) = x.)
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Now, assume that �h(N) = N and take an arbitrary element x ∈ tally(N). By assumption,
there is y ∈ tally(N) such that �h(y) = x. Hence, M |= “y = 2x+1 − 2”. This entails that
M |= ∃y“y = 2x”. ✷

We have the folowing interesting situation. Every model M of I∆0 + ¬exp is a proper initial
segment of a model of Th-FO but, in the meantime, while going from the original model to its
end-extension, the language changes from the language of arithmetic to the stringlanguage of the
binary tree. Moreover, this is a genuine change, since it does not seem possible to “smoothly”
define the multiplication function in the end-extension.

There is a canonical way of associating a model NM of Th-FO to a model M of I∆0 satisfying
the specifications of the previous theorem. Just let NM be (M,S)�, where S is the set of all
∆0-definable subsets of M . This permits to give a meaning to the concept of FO-relation in an
arbitrary model of I∆0. More precisely, we say that X ⊆Mr defines a r-ary FO-relation in M if
there is a sw.q.-formula F (2x, 2y) and parameters 2p in M such that X = {2x ∈Mr : NM |= F (2x, 2p)}.
Obviously, there is a direct way to define FO-relations in models of I∆0 + Ω1. The reader should
convince himself that, in this case, the two notions coincide.

The next three theorems are variations on a single theme, that of “a modicum of bounded
collection holds in models of I∆0 + ¬exp”.

Theorem (variation I). Let M be a model of I∆0 + ¬exp and suppose that X ⊆ M ×M is a
binary FO-relation in M . Then, for all a ∈M ,

M |= ∀x ≤ a∃y(T (y) ∧ (x, y) ∈ X) → ∃z∀x ≤ a∃y ≤ z (x, y) ∈ X (5)

where T (y) stands for ∃u“2u+1 − 2 = y”.

Proof : First of all note that for any a ∈ M , M |= T (a) ⇔ NM |= tally(a). (This was argued
for in the proof of the main theorem.) By definition of FO-relation in M , there is a sw.q.-formula
F (x, y, 2w) and elements 2p in M such that X = {(x, y) ∈ M2 : NM |= F (x, y, 2p)}. Assume, by
hypothesis, that M |= ∀x ≤ a∃y(T (y)∧ (x, y) ∈ X). We may rephrase this by NM |= ∀x ≤� a∃y ∈
M(tally(y) ∧ F (x, y, 2p)). Hence, for every element y0 ∈ tally(NM ) \M , we have NM |= ∀x ≤�

a∃y ⊆ y0F (x, y, 2p).
Let b ∈ tally(NM ) such that NM |= �h(b) = a. Using the fact that {x ∈M : x ≤� a} = {�h(u) :

u ⊆ b}, we get
NM |= ∀u ⊆ b∃y ⊆ y0 F (�h(u), y, 2p) (6)

for every y0 ∈ tally(NM )\M . The formula to the right of the symbol “|=” is a sw.q.+-formula. By
an underspill argument, we may conclude that there is y0 ∈ tally(NM ) ∩M for which (6) holds.
This entails that M |= ∀x ≤ a∃y ≤ y0(x, y) ∈ X. ✷

The next variation is a weaker, purely syntactical corollary of the previous variation.

Theorem (variation II). For any sw.q.m-formulae A(x, y), possibly with parameters, of the
language of arithmetic,

I∆0 + ¬exp � ∀x ≤ a∃y(T (y) ∧A(x, y)) → ∃z∀x ≤ a∃y ≤ zA(x, y) (7)

where T (y) stands for ∃u“2u+1 − 2 = y”. ✷

Ever since the seminal work of Jeff Paris and Laurence Kirby in [15], it is well known that the
theory I∆0 does not prove the scheme of collection for bounded arithmetic formulae, i.e., does not
prove every instance of

∀x ≤ a∃yA(x, y) → ∃z∀x ≤ a∃y ≤ zA(x, y) (8)

13



where A is a bounded formulae of the language of arithmetic (possibly with parameters). More
recently, at the end of [16], Alex Wilkie and Jeff Paris asked the “intriguing” (sic) question of
whether the above scheme (8) is provable in I∆0 + ¬exp. The previous two variations say that a
modicum of bounded collection is, indeed, a consequence of this theory. Remark that this modicum
is non-trivial since, in the presence of exp, it implies the full scheme of bounded collection (note that
when exponentiation holds, bounded quantifications can be replaced by subword quantifications).

There are two natural ways to attempt to generalize variation I. One way is to remove, or to
weaken, condition T (y). The other way is to allow more general relations X in statement (5). As a
matter of fact, there is a balance between these two possibilities: simply removing condition T (y)
is (easily seen to be) equivalent to permitting, instead, Σp

1-relations X. And this latter is beyond
our present reach because of work in [17] showing that that entails P �= NP . So, either we try
to weaken (without removing) condition T (y) or, else, we try to consider binary relations X with
complexity falling between FO and NP. We explore the first possibility.

Definition. A sw.q.-predicate P (x) is provably sparse in Th-FO if,

Th− FO � ∀u∃y∀z(z ≤ u ∧ P (z) → z ⊆∗ y) (9)

The computer scientist says that a set S ⊆ {0, 1}∗ is sparse if there is an integer polynomial
p(n) such that, for every n ∈ ω, card{x ∈ S : length(x) ≤ n} ≤ p(n). We want to remark that a
provably sparse (in Th-FO) sw.q.-predicate P (x) does, indeed, define a sparse set in the standard
model. This is a consequence of a Parikh type result (see, for instance, chapter V.1 of [18]), to the
effect that the statement (9) implies the existence of a term t(u) of the language of Th-FO such
that ∀u∃y ≤ t(u)∀z(z ≤ u ∧ P (z) → z ⊆∗ y).

Let M be a model of I∆0. We say that a set S ⊆M is FO-sparse if there is a provably sparse
sw.q.-predicate P (x) such that S = {x ∈M : NM |= P (x)}.
Theorem (variation III). Let M be a model of I∆0 + ¬exp and suppose that S ⊆ M is a
FO-sparse set in M and that X ⊆M ×M is a binary FO-relation in M . Then, for all a ∈M ,

M |= ∀x ≤ a∃y(y ∈ S ∧ (x, y) ∈ X) → ∃z∀x ≤ a∃y ≤ z (x, y) ∈ X

Proof : Let P (x) be the provably sparse sw.q.-predicate defining S and fix an element ũ ∈
tally(NM ) \M . According to condition (9), there is y0 ∈ NM such that

NM |= ∀z ≤ ũ(P (z) → z ⊆∗ y0)

Assume, by hypothesis, that M |= ∀x ≤ a∃y(y ∈ S ∧ (x, y) ∈ X) and take an arbitrary element
u ∈ NM \M such that u ⊆ ũ. By the first condition on u, NM |= ∀x ≤� a∃y ≤ u(P (y)∧F (x, y, 2p)),
where F and 2p are, respectively, the sw.q.-formula and the parameters that define the FO-relation
X. Now, the second condition on u plus the considerations on the previous paragraph yield

NM |= ∀x ≤� a∃y ⊆∗ y0 (y ≤ u ∧ P (y) ∧ F (x, y, 2p)) (10)

Let b ∈ tally(NM ) such that NM |= �h(b) = a. We can rephrase (10) by

NM |= ∀v ⊆ b∃y ⊆∗ y0 (y ≤ u ∧ P (y) ∧ F (�h(v), y, 2p)) (11)

By an underspill argument, we may conclude that there is u ∈ tally(NM )∩M for which (11), and
hence (10), holds. We conclude that M |= ∀x ≤ a∃y ≤ u (x, y) ∈ X. ✷

We finish with the following separation result,

Theorem. There is a sw.q.m-formula A(x) such that I∆0 � ∀xA(x) but Th− FO �� ∀xA(x).
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Proof : In order to obtain a contradition, assume that no such sw.q.m-formula exists. Take M0 a
model of I∆0+Ω1 in which there is a semantic tableaux proof d of 0 = 1 from I∆0+Ω1. This means
that M0 |= ∃xF (x, d), for a certain sw.q.-formula F . (This rests on the fact that NP-relations can
be defined by formulae of the form “∃x ≤ t(. . .)A(x, . . .)”, with A a sw.q.-formula - see [11].)
Clearly, there exists a sw.q.m-formula G so that the theory Th-FO (and, a fortiori, I∆0 + Ω1)
proves ∀y(∃xF (x, y) ↔ ∃zG(z, y)). This is done by absorbing existential commitments into the
quantifier “∃z”. By assumption and easy model theory, the model NM0 of the theory Th-FO can
be embedded into a model M1 of I∆0 such that sw.q.m-formulae are absolute between NM0 and
M1. Moreover, we may assume that M1 also satisfies the axiom Ω1 (if the original model does
not satisfy this axiom, consider its initial segment cofinal in NM0). Iterate this process ω-times
to obtain a chain M0 ⊆ NM0 ⊆ M1 ⊆ NM1 ⊆ . . ., where the ⊆-signs mean that each left entry
is a substructure of the right entry with respect to the modified language of Th-FO (obtained by
replacing the binary ×-function symbol by a ternary relational graph counterpart), and that the
truth of sw.q.m-formulae is preserved between the entries. Clearly

⋃
n∈ω NMn is a model of Th-

FO+{∀x∃y �h(y) = x}, i.e., it is a model of I∆0 + exp. By results of Alex Wilkie and Jeff Paris in
[19],

⋃
n∈ω NMn

|= ∀x∀y¬F (x, y). Hence, by absoluteness (via the formula G) M0 |= ∀x¬F (x, d).
This is a contradiction. ✷
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